1
|
Oluseyifunmi IW, Lourenco J, Olukosi OA. The interactivity of sources and dietary levels of resistant starches - impact on growth performance, starch, and nutrient digestibility, digesta oligosaccharides profile, cecal microbial metabolites, and indicators of gut health in broiler chickens. Poult Sci 2024; 103:104337. [PMID: 39388980 PMCID: PMC11752116 DOI: 10.1016/j.psj.2024.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
In a 21-d study, 480 Cobb 500 (off-sex) male broiler chicks were used to investigate the effects of feeding different sources and levels of resistant starches (RS) on growth performance, nutrient and energy utilization, and intestinal health in broiler chickens. The birds were allocated to 10 dietary treatments in a 3 × 3 + 1 factorial arrangement. The factors were 3 RS-sources (RSS): banana starch (BS), raw potato starch (RPS), and high-amylose corn starch (HCS); each at 3 levels (RSL) 25, 50, or 100 g/kg plus a corn-soybean meal control diet. Birds and feed were weighed on d 0, 8, and 21. On d 21, samples of jejunal tissue and digesta were collected for chemical analysis. Data were analyzed using the mixed model procedure of JMP with factor levels nested with the control. In the 0 to 21 phase, the birds fed the RPS diets had higher (P = 0.011) FI than those fed HCS or control diets, and FCR was greater (P = 0.030) in birds that received BS diets than in other diets. RSS × RSL was significant (P < 0.05) for total tract nutrient retention, AME, and AMEn on d 21. The starch digestibility was higher (P < 0.001) in birds that received the control diet than in RS diets, and decreased as RS levels increased, except for HCS. The apparent metabolizable energy (AME) and nitrogen-corrected AME (AMEn) were higher (P < 0.001) in birds fed 100 g/kg HCS diet, with both decreasing with increasing levels of BS and RPS, except for HCS. Relative ileal oligosaccharides profile showed significant (P < 0.05) RSS × RSL with a higher relative abundance of Hex(3) (P = 0.01) and Pent(3) (P = 0.001) in HCS diets. In conclusion, RS may influence gut health and growth performance in broiler chickens through modulation of cecal SCFA and nutrient digestion, but these depend largely on the botanical origin and concentrations of individual RS.
Collapse
Affiliation(s)
| | - Jeferson Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Liu H, Xu K, Wang H, Lin H, Yang X, Wang X, Zhao J, Ma B, Shu Q, Lu Y, Jiao H. Effects of different forms of amino acid supplementation on the performance and intestinal barrier function of laying hens fed a low-protein diet. Poult Sci 2024; 103:104375. [PMID: 39442199 PMCID: PMC11532764 DOI: 10.1016/j.psj.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
The aim of this study was to investigate the effects of low-protein diets and the sustained release of synthetic amino acids (AA) on the performance, intestinal barrier function and nitrogen excretion of laying hens. Two hundred eighty-eight 39-week-old Hyline brown laying hens of were randomly divided into 3 groups with 8 replicates per group. The crude protein level in the control group (CON) was 16%, the crude protein levels in the crystal AA supplement group (LCP-CAA) and microencapsulated AA group (LCP-MAA) were both 13%, and the AA levels in the LCP-CAA and LCP-MAA groups were consistent with that in the CON group. The experiment lasted 12 wk, and production performance was assessed weekly. The FCR and ADFI values were significantly greater for the LCP-CAA group than for the CON and LCP-MAA groups (P < 0.05). Two hours after feeding, His levels were significantly greater in the LCP-CAA group than in the LCP-MAA group (P < 0.05); 4 h after feeding, the contents of Met, Thr, Leu and Val were significantly greater in blood from the LCP-MAA group (P < 0.05); 6 h after feeding, Trp, Ile and Arg levels were significantly greater in the LCP-MAA group (P < 0.05). The chylase content significantly decreased in the duodenum of the LCP-CAA group (P < 0.05), and the chylase and trypsin were contents increased in the ileum of the LCP-MAA group (P < 0.05). In the LCP-MAA group, significantly increased mRNA expression levels of Occludin, ZO-1 in duodenum; Occludin, ZO-1, y+LAT1 in jejunum; and ZO-1 in ileum were detected at 8 and 12 weeks (P < 0.05). The fecal nitrogen content significantly decreased in the low protein diet group (P < 0.01). In conclusion, reducing dietary crude protein levels and supplementing with microencapsulated AAs can improve intestinal barrier function, promote digestive enzyme secretion, increase the expression of AA transporters, improve dietary protein utilization efficiency, and reduce nitrogen emission in laying hens.
Collapse
Affiliation(s)
- Hui Liu
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China; Animal Husbandry and Veterinary Service Center of Xintai City, Xintai 271200, Shandong Province, China
| | - Kangqi Xu
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Huimin Wang
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Xiaoyan Yang
- Shandong Bohi Industry Co. Ltd., Binzhou 256599, Shandong Province, China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Baishun Ma
- Shandong Xiandai Research Institute of Egg-laying Industry, Shandong Hemeihua Nongmu Co. Ltd., Jinan 250102, Shandong Province, China
| | - Quanxian Shu
- Shandong Bohi Industry Co. Ltd., Binzhou 256599, Shandong Province, China
| | - Yanbo Lu
- Shandong Bohi Industry Co. Ltd., Binzhou 256599, Shandong Province, China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China.
| |
Collapse
|
3
|
Yang C, Dong B, Chen A, Jiang Y, Bai H, Chen G, Chang G, Wang Z. Metagenomic insights into the relationship between intestinal flora and residual feed intake of meat ducks. Poult Sci 2024; 103:103836. [PMID: 38776859 PMCID: PMC11141266 DOI: 10.1016/j.psj.2024.103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
In this study, we sought to determine the effects of intestinal flora on the feed efficiency of meat ducks by evaluating the correlation between intestinal flora and residual feed intake. The F2 generation of Cherry Valley ducks × Runzhou Crested White ducks was used as the study subjects, and feed consumption being recorded from d 21 to 42. RFI was calculated based on growth performance, and 20 low RFI and 20 high RFI ducks were randomly selected to characterize the effect of RFI on growth performance. To analyze the intestinal flora affecting RFI, 16s rDNA sequencing was performed on the contents of 5 intestinal segments from the HR and LR groups, and macrogenomic sequencing was performed on the cecal contents. Feed intake, average daily feed intake, feed conversion ratio, and residual feed intake were lower in low RFI. Analysis of the intestinal flora revealed the cecum to be more highly enriched in the carbohydrate metabolism pathway and less enriched with potentially pathogenic taxa than the other assessed intestinal regions. Further analysis of the cecal microbiota identified nine significantly differentially enriched intestinal flora. In this study, we accordingly identified a basis for the mechanisms underlying the effects of the intestinal flora on meat duck feed efficiency.
Collapse
Affiliation(s)
- Chunyan Yang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Bingqiang Dong
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Anqi Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Ajao AM, Olukosi OA. Apparent ileal amino acid digestibility, gut morphometrics, and gene expression of peptide and amino acid transporters in broiler chickens fed low-crude-protein diets supplemented with crystalline amino acids with soybean meal, canola meal, or corn DDGS as protein feedstuffs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4189-4200. [PMID: 38349054 DOI: 10.1002/jsfa.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/27/2023] [Accepted: 01/10/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND We investigated the impact of using canola meal (CM) or corn distillers dried grain soluble (cDDGS) in place of soybean meal (SBM) in low-crude-protein diets supplemented with amino acids (AA) on AA digestibility, gut morphometrics, and AA transporter genes in broiler chicken. On day 0, 540 Cobb 500 male broilers were allocated to six diets in 36-floor pens. The positive control (PC) was a corn-SBM diet with adequate crude protein (CP). The CP level of negative control (NC) was decreased by 45 and 40 g kg-1 relative to PC for grower and finisher phases, respectively. The subsequent two diets had the same CP levels as NC but with cDDGS added at 50 or 125 g kg-1. The last two diets had the same CP as NC but with CM added at 50 or 100 g kg-1. RESULTS Dietary CP reduction in corn-SBM diets increased (P < 0.05) the digestibility of Lys (88.5%), Met (90.7%), Thr (77.4%), Cys (80.7%), and Gly (84.7%). Increasing levels of cDDGS linearly decreased (P < 0.05) the digestibility of Asp, Cys, Glu, and Ser, whereas increasing CM level linearly decreased (P < 0.05) the digestibility of Cys, Pro, and Ser. The CP reduction in corn-SBM diets produced downward expression of peptide transporter1 and decreased (P < 0.05) absolute pancreas and ileum weight and length of jejunum and ileum. CONCLUSIONS Partial replacement of SBM with alternative protein feedstuffs (cDDGS or CM) in low-CP diets had minimal effects on AA digestibility and mRNA levels of peptides and AA transporters. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Adeleye M Ajao
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
5
|
Kinstler SR, Cloft SE, Siegel PB, Honaker CF, Maurer JJ, Wong EA. Early intestinal development of chickens divergently selected for high or low 8-wk body weight and a commercial broiler. Poult Sci 2024; 103:103538. [PMID: 38387293 PMCID: PMC10900922 DOI: 10.1016/j.psj.2024.103538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The early posthatch period is crucial to intestinal development, shaping long-term growth, metabolism, and health of the chick. The objective of this study was to determine the effect of genetic selection on morphological characteristics and gene expression during early intestinal development. Populations of White Plymouth Rocks have been selected for high weight (HWS) and low weight (LWS) for over 63 generations, and some LWS display symptoms of anorexia. Intestinal structure and function of these populations were compared to a commercial broiler Cobb 500 (Cobb) during the perihatch period. Egg weights, yolk-free embryo BW, yolk weights, and jejunal samples from HWS, LWS, and Cobb were collected on embryonic day (e) 17, e19, day of hatch, day (d) 3, d5, and d7 posthatch for histology and gene expression analysis. The RNAscope in-situ hybridization method was used to localize expression of the stem cell marker, olfactomedin 4 (Olfm4). Villus height (VH), crypt depth (CD), and VH/CD were measured from Olfm4 stained images using ImageJ. mRNA abundance for Olfm4, stem cell marker Lgr5, peptide transporter PepT1, goblet cell marker Muc2, marker of proliferation Ki67, and antimicrobial peptide LEAP2 were examined. Two-factor ANOVA was performed for measurements and Turkey's HSD was used for mean separation when appropriate. Cobb were heaviest and LWS the lightest (P < 0.01). at each timepoint. VH increased in Cobb and CD increased in HWS compared to LWS (P < 0.01). PepT1 mRNA was upregulated in LWS (P < 0.01), and Muc2 mRNA was decreased in both HWS and LWS compared to Cobb (P < 0.01). Selection for high or low 8-wk body weight has caused differences in intestinal gene expression and morphology when compared to a commercial broiler.
Collapse
Affiliation(s)
| | - Sara E Cloft
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Paul B Siegel
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - John J Maurer
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric A Wong
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
6
|
Yoon JH, Kong C. Comparison of methods for estimating basal endogenous losses of amino acids and additivity of digestibility of amino acids in corn and soybean meal for broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:233-241. [PMID: 38033607 PMCID: PMC10685154 DOI: 10.1016/j.aninu.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 12/02/2023]
Abstract
This study was to compare the estimates of basal endogenous losses (BEL) of amino acids (AA) determined by 3 methods including feeding a nitrogen-free diet (NFD) or a low-casein diet (LCD, containing casein at 30 g/kg diet) or using the regression method. Another objective was to investigate whether the ileal AA digestibility of corn calculated from a casein-supplemented corn diet is additive for a corn-soybean meal (SBM) mixed diet in broilers. On d 31 of age, 168 Ross 308 male broilers were assigned to 8 dietary treatments with 6 replicates in a randomized complete block design. An NFD and 3 diets containing 30, 60, or 90 g/kg of casein were formulated to determine the BEL of AA and ileal AA digestibility of casein. The other 4 diets consisted of a corn diet, SBM diet, casein-supplemented corn diet, and corn-SBM mixed diet. On d 35 of age, digesta from the distal section of the ileum were collected. The BEL of AA in birds fed the LCD were greater (P < 0.05) than those of the NFD and the regression method. There were no differences in the BEL of AA determined between the NFD and the regression method. Apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of AA for corn calculated from the casein-supplemented corn diet were greater (P < 0.05) than those of the corn diet. The predicted AID of Thr in the corn-SBM mixed diet based on the AID of AA for corn in the corn diet was lower (P < 0.05) than the measured AID. However, the predicted AID of AA in the mixed diet based on the AID of AA for corn in the casein-supplemented corn diet did not differ from the measured AID. The predicted SID of AA in the mixed diet did not differ from the measured SID irrespective of casein supplementation. In conclusion, feeding an NFD or using the regression method yields similar BEL of AA, but not feeding an LCD. Casein supplementation in the corn diet increases the ileal AA digestibility for corn, which is additive for the corn-SBM mixed diet.
Collapse
Affiliation(s)
- June Hyeok Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Changsu Kong
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
- Department of Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea
- Research Institute of Horse Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| |
Collapse
|
7
|
Quintana-Ospina GA, Alfaro-Wisaquillo MC, Oviedo-Rondon EO, Ruiz-Ramirez JR, Bernal-Arango LC, Martinez-Bernal GD. Data Analytics of Broiler Growth Dynamics and Feed Conversion Ratio of Broilers Raised to 35 d under Commercial Tropical Conditions. Animals (Basel) 2023; 13:2447. [PMID: 37570256 PMCID: PMC10416863 DOI: 10.3390/ani13152447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Data collection is standard in commercial broiler production; however, growth modeling is still a challenge since this data often lacks an inflection point. This study evaluated body weight (BW) dynamics, feed intake, BW gain, feed conversion ratio (FCR), and mortality of broiler flocks reared under commercial tropical conditions with controlled feeding to optimize FCR. The data analyzed included performance records of 1347 male and 1353 female Ross 308 AP broiler flocks with a total of 95.4 million chickens housed from 2018 to 2020. Decision trees determined high- and low-feed-efficiency groups using FCR at 35 d. Logistic, Gompertz-Laird, and von Bertalanffy growth models were fitted with weekly BW data for each flock within performance groups. The logistic model indicated more accurate estimates with biological meaning. The high-efficiency males and females (p < 0.001) were offered less feed than the low-efficiency group and were consistently more efficient. In conclusion, greater feeding control between the second and the fourth week of age, followed by higher feed allowance during the last week, was associated with better feed efficiency at 35 d in males and females. Additionally, models demonstrated that a reduced growth rate resulted in heavier chickens at 35 d with better feed efficiency and greater BW gain.
Collapse
Affiliation(s)
- Gustavo A. Quintana-Ospina
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA; (G.A.Q.-O.); (M.C.A.-W.)
- Grupo BIOS Inc., Envigado 055420, Antioquia, Colombia; (J.R.R.-R.); (L.C.B.-A.); (G.D.M.-B.)
| | - Maria C. Alfaro-Wisaquillo
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA; (G.A.Q.-O.); (M.C.A.-W.)
| | - Edgar O. Oviedo-Rondon
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA; (G.A.Q.-O.); (M.C.A.-W.)
| | - Juan R. Ruiz-Ramirez
- Grupo BIOS Inc., Envigado 055420, Antioquia, Colombia; (J.R.R.-R.); (L.C.B.-A.); (G.D.M.-B.)
| | - Luis C. Bernal-Arango
- Grupo BIOS Inc., Envigado 055420, Antioquia, Colombia; (J.R.R.-R.); (L.C.B.-A.); (G.D.M.-B.)
| | | |
Collapse
|
8
|
Wani MA, Tyagi PK, Begum J, Mir NA, Dev K, Biswas A, Sharma D, Goel A. Expression of nutrient transporter genes in response to dietary rice gluten meal and protease enzyme supplementation and the consequent effects on growth, nutrient digestibility, immunity and jejunum histomorphometry in chicken. Anim Biotechnol 2022; 33:1620-1628. [PMID: 34057400 DOI: 10.1080/10495398.2021.1924182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The objective of this study was to investigate the effects of feeding rice gluten meal (RGM) as an alternative protein source along with protease enzyme supplementation on growth performance, expression of nutrient transporter genes, nutrient digestibility, immune response and gut histomorphometry of broiler chicken. Proximate analysis of RGM revealed 923 g dry matter (DM), 500 g crude protein (CP), 69.2 g ether extract, 94.7 g crude fiber, 215.4 g nitrogen-free extract, 43.7 g ash, 6.20 g calcium, 7.80 g total phosphorus, 18.99 MJ gross energy and 12.68 MJ metabolizable energy per kg diet. Significant upregulation of nutrient transporter genes (PepT1, EAAT3 and mucin) and better growth performance was observed in the birds fed control diet which was statistically similar to the birds fed 150 g RGM compared to birds fed higher RGM levels. Histomorphometry of jejunum, nutrient digestibility, and immune response of birds did not reveal any significant effect of RGM or protease enzyme supplementation. However, the inclusion of RGM up to 150 g/kg diet resulted in significant decline of feed cost/kg live weight gain, dressed meat yield and eviscerated meat yield by 13.13%, 12.99% and 13.36%, respectively compared to control. Thus, it was concluded that the inclusion of 150 g RGM/kg diet in broiler chicken ration has no adverse effects on the growth pattern of birds and can be used for least-cost feed formulation for chicken.
Collapse
Affiliation(s)
- Manzoor A Wani
- ICAR - Central Avian Research Institute, Avian Nutrition and Feed Technology, Izatnagar, India
| | - Pramod K Tyagi
- ICAR - Central Avian Research Institute, Avian Nutrition and Feed Technology, Izatnagar, India
| | - Jubeda Begum
- College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar, India
| | - Nasir Akbar Mir
- ICAR - Central Avian Research Institute, Avian Nutrition and Feed Technology, Izatnagar, India
| | - Kapil Dev
- ICAR - Central Avian Research Institute, Avian Nutrition and Feed Technology, Izatnagar, India
| | - Avishek Biswas
- ICAR - Central Avian Research Institute, Avian Nutrition and Feed Technology, Izatnagar, India
| | - Divya Sharma
- ICAR - Central Avian Research Institute, Avian Nutrition and Feed Technology, Izatnagar, India
| | - Akshat Goel
- ICAR - Central Avian Research Institute, Avian Nutrition and Feed Technology, Izatnagar, India
| |
Collapse
|
9
|
Ebeid TA, Tůmová E, Al-Homidan IH, Ketta M, Chodová D. Recent advances in the role of feed restriction in poultry productivity: part I- performance, gut development, microbiota and immune response. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2097149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Tarek A. Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Eva Tůmová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | - Ibrahim H. Al-Homidan
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Mohamed Ketta
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | - Darina Chodová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| |
Collapse
|
10
|
Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, Part I: Growth performance, body composition and intestinal nutrient transporters. Poult Sci 2022; 101:101857. [PMID: 35461066 PMCID: PMC9048119 DOI: 10.1016/j.psj.2022.101857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/09/2022] [Indexed: 01/21/2023] Open
|
11
|
Habibi M, Shili CN, Sutton J, Goodarzi P, Pezeshki A. Dietary branched-chain amino acids modulate the dynamics of calcium absorption and reabsorption in protein-restricted pigs. J Anim Sci Biotechnol 2022; 13:15. [PMID: 35139926 PMCID: PMC8830008 DOI: 10.1186/s40104-021-00669-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/14/2021] [Indexed: 01/25/2023] Open
Abstract
Background Very low-protein (VLP) diets negatively impact calcium (Ca) metabolism and absorption. The objective of this study was to investigate the effect of supplemental branched-chain amino acids (BCAA) and limiting amino acids (LAA) on Ca digestibility, absorption and reabsorption in pigs fed with VLP diets. Forty-eight piglets were assigned to six treatments: positive control (PC), negative control (NC), and NC containing LAA 25%, LAA 50%, LAA + BCAA 25% (LB25) and LAA + BCAA 50% (LB50) more than recommendations. Results Relative to PC or NC, LB25 and LB50 had higher digestibility of Ca and plasma Ca and phosphorus (P), but lower plasma vitamin D3. LB50 tended to increase vitamin D receptor transcript and protein in the gut, but decreased mRNA or protein abundance of parathyroid hormone 1 receptor (PTH1R), calbindin 1 (CALB1), cytochrome P450 family 27 subfamily B member 1 and occludin in small intestine. LB50 increased the transcript of cytochrome P450 family 24 subfamily A member 1 and PTH1R but decreased the transcript of transient receptor potential cation channel subfamily V member 5, CALB1 and solute carrier family 17 member 4 in kidney. Conclusion Overall, BCAA increased Ca digestibility through regulating the transcellular and paracellular Ca absorption in the gut and reabsorption in kidney during protein restriction.
Collapse
Affiliation(s)
- Mohammad Habibi
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Cedrick N Shili
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Julia Sutton
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Parniyan Goodarzi
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA.
| |
Collapse
|
12
|
Dao HT, Sharma NK, Kheravii SK, Bradbury EJ, Wu SB, Swick RA. Supplementation of reduced protein diets with l-arginine and l-citrulline for broilers challenged with subclinical necrotic enteritis. 3. Immunological parameters and gene expression. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Andrade MDFDS, Moreira Filho ALDB, Alves da Silva EF, Silva JHVD, Freitas Neto OCD, de Oliveira CJB, Givisiez PEN. In ovo threonine supplementation affects ileal gene expression of nutrient transporters in broilers inoculated post-hatch with Salmonella Enteritidis. J Anim Physiol Anim Nutr (Berl) 2021; 106:395-402. [PMID: 34958492 DOI: 10.1111/jpn.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The effect of in ovo threonine (Thr) supplementation on the ileal expression of glucose, peptide and amino acid transporters was assessed in Salmonella Enteritidis-challenged broiler chicks. At 17.5 days of incubation, fertile eggs were supplemented in the amniotic fluid with sterile saline or 3.5% threonine. Hatchlings were individually weighed, and Salmonella Enteritidis negative status was confirmed. At 2 days of age, half of the birds of each group were inoculated with sterile nutrient broth or Salmonella Enteritidis inoculum. Relative expression of sodium-dependent glucose transporter 1 (SGLT1), glucose transporter 2 (GLUT2), di- and tri-peptide transporter 1 (PepT1) and alanine, serine, cysteine, threonine transporter (ASCT1) was assessed at hatch, 2 and 9 days of age, i.e., before inoculation and 7 days post-inoculation (dpi). At 9 days of age (7dpi), threonine increased SGLT1 and GLUT2 expression, whereas GLUT2 expression decreased in Salmonella-challenged birds. There was a significant interaction between threonine and Salmonella for PepT1 and ASCT1. Threonine increased PepT1 expression only in non-challenged birds. In addition, in ovo supplementation increased expression of ASCT1 regardless of post-hatch inoculation; Salmonella inoculation resulted in decreased expression of ASCT1 only in supplemented birds. The results suggest that while intra-amniotic threonine administration in broiler embryos increases the expression of genes related to the absorption of monosaccharides and amino acids, Salmonella challenge may negatively affect the expression of protein related transporters in the ileum of broilers.
Collapse
Affiliation(s)
| | | | | | - José Humberto Vilar da Silva
- Departamento de Ciência Animal, Centro de Ciências Humanas Sociais e Agrárias, Universidade Federal da Paraíba, Bananeiras, Brazil
| | | | - Celso José Bruno de Oliveira
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil.,Global One Health Initiative (GOHi), Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
14
|
Artdita CA, Zhuang YR, Liu TY, Cheng CY, Hsiao FSH, Lin YY. The Effect of Feeding Restriction on the Microbiota and Metabolome Response in Late-Phase Laying Hens. Animals (Basel) 2021; 11:ani11113043. [PMID: 34827776 PMCID: PMC8614447 DOI: 10.3390/ani11113043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Feeding restriction (FR) is essential to reduce excessive fat deposits caused by overfeeding in hens and to ensure their reasonable nutritional requirements for egg production. Effective FR is particularly crucial for raising hens in the late phase of laying; because hens require lower energy at this stage, overfeeding reduces their feed efficiency and increase feed costs. The gut microbiota is involved in various metabolic pathways of laying hens, including in late-phase age. Thus, changes in feeding interventions can alter the presence of gut microorganisms and the structure of the microbial community, resulting in altered metabolic regulation. In this study, we investigate the microbiota and metabolome responses of late-phase laying hens under FR. Our results provide data to access the profile of the cecal bacteria community, their relevance to cecal and serum metabolites, and their FR biosynthetic pathways related to host nutritional requirements and intestinal nutrient availability. Moreover, understanding the principles of host-microbial interaction is essential for developing cost-effective strategies to improve laying hens’ production. Abstract This study investigated cecal bacterial community profile, cecal and serum metabolites, and its biosynthesis pathway in late-phase laying hens during 6 weeks feeding restriction (FR), using 16S rDNA as gene sequencing and non-targeted LC-MS/MS as metabolomics approach. We used three groups (ad libitum, FR20, and FR40). FR can reduce excessive fat in late-phase laying hens, while egg production rate is not affected, except for the FR40 group. In phylum level, FR20 had more population of Bacteriodetes and Firmicutes amongst groups. The same result is at genus level, FR20 were higher of the predominant genus (Bacteroides and Rikenellaceae_RC9_gut_group). Both of FR20 and FR40 reduced Proteobacteria as potential pathogenic bacteria. Non-targeted metabolomic analysis revealed that FR20 modified 20 metabolites in cecal and 10 metabolites in serum of laying hens, whereas 48 cecal metabolites and 31 serum metabolites has revealed in FR40. KEGG assay showed FR20 and FR40 upregulated lipid, carbohydrate, amino acid, nucleic acid pathway, and FR40 modified steroid metabolism in cecal analysis. In serum, only FR40 modified lipid, amino acid pathway, and carbohydrate biosynthesis were shown. This study showed that FR during late-phase laying hens altered the microbiome composition, modified metabolites profile and biosynthesis of the cecal as well as serum.
Collapse
Affiliation(s)
- Clara Ajeng Artdita
- Department of Animal Science and Biotechnology, Tunghai University, Taichung City 407, Taiwan; (C.A.A.); (T.-Y.L.); (C.-Y.C.)
- Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yi-Ru Zhuang
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan;
| | - Tzu-Yu Liu
- Department of Animal Science and Biotechnology, Tunghai University, Taichung City 407, Taiwan; (C.A.A.); (T.-Y.L.); (C.-Y.C.)
| | - Chih-Yuan Cheng
- Department of Animal Science and Biotechnology, Tunghai University, Taichung City 407, Taiwan; (C.A.A.); (T.-Y.L.); (C.-Y.C.)
| | - Felix Shih-Hsiang Hsiao
- Department of Animal Science and Biotechnology, Tunghai University, Taichung City 407, Taiwan; (C.A.A.); (T.-Y.L.); (C.-Y.C.)
- Correspondence: (F.S.-H.H.); (Y.-Y.L.); Tel.: +886-4-2359-0121 (ext. 37124) (F.S.-H.H.); +886-2-3366-4151 (Y.-Y.L.)
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan;
- Correspondence: (F.S.-H.H.); (Y.-Y.L.); Tel.: +886-4-2359-0121 (ext. 37124) (F.S.-H.H.); +886-2-3366-4151 (Y.-Y.L.)
| |
Collapse
|
15
|
Ding XM, Liu P, Zhang KY, Wang JP, Bai SP, Zeng QF, Xuan Y, Su ZW, Peng HW, Li DD. Effects of enzyme-treated soy protein on performance, digestive enzyme activity and mRNA expression of nutrient transporters of laying hens fed different nutrient density diets. Animal 2021; 15:100373. [PMID: 34624768 DOI: 10.1016/j.animal.2021.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022] Open
Abstract
It has been shown that enzyme-treated plant protein can increase performance and promote intestinal health, and save dietary protein. However, our understanding of the effects of enzyme-treated soy protein on performance and intestine function in laying hens, and its rational use, remains limited. The experiment was conducted to study the effect of enzyme-treated soy protein (ETSP) in different nutrient density diets on performance, egg quality, digestive enzyme activity and mRNA expression of amino acid transporters of laying hens. A total of 1 200 Lohmann laying hens (52 wk of age) was randomly divided into a 3 × 2 factorial design that included three nutrient levels: [positive control (PC), metabolisable energy (ME): 2 680 kcal/kg, CP: 15.5%; negative control 1 (NC1), ME: 2 630 kcal/kg, CP: 15%; negative control 2 (NC2), ME:2 580 kcal/kg, CP: 14.5%] and 2 ETSP levels (0 and 0.5%) for 12 weeks. Each treatment had 10 replicates with 20 birds. With the decrease of dietary nutrition density, egg production rate (P = 0.07) and feed conversion ratio (FCR) (P = 0.06) were reduced. Yolk colour was decreased, and yolk index was increased. Supplemented ETSP improved FCR (P = 0.05) and qualified egg rate (P < 0.05). The mass loss rate of egg was decreased after storage for 30 days (P < 0.05). An interaction between nutrient density and ETSP was observed on albumen height and Haugh unit (P < 0.05), and the effects were most noticeable in hens fed 0.5% ETSP in NC2 group. An increase in the activity of trypsin in duodenum (P < 0.05) and the relative expressions of jejunum peptide transporter 1 (PepT1) (P < 0.05) and B0 system neutral amino acid transport carrier (B0AT) mRNA (P < 0.01) was observed during ETSP supplementation. The nutrient density and ETSP supplementation had no significant effect on microbiota in the cecal contents. Overall, the results in this study indicated that the ME decreased 100 kcal/kg and CP decreased 1% in diet of laying hens had a decreasing trend on production performance, no effects on enzyme activity, amino acid transporter mRNA, and gut microbiota, whereas 0.5% ETSP can increase activity of trypsin, PepT1 and B0AT mRNA relative expressions, and improve FCR, qualified egg rate.
Collapse
Affiliation(s)
- X M Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - P Liu
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - K Y Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - J P Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - S P Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Q F Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Y Xuan
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Z W Su
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - H W Peng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - D D Li
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Microbiota composition and intestinal integrity remain unaltered after the inclusion of hydrolysed Nannochloropsis gaditana in Sparus aurata diet. Sci Rep 2021; 11:18779. [PMID: 34548549 PMCID: PMC8455595 DOI: 10.1038/s41598-021-98087-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
The use of lysed microalgae in the diet of carnivorous fish can increase the bioavailability of proteins and bioactive compounds, such as unsaturated fatty acids or vitamins in the digestive tract. These are essential molecules for the proper physiological development of fish in aquaculture. However, some antinutritional components and other undesirable molecules can be released from an excess of microalgae supplied, compromising the integrity of the intestine. The inclusion of small amounts of hydrolized microalgae in the fish diet can be a good strategy to avoid negative effects, improving the availability of beneficial compounds. Nannochloropsis gaditana is an interesting microalgae as it contains nutraceuticals. Previous studies reported beneficial effects after its inclusion in the diet of Sparus aurata, a widely cultured species in Europe and in all Mediterranean countries. However, administration of raw microalgae can produce intestinal inflammation, increased intestinal permeability, bacterial translocation and disturbance of digestion and absorption processes. The aim of this study was to evaluate changes in the intestinal microbiota and barrier stability of S. aurata fed with low inclusion (5%) hydrolysed N. gaditana. Intestinal microbiota was analyzed using Illumina MiSeq technology and libraries were constructed using variable regions V3–V4 of 16S rDNA molecules. Analysis were based in the identification, quantification and comparison of sequences. The predictive intestinal microbial functionality was analyzed with PICRUSt software. The results determined that the intestinal microbiota bacterial composition and the predictive intestinal microbiota functionality did not change statistically after the inclusion of N. gaditana on the diet. The study of gene expression showed that genes involved in intestinal permeability and integrity were not altered in fish treated with the experimental diet. The potential functionality and bacterial taxonomic composition of the intestinal microbiota, and the expression of integrity and permeability genes in the intestine of the carnivorous fish S. aurata were not affected by the inclusion of hydrolysed 5% N. gaditana microalgae.
Collapse
|
17
|
Onset of nutrient consumption during early life stage digestive system development of two tuna species (Thunnus orientalis and Thunnus albacares). Comp Biochem Physiol A Mol Integr Physiol 2021; 262:111075. [PMID: 34536565 DOI: 10.1016/j.cbpa.2021.111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022]
Abstract
To specify the timing of exogenous nutrient consumption in the larvae of two commercially important tuna species, the Pacific bluefin tuna (PBF) Thunnus orientalis and the yellowfin tuna (YFT) Thunnus albacares, the gene expressions of peptide transporter 1 (PEPT1) were examined. The mRNA expressions of PEPT1 first occurred at 2 days post hatching (dph) in PBF larvae and 3 dph for the YFT, and PEPT1 was found to only be expressed in the intestinal tract. The histological changes of the digestive tract of the YFT larvae were observed and compared to PBF larvae from a previous study. The intestines were developed at the hatching day for both species. It was found that the developmental timing of internal organs differed between the species, with the YFT showing an approximately one-day delay. The major organs such as liver, pancreas and gall bladder that excrete digestive enzymes appeared at 1 dph for PBF and 2 dph for YFT. The development of external morphological features was similar to organ development timings, with mouth-opening and first feeding starting at 2 dph for PBF, and 3 dph for YFT. Growth during the first month is rapid and variable for both species, ranging from 1.06 to 1.56 mm/d. Our findings provide new information about the early onset of feeding and larval development for the two species which would contribute to future aquaculture.
Collapse
|
18
|
Liu M, Li C, Tang H, Gong M, Yue Z, Zhao M, Liu L, Li F. Dietary lysine supplementation improves growth performance and skeletal muscle development in rabbits fed a low protein diet. J Anim Physiol Anim Nutr (Berl) 2021; 106:1118-1129. [PMID: 34496098 DOI: 10.1111/jpn.13632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to investigate the effects on growth of Lysine (Lys) supplementation in a low protein diet. We also investigated the gene or protein expression related to skeletal muscle development and intestinal amino acid transporters, and determined the major signalling associated with Lys-regulating skeletal muscle development. 1000 healthy, weights averaging 938.6 ± 6.54 g weaned rabbits were randomly divided into five groups (five replicates in each group and 40 rabbits in each replicate). These groups consisted of the normal protein group (NP group, consuming a diet containing 16.27% protein), the low protein group (LP group, 14.15%-14.19% protein) and the LP group with an addition of 0.15%, 0.3% or 0.45% Lys. The trial included 7 d of pre-feeding and 28 d of exposure to the treatment. Compared with NP diet and LP diet, LP+0.3% Lys group improved growth performance (p < 0.05), full-bore weight and half-bore weight of rabbits (p < 0.05). The LP+0.3% Lys group also resulted in a decrease in the excretion of faecal nitrogen and urinary nitrogen (FN; UN; p < 0.05), and an increase in nitrogen utilisation rate (NUR; p < 0.05). LP diet increased the mRNA expression of MSTN and WWP1, and decreased the mRNA expression of IGF1 (p < 0.05). LP diet decreased the protein expression of P-P70S6K1, P-4EBP1 and P-S6 (p < 0.05). LP+0.3% Lys group attenuated the effects of LP diet on the expression of MSTN, WWP1, IGF1, P-P70S6K1, P-4EBP1 and P-S6 (p < 0.05). LP+0.3% Lys group resulted in an increase in mRNA expression of MyoD and protein expression of P-mTOR relative to the NP and LP groups (p < 0.05). In summary, the addition of Lys to a LP diet provides a theoretical basis for the popularisation and application of Lys in rabbit production.
Collapse
Affiliation(s)
- Mengqi Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Chenyang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Haojia Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Maohua Gong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Zhengkai Yue
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Man Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
19
|
Tokutake Y, Taciak M, Sato K, Toyomizu M, Kikusato M. Effect of dipeptide on intestinal peptide transporter 1 gene expression: An evaluation using primary cultured chicken intestinal epithelial cells. Anim Sci J 2021; 92:e13604. [PMID: 34309968 PMCID: PMC9285489 DOI: 10.1111/asj.13604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022]
Abstract
Peptide transporter 1 (PepT1) is a transporter responsible for absorbing dipeptide and tripeptide in enterocytes and is upregulated by dipeptide in mammals. It has not been certain whether intestinal PepT1 expression is responsive to dipeptides in chickens because of the lack of in vitro study using the cultured enterocytes. This study established a primary culture model of chicken intestinal epithelial cells (IECs) in two‐dimensional monolayer culture using collagen gel by which the response of chicken PepT1 gene expression to dipeptide stimuli was evaluated. The cultured chicken IECs showed the epithelial‐like morphology attached in a patch‐manner and exhibited positive expression of cytokeratin and epithelial cadherin, specific marker proteins of epithelial cells. Moreover, the chicken IECs exhibited the gene expression of intestinal cell type‐specific marker, villin1, mucin 2, and chromogranin A, suggesting that the cultured IECs were composed of enterocytes as well as goblet and enteroendocrine cells. PepT1 gene expression was significantly upregulated by synthetic dipeptide, glycyl‐l‐glutamine, in the cultured IECs. From the results, we herein suggested that dipeptide is a factor upregulating PepT1 gene expression in chicken IECs.
Collapse
Affiliation(s)
- Yukako Tokutake
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Marcin Taciak
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Kan Sato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Osman A, Imbabi TA, El-Hadary A, Sabeq II, Edris SN, Merwad AR, Azab E, Gobouri AA, Mohammadein A, Sitohy M. Health Aspects, Growth Performance, and Meat Quality of Rabbits Receiving Diets Supplemented with Lettuce Fertilized with Whey Protein Hydrolysate Substituting Nitrate. Biomolecules 2021; 11:835. [PMID: 34205142 PMCID: PMC8227087 DOI: 10.3390/biom11060835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Lettuce (Lactuca sativa) was grown using a foliar spray with whey protein hydrolysate (WPH) as opposed to normal nitrate fertilization. Lettuce juice was prepared from lettuce cultivated without any fertilization, nitrate fertilization, or WPH. Sixty weaned, 4-week-old male V-line rabbits with an average 455 ± 6 g body weight were randomly divided into 4 groups (n = 15) and administered different lettuce juices. Rabbits administered WPH-fertilized lettuce showed significantly higher (n = 5, p < 0.05) body weight and carcass weight than those receiving nitrate-fertilized lettuce. Rabbits administered nitrate-fertilized lettuce were associated with significantly (p < 0.05) higher levels of liver enzyme activities (AST, ALT, and ALP), bilirubin (total, direct, and indirect), and kidney biomarkers (creatinine, urea, and uric acid). Rabbits administered WPH-fertilized lettuce avoided such increases and exhibited normal levels of serum proteins. Rabbits administered nitrate-fertilized lettuce manifested significantly (p < 0.05) lower RBCs and Hb levels than that of the other groups, while those receiving WPH-fertilized lettuce showed the highest levels. Liver and kidney sections of rabbits receiving WPH-fertilized lettuce witnessed the absence of the histopathological changes induced by feeding on nitrate-fertilized lettuce and produced higher quality meat. WPH-lettuce can substitute nitrate-fertilized lettuce in feeding rabbits for better performance and health aspects.
Collapse
Affiliation(s)
- Ali Osman
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Tharwat A. Imbabi
- Department of Animal Production, Faculty of Agriculture, Benha Univerisity, Benha 13736, Egypt;
| | - Abdalla El-Hadary
- Department of Biochemistry, Faculty of Agriculture, Benha University, Benha 13736, Egypt;
| | - Islam Ibrahim Sabeq
- Department of Food Hygiene, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt; (I.I.S.); (S.N.E.)
| | - Shimaa N. Edris
- Department of Food Hygiene, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt; (I.I.S.); (S.N.E.)
| | - Abdel-Rahaman Merwad
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Ehab Azab
- Department of Nutrition and Food Science, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amaal Mohammadein
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
21
|
Casetta J, Ribeiro RP, Lewandowski V, Khatlab ADS, de Oliveira Neto AR, Boscolo WR, Gasparino E. Expression of the PEPT1, CAT, SOD2 and GPX1 genes in the zebrafish intestine supplemented with methionine dipeptide under predation risk. J Anim Physiol Anim Nutr (Berl) 2021; 105:1214-1225. [PMID: 33772913 DOI: 10.1111/jpn.13535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/25/2021] [Accepted: 02/26/2021] [Indexed: 12/01/2022]
Abstract
This study evaluated the effect of methionine supplementation, predation risk and their interaction on gut histology, whole-body cortisol levels, and intestinal gene expression in zebrafish. A total of 360 one-year-old animals were maintained under two environmental conditions and fed diets containing different methionine sources. Fish were fed either a control diet (CTL, without methionine supplementation), a diet supplemented with dl-methionine (DLM), or a diet supplemented with methionine dipeptide (MM) in the absence (AP) of a predator or in the presence of the predator (PP) for 48 h or 20 days. Predator-induced stress for 20 days resulted in lower body weight. Zebrafish fed methionine-supplemented diets had higher weight gain than control fish. We found no effect of predation stress or methionine supplementation on cortisol level. Predation risk and methionine supplementation showed no interaction effect on dipeptide transporter gene expression. After 48 h of predation pressure, zebrafish had higher mRNA expression of SOD2, CAT and GPX1 in the gut. After 20 days of exposure to the predator, zebrafish fed methionine-supplemented diets had lower expression of GPX1, SOD2 and CAT than those diet CTL. Methionine dipeptide and free methionine supplementation improved growth, intestinal health and survivability of zebrafish both conditions.
Collapse
Affiliation(s)
- Jaísa Casetta
- Animal Science Department, State University of Maringá, Maringá, Brazil
| | | | - Vanessa Lewandowski
- Department of Aquacultural Engineering, Federal University of Grande Dourados, Dourados, Brazil
| | | | | | | | - Eliane Gasparino
- Animal Science Department, State University of Maringá, Maringá, Brazil
| |
Collapse
|
22
|
Performance of broiler chicken submitted to a quantitative feed restriction program. Trop Anim Health Prod 2021; 53:87. [PMID: 33415502 DOI: 10.1007/s11250-020-02456-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/25/2020] [Indexed: 10/22/2022]
Abstract
The search for better zootechnical indexes such as feed conversion, daily weight gain, uniformity, and lower bird mortality has become a priority within the poultry industry. The use of food restriction programs has emerged as an alternative to improve these rates as well as to mitigate the effect of the increased cost of nutrition over the past few years. In this work, the feed conversion (FC), daily weight gain (DWG), uniformity, and mortality of male broilers submitted to two food restriction programs were evaluated; one program reduced food by 10% and the other by 20% in relation to the feeding program suggested by the Cobb500 strain. One hundred and eighty birds aged 10 days old were housed in 12 boxes for 30 days. Fifteen birds were placed in each box, and four replicates per treatment were designed: T1 (control group-feed intake as recommended by the Cobb500 strain), T2 (10% reduction), and T3 (20% reduction). There was no statistical difference in DWG, uniformity, or mortality between the treatment groups. As for FC, a statistical difference was observed with a gain of 100 g in T2 and 252 g in T3 in relation to T1. The results of this work demonstrate that food restriction programs can be used to improve FC in broiler flocks, without interfering with the DWG, uniformity, or mortality of birds.
Collapse
|
23
|
Ran T, Li H, Liu Y, Zhou C, He Z, Tan Z, Yang W, Beauchemin KA. Cloning, phylogenetic analysis, and postnatal expression of oligopeptide transporter PepT1 in gastrointestinal tract of kid goats receiving supplemental feed or pasture. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to clone the cDNA of PepT1, an H+-dependent oligopeptide transporter, from kid goats and examine effects of physiological development (suckling, weaning, and post-weaning) of the animal and feeding system (supplemental feeding vs. grazing) on peptide transport capability. A 2395 bp cDNA sequence of pept1 (GenBank: MH308024) was cloned and phylogenetic analysis revealed a high homology and structure similarity with PepT1 of sheep and cattle. The pept1 was expressed throughout the gastrointestinal tract of kid goats immediately after birth and during development. Relative abundance of pept1 decreased in all segments except the middle-jejunum during suckling, whereas its expression in most segments of small intestine increased with age after weaning and remained stable thereafter. Middle-jejunum was the predominant expression site and probably the main peptide absorption site. Supplemental feeding enhanced pept1 expression because it increased protein intake compared with grazing. No feeding system × age interaction was observed in most segments; the expression was age related during suckling and diet related during weaning and post-weaning, indicating that feeding system and age had independent effects on pept1 expression. These results indicate that PepT1 plays an important role for protein nutrition in neonatal goats, and its expression can be affected by feeding system.
Collapse
Affiliation(s)
- Tao Ran
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, and National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, People’s Republic of China
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Hengzhi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yong Liu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, and National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, People’s Republic of China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, and National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, People’s Republic of China
- Hunan Co-Innovation Centre of Animal Production Safety, CICAPS, Changsha, Hunan 410128, People’s Republic of China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, and National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, People’s Republic of China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, and National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, People’s Republic of China
- Hunan Co-Innovation Centre of Animal Production Safety, CICAPS, Changsha, Hunan 410128, People’s Republic of China
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Karen A. Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
24
|
Protein-restricted diet balanced for lysine, methionine, threonine, and tryptophan for nursery pigs elicits subsequent compensatory growth and has long term effects on protein metabolism and organ development. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Wang QD, Li S, Zhang KY, Zhang Y, Bai SP, Ding XM, Wang JP, Peng HW, Tian G, Xuan Y, Su ZW, Zeng QF. Protease supplementation attenuates the intestinal health damage caused by low-protein diets in Pekin ducks. Poult Sci 2020; 99:6630-6642. [PMID: 33248578 PMCID: PMC7705030 DOI: 10.1016/j.psj.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to investigate the effects of low-protein diets with low digestibility of feed ingredients on intestinal damage and to explore whether the protease supplementation can alleviate the damage in Pekin ducks. A total of 576 Pekin ducklings (6 replicate pens, 16 ducks/pen) were randomly assigned to 6 dietary treatments (3 × 2 factorial arrangement) in a randomized complete block design. Factors were CP levels (13.5%, 15.5%, and 17.5%) and protease (0 or 20,000U/kg). Compared with the diets containing 17.5% CP, low-protein diets (13.5% CP) showed suppressed (P < 0.05) growth performance and feed intake (FI); reduced (P < 0.05) serum-free arginine, isoleucine, leucine, methionine, phenylalanine, valine, and proline as well as the cecal acetate and propionate concentration; increased (P < 0.05) plasma and ileal mucosal tumor necrosis factor-α (TNF-α) concentration; and downregulated (P < 0.05) mRNA expression of TNF-α, nuclear transcription factor-κb, interferon gamma, and Occludin in ileal mucosa. Irrespective of the dietary CP levels, protease supplementation significantly increased (P < 0.05) the serum-free glutamic acid concentration while decreasing (P < 0.05) the plasma endotoxin, IL-6, and the cecal isovalerate concentration. A significant interactive effect was observed between low-protein diets and protease supplementation (P < 0.05) on serum-free arginine concentration, the ratio of ileal villus height to crypt depth, and the IL-6 concentration in ileal mucosa. These results indicated that low-protein diets could damage intestinal integrity to induce systemic inflammation response and at last to suppress growth performance. Protease supplementation could partly attenuate the negative effects on gut health caused by low-protein diets in Pekin ducks.
Collapse
Affiliation(s)
- Q D Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - S Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - K Y Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - Y Zhang
- Mianyang Habio Bioengineering Co., Ltd., Mianyang 610000, China
| | - S P Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - X M Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - J P Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - H W Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - G Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - Y Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - Z W Su
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China
| | - Q F Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, 611130 China.
| |
Collapse
|
26
|
Givisiez PEN, Moreira Filho ALB, Santos MRB, Oliveira HB, Ferket PR, Oliveira CJB, Malheiros RD. Chicken embryo development: metabolic and morphological basis for in ovo feeding technology. Poult Sci 2020; 99:6774-6782. [PMID: 33248593 PMCID: PMC7705034 DOI: 10.1016/j.psj.2020.09.074] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Broiler embryonic development depends on the nutrients that are available in the egg, which includes mostly water, lipids, and proteins. Carbohydrates represent less than 1%, and free glucose only 0.3%, of the total nutrients. Considering that energy requirements increase during incubation and metabolism is shifted toward the use of glycogen stores and gluconeogenesis from amino acids, extensive muscle protein degradation in the end of incubation can compromise chick development in the initial days after hatch. Significant prehatch changes occur in embryonic metabolism to parallel the rapid embryonic development. Oral consumption of the amniotic fluid begins around 17 d of incubation and promotes rapid development of the intestinal mucosa, which is characterized by morphological changes and increased expression and activity of enzymes and transporters. Furthermore, ingested substrates are stored as nutritional reserves to be used during hatching and in the first week after hatch. At hatch, this limited-nutrient store is directed to the functional development of the gastrointestinal tract to enable assimilation of exogenous nutrients. In ovo feeding is an alternative to deliver essential nutrients to chick embryos at this critical and challenging phase. The improved nutritional status and physiological changes triggered by in ovo feeding can resonate throughout the entire rearing period with significant health and economic gains. The present review addresses the main changes in metabolism and intestinal development throughout incubation, and also addresses scientific advances, limitations and future perspectives associated with the use of in ovo feeding that has been regarded as an important technology by the poultry industry.
Collapse
Affiliation(s)
| | | | - Maylane R B Santos
- Department of Animal Science, Federal University of Paraiba, Areia, Brazil
| | - Heraldo B Oliveira
- Department of Animal Science, Federal University of Pernambuco, Recife, Brazil
| | - Peter R Ferket
- Prestage Department of Poultry Science, NC State University, Raleigh, USA
| | - Celso J B Oliveira
- Department of Animal Science, Federal University of Paraiba, Areia, Brazil
| | - Ramon D Malheiros
- Prestage Department of Poultry Science, NC State University, Raleigh, USA
| |
Collapse
|
27
|
Juntanapum W, Bunchasak C, Poeikhampha T, Rakangthong C, Poungpong K. The Effects of Supplementing Lysophosphatidylcholine (LPC) in the Diet on Production Performance, Fat Digestibility, Blood Lipid Profile, and Gene Expression Related to Nutrients Transport in Small Intestine of Laying Hens. JOURNAL OF ANIMAL AND FEED SCIENCES 2020. [DOI: 10.22358/jafs/127689/2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Sun M, Jiao H, Wang X, Uyanga VA, Zhao J, Lin H. Encapsulated crystalline lysine and DL-methionine have higher efficiency than the crystalline form in broilers. Poult Sci 2020; 99:6914-6924. [PMID: 33248607 PMCID: PMC7704974 DOI: 10.1016/j.psj.2020.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/06/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022] Open
Abstract
Crystalline amino acids (AAs) exhibit high nutritional values when supplemented AA-deficient diets. However, the AAs in crystalline form in the diet are absorbed quickly than protein-bound AAs, which may take an effect on AA utilization efficiency. In this study, 2 experiments were conducted to investigate the effect of encapsulated lysine-HCl (Lys) and DL-methionine (DL-Met) on the growth performance of broiler chickens. In experiment 1, a total of 432 one-day-old male Arbor Acres broilers were subjected to 3 dietary treatments (27 pens; 16 birds per pen) for 42 d. The control group was basal diets supplemented with crystalline Lys and DL-Met, and treatment groups had basal diets supplemented with encapsulated Lys and DL-Met at the levels of 80% and 60% of control diets (80CLM, 60CLM), respectively. The growth performance, intestinal development, and transcription of AA transporters were determined. In experiment 2, 24 broiler chickens were subjected to the same treatments as in experiment 1. The plasma concentrations of free AAs were measured 0, 2, 4, and 6 h after feeding. The results showed that 80CLM treatment had no significant influence on production performance, carcass characteristics, and plasma free AAs content during the experiment compared with the control group (P > 0.05). In addition, the 80CLM group moderately enhanced gut morphology development and increased AAs' absorption capacity. However, broilers fed the 60CLM diet had lower production performance and breast muscle weight than the control group (P < 0.05), but increased villi height and B0AT mRNA expression level (P < 0.05). At h 4 after feeding, the 60CLM broilers exhibited higher concentration of Ala, Cys, and total dispensable AAs than the control group (P < 0.05). In conclusion, the result suggests that the supplemental levels of crystalline Lys and DL-Met can be effectively saved approximately for 20% by using the encapsulated form in broilers, with improvements to AAs utilization efficiency, while posing no detrimental effects on production performance. Encapsulated Lys and DL-Met would have greater potential for application when replacing crystalline AAs in broiler chickens.
Collapse
Affiliation(s)
- Mingfa Sun
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Victoria A Uyanga
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China.
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
29
|
Lu P, Choi J, Yang C, Mogire M, Liu S, Lahaye L, Adewole D, Rodas-Gonzalez A, Yang C. Effects of antibiotic growth promoter and dietary protease on growth performance, apparent ileal digestibility, intestinal morphology, meat quality, and intestinal gene expression in broiler chickens: a comparison. J Anim Sci 2020; 98:skaa254. [PMID: 32776130 PMCID: PMC7470467 DOI: 10.1093/jas/skaa254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/03/2020] [Indexed: 01/12/2023] Open
Abstract
This study aimed to evaluate the effects of supplementing broiler diets with a dietary protease on growth performance, digestive function, intestinal morphology, and meat quality as compared with feeding diets with or without an antibiotic growth promoter (AGP). A total of 240 1-day-old male chicks (Cobb 500, 48.3 ± 3.3 g) were distributed to three treatments with eight replicates (10 birds per replicate). Three treatments were: 1) corn-soybean meal basal diets (CTRL), 2) basal diets with 0.003% avilamycin (AB), and 3) basal diets with 0.0125% protease (PRT). The diets were provided as mash form, and birds were fed ad libitum during the whole experimental period. On day 45, birds were euthanized, and tissue and digesta samples were collected. On day 46, the remaining birds were processed in a commercial slaughterhouse, and breast muscle samples were collected. Despite a trend for a decreased feed conversion ratio (FCR) in the AB group during the whole phase (P = 0.071), no significant differences in growth performance parameters and relative weights of organs were observed (P > 0.05) among the groups. The AB and PRT groups showed significantly greater apparent ileal digestibility of amino acids (AA) compared with the CTRL group (P < 0.05). The PRT group significantly improved the morphology of duodenum and jejunum (P < 0.05). No differences were detected for meat quality, white striping, and woody breast among the groups (P > 0.05). For the gene expressions, the AB group showed a greater level of B0-system neutral amino acid co-transporter 1 and excitatory amino acid transporter 1 mRNA abundance compared with PRT group, while a significantly lesser level of cationic amino acid transporter 1 mRNA abundance was observed in the AB group compared with CTRL group (P < 0.05). The PRT group had a lesser level of peptide transporter 1 mRNA abundance in the jejunum than the CTRL group (P < 0.05). The highest mRNA abundances of zonula occludens-1 and cadherin 1 were observed in the CTRL group (P < 0.05). In conclusion, supplementation of avilamycin tended to reduce FCR and significantly improved AA utilization, and supplementation of dietary protease significantly enhanced intestinal morphology and AA utilization in broilers. In that respect, exogenous protease use appears to be an interesting tool to be considered in AGP reduction strategies.
Collapse
Affiliation(s)
- Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Janghan Choi
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Chongwu Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Marion Mogire
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | | | - Deborah Adewole
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | | | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
30
|
Liu K, Jia M, Wong EA. Delayed access to feed affects broiler small intestinal morphology and goblet cell ontogeny. Poult Sci 2020; 99:5275-5285. [PMID: 33142443 PMCID: PMC7647802 DOI: 10.1016/j.psj.2020.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
Broilers are often deprived of feed and water for up to 48 h after hatch. This delayed access to feed (DAF) can inhibit small intestine development. The objective of this study was to determine the effects of DAF on small intestinal morphology, mRNA abundance of the goblet cell marker Muc2 and absorptive cell marker PepT1, and the distribution of goblet cells in young broilers. Cobb 500 chicks, hatching within a 12-h window, were randomly allocated into 3 groups: control with no feed delay (ND), 24-h feed delay (DAF24), and 36-h feed delay (DAF36). Morphology, gene expression, and in situ hybridization analyses were conducted on the duodenum, jejunum, and ileum at 0, 24, 36, 72, 120, and 168 h after hatch. Statistical analysis was performed using a t test for ND and DAF24 at 24 h. A 2-way ANOVA and Tukey's HSD test (P < 0.05) were used for ND, DAF24, and DAF36 from 36 h. At 24 to 36 h, DAF decreased the ratio of villus height/crypt depth (VH/CD) in the duodenum but increased VH/CD in the ileum due to changes in CD, whereas at 72 h, DAF decreased VH/CD due to a decrease in VH. The mRNA abundance of PepT1 was upregulated, while Muc2 mRNA was downregulated in DAF chicks. Cells expressing Muc2 mRNA were present along the villi and in the crypts. The ratio of the number of goblet cells found in the upper half to the lower half of the villus was greater in DAF chicks than in ND chicks, suggesting that DAF affected the appearance of new goblet cells. The number of Muc2 mRNA-expressing cells in the crypt, however, was generally not affected by DAF. In conclusion, DAF transiently affected small intestinal morphology, upregulated PepT1 mRNA, downregulated Muc2 mRNA, and changed the distribution of goblet cells in the villi. By 168 h, however, these parameters were not different between ND, DAF24, and DAF36 chicks.
Collapse
Affiliation(s)
- K Liu
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - M Jia
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - E A Wong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
31
|
Barekatain R, Chrystal PV, Gilani S, McLaughlan CJ. Expression of selected genes encoding mechanistic pathways, nutrient and amino acid transporters in jejunum and ileum of broiler chickens fed a reduced protein diet supplemented with arginine, glutamine and glycine under stress stimulated by dexamethasone. J Anim Physiol Anim Nutr (Berl) 2020; 105:90-98. [PMID: 32654243 DOI: 10.1111/jpn.13416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Reducing crude protein and supplementation with synthetic amino acids in poultry nutrition is a recent trend to avoid wastage of protein and ammonia in production systems. Stress has been shown to impair intestinal barrier and increase inflammatory response. This study was performed on intestinal tissues of broiler chickens to understand the mechanism of stress induced by a synthetic glucocorticoid, dexamethasone (DEX) and the effect of supplementation of arginine, glutamine and glycine in reduced protein diets. Intestinal tissue samples from a previous study were utilized. Male Ross 308 chickens received a basal diet for the first seven days and then fed with crude protein that was reduced to 194 g/kg in grower experimental diets supplemented with glutamine, glycine and additional arginine at 10, 10 and 5 g/kg respectively. Half of the 96 individual birds were injected with DEX (0.5 mg/kg body weight) or saline on days 14, 16, 18 and 20 of age. mRNA expression for jejunum and ileum for amino acid transporters (y+LAT-1, Bo,+ AT, EAAT-3 and CAT-1), mechanistic genes (SGLT-1, mTOR, IAP and FABP-2) and pro-inflammatory genes (MUC-2, NF-κB, iNOS, IL-8 and IL-1β) were analysed using real-time PCR. The results showed that DEX decreased y+ LAT1 in jejunum, Bo ,+ AT and EAAT-3 in ileum. Arginine increased CAT-1 in the jejunum and ileum under DEX treatment. Through an interaction, DEX reduced IAP in jejunum of glycine and arginine supplemented group and reduced mTOR in jejunum independently. DEX reduced MUC-2 and iNOS in jejunum and increased iNOS and IL8 in the ileum. Amino acid supplementation did not appear to ameliorate these effects; however, there were some positive effects of glycine on NF-κB and arginine through increased CAT-1. Mechanistic understanding of amino acid supplementation in broiler diets warrants further research particularly when dietary protein is reduced below the level tested in the present study.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia.,School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | | | - Saad Gilani
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Clive J McLaughlan
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
| |
Collapse
|
32
|
Amer SA, Naser MAF, Abdel-Wareth AAA, Saleh AA, Elsayed SAM, Abdel Fattah DM, Metwally AE. Effect of dietary supplementation of alpha-galactosidase on the growth performance, ileal digestibility, intestinal morphology, and biochemical parameters in broiler chickens. BMC Vet Res 2020; 16:144. [PMID: 32434502 PMCID: PMC7238633 DOI: 10.1186/s12917-020-02359-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study was performed to investigate the effect of Alpha-galactosidase (AlphaGal) supplementation with two energy levels on the growth performance, amino acid ileal digestibility coefficient "AID%," economic value, intestinal histology, and blood biochemical parameters of broiler chickens. Two-hundred 3-day-old broiler chicks (average body weight 74.34 g ±0.52 Ross 308) were randomly assigned to a 2 × 2 factorial arrangement consisting of two energy diets groups: in the first group, the birds were fed on a recommended energy diet (RED) while the second group was reduced 120 kcal/kg diet as a low energy diet (LED) and two levels of AlphaGal (0 or 50 mg/kg diet) for RED and LED for the 35-day feeding period. RESULTS The interaction effects between the energy level and the AlphaGal supplementations resulted in significant decrease (P ≤ 0.05) in the body weight, body weight gain, and the relative growth rate. The feed conversion ratio was signficantly increased in LED without supplementation of AlphaGal group during the entire experimental period, this negative effect on the growth performance was corrected by AlphaGal supplementation. The AID% value was increased significantly by AlphaGal supplementation. Blood triglyceride concentrations were significantly decreased (P = 0.02) in the LED group with or without AlphaGal supplementation, while the level of high-density lipoprotein (HDL) was significantly decreased (P = 0.01) in the LED or RED groups supplemented with 50 mg RED AlphaGal. Histologically, the number of intestinal glands and goblet cells increased in both RED and LED groups supplemented with AlphaGal and their secretions were mainly neutral mucopolysaccharides and less acidic mucopolysaccharides. CONCLUSION AlphaGal supplementation improved the growth performance of broiler chickens fed LED and the growth performance is similar to those fed RED, thereby consequently improving the economic value of these diets. AlphaGal supplementation improves intestinal histology and morphology as well.
Collapse
Affiliation(s)
- Shimaa A Amer
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed A F Naser
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed A A Abdel-Wareth
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena, 83523, Egypt
| | - Ahmed A Saleh
- Department of Poultry Production, Faculty of Agriculture, Kafr Elsheikh University, Kafr Elsheikh, 33516, Egypt
| | - Shafika A M Elsayed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Doaa M Abdel Fattah
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Abdallah E Metwally
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
33
|
Singh S, Arthur S, Sundaram U. Mechanisms of Regulation of Transporters of Amino Acid Absorption in Inflammatory Bowel Diseases. Compr Physiol 2020; 10:673-686. [PMID: 32163200 DOI: 10.1002/cphy.c190016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intestinal absorption of dietary amino acids/peptides is essential for protein homeostasis, which in turn is crucial for maintaining health as well as restoration of health from significant diseases. Dietary amino acids/peptides are absorbed by unique transporter processes present in the brush border membrane of absorptive villus cells, which line the entire length of the intestine. To date, the only nutrient absorptive system described in the secretory crypt cells in the mammalian intestine is the one that absorbs the amino acid glutamine. Majority of the amino acid transporters are sodium dependent and therefore require basolateral membrane Na-K-ATPase to maintain an efficient transcellular Na gradient for their activity. These transport processes are tightly regulated by various cellular and molecular mechanisms that facilitate their optimal activity during normal physiological processes. Malabsorption of amino acids, recently described in pathophysiological states such as in inflammatory bowel disease (IBD), is undoubtedly responsible for the debilitating symptoms of IBD such as malnutrition, weight loss and ultimately a failure to thrive. Also recently, in vivo models of IBD and in vitro studies have demonstrated that specific immune-inflammatory mediators/pathways regulate specific amino acid transporters. This provides possibilities to derive novel nutrition and immune-based treatment options for conditions such as IBD. © 2020 American Physiological Society. Compr Physiol 10:673-686, 2020.
Collapse
Affiliation(s)
- Soudamani Singh
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Subha Arthur
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Uma Sundaram
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| |
Collapse
|
34
|
Yu M, Mu C, Zhang C, Yang Y, Su Y, Zhu W. Long-term effect of early antibiotic exposure on amino acid profiles and gene expression of transporters and receptors in the small intestinal mucosa of growing pigs with different dietary protein levels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:235-244. [PMID: 31512251 DOI: 10.1002/jsfa.10028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND This study evaluated the effects of early antibiotic exposure (EAE) on subsequent amino acid (AA) profiles and small intestinal AA transporter and receptor expression level in pigs with different dietary crude protein (CP) levels. Eighteen litters of piglets were fed creep feed diets, either with or without antibiotics while with sow on day 7. The pigs were weaned at day 23 and fed the same diets until day 42, when random pigs within each group were offered a normal- or low-CP diet, thereby creating four groups. On day 120, the pigs were euthanized, and jejunal and ileal mucosa and digesta were collected for gene-expression and AA-concentration analysis. RESULTS With the normal-CP diet, EAE increased (P < 0.05) the concentrations of six essential amino acids (EAA) and three non-essential amino acids (NEAA) in serum, four EAAs and four NEAAs in jejunal mucosa, one EAA and two NEAAs in ileal mucosa, five EAAs and three NEAAs in jejunal digesta, and three EAAs and two NEAAs in ileal digesta. Early antibiotic exposure upregulated (P < 0.05) CAT1, ASCT2, ATB0,+ , CaSR, T1R1, and T1R3 expression in the jejunum, downregulated PepT1 expression with a normal-CP diet. It upregulated (P < 0.05) the expressions of CAT1, ATB0,+ , ATP1A1, and T1R3 in the ileum with a normal-CP diet. CONCLUSION These results suggest that EAE has long-term effects on AA profiles, mainly in the jejunum and serum, by increasing AA transporter expression in the intestine, and that these effects may be influenced by dietary CP levels. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miao Yu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture Guangdong Public Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Chunlong Mu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chuanjian Zhang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuxiang Yang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Liu YS, Zhang YY, Li JL, Wang XF, Xing T, Zhu XD, Zhang L, Gao F. Growth performance, carcass traits and digestive function of broiler chickens fed diets with graded levels of corn resistant starch. Br Poult Sci 2019; 61:146-155. [PMID: 31735080 DOI: 10.1080/00071668.2019.1694137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. This study was conducted to assess the effects of graded levels of dietary corn resistant starch (RS) on growth performance, carcass traits, nutrient retention, digestive organ index, intestinal morphology, digestive enzyme activities, and mRNA expression of certain nutrient transporters in broiler chickens.2. A total of 320, 1-d-old Arbor Acres broiler chickens were randomly assigned to five dietary treatments, with eight replicates of eight birds in each. These treatments included one corn-soybean control diet, a corn-soybean based diet containing 20% corn starch, and three diets supplemented with 4%, 8% and 12% RS by replacing corn starch with 6.67%, 13.33% and 20% of Hi-Maize 260® (identified as control, RS1, RS2, RS3 and RS4, respectively). The feeding period lasted 42 days.3. Performance parameters including feed consumption, feed conversion, body weight gain and percentage of abdominal fat at d 42 of age, nutrient retention (including dry matter, fat, total starch and nitrogen free extract), and apparent metabolisable energy was measured from d 18 to 20 and d 39 to 41 and showed negative linear responses to increasing dietary RS level (P < 0.05). Birds fed the RS3 and RS4 diets showed higher relative weight of duodenum, jejunum and ileum, as well as lower villus height and villus height/crypt depth compared to the control (P < 0.05). The activity of pancreatic trypsin of birds at d 21 and 42 of age decreased linearly in response to the increase of dietary RS level (P < 0.01). There were linear changes in up-regulated mRNA expression of SGLT-1 and down-regulated mRNA expression of GLUT-2 with increasing proportion of RS at d 21 and 42 of age (P < 0.05), respectively.4. It was concluded that feeding broilers with diets containing higher concentrations of RS impaired the development of small intestine, which resulted in lower apparent total tract retention of nutrients and poorer body weight gain, feed efficiency and carcass traits of broiler chickens.
Collapse
Affiliation(s)
- Y S Liu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Y Y Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - J L Li
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - X F Wang
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - T Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - X D Zhu
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - L Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - F Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Barekatain R, Nattrass G, Tilbrook AJ, Chousalkar K, Gilani S. Reduced protein diet and amino acid concentration alter intestinal barrier function and performance of broiler chickens with or without synthetic glucocorticoid. Poult Sci 2019; 98:3662-3675. [DOI: 10.3382/ps/pey563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
|
37
|
Kalantar M, Schreurs NM, Raza SHA, Khan R, Ahmed JZ, Yaghobfar A, Shah MA, Kalantar MH, Hosseini SM, Rahman SU. Effect of different cereal-based diets supplemented with multi-enzyme blend on growth performance villus structure and gene expression (SGLT1, GLUT2, PepT1 and MUC2) in the small intestine of broiler chickens. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Khonyoung D, Yamauchi KE. Improved growth performance due to hypertrophied intestinal absorptive epithelial cells by heat-killed Lactobacillus sakei HS-1 in broiler chickens1. J Anim Sci 2019; 97:2066-2075. [PMID: 30788512 PMCID: PMC6488311 DOI: 10.1093/jas/skz075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/20/2019] [Indexed: 11/14/2022] Open
Abstract
This study investigated the effect of heat-killed Lactobacillus sakei HS-1 (HK LS HS-1) on the growth performance and intestinal histology of broilers through 2 feeding trials. In trial 1, 48 male broilers were separated into 3 groups: 1) basal diet (1 to 21 d, including antibiotics; 21 to 49 d, not including antibiotics) supplemented with 0 bacterial cells of HK LS HS-1/g (control); 2) 106 bacterial cells were used; and 3) 108 bacterial cells were used. Trial 2 was carried out in a tropical area of Thailand, where 50 7-d-old male broilers were separated into 2 groups: 1) basal diet (control group); and 2) basal diet supplemented with 107 bacterial cells of HK LS HS-1/g. In trial 1, compared with the control, BW gain (linear; P = 0.019) and G:F (linear; P = 0.032) linearly increase with increasing HK LS HS-1 supplementation. In addition, 3 males died in the control group, while none died in the experimental group. In trial 2, growth performance was not significantly different between the groups. Observation of the gross anatomical visceral organs and intestinal histological parameters showed no difference among the groups. However, the weight of the ileum, total small intestine, gizzard, and ceca decreased, while the height of the ileal villus increased with increasing HK LS HS-1 supplementation (P < 0.05). On the duodenal villus apical surface, protuberated cells, cells without microvilli, recently exfoliated regions on villus tips, and deeper cells at the sites of these recently exfoliated cells were more frequently observed in the experimental groups compared to the control; therefore, the duodenal epithelial cells of the experimental groups were hypertrophied by rapid cell turnover. On the ileal villus apical surface, morphological changes (i.e., cell shedding) were not observed, but protuberated cells were observed; thus, the ileal epithelial cells of the experimental groups were hypertrophied by prolonging the detention period of cells on the villus tip without shedding into the intestinal lumen. The results indicate that HK LS HS-1 improves the growth performance of broilers due to the presences of hypertrophied intestinal absorptive epithelial cells on the villus apical surface, which induce enhanced durability against environmental stress.
Collapse
Affiliation(s)
- Duddoa Khonyoung
- Laboratory of Animal Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa-ken, Japan
| | - Koh-en Yamauchi
- Laboratory of Animal Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa-ken, Japan
| |
Collapse
|
39
|
Yin D, Selle PH, Moss AF, Wang Y, Dong X, Xiao Z, Guo Y, Yuan J. Influence of starch sources and dietary protein levels on intestinal functionality and intestinal mucosal amino acids catabolism in broiler chickens. J Anim Sci Biotechnol 2019; 10:26. [PMID: 30988947 PMCID: PMC6449925 DOI: 10.1186/s40104-019-0334-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/10/2019] [Indexed: 02/08/2023] Open
Abstract
Background There is growing interest in carbohydrate and protein nutrition to enhance the efficiency of animal production. Reduced-crude protein diets depress environmental pollution and feeding cost, but the challenge to their adoption is maintaining digestive function and growth performance of birds. The present study was conducted to evaluate the influence of different dietary starch sources and protein levels on intestinal functionality and mucosal amino acid catabolism. Methods Six dietary treatments, based on maize and soybean meal, were offered to 360 AA+ male chicks from 6 to 35 d post-hatch as a 3 × 2 factorial array. Either waxy rice or amylose was added to a conventional maize-soy diet to provide three sources of starch with different digestion rates and relatively high and low dietary protein levels. Growth performance, parameters of intestinal functionality and concentrations of free amino acid in the portal circulation were determined. Results In the grower phase, starch source influenced (P < 0.02) weight gain as diets containing amylose supported significantly higher weight gains than waxy rice. Significant increase of ileal ATP concentrations and Na+/K+-ATPase activity were found in amylose treatment. Also, amylose decreased BrdU positive cell numbers and down-regulated mRNA expression for CASP-3. GOT activity in the ileum was higher (P < 0.01) in birds offered low protein diets and there was a trend (P = 0.057) for waxy rice as a starch source to increase ileal GOT activities. There was a significant influence on the concentration of seventeen amino acids in the portal circulation with tryptophan the one exception. Waxy rice as a starch source generated 13.6% and 22.4% numerically higher concentrations of non-essential amino acids than maize and amylose, respectively. Conclusions Amino acid catabolism in the gut mucosa is subject to nutritional regulation. Given that amino acids can be spared from catabolism in the gut mucosa by supplementation of amylose, it follows their post-enteral availability would be improved and intestinal energy would be derived more efficiently from glucose.
Collapse
Affiliation(s)
- Dafei Yin
- 1State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Peter H Selle
- 2Poultry Research Foundation, The University of Sydney, Werombi Road, Camden, NSW 2570 Australia
| | - Amy F Moss
- 2Poultry Research Foundation, The University of Sydney, Werombi Road, Camden, NSW 2570 Australia
| | - Youli Wang
- 1State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Xiaoyu Dong
- 1State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Zhibin Xiao
- 1State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yuming Guo
- 1State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Jianmin Yuan
- 1State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
40
|
Tian Z, Ma X, Deng D, Cui Y, Chen W. Influence of Nitrogen Levels on Nutrient Transporters and Regulators of Protein Synthesis in Small Intestinal Enterocytes of Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2782-2793. [PMID: 30785738 DOI: 10.1021/acs.jafc.8b06712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To investigate effects of dietary nitrogen level on nutrient absorption and utilization in small intestinal enterocyte of piglets, weaned piglets were fed for 10 days with diets containing 20%, 17%, or 14% crude protein (CP) with supplementation to meet requirements for essential amino acids in vivo, and IPEC-1 cells were cultured with different nitrogen levels (NL) in a culture medium (70%, 85%, and 100%) in vitro by monocultured and cocultured intestinal porcine epithelial cells (IPEC-1) and human gastric epithelial cells (GES-1). The results showed the following: (1) In animal trial, decreased dietary CP reduced transcript abundance of nutrient transporters like CAT1, PepT1, GLUT2, and SGLT-1 in jejunal mucosa (0.09 ± 0.03, P < 0.0001; 0.40 ± 0.04, P = 0.0087; 0.20 ± 0.07, P = 0.0003; 0.35 ± 0.02, P = 0.0001), but 17% CP diet did not affect jejunal protein synthesis. (2) The transcript abundance of nutrient transporters displayed similarly effective tendency in jejunal mucosa and cocultured IPEC-1 rather than that in monocultured IPEC-1. (3) Decreased nitrogen levels reduced expressive abundance of PI3K, Class 3 PI3K, TSC2, and 4E-BP1 in monocultured IPEC-1, but 85% nitrogen level did not affect expressive abundance of PI3K, TSC2, mTORC1, 4E-BP1, and S6K1 in cocultured IPEC-1. In general, decreased 3% CP or 15% nitrogen level reduced relative transcript expression of nutrient transporters, but did not affect protein synthesis in jejunal mucosa and cocultured IPEC-1. Therefore, decreased 3% dietary CP increased utilized and synthetic efficiency of nitrogen resource in small intestine and was beneficial in saving the dietary nitrogen resource.
Collapse
Affiliation(s)
- Zhimei Tian
- Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
- The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640 , China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
| | - Xianyong Ma
- Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
- The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640 , China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
| | - Dun Deng
- Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
- The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640 , China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
| | - Yiyan Cui
- Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
- The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640 , China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
| | - Weidong Chen
- Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
- The Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640 , China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China
| |
Collapse
|
41
|
Moreira Filho ALB, Ferket PR, Malheiros RD, Oliveira CJB, Aristimunha PC, Wilsmann DE, Givisiez PEN. Enrichment of the amnion with threonine in chicken embryos affects the small intestine development, ileal gene expression and performance of broilers between 1 and 21 days of age. Poult Sci 2019; 98:1363-1370. [PMID: 30325446 DOI: 10.3382/ps/pey461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
The effects of in ovo feeding with threonine (Thr) on intestinal morphology, ileal gene expression and performance of broiler chicken between 1 and 21 d of age (d) were assessed. On day 17.5 of incubation, fertile eggs were randomly allotted to 5 treatments of Thr injection in the amniotic fluid (0; 1.75; 3.5; 5.25; 7%, corresponding to 17.5; 35; 52.5 and 70 mg Thr/mL). After hatch, chicks were given a commercial corn-soybean diet up to 21 d. Daily feed intake (FI), body weight (BW), and food conversion ratio (FCR) were measured from 1 to 7, 14, and 21 d of age. The ileal gene expression of mucin (MUC2), peptide transporter (PepT1), and aminopeptidase enzyme (APN) were evaluated on day of hatch and at 21 d, as well as intestinal morphometric traits. In ovo feeding with threonine significantly increased final weight (FI) and weight gain (WG) and decreased FCR in the period from 1 to 21 d. Threonine levels affected beneficially the villus height, vilo: crypt ratio and villus area on day of hatch and at 21 d. At hatch, all Thr levels increased the expression of MUC2 and PepT1 compared to the control group. APN expression also increased, but for the lowest and the highest threonine levels (1.75 and 7%). At 21 d, there was no effect of threonine on the expression of MUC2, PepT1, and APN. In conclusion, in ovo threonine feeding beneficially affected the morphological and functional development of the intestinal mucosa, which ensured improved performance of chicks at hatch and at 21 d.
Collapse
Affiliation(s)
- A L B Moreira Filho
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB, 58397-000, Brazil
| | - P R Ferket
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695-7608, USA
| | - R D Malheiros
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695-7608, USA
| | - C J B Oliveira
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB, 58397-000, Brazil
| | - P C Aristimunha
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | - D E Wilsmann
- Departamento de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | - P E N Givisiez
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB, 58397-000, Brazil
| |
Collapse
|
42
|
Feed Restriction Reveals Distinct Serum Metabolome Profiles in Chickens Divergent in Feed Efficiency Traits. Metabolites 2019; 9:metabo9020038. [PMID: 30823619 PMCID: PMC6409680 DOI: 10.3390/metabo9020038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Restrictive feeding influences systemic metabolism of nutrients; however, this impact has not been evaluated in chickens of diverging feed efficiency. This study investigated the effect of ad libitum versus restrictive feeding (85% of ad libitum) on the serum metabolome and white blood cell composition in chickens of diverging residual feed intake (RFI; metric for feed efficiency). Blood samples were collected between days 33 and 37 post-hatch. While serum glucose was similar, serum uric acid and cholesterol were indicative of the nutritional status and chicken’s RFI, respectively. Feed restriction and RFI rank caused distinct serum metabolome profiles, whereby restrictive feeding also increased the blood lymphocyte proportion. Most importantly, 10 amino acids were associated with RFI rank in birds, whereas restrictive feeding affected almost all detected lysophosphatidylcholines, with 3 being higher and 6 being lower in restrictively compared to ad libitum fed chickens. As indicated by relevance networking, isoleucine, lysine, valine, histidine, and ornithine were the most discriminant for high RFI, whereas 3 biogenic amines (carnosine, putrescine, and spermidine) and 3 diacyl-glycerophospholipids (38:4, 38:5, and 40:5) positively correlated with feed intake and body weight gain, respectively. Only for taurine, feed intake mostly explained the RFI-associated variation, whereas for most metabolites, other host physiological factors played a greater role for the RFI-associated differences, and was potentially related to insulin-signaling, phospholipase A2, and arachidonic acid metabolism. Alterations in the hepatic synthesis of long-chain fatty acids and the need for precursors for gluconeogenesis due to varying energy demand may explain the marked differences in serum metabolite profiles in ad libitum and restrictively fed birds.
Collapse
|
43
|
Feed Restriction Modifies Intestinal Microbiota-Host Mucosal Networking in Chickens Divergent in Residual Feed Intake. mSystems 2019; 4:mSystems00261-18. [PMID: 30701192 PMCID: PMC6351724 DOI: 10.1128/msystems.00261-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
The impact of the FE-associated differences in feed intake on intestinal bacterial and host physiological parameters has so far not been clarified. Understanding the underlying principles is essential for the development of cost-effective strategies to improve FE in chicken production. Under conditions of quantitative feed restriction, low- and high-RFI chickens ate the same amount of feed. Therefore, this research helps in distinguishing intestinal bacterial taxa and functions that were highly reliant on feed intake from those that were associated with physiological adaptations to RFI-associated differences in host nutritional needs and intestinal nutrient availability. This work provides a background for further research to assess manipulation of the intestinal microbiota, host physiology, and FE in chickens by dietary intervention. Differences in chickens’ feed intake may be the underlying factor influencing feed-efficiency (FE)-associated variation in intestinal microbiota and physiology. In chickens eating the same amount of feed, quantitative feed restriction may create similar intestinal conditions and help clarify this cause-and-effect relationship. This study investigated the effect of ad libitum versus restrictive feeding (85% of ad libitum) on ileal and cecal microbiota, concentrations of short-chain fatty acids, visceral organ size, intestinal morphology, permeability, and expression of genes related to nutrient uptake, barrier function, and innate immune response in broiler chickens with divergent residual feed intake (RFI; metric for FE). On day 30 posthatch, 28 low-RFI (good FE) and 29 high-RFI (poor FE) chickens across both feeding-level groups (n = 112) were selected. Supervised multigroup data integration and relevance network analyses showed that especially Lactobacillus (negative) in ileal digesta, Turicibacter (positive) in cecal digesta, and Enterobacteriaceae (positive) in both intestinal segments depended on chicken’s feed intake, whereas the level of Anaerotruncus in cecal digesta was most discriminative for high RFI. Moreover, shallower crypts and fewer goblet cells in ceca indicated host-related energy-saving mechanisms with low RFI, whereas greater tissue resistance suggested a stronger jejunal barrier function in low-RFI chickens. Values corresponding to feed intake level × RFI interactions indicated larger pancreas and lower levels of ileal and cecal short-chain fatty acids in restrictively fed high-RFI chickens than in the other 3 groups, suggesting host physiological adaptations to support greater energy and nutrient needs of high-RFI chickens compensating for the restricted feeding. IMPORTANCE The impact of the FE-associated differences in feed intake on intestinal bacterial and host physiological parameters has so far not been clarified. Understanding the underlying principles is essential for the development of cost-effective strategies to improve FE in chicken production. Under conditions of quantitative feed restriction, low- and high-RFI chickens ate the same amount of feed. Therefore, this research helps in distinguishing intestinal bacterial taxa and functions that were highly reliant on feed intake from those that were associated with physiological adaptations to RFI-associated differences in host nutritional needs and intestinal nutrient availability. This work provides a background for further research to assess manipulation of the intestinal microbiota, host physiology, and FE in chickens by dietary intervention.
Collapse
|
44
|
Rabbit SLC15A1, SLC7A1 and SLC1A1 genes are affected by site of digestion, stage of development and dietary protein content. Animal 2019; 13:326-332. [DOI: 10.1017/s1751731118001404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
Dinani OP, Tyagi PK, Mandal AB, Tyagi PK, Popat DS, Tiwari SP. Effect of feeding rice based distillers dried grains with solubles and gluten meal on nutrient transporter genes and immunity in broiler chickens. Vet World 2018; 11:1592-1596. [PMID: 30587894 PMCID: PMC6303493 DOI: 10.14202/vetworld.2018.1592-1596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/01/2018] [Indexed: 11/16/2022] Open
Abstract
Aim: The aim of this study was to investigate the effect of feeding rice based distillers dried grains with solubles (rDDGS) and gluten meal on nutrient transporter genes and immunity in broiler chickens. Materials and Methods: A 2×3 factorial design resulted in six experimental diets, namely T1 (no rDDGS/rice gluten meal [RGM]/enzyme), T2 (no rDDGS/RGM, with multienzymes), T3 (12.5% rDDGS, 15% RGM, no enzyme), T4 (12.5% rDDGS, 15% RGM, with protease enzyme), T5 (10% rDDGS, 12.5% RGM, no enzyme), and T6 (10% rDDGS, 12.5% RGM, with protease enzyme). Each treatment was allocated five replicates of chicks, with eight birds in each. Nutrient transporter genes such as Mucin (MUC 2), excitatory amino acid transporter 3 (EAAT3), and peptide transporter (PepT1) and immunity were estimated using standard procedures. Results: Feeding rDDGS and RGM combination improved humoral immunity, while cell-mediated immunity did not show any significant (p>0.05) effect on broiler chickens. MUC and PepT1 genes showed significantly (p<0.01) decreased relative fold expression in 12.5% rDDGS +15% RGM combination, while EAAT3 gene showed significantly (p<0.01) decreased relative fold expression in both rDDGS and RGM combination levels. Conclusion: Thus, it may be concluded that feeding rDDGS and RGM combination improved humoral immunity but had an adverse effect on nutrient transporter gene in broiler chickens.
Collapse
Affiliation(s)
- Om Prakash Dinani
- Division of Avian Nutrition and Feed Technology, ICAR-Central Avian Research Institute, Bareilly, Uttar Pradesh, India
| | - Pramod Kumar Tyagi
- Division of Avian Nutrition and Feed Technology, ICAR-Central Avian Research Institute, Bareilly, Uttar Pradesh, India
| | - Asit Baran Mandal
- Division of Avian Nutrition and Feed Technology, ICAR-Central Avian Research Institute, Bareilly, Uttar Pradesh, India
| | - Praveen Kumar Tyagi
- Division of Avian Nutrition and Feed Technology, ICAR-Central Avian Research Institute, Bareilly, Uttar Pradesh, India
| | - Dukare Sagar Popat
- Division of Avian Nutrition and Feed Technology, ICAR-Central Avian Research Institute, Bareilly, Uttar Pradesh, India
| | - Sita Prasad Tiwari
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Durg, Chhattisgarh, India
| |
Collapse
|
46
|
Siegerstetter SC, Petri RM, Magowan E, Lawlor PG, Zebeli Q, O'Connell NE, Metzler-Zebeli BU. Feed Restriction Modulates the Fecal Microbiota Composition, Nutrient Retention, and Feed Efficiency in Chickens Divergent in Residual Feed Intake. Front Microbiol 2018; 9:2698. [PMID: 30510543 PMCID: PMC6254087 DOI: 10.3389/fmicb.2018.02698] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
There is a great interest to understand the impact of the gut microbiota on host's nutrient use and FE in chicken production. Both chicken's feed intake and gut bacterial microbiota differ between high and low-feed efficient chickens. To evaluate the impact of the feed intake level on the feed efficiency (FE)-associated variation in the chicken intestinal microbiota, differently feed efficient chickens need to eat the same amount of feed, which can be achieved by feeding chickens restrictively. Therefore, we investigated the effect of restrictive vs. ad libitum feeding on the fecal microbiome at 16 and 29 days posthatch (dph), FE and nutrient retention in chickens of low and high residual feed intake (RFI; metric for FE). Restrictively fed chickens were provided the same amount of feed which corresponded to 85% of the ad libitum fed group from 9 dph. FE was determined for the period between 9 and 30 dph and feces for nutrient retention were collected on 31 to 32 dph. From the 112 chickens (n = 56 fed ad libitum, and n = 56 fed restrictively), 14 low RFI and 15 high RFI ad libitum fed chickens, and 14 low RFI (n = 7 per sex) and 14 high RFI restrictively fed chickens were selected as the extremes in RFI and were retrospectively chosen for data analysis. Bray-Curtis dissimilarity matrices showed significant separation between time points, and feeding level groups at 29 dph for the fecal bacterial communities. Relevance networking indicated positive associations between Acinetobacter and feed intake at 16 dph, whereas at 29 dph Escherichia/Shigella and Turicibacter positively and Lactobacillus negatively correlated to chicken's feed intake. Enterobacteriaceae was indicative for low RFI at 16 dph, whereas Acinetobacter was linked to high RFI across time points. However, restrictive feeding-associated changes in the fecal microbiota were not similar in low and high RFI chickens, which may have been related to the higher nutrient retention and thus lower fecal nutrient availability in restrictively fed high RFI chickens. This may also explain the decreased RFI value in restrictively fed high RFI chickens indicating improved FE, with a stronger effect in females.
Collapse
Affiliation(s)
- Sina-Catherine Siegerstetter
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Renée M Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elizabeth Magowan
- Agriculture Branch, Agri-Food and Biosciences Institute, Hillsborough, United Kingdom
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, Animal & Grassland Research & Innovation Centre, Moorepark, Ireland
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Niamh E O'Connell
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Barbara U Metzler-Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
47
|
Mahdavi R, Osmanyan AK, Fisinin VI, Ghazi Harsini S, Arkhipova AL, Shevyakov AN, Kovalchuk SN, Kosovsky GY. Impact of mash and crumble diets on intestinal amino acids transporters, intestinal morphology and pancreatic enzyme activity of broilers. J Anim Physiol Anim Nutr (Berl) 2018; 102:1266-1273. [PMID: 30152003 DOI: 10.1111/jpn.12956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/10/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
The objective of this study was to evaluate effects of mash and crumble pre-starter diets on pancreatic enzyme activity, intestinal morphology, gene expression of intestinal peptide and amino acid (AA) transporters of broilers. Broilers in battery cages were assigned to different feed forms of pre-starter diet from 1 to 10 days of age. Significantly increased body weight gain (BWG), feed intake (FI) and lowered FCR were observed in birds fed crumble pre-starter diet (CPD, p < 0.05). Feed forms had no effect on whole and small intestine length, but relative intestinal length and relative small intestinal length significantly increased in the broilers fed a mash pre-starter diet (MPD, p < 0.05). Feeding CPD increased the weight of pancreas (p < 0.05), but relative weight of the pancreas was not influenced by treatments. Pancreatic protease and amylase activities significantly increased in the broilers fed CPD (p < 0.05) but the activity of lipase was not influenced. Crypt depth (CD) and villus height (VH) were higher in broilers fed CPD (p < 0.05) but villus width (VW), villus surface area (VSA) and villus height-to-crypt depth ratio (VCR) were not influenced by treatments. mRNA levels for peptide transporter 1 (PepT1), Na+ -independent cationic AA transporter1 (CAT1), Na+ -independent cationic and Na+ -dependent neutral AA transporter 1 (y+ LAT1) and Na+ -dependent neutral AA transporter (B0 AT) were lower in birds fed CPD (p < 0.05). There were no differences in mRNA abundance of Na+ -independent cationic and zwitterionic AA transporter (b0,+ AT) among treatments. Overall, the present data showed that feeding crumble diet during first 10 days of age, through higher FI, enhanced intestinal histomorphology, increased digestive enzyme activity is beneficial to growth performance of broilers. Indeed, dietary form can be an important factor in the expression of jejunal transporters.
Collapse
Affiliation(s)
- Reza Mahdavi
- Faculty of Animal Science and Biology, Special Animal Husbandry Department, Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Artyom Karlovich Osmanyan
- Faculty of Animal Science and Biology, Special Animal Husbandry Department, Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | | | - Shahab Ghazi Harsini
- Faculty of Agriculture, Department of Animal Science, Razi University, Kermanshah, Iran
| | | | | | | | | |
Collapse
|
48
|
Zhou H, Chen D, Mao X, He J, Yu J, Zheng P, Luo J, Gao J, Htoo J, Yu B. Effects of dietary lysine levels on jejunal expression of amino
acids transporters and hindgut microflora in weaned pigs. JOURNAL OF ANIMAL AND FEED SCIENCES 2018. [DOI: 10.22358/jafs/93736/2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Kishawy ATY, Amer SA, Osman A, Elsayed SAM, Abd El-Hack ME, Swelum AA, Ba-Awadh H, Saadeldin IM. Impacts of supplementing growing rabbit diets with whey powder and citric acid on growth performance, nutrient digestibility, meat and bone analysis, and gut health. AMB Express 2018; 8:86. [PMID: 29796879 PMCID: PMC5966368 DOI: 10.1186/s13568-018-0617-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/19/2018] [Indexed: 11/10/2022] Open
Abstract
The present study evaluated the impact of supplementing the rabbit diet with graded levels of whey powder and citric acid. The dietary treatments were as follows: T1, control diet (basal diet); T2, basal diet + 10 g/kg citric acid; T3, T2 + whey powder (7.5 g/kg); T4, T2 + whey powder (15 g/kg); and T5, T2 + whey powder (22.5 g/kg). Results, the T5 diet resulted in the best (P < 0.05) final body weight, body weight gain, feed conversion ratio, protein efficiency, relative growth rate, and dressed weight. The best (P < 0.05) digestion coefficients were associated with the T4 and T5 diets. Rabbits fed diets supplemented with citric acid alone or with addition of graded levels of whey powder showed significantly lower (P < 0.05) intestinal pH than those fed the T1 diet. The T4 and T5 diets resulted in greater CP and ash in the thigh muscle compared with the T1 and T2 diets. Calcium content in the femur bone was higher (P < 0.05) in the T5 group followed by T4 and T3. The wall of different parts of the small intestine improved in the T4 and T5 groups, showing the greatest increase in the small intestinal villi, intestinal glands, and amount of goblet cells. In conclusion, addition of whey powder (1.5, and 2.25%) increased the growth performance, nutrient digestibility and crude protein content of the thigh muscle, and improved the gut health of growing rabbits and the best level was 2.25% whey powder. Citric acid addition had no positive effect on growth performance, nutrient digestibility, crude protein content of the thigh muscle, and the gut health.
Collapse
|
50
|
Miska KB, Fetterer RH. The effect of Eimeria maxima infection on the expression of amino acid and sugar transporters aminopeptidase, as well as the di- and tri-peptide transporter PepT1, is not solely due to decreased feed intake. Poult Sci 2018; 97:1712-1721. [DOI: 10.3382/ps/pey015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/08/2018] [Indexed: 12/25/2022] Open
|