1
|
Pietrzak S, Marciniak W, Derkacz R, Matuszczak M, Kiljańczyk A, Baszuk P, Bryśkiewicz M, Sikorski A, Gronwald J, Słojewski M, Cybulski C, Gołąb A, Huzarski T, Dębniak T, Lener MR, Jakubowska A, Kluz T, Scott RJ, Lubiński J. Correlation between Selenium and Zinc Levels and Survival among Prostate Cancer Patients. Nutrients 2024; 16:527. [PMID: 38398851 PMCID: PMC10891521 DOI: 10.3390/nu16040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The most prevalent type of cancer among males is prostate cancer. Survival is considered quite good, but it can be further improved when risk factors are optimized. One of these factors is micronutrients, including Se and Zn. To our knowledge, the interaction between Se and Zn and prostate cancer remains undescribed. This study aimed to investigate the optimal levels of selenium (Se) and zinc (Zn) and their impact on the survival of individuals diagnosed with prostate cancer. A total of 338 prostate cancer patients were enrolled in this study, which was conducted in Poland between 2009 and 2015. Mass spectrometry, which uses inductively coupled plasma mass, was used to assess serum element levels before treatment. The study participants were categorized into quartiles (QI-QIV) based on the distributions of Se and Zn levels observed among surviving participants. Cox regression was used to assess the association between serum Se and Zn levels and the survival of prostate cancer patients. Our results reveal the effect of combined Se and Zn levels on survival in prostate cancer patients (SeQI-ZnQI vs. SeQIV-ZnQIV; HR = 20.9). These results need further research to establish Se/Zn norms for different populations.
Collapse
Affiliation(s)
- Sandra Pietrzak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Adam Kiljańczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Marta Bryśkiewicz
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Andrzej Sikorski
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 71-899 Szczecin, Poland; (A.S.); (M.S.); (A.G.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Marcin Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 71-899 Szczecin, Poland; (A.S.); (M.S.); (A.G.)
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Adam Gołąb
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 71-899 Szczecin, Poland; (A.S.); (M.S.); (A.G.)
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Marcin R. Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland;
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rodney J. Scott
- Priority Research Centre for Cancer Research, Innovation and Translation, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia;
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, New Lambton, NSW 2305, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| |
Collapse
|
2
|
Sharma P, Wong CP, Ho E, Sampath H. Catalytic activity of OGG1 is impaired by Zinc deficiency. DNA Repair (Amst) 2024; 134:103628. [PMID: 38228016 PMCID: PMC10851324 DOI: 10.1016/j.dnarep.2024.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Oxidative stress-induced DNA base modifications, if unrepaired, can increase mutagenesis and genomic instability, ultimately leading to cell death. Cells predominantly use the base excision repair (BER) pathway to repair oxidatively-induced non-helix distorting lesions. BER is initiated by DNA glycosylases, such as 8-oxoguanine DNA glycosylase (OGG1), which repairs oxidatively modified guanine bases, including 7,8-dihydro-8-oxoguanine (8-oxoG) and ring-opened formamidopyrimidine lesions, 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). The OGG1 protein contains a C2H2 zinc (Zn) finger DNA binding domain. However, the impact of dietary Zn deficiency on OGG1 catalytic activity has not been extensively studied. Zn is a common nutrient of concern with increasing age, and the prevalence of oxidative DNA damage is also concurrently increased during aging. Thus, understanding the potential regulation of OGG1 activity by Zn is clinically relevant. The present study investigates the impact of a range of Zn statuses, varying from severe Zn deficiency to exogenous Zn-supplementation, in the context of young and aged animals to determine the impact of dietary Zn-status on OGG1 activity and oxidative DNA damage in mice. Our findings suggest that nutritional Zn deficiency impairs OGG1 activity and function, without altering gene expression, and that aging further exacerbates these effects. These results have important implications for nutritional management of Zn during aging to mitigate age-associated DNA damage.
Collapse
Affiliation(s)
- Priyanka Sharma
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA; Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA; Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Carmen P Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; School of Public Health and Nutrition, Oregon State University, Corvallis, OR, USA
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; School of Public Health and Nutrition, Oregon State University, Corvallis, OR, USA
| | - Harini Sampath
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA; Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA; Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Nguyen LTD, Gunathilake M, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. Zinc intake, SLC30A8 rs3802177 polymorphism, and colorectal cancer risk in a Korean population: a case-control study. J Cancer Res Clin Oncol 2023; 149:16429-16440. [PMID: 37707576 DOI: 10.1007/s00432-023-05381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Zinc is an essential micronutrient involving in multiple enzymatic reactions of human metabolism and biological functions affecting the cancer development. However, the relationship between dietary zinc intake and colorectal cancer (CRC) risk has been unclear. Herein, our study investigated the relationship between dietary zinc intake and CRC risk, and examined how the SLC30A8 rs3802177 genetic variant affects this association. METHODS A total of 1431 CRC cases and 2704 controls were selected to investigate the relationship between dietary zinc intake and CRC risk. After excluding individuals without genotype data, 1097 CRC cases and 1559 controls were used to evaluate the interaction between dietary zinc intake and the rs3802177 polymorphism in CRC risk. The odds ratios (ORs) and 95% confidence intervals (CIs) were measured using unconditional logistic regression models. RESULTS Higher dietary zinc intake was inversely associated with the risk of CRC in the total population [adjusted OR (aOR) = 0.80, 95% CI 0.66-0.96, p for trend = 0.018]. In the codominant model, G+ carriers of the SLC30A8 rs3802177 with higher consumption of zinc were observed to have a significantly lower risk of CRC in all participants (p for interaction = 0.020). In females, GG carriers with higher zinc intake showed a stronger protective effect against the development of CRC (p for interaction = 0.008). CONCLUSIONS In summary, our findings suggest an inverse association between dietary zinc intake and CRC risk, and this relationship may be modified by SLC30A8 rs3802177 polymorphism.
Collapse
Affiliation(s)
- Linh Thi Dieu Nguyen
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Madhawa Gunathilake
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-Si, Gyeonggi-Do, South Korea
| | - Hee Jin Chang
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-Si, Gyeonggi-Do, South Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-Si, Gyeonggi-Do, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Jongno-Gu, Seoul, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
| |
Collapse
|
4
|
Wyrich M, Ohlig H, Wessolly M, Mairinger E, Steinborn J, Brcic L, Hegedus B, Hager T, Greimelmaier K, Wohlschlaeger J, Mairinger FD, Borchert S. Induction of metallothionein expression by supplementation of zinc induces resistance against platinum-based treatment in malignant pleural mesothelioma. Transl Cancer Res 2023; 12:1929-1936. [PMID: 37701096 PMCID: PMC10493783 DOI: 10.21037/tcr-22-2651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/11/2023] [Indexed: 09/14/2023]
Abstract
Background Malignant pleural mesothelioma (MPM) is an aggressive tumor with a dismal prognosis. Currently, multimodality treatment including chemotherapy with cisplatin or carboplatin in combination with pemetrexed offers the best options. Detoxification of heavy metals in the cell by metallothioneins (MT) is associated with early failure to platin-based chemotherapy. The induction of MTs gene expression or its enzyme results in saturation by exposure to metal ions such as zinc or cadmium. Its therapeutically effect is still not analyzed in depth. Methods In our study, we investigated three MPM cell lines and one fibroblast cell line in the course of cisplatin treatment and supplementation of zinc. Cell state analyses via an enzyme-activity based assay were performed. With this, we were able to analyze apoptosis, necrosis and viability of cells. Additionally, we tested treated cells for changes in metallothionein IIA (MT2A) expression by using quantitative realtime polymerase chain reaction. Results Zinc supplementation induces gene expression of MT2A. Overall, a zinc dose-dependent induction of apoptosis under platin-based treatment could be observed. This effect could be verified in all analyzed cell lines in varying intensity. Conclusions MT expression is induced by zinc in a dose-dependent manner and inhibits a successful cisplatin therapy. Therefore, heavy metal exposure during cisplatin therapy, e.g., via cigarette smoke, might be an important factor. This should be considered in further therapeutic approaches.
Collapse
Affiliation(s)
- Martine Wyrich
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Henning Ohlig
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Balazs Hegedus
- Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Thoracic Surgery and Thoracic Endoscopy, Ruhrlandklinik, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Pathology, Diakonissenkrankenhaus Flensburg, Flensburg, Germany
| | | | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Pathology, Diakonissenkrankenhaus Flensburg, Flensburg, Germany
| | - Fabian D. Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
5
|
Kiouri DP, Tsoupra E, Peana M, Perlepes SP, Stefanidou ME, Chasapis CT. Multifunctional role of zinc in human health: an update. EXCLI JOURNAL 2023; 22:809-827. [PMID: 37780941 PMCID: PMC10539547 DOI: 10.17179/excli2023-6335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 10/03/2023]
Abstract
Zinc is a multipurpose trace element for the human body, as it plays a crucial part in various physiological processes, such as cell growth and development, metabolism, cognitive, reproductive, and immune system function. Its significance in human health is widely acknowledged, and this has led the scientific community towards more research that aims to uncover all of its beneficial properties, especially when compared to other essential metal ions. One notable area where zinc has shown beneficial effects is in the prevention and treatment of various diseases, including cancer. This review aims to explain the involvement of zinc in specific health conditions such as cancer, coronavirus disease 2019 (COVID-19) and neurological disorders like Alzheimer's disease, as well as its impact on the gut microbiome.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Evi Tsoupra
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Maria E. Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
6
|
Costa MI, Sarmento-Ribeiro AB, Gonçalves AC. Zinc: From Biological Functions to Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24054822. [PMID: 36902254 PMCID: PMC10003636 DOI: 10.3390/ijms24054822] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The trace element zinc (Zn) displays a wide range of biological functions. Zn ions control intercellular communication and intracellular events that maintain normal physiological processes. These effects are achieved through the modulation of several Zn-dependent proteins, including transcription factors and enzymes of key cell signaling pathways, namely those involved in proliferation, apoptosis, and antioxidant defenses. Efficient homeostatic systems carefully regulate intracellular Zn concentrations. However, perturbed Zn homeostasis has been implicated in the pathogenesis of several chronic human diseases, such as cancer, diabetes, depression, Wilson's disease, Alzheimer's disease, and other age-related diseases. This review focuses on Zn's roles in cell proliferation, survival/death, and DNA repair mechanisms, outlines some biological Zn targets, and addresses the therapeutic potential of Zn supplementation in some human diseases.
Collapse
Affiliation(s)
- Maria Inês Costa
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480-023
| |
Collapse
|
7
|
Bede-Ojimadu O, Nnamah N, Onuegbu J, Grant-Weaver I, Barraza F, Orakwe J, Abiahu J, Orisakwe O, Nriagu J. Cadmium exposure and the risk of prostate cancer among Nigerian men: effect modification by zinc status. J Trace Elem Med Biol 2023; 78:127168. [PMID: 37043921 DOI: 10.1016/j.jtemb.2023.127168] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/25/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Prostate cancer (PCa) may result from an interplay between many factors including exposure to trace elements. This study examined the association between cadmium exposure and PCa among Nigerian men and evaluated possible modification of this effect by zinc status. METHODS This case-control study involved men with histologically confirmed PCa (n = 82), benign prostatic hyperplasia (BPH; n = 93) and controls (n = 98), aged between 40 and 80 years. Study participants were recruited from the main teaching hospital that draws clients from the entire Anambra State in South-Eastern Nigeria. Blood and urine samples were collected from these participants and were analyzed for trace elements using ICP-MS. Statistical models were used to assess the exposure risk for cadmium exposure as well as the mediating effect of zinc status. RESULTS Among men with prostatic disorders (case-case analysis), every 10-fold increase in urinary cadmium was associated with increased risk of PCa (adjusted odds ratios: 2.526; 95% CI: 1.096-5.821). Men in the highest blood zinc quartile had lower odds of PCa compared to the lowest quartile (AOR: 0.19; 95% CI, 0.06-0.54; p-for trend = 0.001). Zinc-specific effect was observed in this group: every 10-fold increase in urinary cadmium was associated with increased risk of PCa among men with creatinine-adjusted urinary zinc levels below the median value (AOR: 8.46; 95% CI: 1.97 -36.39) but not in those above the median value (AOR: 1.55; 95% CI: 0.45 - 5.39). CONCLUSION Higher exposure to cadmium may be associated with increased risk of PCa in Nigeria and probably other countries with high prevalence of Zn deficiency. These results point to the need to consider co-occurring trace metals in any effort to mitigate the toxicity of Cd in the environment.
Collapse
|
8
|
Miller KJ, Henry I, Maylin Z, Smith C, Arunachalam E, Pandha H, Asim M. A compendium of Androgen Receptor Variant 7 target genes and their role in Castration Resistant Prostate Cancer. Front Oncol 2023; 13:1129140. [PMID: 36937454 PMCID: PMC10014620 DOI: 10.3389/fonc.2023.1129140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Persistent androgen receptor (AR) signalling is the main driver of prostate cancer (PCa). Truncated isoforms of the AR called androgen receptor variants (AR-Vs) lacking the ligand binding domain often emerge during treatment resistance against AR pathway inhibitors such as Enzalutamide. This review discusses how AR-Vs drive a more aggressive form of PCa through the regulation of some of their target genes involved in oncogenic pathways, enabling disease progression. There is a pressing need for the development of a new generation of AR inhibitors which can repress the activity of both the full-length AR and AR-Vs, for which the knowledge of differentially expressed target genes will allow evaluation of inhibition efficacy. This review provides a detailed account of the most common variant, AR-V7, the AR-V7 regulated genes which have been experimentally validated, endeavours to understand their relevance in aggressive AR-V driven PCa and discusses the utility of the downstream protein products as potential drug targets for PCa treatment.
Collapse
Affiliation(s)
| | | | - Zoe Maylin
- *Correspondence: Zoe Maylin, ; Mohammad Asim,
| | | | | | | | | |
Collapse
|
9
|
Karunasinghe N. Zinc in Prostate Health and Disease: A Mini Review. Biomedicines 2022; 10:biomedicines10123206. [PMID: 36551962 PMCID: PMC9775643 DOI: 10.3390/biomedicines10123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction-With the high global prevalence of prostate cancer and associated mortalities, it is important to enhance current clinical practices for better prostate cancer outcomes. The current review is towards understanding the value of Zn towards this mission. Method-General information on Zn in biology and multiple aspects of Zn involvement in prostate health and disease were referred to in PubMed. Results-The most influential feature of Zn towards prostate health is its ability to retain sufficient citrate levels for a healthy prostate. Zn deficiencies were recorded in serum, hair, and prostate tissue of men with prostate cancer compared to non-cancer controls. Zn gut absorption, albumin binding, and storage compete with various factors. There are multiple associations of Zn cellular influx and efflux transporters, Zn finger proteins, matrix metalloproteinases, and Zn signaling with prostate cancer outcomes. Such Zn marker variations associated with prostate cancer recorded from biological matrices may improve algorithms for prostate cancer screening, prognosis, and management when coupled with standard clinical practices. Discussion-The influence of Zn in prostatic health and disease is multidimensional, therefore more personalized Zn requirements may be beneficial. Several opportunities exist to utilize and improve understanding of Zn associations with prostate health and disease.
Collapse
Affiliation(s)
- Nishi Karunasinghe
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
10
|
Ruz M, Andrews-Guzmán M, Arredondo-Olguín M. Modulation of Zinc Transporter Expressions by Additional Zinc in C2C12 Cells Cultured in a High Glucose Environment and in the Presence of Insulin or Interleukin-6. Biol Trace Elem Res 2022; 201:3428-3437. [PMID: 36227447 DOI: 10.1007/s12011-022-03443-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
Abstract
Zn status has been related to various chronic diseases presenting oxidative stress and inflammation, such as type 2 diabetes. Zn supplementation has been suggested to be a potential coadjuvant in the management of this condition. Zn transporters constitute a key component in the maintenance of Zn homeostasis. Our aim was to evaluate the modulatory effect of additional Zn (10 or 100 µM; as a ZnSO4*7H20) on the mRNA relative expression of selected Zn transporters (ZnT1, ZnT5, ZnT7, ZIP6, ZIP7, ZIP10, ZIP14), in myoblast (C2C12) cells cultured in normal (10 mM) and high glucose (30 mM), and in the absence or presence of insulin (1 nM), and interleukin-6 (IL-6; 5 nM) for 24 h. The main findings of our study were that in high glucose conditions in absence of insulin or IL-6, additional Zn increased ZnT1 and ZIP6, and decreased ZnT5 and ZIP7 expressions. However, this situation is modified by insulin, where incremental Zn induced increased expressions of ZnT1, ZnT5, and all the ZIP transporters studied. In high glucose conditions and in the presence of IL-6, additional Zn caused increased expressions of ZnT7, ZIP7, and ZIP14, compared with results in the absence of IL-6. This study provides preliminary evidence for the differential expression of selected Zn transporters in C2C12 cells subjected to high glucose and incremental Zn, suggesting that important changes in intracellular Zn distribution take place in response to inflammatory and high-insulin environments. Further study is necessary to understand the implications of these findings.
Collapse
Affiliation(s)
- Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Mónica Andrews-Guzmán
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, Macul 5540, Macul, Santiago, Chile
| | - Miguel Arredondo-Olguín
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, Macul 5540, Macul, Santiago, Chile.
| |
Collapse
|
11
|
Olea-Flores M, Kan J, Carlson A, Syed SA, McCann C, Mondal V, Szady C, Ricker HM, McQueen A, Navea JG, Caromile LA, Padilla-Benavides T. ZIP11 Regulates Nuclear Zinc Homeostasis in HeLa Cells and Is Required for Proliferation and Establishment of the Carcinogenic Phenotype. Front Cell Dev Biol 2022; 10:895433. [PMID: 35898402 PMCID: PMC9309433 DOI: 10.3389/fcell.2022.895433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Zinc (Zn) is an essential trace element that plays a key role in several biological processes, including transcription, signaling, and catalysis. A subcellular network of transporters ensures adequate distribution of Zn to facilitate homeostasis. Among these are a family of importers, the Zrt/Irt-like proteins (ZIP), which consists of 14 members (ZIP1-ZIP14) that mobilize Zn from the extracellular domain and organelles into the cytosol. Expression of these transporters varies among tissues and during developmental stages, and their distribution at various cellular locations is essential for defining the net cellular Zn transport. Normally, the ion is bound to proteins or sequestered in organelles and vesicles. However, though research has focused on Zn internalization in mammalian cells, little is known about Zn mobilization within organelles, including within the nuclei under both normal and pathological conditions. Analyses from stomach and colon tissues isolated from mouse suggested that ZIP11 is the only ZIP transporter localized to the nucleus of mammalian cells, yet no clear cellular role has been attributed to this protein. We hypothesized that ZIP11 is essential to maintaining nuclear Zn homeostasis in mammalian cells. To test this, we utilized HeLa cells, as research in humans correlated elevated expression of ZIP11 with poor prognosis in cervical cancer patients. We stably knocked down ZIP11 in HeLa cancer cells and investigated the effect of Zn dysregulation in vitro. Our data show that ZIP11 knockdown (KD) reduced HeLa cells proliferation due to nuclear accumulation of Zn. RNA-seq analyses revealed that genes related to angiogenesis, apoptosis, mRNA metabolism, and signaling pathways are dysregulated. Although the KD cells undergoing nuclear Zn stress can activate the homeostasis response by MTF1 and MT1, the RNA-seq analyses showed that only ZIP14 (an importer expressed on the plasma membrane and endocytic vesicles) is mildly induced, which may explain the sensitivity to elevated levels of extracellular Zn. Consequently, ZIP11 KD HeLa cells have impaired migration, invasive properties and decreased mitochondrial potential. Furthermore, KD of ZIP11 delayed cell cycle progression and rendered an enhanced senescent state in HeLa cells, pointing to a novel mechanism whereby maintenance of nuclear Zn homeostasis is essential for cancer progression.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Julia Kan
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Sabriya A. Syed
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Cat McCann
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Varsha Mondal
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Cecily Szady
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, United States
| | - Heather M. Ricker
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, United States
| | - Amy McQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
| | - Juan G. Navea
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, United States
| | - Leslie A. Caromile
- Department of Cell Biology, Center for Vascular Biology, UCONN Health-Center, Farmington, CT, United States
| | - Teresita Padilla-Benavides
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, United States
- *Correspondence: Teresita Padilla-Benavides,
| |
Collapse
|
12
|
Costa MI, Lapa BS, Jorge J, Alves R, Carreira IM, Sarmento-Ribeiro AB, Gonçalves AC. Zinc Prevents DNA Damage in Normal Cells but Shows Genotoxic and Cytotoxic Effects in Acute Myeloid Leukemia Cells. Int J Mol Sci 2022; 23:ijms23052567. [PMID: 35269710 PMCID: PMC8910549 DOI: 10.3390/ijms23052567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Genomic instability is prevented by the DNA damage response (DDR). Micronutrients, like zinc (Zn), are cofactors of DDR proteins, and micronutrient deficiencies have been related to increased cancer risk. Acute myeloid leukemia (AML) patients commonly present Zn deficiency. Moreover, reports point to DDR defects in AML. We studied the effects of Zn in DDR modulation in AML. Cell lines of AML (HEL) and normal human lymphocytes (IMC) were cultured in standard culture, Zn depletion, and supplementation (40 μM ZnSO4) conditions and exposed to hydrogen peroxide (H2O2) or ultraviolet (UV) radiation. Chromosomal damage, cell death, and nuclear division indexes (NDI) were assessed through cytokinesis-block micronucleus assay. The phosphorylated histone H2AX (yH2AX) expression was monitored at 0 h, 1 h, and 24 h after exposure. Expression of DDR genes was evaluated by quantitative real time polymerase chain reaction (qPCR). Zn supplementation increased the genotoxicity of H2O2 and UV radiation in AML cells, induced cytotoxic and antiproliferative effects, and led to persistent yH2AX activation. In contrast, in normal lymphocytes, supplementation decreased damage rates, while Zn depletion favored damage accumulation and impaired repair kinetics. Gene expression was not affected by Zn depletion or supplementation. Zn presented a dual role in the modulation of genome damage, preventing damage accumulation in normal cells and increasing genotoxicity and cytotoxicity in AML cells.
Collapse
Affiliation(s)
- Maria Inês Costa
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (M.I.C.); (B.S.L.); (J.J.); (R.A.); (A.B.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Beatriz Santos Lapa
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (M.I.C.); (B.S.L.); (J.J.); (R.A.); (A.B.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (M.I.C.); (B.S.L.); (J.J.); (R.A.); (A.B.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Raquel Alves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (M.I.C.); (B.S.L.); (J.J.); (R.A.); (A.B.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Isabel Marques Carreira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (M.I.C.); (B.S.L.); (J.J.); (R.A.); (A.B.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (M.I.C.); (B.S.L.); (J.J.); (R.A.); (A.B.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480-023
| |
Collapse
|
13
|
Yi J, Chung JW, Pak JH. Zinc is an essential element for the maintenance of redox homeostasis and cell cycle in murine auditory hair cells. J Nutr Biochem 2022; 100:108901. [PMID: 34748925 DOI: 10.1016/j.jnutbio.2021.108901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022]
Abstract
A nutrition deficiency is one of the various causes of hearing loss. Zinc is an essential element for cell proliferation, antioxidant reactions, and the maintenance of hearing ability. Our previous studies have reported that the auditory brainstem response (ABR) threshold is increased in mice fed with zinc-deficient diets. However, the molecular mechanism of zinc involved in auditory system remains to be elucidated. In the present study, we examined the detrimental effects of zinc deficiency on cell cycle progression in murine auditory cells (HEI-OC1). The treatment of HEI-OC1 cells with 0.5 μM TPEN (N,N,N',N'-Tetrakis (2-pyridylmethyl) ethylenediamine) for 24 h inhibited cell proliferation, accumulation of reactive oxygen species (ROS), and induction of apoptosis. The cell proliferation block was caused by a G1/S phase arrest. Supplementation of the cell growth medium with 5 μM ZnCl2 after exposure to TPEN attenuated ROS accumulation and the arrest caused by the zinc deficiency. The ABR threshold was elevated in mice fed with a zinc-deficient diet. Additionally, we observed an increased expression of p21 and decreased expression of cyclin E and pRb in the spiral ganglion (SG), the organ of Corti (OC), Limbus (L), and stria vascularis (SV) in the zinc-deficient mouse cochlea. These results indicated that zinc is an essential nutrient for proliferation via the cell cycle and that a dysregulation of the cell cycle may cause hearing loss.
Collapse
Affiliation(s)
- Junyeong Yi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, Songpa-Gu, Seoul, Korea.
| | - Jong Woo Chung
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, Songpa-Gu, Seoul, Korea.
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Songpa-Gu, Seoul, Korea.
| |
Collapse
|
14
|
Ho E, Wong CP, King JC. Impact of zinc on DNA integrity and age-related inflammation. Free Radic Biol Med 2022; 178:391-397. [PMID: 34921929 DOI: 10.1016/j.freeradbiomed.2021.12.256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Dr. Bruce Ames was a pioneer in understanding the role of oxidative stress and DNA damage, and in the 1990s began to make connections between micronutrient deficiencies and DNA damage. Zinc is an essential micronutrient for human health and a key component for the function of numerous cellular processes. In particular, zinc plays a critical role in cellular antioxidant defense, the maintenance of DNA integrity and is also essential for the normal development and function of the immune system. This review highlights the work helping connect zinc deficiency to oxidative stress, susceptibility to DNA damage and chronic inflammation that was initiated while working with Dr. Ames. This review outlines the body of work in this area, from cells to humans. The article also reviews the unique challenges of maintaining zinc status as we age and the interplay between zinc deficiency and age-related inflammation and immune dysfunction. Several micronutrient deficiencies, including zinc deficiency, can drastically affect the risk of many chronic diseases and underscores the importance of adequate nutrition for healthy aging.
Collapse
Affiliation(s)
- Emily Ho
- Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR, 97331, USA; School of Biological and Population Health Sciences, 101 Milam Hall, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Carmen P Wong
- Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR, 97331, USA; School of Biological and Population Health Sciences, 101 Milam Hall, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Janet C King
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 94720, USA
| |
Collapse
|
15
|
Abstract
Zinc (Zn2+) is an essential metal in biology, and its bioavailability is highly regulated. Many cell types exhibit fluctuations in Zn2+ that appear to play an important role in cellular function. However, the detailed molecular mechanisms by which Zn2+ dynamics influence cell physiology remain enigmatic. Here, we use a combination of fluorescent biosensors and cell perturbations to define how changes in intracellular Zn2+ impact kinase signaling pathways. By simultaneously monitoring Zn2+ dynamics and kinase activity in individual cells, we quantify changes in labile Zn2+ and directly correlate changes in Zn2+ with ERK and Akt activity. Under our experimental conditions, Zn2+ fluctuations are not toxic and do not activate stress-dependent kinase signaling. We demonstrate that while Zn2+ can nonspecifically inhibit phosphatases leading to sustained kinase activation, ERK and Akt are predominantly activated via upstream signaling and through a common node via Ras. We provide a framework for quantification of Zn2+ fluctuations and correlate these fluctuations with signaling events in single cells to shed light on the role that Zn2+ dynamics play in healthy cell signaling.
Collapse
|
16
|
Ogasawara M, Miyazaki N, Monden G, Taniko K, Lim S, Iwata M, Ishii T, Ma JF, Ishikawa R. Role of qGZn9a in controlling grain zinc concentration in rice, Oryza sativa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3013-3022. [PMID: 34110432 PMCID: PMC8190762 DOI: 10.1007/s00122-021-03873-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
A candidate gene responsible for higher grain zinc accumulation in rice was identified, which was probably associated with a partial defect in anther dehiscence. Zinc (Zn) is an essential mineral element in many organisms. Zn deficiency in humans causes various health problems; therefore, an adequate dietary Zn intake is required daily. Rice, Oryza sativa, is one of the main crops cultivated in Asian countries, and one of the breeding scopes of rice is to increase the grain Zn levels. Previously, we found that an Australian wild rice strain, O. meridionalis W1627, exhibits higher grain Zn levels than cultivated rice, O. sativa Nipponbare, and identified responsible genomic loci. An increase in grain Zn levels caused by one of the loci, qGZn9a, is associated with fertility reduction, but how this negative effect on grain productivity is regulated remains unknown. In this study, we artificially trimmed spikelets on the flowering day and found that a reduction in number of seeds was associated with an increase in the grain Zn levels. We also found that a partial defect in anther dehiscence correlated with the increase in grain Zn levels in plants carrying the W1627 chromosomal segment at qGZn9a in a Nipponbare genetic background. Among eight candidate genes in the qGZn9a region, three were absent from the corresponding region of W1627; one of these, Os09g0384900, encoding a DUF295 protein with an unknown function, was found to be specifically expressed in the developing anther, thereby suggesting that the gene may be involved in the regulation of anther dehiscence. As fertility and grain Zn levels are essential agronomic traits in rice, our results highlight the importance of balancing these two traits.
Collapse
Affiliation(s)
- Miki Ogasawara
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Naoya Miyazaki
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Gotaro Monden
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Kenta Taniko
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Sathya Lim
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Masahide Iwata
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Takashige Ishii
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Ryo Ishikawa
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
17
|
ZnT7 RNAi favors Raf GOFscrib -/--induced tumor growth and invasion in Drosophila through JNK signaling pathway. Oncogene 2021; 40:2217-2229. [PMID: 33649534 DOI: 10.1038/s41388-021-01703-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The disruption of zinc homeostasis has been identified in patients suffering from various cancers, but a causative relationship has not yet been established. Drosophila melanogaster has become a powerful model to study cancer biology. Here using a Drosophila model of malignant tumor RafGOFscrib-/-, we observed that the tumor growth, invasion and migration were enhanced by silencing dZnT7, a zinc transporter localized on the Golgi apparatus. Further study indicated that the zinc deficiency in Golgi of dZnT7 RNAi resulted in ER stress which could activate the c-Jun-N-terminal Kinase (JNK) signaling and this process is mediated by Atg9. Lastly, we demonstrated that the exacerbation of dZnT7 RNAi on tumor was promoted by JNK signaling-dependent cell autonomous and non-autonomous autophagy. These findings suggest that zinc homeostasis in secretory compartments may provide a new therapeutic target for tumor treatment.
Collapse
|
18
|
Hosseini R, Ferns GA, Sahebkar A, Mirshekar MA, Jalali M. Zinc supplementation is associated with a reduction in serum markers of inflammation and oxidative stress in adults: A systematic review and meta-analysis of randomized controlled trials. Cytokine 2020; 138:155396. [PMID: 33333394 DOI: 10.1016/j.cyto.2020.155396] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/17/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Zinc (Zn) is a trace metal that is considered to have an impact on chronic inflammation. However, findings of clinical trials have been inconsistent. The present systematic review and meta-analysis aimed to provide a more robust examination of the evidence on the effectiveness of Zn supplements on markers of inflammation and oxidative stress. METHODS A systematic search in PubMed, Scopus, Web of Science and Cochrane Library was undertaken to identify relevant randomized controlled trials (RCTs) assessing the impact of Zn on inflammation and oxidative stress until 17 August 2020. We applied a random-effects method to obtain effect sizes (ES) and 95% confidence intervals (CIs). Meta-regression was used to detect the potential source of between-study heterogeneity. RESULTS Twenty-one eligible RCTs comprising 1321 participants were included in the meta-analysis. In comparison with the control groups, serum C-reactive protein (CRP) (ES = -0.92 mg/L, 95% CI = [-1.36, -0.48], P < 0.001, I2 = 90.2%), tumor necrosis factor-alpha (TNF-α) (ES = -0.49 pg/mL, 95% CI = [-084, -0.14], P = 0.006, I2 = 34.6%) and malondialdehyde (MDA) (ES = -0.42, 95% CI = [-083, -0.01], P = 0.04, I2 = 76.1%) were significantly reduced in the groups receiving Zn. Serum interleukin 6 (ES = -1.02 pg/mL, 95% CI = [-2.06, 0.02], P = 0.05, I2 = 92.3%) was marginally reduced following Zn supplementation. Moreover, treatment duration was found as the source of inter-study heterogeneity. CONCLUSION This meta-analysis suggests that Zn supplements reduce serum concentrations of markers of inflammation and oxidation: CRP, TNF-α and MDA.
Collapse
Affiliation(s)
- Razieh Hosseini
- Student Research Committee, Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Halal Research Center of IRI, FDA, Tehran, Iran
| | - Mohammad Ali Mirshekar
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Jalali
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Chi WJ, Myers JN, Frank SJ, Aponte-Wesson RA, Otun AO, Nogueras-González GM, Li Y, Geng Y, Chambers MS. The effects of zinc on radiation-induced dysgeusia: a systematic review and meta-analysis. Support Care Cancer 2020; 28:1-12. [PMID: 32642950 DOI: 10.1007/s00520-020-05578-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Many head and neck cancer patients who receive radiation therapy experience radiation-induced dysgeusia (RID), which has no standard treatment. The only supplement controlled clinical trials have evaluated for the treatment of RID is zinc. However, the results of these and other studies investigating the use of zinc for RID have been inconsistent. To assess the validity of zinc as a treatment for RID, we conducted a systematic literature search and performed a meta-analysis to determine the extent to which zinc affects RID incidence and the degree to which ongoing RID responds to zinc. METHODS We searched the Ovid MEDLINE, Ovid Embase, PubMed, and Cochrane Library databases to identify studies investigating the use of zinc-based therapy for RID in head and neck cancer patients treated with radiation that were published between January 1, 2003, and November 9, 2017. Using American Society of Clinical Oncology criteria, we selected studies with a high level of evidence for inclusion in the meta-analysis. RESULTS Of the 32 full-text articles eligible for inclusion, three were included in the final review and meta-analysis. The meta-analysis showed that, compared with placebo, zinc reduces the incidence of RID (risk ratio, 0.72; 95% confidence interval, 0.67-0.92) but does not improve taste acuity more rapidly following radiation therapy (risk ratio, 2.58; 95% confidence interval, 0.97-6.88). CONCLUSION Our findings indicate that zinc-based therapy reduces the incidence of RID but has a minimal effect on ongoing RID. Our findings also highlight the need for additional evidence-based research on this topic.
Collapse
Affiliation(s)
- Woo J Chi
- Department of Hospital Dentistry, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruth A Aponte-Wesson
- Section of Oral Oncology and Maxillofacial Prosthodontics, Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adegbenga O Otun
- Section of Oral Oncology and Maxillofacial Prosthodontics, Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Yisheng Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yimin Geng
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark S Chambers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Section of Oral Oncology and Maxillofacial Prosthodontics, Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Lozeie M, Bagheri M, Rad IA, Hossein-Zadeh N, Nasir-Zadeh M. Zinc attenuates ecstasy-induced apoptosis through downregulation of caspase-3 in cultured TM3 cells: An experimental study. Int J Reprod Biomed 2020; 18:777-784. [PMID: 33062923 PMCID: PMC7521166 DOI: 10.18502/ijrm.v13i9.7672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 12/29/2019] [Accepted: 04/21/2020] [Indexed: 01/19/2023] Open
Abstract
Background 3, 4-Methylenedioxymethamphetamine (MDMA) is commonly known as the most famous amphetamine derivative. Objective To evaluate the influence of zinc on MDMA-induced apoptosis and caspase- 3 gene expression in Leydig cell line (TM3). Materials and Methods Leydig cells were studied in differenet treatment groups regarding MDMA (0, 0.5, 1, 3, 5 mM) and zinc (0, 4, 8, 16, 32 μM). By the way, the effective concentration was determined to be 5 mM for MDMA and 8 μM for zinc. Then, TM3 cells were cultured in free medium as control (group I), medium containing MDMA (5 mM) (group II), zinc (8 µM) (group III), and zinc (8 µM) prior to MDMA (5 mM) (group IV) as well as in an untreated group (control). Cell viability was assessed at different times after cell culture by MTT assay. The mRNA expression level of caspase-3 was analyzed using real-time quantitative polymerase chain reaction. Results The cellular viability was significantly reduced in TM3 cells after 24 hr and 48 hr exposure time regarding different concentrations of MDMA as well as high concentration of zinc (16 and 32 μM). Cell viability was increased in the group that received zinc (8 µM) before addition of MDMA (5 mM) compared to the control and MDMA groups. The mean ± SE of fold was 22.40 ± 7.5, 0.06 ± 0.02, and 0.009 ± 0.003 in MDMA, zinc, and zinc + MDMA groups, respectively. The mean of caspase-3 mRNA level was significantly increased in the MDMA-treated group (5 mM), while the relative expression of caspase-3 gene was significantly decreased in the zinc (8 µM) + MDMA (5 mM) group compared with the MDMA (5 mM) group (p = 0.001). Conclusion Dietary intake of zinc has a protective effect against MDMA consumption in mouse.
Collapse
Affiliation(s)
| | - Morteza Bagheri
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Isa Abdi Rad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mahdyieh Nasir-Zadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
21
|
Angrimani DSR, Bicudo LC, Llamas Luceño N, Rui BR, Silva MF, Losano JDA, Leemans B, Van Soom A, Vannucchi CI. Does finasteride treatment for benign prostatic hyperplasia influence sperm DNA integrity in dogs? Basic Clin Androl 2020; 30:9. [PMID: 32695403 PMCID: PMC7364779 DOI: 10.1186/s12610-020-00108-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is one of the most common reproductive disorders in both male dogs and men. Finasteride, a synthetic inhibitor of the enzyme 5α-reductase, is widely used as medical treatment. Although sperm can be affected by both BPH and finasteride treatment, the direct influence on DNA integrity remains unclear. Thus, the aim of this study was to verify the direct effect of BPH and/or finasteride treatment on DNA integrity of dog spermatozoa. A 2 × 2 factorial experiment was designed with 20 male dogs assigned to 4 experimental groups: BPH Group (n = 5), BPH-Finasteride Group (n = 5), Non-BPH Finasteride-Treated Group (n = 5) and Non-BPH Untreated Group (n = 5). Sperm evaluation was performed monthly for 60 days after the start of finasteride therapy or BPH diagnosis (D0, D30 and D60). Sperm DNA integrity was analyzed through fragmentation susceptibility (toluidine blue staining and Sperm Chromatic Structure Assay - SCSA), direct evaluation of DNA fragmentation (Sperm Chromatin Dispersion Assay - SCDA) and sperm protamination (chromomycin A3). RESULTS Sperm DNA integrity was not affected by finasteride treatment. However, BPH dogs had higher susceptibility to sperm DNA acid denaturation (SCSA) compared to dogs not presenting BPH, as well as lower percentage of sperm with DNA integrity (toluidine blue staining). CONCLUSION In conclusion, benign prostatic hyperplasia causes post-testicular sperm DNA damage, albeit finasteride treatment itself does not directly influence sperm DNA integrity.
Collapse
Affiliation(s)
- Daniel S. R. Angrimani
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo, 05508-270 Brazil
| | - Luana C. Bicudo
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo, 05508-270 Brazil
| | - Nuria Llamas Luceño
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Bruno R. Rui
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo, 05508-270 Brazil
| | - Matheus F. Silva
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo, 05508-270 Brazil
| | - João D. A. Losano
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo, 05508-270 Brazil
| | - Bart Leemans
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Camila I. Vannucchi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo, 05508-270 Brazil
| |
Collapse
|
22
|
Growth Modulatory Role of Zinc in Prostate Cancer and Application to Cancer Therapeutics. Int J Mol Sci 2020; 21:ijms21082991. [PMID: 32340289 PMCID: PMC7216164 DOI: 10.3390/ijms21082991] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
Zinc is a group IIB heavy metal. It is an important regulator of major cell signaling pathways in most mammalian cells, functions as an antioxidant and plays a role in maintaining genomic stability. Zinc deficiency leads to severe diseases in the brain, pancreas, liver, kidneys and reproductive organs. Zinc loss occurs during tumor development in a variety of cancers. The prostate normally contains abundant intracellular zinc and zinc loss is a hallmark of the development of prostate cancer development. The underlying mechanism of this loss is not clearly understood. The knowledge that excess zinc prevents the growth of prostate cancers suggests that zinc-mediated therapeutics could be an effective approach for cancer prevention and treatment, although challenges remain. This review summarizes the specific roles of zinc in several cancer types focusing on prostate cancer. The relationship between prostate cancer and the dysregulation of zinc homeostasis is examined in detail in an effort to understand the role of zinc in prostate cancer.
Collapse
|
23
|
Deoxynivalenol-induced alterations in the redox status of HepG2 cells: identification of lipid hydroperoxides, the role of Nrf2-Keap1 signaling, and protective effects of zinc. Mycotoxin Res 2020; 36:287-299. [PMID: 32076947 DOI: 10.1007/s12550-020-00392-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/20/2023]
Abstract
Deoxynivalenol (DON) is a type B trichothecenes that is widely contaminating human and animal foods, leading to several toxicological implications if ingested. Induction of oxidative stress and production of lipid peroxides were suggested to be the reasons for DON-induced cytotoxicity. However, detailed and comprehensive profiling of DON-related lipid hydroperoxides was not identified. Furthermore, the mechanisms behind DON-induced cytotoxicity and oxidative stress have received less attention. Zinc (Zn) is an essential element that has antioxidant activities; however, the protective effects of Zn against DON-induced adverse effects were not examined. Therefore, this study was undertaken to investigate DON-induced cytotoxicity and oxidative damage to human HepG2 cell lines. Furthermore, a quantitative estimation for the formed lipid hydroperoxides was conducted using LC-MS/MS. In addition, DON-induced transcriptomic changes on the inflammatory markers and antioxidant enzymes were quantitatively examined using qPCR. The protective effects of Zn against DON-induced cytotoxicity and oxidative stress, the formation of lipid hydroperoxides (LPOOH), and antioxidant status in HepG2 cells were investigated. Finally, the effects of DON and Zn on the Nrf2-Keap1 pathway were further explored. The achieved results indicated that DON caused significant cytotoxicity in HepG2 cells accompanied by significant oxidative damage and induction of the inflammatory markers. Identification of DON-related LPOOH revealed the formation of 22 LPOOH species including 14 phosphatidylcholine hydroperoxides, 5 triacylglycerol hydroperoxides, and 3 cholesteryl ester hydroperoxides. DON caused significant downregulation of Nrf2-regulated antioxidant enzymes. Zn administration led to significant protection of HepG2 cells against DON-induced adverse effects, probably via activation of the Nrf2-Keap1 pathway.
Collapse
|
24
|
Lo MN, Damon LJ, Wei Tay J, Jia S, Palmer AE. Single cell analysis reveals multiple requirements for zinc in the mammalian cell cycle. eLife 2020; 9:e51107. [PMID: 32014109 PMCID: PMC7000218 DOI: 10.7554/elife.51107] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/30/2019] [Indexed: 01/01/2023] Open
Abstract
Zinc is widely recognized as essential for growth and proliferation, yet the mechanisms of how zinc deficiency arrests these processes remain enigmatic. Here we induce subtle zinc perturbations and track asynchronously cycling cells throughout division using fluorescent reporters, high throughput microscopy, and quantitative analysis. Zinc deficiency induces quiescence and resupply stimulates synchronized cell-cycle reentry. Monitoring cells before and after zinc deprivation we found the position of cells within the cell cycle determined whether they either went quiescent or entered another cell cycle but stalled in S-phase. Stalled cells exhibited prolonged S-phase, were defective in DNA synthesis and had increased DNA damage levels, suggesting a role for zinc in maintaining genome integrity. Finally, we demonstrate zinc deficiency-induced quiescence occurs independently of DNA-damage response pathways, and is distinct from mitogen removal and spontaneous quiescence. This suggests a novel pathway to quiescence and reveals essential micronutrients play a role in cell cycle regulation.
Collapse
Affiliation(s)
- Maria N Lo
- Department of BiochemistryUniversity of Colorado, BoulderBoulderUnited States
- BioFrontiers InstituteUniversity of Colorado, BoulderBoulderUnited States
| | - Leah J Damon
- Department of BiochemistryUniversity of Colorado, BoulderBoulderUnited States
- BioFrontiers InstituteUniversity of Colorado, BoulderBoulderUnited States
| | - Jian Wei Tay
- Department of BiochemistryUniversity of Colorado, BoulderBoulderUnited States
- BioFrontiers InstituteUniversity of Colorado, BoulderBoulderUnited States
| | - Shang Jia
- Department of ChemistryUniversity of California, BerkeleyBerkeleyUnited States
| | - Amy E Palmer
- Department of BiochemistryUniversity of Colorado, BoulderBoulderUnited States
- BioFrontiers InstituteUniversity of Colorado, BoulderBoulderUnited States
| |
Collapse
|
25
|
Yildiz A, Kaya Y, Tanriverdi O. Effect of the Interaction Between Selenium and Zinc on DNA Repair in Association With Cancer Prevention. J Cancer Prev 2019; 24:146-154. [PMID: 31624720 PMCID: PMC6786808 DOI: 10.15430/jcp.2019.24.3.146] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is the most common cause of death worldwide. Annually, more than ten million new cancer cases are diagnosed, and more than six million deaths occur due to cancer. Nonetheless, over 80% of human cancer may be preventable through proper nutrition. Numerous nutritional compounds are effective in preventing cancer. Selenium and zinc are essential micronutrients that have important roles in reducing oxidative stress and protecting DNA from the attack of reactive oxygen species. Selenium is an essential trace element that possesses several functions in many cellular processes for cancer prevention. Meanwhile, zinc may have protective effects on tumor initiation and progression, and it is an essential cofactor of several mammalian proteins. Results show that both selenium and zinc provide an effective progression of DNA repair system; thus, cancer development that originated from DNA damage is decreased. Results mostly focus on the separate effects of these two elements on different cell types, tissues, and organs, and their combined effects are largely unknown. This review aimed to emphasize the joint role of selenium and zinc specifically on DNA repair for cancer prevention.
Collapse
Affiliation(s)
- Aysegul Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Yesim Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ozgur Tanriverdi
- Department of Medical Oncology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey.,Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
26
|
Cao AL, Beaver LM, Wong CP, Hudson LG, Ho E. Zinc deficiency alters the susceptibility of pancreatic beta cells (INS-1) to arsenic exposure. Biometals 2019; 32:845-859. [PMID: 31542844 DOI: 10.1007/s10534-019-00217-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic beta cells produce and release insulin, a hormone that regulates blood glucose levels, and their dysfunction contributes to the development of diabetes mellitus. Zinc deficiency and inorganic arsenic exposure both independently associate with the development of diabetes, although the effects of their combination on pancreatic beta cell health and function remain unknown. We hypothesized zinc deficiency increases the toxicity associated with arsenic exposure, causing an increased susceptibility to DNA damage and disruption of insulin production. Zinc deficiency decreased cell proliferation by 30% in pancreatic INS-1 rat insulinoma cells. Arsenic exposure (0, 50 or 500 ppb exposures) significantly decreased cell proliferation, and increased mRNA levels of genes involved in stress response (Mt1, Mt2, Hmox1) and DNA damage (p53, Ogg1). When co-exposed to both zinc deficiency and arsenic, zinc deficiency attenuated this response to arsenic, decreasing the expression of Mt1, Hmox1, and Ogg1, and significantly increasing DNA double-strand breaks 2.9-fold. Arsenic exposure decreased insulin expression, but co-exposure did not decrease insulin levels beyond the arsenic alone condition, but did result in a further 33% decline in cell proliferation at the 500 ppb arsenic dose, and a significant increase in beta cell apoptosis. These results suggest zinc deficiency and arsenic, both independently and in combination, adversely affect pancreatic beta cell health and both factors should be considered in the evaluation of health outcomes for susceptible populations.
Collapse
Affiliation(s)
- Annie L Cao
- School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR, 97331, USA
| | - Laura M Beaver
- School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR, 97331, USA.,Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR, 97331, USA
| | - Carmen P Wong
- School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR, 97331, USA.,Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR, 97331, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Emily Ho
- School of Biological and Population Health Sciences, Oregon State University, 103 Milam Hall, Corvallis, OR, 97331, USA. .,Linus Pauling Institute, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR, 97331, USA. .,Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, Oregon State University, 103 Milam Hall, Corvallis, OR, 97331, USA.
| |
Collapse
|
27
|
Samavarchi Tehrani S, Mahmoodzadeh Hosseini H, Yousefi T, Abolghasemi M, Qujeq D, Maniati M, Amani J. The crosstalk between trace elements with DNA damage response, repair, and oxidative stress in cancer. J Cell Biochem 2019; 120:1080-1105. [PMID: 30378148 DOI: 10.1002/jcb.27617] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/14/2018] [Indexed: 01/24/2023]
Abstract
DNA damage response (DDR) is a regulatory system responsible for maintaining genome integrity and stability, which can sense and transduce DNA damage signals. The severity of damage appears to determine DDRs, which can include damage repair, cell-cycle arrest, and apoptosis. Furthermore, defective components in DNA damage and repair machinery are an underlying cause for the development and progression of various types of cancers. Increasing evidence indicates that there is an association between trace elements and DDR/repair mechanisms. In fact, trace elements seem to affect mediators of DDR. Besides, it has been revealed that oxidative stress (OS) and trace elements are associated with cancer development. In this review, we discuss the role of some critical trace elements in the risk of cancer. In addition, we provide a brief introduction on DDR and OS in cancer. Finally, we will further review the interactions between some important trace elements including selenium, zinc, chromium, cadmium, and arsenic, and DDR, and OS in cancer.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Abolghasemi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Richardson CER, Cunden LS, Butty VL, Nolan EM, Lippard SJ, Shoulders MD. A Method for Selective Depletion of Zn(II) Ions from Complex Biological Media and Evaluation of Cellular Consequences of Zn(II) Deficiency. J Am Chem Soc 2018; 140:2413-2416. [PMID: 29334734 PMCID: PMC5842789 DOI: 10.1021/jacs.7b12897] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We describe the preparation, evaluation, and application of an S100A12 protein-conjugated solid support, hereafter the "A12-resin", that can remove 99% of Zn(II) from complex biological solutions without significantly perturbing the concentrations of other metal ions. The A12-resin can be applied to selectively deplete Zn(II) from diverse tissue culture media and from other biological fluids, including human serum. To further demonstrate the utility of this approach, we investigated metabolic, transcriptomic, and metallomic responses of HEK293 cells cultured in medium depleted of Zn(II) using S100A12. The resulting data provide insight into how cells respond to acute Zn(II) deficiency. We expect that the A12-resin will facilitate interrogation of disrupted Zn(II) homeostasis in biological settings, uncovering novel roles for Zn(II) in biology.
Collapse
Affiliation(s)
- Christopher E. R. Richardson
- Department of Chemistry, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Massachusetts 02139, United States
| | - Lisa S. Cunden
- Department of Chemistry, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Massachusetts 02139, United States
| | - Vincent L. Butty
- MIT BioMicroCenter, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Massachusetts 02139, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Massachusetts 02139, United States
| | - Stephen J. Lippard
- Department of Chemistry, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Massachusetts 02139, United States
| | - Matthew D. Shoulders
- Department of Chemistry, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Massachusetts 02139, United States
| |
Collapse
|
29
|
Qayyum MA, Shah MH. Study of trace metal imbalances in the blood, scalp hair and nails of oral cancer patients from Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:191-201. [PMID: 28343039 DOI: 10.1016/j.scitotenv.2017.03.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 06/06/2023]
Abstract
Oral cancer is an important cause of cancer morbidity and mortality globally and exposure to trace metals alongside tobacco, alcohol and HPV are the important etiological factors in its development. Selected essential and toxic trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were measured in the blood, scalp hair and nails of oral cancer patients and counterpart controls by atomic absorption spectrometry. Mean concentrations of Cd, Ni and Pb were found to be significantly higher (p<0.05) and those of Cu, Fe and Zn were considerably lower in the blood, scalp hair and nails of the patients than the controls. Most of the metal concentrations exhibited higher dispersion and asymmetry in the blood, scalp hair and nails of the patients compared with the controls. The correlation study revealed significantly diverse relationships among the metals in blood, scalp hair and nails of both donor groups. Variations in the metal levels were also noted for various stages (I, II, III & IV) as well as the types (adenocarcinoma and squamous cell carcinoma) of oral cancer. Multivariate cluster analysis of the metal levels in the patients were also significantly dissimilar than the controls. The study evidenced considerably divergent variations in the metal levels in oral cancer patients in comparison with the controls.
Collapse
Affiliation(s)
| | - Munir H Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
30
|
Bar-El Dadon S, Abbo S, Reifen R. Leveraging traditional crops for better nutrition and health - The case of chickpea. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Genomic instability related to zinc deficiency and excess in an in vitro model: is the upper estimate of the physiological requirements recommended for children safe? In Vitro Cell Dev Biol Anim 2017; 53:586-592. [PMID: 28550622 DOI: 10.1007/s11626-017-0146-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
Abstract
Micronutrients are important for the prevention of degenerative diseases due to their role in maintaining genomic stability. Therefore, there is international concern about the need to redefine the optimal mineral and vitamin requirements to prevent DNA damage. We analyzed the cytostatic, cytotoxic, and genotoxic effect of in vitro zinc supplementation to determine the effects of zinc deficiency and excess and whether the upper estimate of the physiological requirement recommended for children is safe. To achieve zinc deficiency, DMEM/Ham's F12 medium (HF12) was chelated (HF12Q). Lymphocytes were isolated from healthy female donors (age range, 5-10 yr) and cultured for 7 d as follows: negative control (HF12, 60 μg/dl ZnSO4); deficient (HF12Q, 12 μg/dl ZnSO4); lower level (HF12Q + 80 μg/dl ZnSO4); average level (HF12Q + 180 μg/dl ZnSO4); upper limit (HF12Q + 280 μg/dl ZnSO4); and excess (HF12Q + 380 μg/dl ZnSO4). The comet (quantitative analysis) and cytokinesis-block micronucleus cytome assays were used. Differences were evaluated with Kruskal-Wallis and ANOVA (p < 0.05). Olive tail moment, tail length, micronuclei frequency, and apoptotic and necrotic percentages were significantly higher in the deficient, upper limit, and excess cultures compared with the negative control, lower, and average limit ones. In vitro zinc supplementation at the lower and average limit (80 and 180 μg/dl ZnSO4) of the physiological requirement recommended for children proved to be the most beneficial in avoiding genomic instability, whereas the deficient, upper limit, and excess (12, 280, and 380 μg/dl) cultures increased DNA and chromosomal damage and apoptotic and necrotic frequencies.
Collapse
|
32
|
He CC, Wang ZY, Tian K, Liu W, Li YB, Hong Y, Yu LX, Pang W, Jiang YG, Liu YQ. DNA methylation mechanism of intracellular zinc deficiency-induced injury in primary hippocampal neurons in the rat brain. Nutr Neurosci 2017; 21:478-486. [DOI: 10.1080/1028415x.2017.1312090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Cong-cong He
- College of Life Sciences, Nankai University, Tianjin 300071, China
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Zi-yu Wang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Kun Tian
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Liu
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Yi-bo Li
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Yan Hong
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Li-xia Yu
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Wei Pang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Yu-gang Jiang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Yan-qiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Ninsontia C, Phiboonchaiyanan PP, Kiratipaiboon C, Chanvorachote P. Zinc suppresses stem cell properties of lung cancer cells through protein kinase C-mediated β-catenin degradation. Am J Physiol Cell Physiol 2017; 312:C487-C499. [DOI: 10.1152/ajpcell.00173.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
Abstract
Highly tumorigenic cancer stem cells (CSCs) residing in most cancers are responsible for cancer progression and treatment failure. Zinc is an element regulator of several cell functions; however, its role in regulation of stem cell program in lung cancer has not been demonstrated. The present study reveals for the first time that zinc can suppress stem cell properties of lung cancer cells. Such findings were proved in different lung cancer cell lines (H460, H23, and H292) and it was found that CSC markers (CD133 and ALDH1A1), stem cell-associated transcription factors (Oct4, Nanog, and Sox-2), and the ability to form tumor spheroid were dramatically suppressed by zinc treatments. Zinc was found to activate protein kinase C-α (PKCα) that further phosphorylated and mediated β-catenin degradation through the ubiquitin-proteasomal pathway. Zinc was found to increase the β-catenin-ubiquitin complex, which can be inhibited by a specific PKC inhibitor, bisindolylmaleimide I. Using specific reactive oxygen species detection and antioxidants, we have demonstrated that superoxide anions generated by zinc are a key upstream mechanism for PKCα activation leading to the subsequent suppression of stem cell features of lung cancer. Zinc increased cellular superoxide anions and the addition of superoxide anion scavenger prevented the activation of PKCα and β-catenin degradation. These findings indicate a novel role for zinc regulation in the PKCα/β-catenin pathway and explain an important mechanism for controlling of stem cell program in lung cancer cells.
Collapse
Affiliation(s)
- Chuanpit Ninsontia
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and
- Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Preeyaporn Plaimee Phiboonchaiyanan
- Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chayanin Kiratipaiboon
- Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and
- Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
34
|
Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017; 25:11-24. [PMID: 28083748 PMCID: PMC5306179 DOI: 10.1007/s10787-017-0309-4] [Citation(s) in RCA: 433] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022]
Abstract
Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc retards oxidative processes on a long-term basis by inducing the expression of metallothioneins. These metal-binding cysteine-rich proteins are responsible for maintaining zinc-related cell homeostasis and act as potent electrophilic scavengers and cytoprotective agents. Furthermore, zinc increases the activation of antioxidant proteins and enzymes, such as glutathione and catalase. On the other hand, zinc exerts its antioxidant effect via two acute mechanisms, one of which is the stabilization of protein sulfhydryls against oxidation. The second mechanism consists in antagonizing transition metal-catalyzed reactions. Zinc can exchange redox active metals, such as copper and iron, in certain binding sites and attenuate cellular site-specific oxidative injury. Studies have demonstrated that physiological reconstitution of zinc restrains immune activation, whereas zinc deficiency, in the setting of severe infection, provokes a systemic increase in NF-κB activation. In vitro studies have shown that zinc decreases NF-κB activation and its target genes, such as TNF-α and IL-1β, and increases the gene expression of A20 and PPAR-α, the two zinc finger proteins with anti-inflammatory properties. Alternative NF-κB inhibitory mechanism is initiated by the inhibition of cyclic nucleotide phosphodiesterase, whereas another presumed mechanism consists in inhibition of IκB kinase in response to infection by zinc ions that have been imported into cells by ZIP8.
Collapse
Affiliation(s)
- Magdalena Jarosz
- Department of Radioligands, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Magdalena Olbert
- Department of Radioligands, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Gabriela Wyszogrodzka
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Katarzyna Młyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| |
Collapse
|
35
|
Levine KE, Collins BJ, Stout MD, Wyde M, Afton SE, Essader AS, Ennis TJ, Amato KE, McWilliams AC, Fletcher BL, Fernando RA, Harrington JM, Catlin N, Robinson VG, Waidyanatha S. Characterization of Zinc Carbonate Basic as a Source of Zinc in a Rodent Study Investigating the Effects of Dietary Deficiency or Excess. ANAL LETT 2017; 50:2447-2464. [PMID: 30930463 DOI: 10.1080/00032719.2017.1293073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Zinc deficiency and excess can result in adverse health outcomes. There is conflicting evidence regarding whether excess or deficient zinc in the diet can contribute to carcinogenicity. The objective of this study was to characterize zinc carbonate basic for use as a source of dietary zinc in a rodent toxicity and carcinogenicity study investigating the effects of zinc deficiency and excess. Because of the complex chemistries of zinc carbonate basic compounds, inconsistent nomenclature, and literature and reference spectra gaps, it was necessary to employ multiple analytical techniques, including Karl Fischer titration, combustion analysis, inductively coupled plasma-optical emission spectrometry, X-ray diffraction, infrared spectroscopy, X-ray fluorescence spectrometry, and thermogravimetric analysis to characterize the test article. Based on the collective evidence and through the process of elimination, the test article was found to be composed mainly of zinc carbonate basic with zinc oxide as a minor component. The zinc content was determined to be 56.6% (w/w) with heavy metals such as arsenic, cadmium, mercury and lead below the limit of quantitation of less than or equal to 0.01%. The test material was stable at ambient temperature. Based on the work described in this manuscript, the test article was suitable for use as a source of zinc in studies of deficiency and excess in the diet.
Collapse
Affiliation(s)
- Keith E Levine
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Bradley J Collins
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, MD EC-06, P.O. Box 12233, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Matthew D Stout
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, MD EC-06, P.O. Box 12233, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Michael Wyde
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, MD EC-06, P.O. Box 12233, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Scott E Afton
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Amal S Essader
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Todd J Ennis
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Kelly E Amato
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Andrea C McWilliams
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Brenda L Fletcher
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Reshan A Fernando
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - James M Harrington
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Natasha Catlin
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, MD EC-06, P.O. Box 12233, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Veronica G Robinson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, MD EC-06, P.O. Box 12233, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, MD EC-06, P.O. Box 12233, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
36
|
Pan Z, Choi S, Ouadid-Ahidouch H, Yang JM, Beattie JH, Korichneva I. Zinc transporters and dysregulated channels in cancers. Front Biosci (Landmark Ed) 2017; 22:623-643. [PMID: 27814637 DOI: 10.2741/4507] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a nutritionally essential metal ion, zinc (Zn) not only constitutes a structural element for more than 3000 proteins but also plays important regulatory functions in cellular signal transduction. Zn homeostasis is tightly controlled by regulating the flux of Zn across cell membranes through specific transporters, i.e. ZnT and ZIP family proteins. Zn deficiency and malfunction of Zn transporters have been associated with many chronic diseases including cancer. However, the mechanisms underlying Zn regulatory functions in cellular signaling and their impact on the pathogenesis and progression of cancers remain largely unknown. In addition to these acknowledged multifunctions, Zn modulates a wide range of ion channels that in turn may also play an important role in cancer biology. The goal of this review is to propose how zinc deficiency, through modified Zn homeostasis, transporter activity and the putative regulatory function of Zn can influence ion channel activity, and thereby contribute to carcinogenesis and tumorigenesis. This review intends to stimulate interest in, and support for research into the understanding of Zn-modulated channels in cancers, and to search for novel biomarkers facilitating effective clinical stratification of high risk cancer patients as well as improved prevention and therapy in this emerging field.
Collapse
Affiliation(s)
- Zui Pan
- The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA,
| | - Sangyong Choi
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Halima Ouadid-Ahidouch
- University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Jin-Ming Yang
- Department of Pharmacology, College of Medicine, Penn State University, 500 University Drive Hershey, PA 17033, USA
| | - John H Beattie
- Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Bucksburn, Aberdeen AB25 2ZD, Scotland, UK
| | - Irina Korichneva
- University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| |
Collapse
|
37
|
Bartolomé I, Córdoba L, Crespo C, Grijota F, Maynar M, Muñoz D. Effects of a paddle match on the urinary excretion of trace minerals in high-level players. Sci Sports 2016. [DOI: 10.1016/j.scispo.2015.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2015; 90:1-37. [DOI: 10.1007/s00204-015-1579-5] [Citation(s) in RCA: 610] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
|
39
|
Kim J, Kim S, Jeon S, Hui Z, Kim Y, Im Y, Lim W, Kim C, Choi H, Kim O. Anti-inflammatory effects of zinc in PMA-treated human gingival fibroblast cells. Med Oral Patol Oral Cir Bucal 2015; 20:e180-7. [PMID: 25662537 PMCID: PMC4393980 DOI: 10.4317/medoral.19896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Abnormal cellular immune response has been considered to be responsible for oral lesions in recurrent aphthous stomatitis. Zinc has been known to be an essential nutrient metal that is necessary for a broad range of biological activities including antioxidant, immune mediator, and anti-inflammatory drugs in oral mucosal disease. The objective of this study was to investigate the effects of zinc in a phorbol-12-myristate-13-acetate (PMA)-treated inflammatory model on human gingival fibroblast cells (hGFs). STUDY DESIGN Cells were pre-treated with zinc chloride, followed by PMA in hGFs. The effects were assessed on cell viability, cyclooxygenease-1,2(COX-1,2) protein expression, PGE2 release, ROS production and cytokine release, Results: The effects were assessed on cell viability, COX1/2 protein expression, PGE2 release, ROS production, cytokine release. The results showed that, in the presence of PMA, zinc treatment leads to reduce the production of ROS, which results in decrease of COX-2 expression and PGE2 release. CONCLUSIONS Thus, we suggest that zinc treatment leads to the mitigation of oral inflammation and may prove to be an alternative treatment for recurrent aphthous stomatitis.
Collapse
Affiliation(s)
- Jisun Kim
- Department of Oral Pathology, Dental Science Research Institute and Medical Research, Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Bug-Gu, Gwangju, 500-757, Korea,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yang H, Keen CL, Lanoue L. Influence of intracellular zinc on cultures of rat cardiac neural crest cells. ACTA ACUST UNITED AC 2015; 104:11-22. [PMID: 25689142 DOI: 10.1002/bdrb.21135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/08/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Developmental zinc (Zn) deficiency increases the incidence of heart anomalies in rat fetuses, in regions and structures derived from the outflow tract. Given that the development of the outflow tract requires the presence of cardiac neural crest cells (cNCC), we speculated that Zn deficiency selectively kills cNCC and could lead to heart malformations. METHODS Cardiac NCC were isolated from E10.5 rat embryos and cultured in control media (CTRL), media containing 3 μM of the cell permeable metal chelator N, N, N', N'-tetrakis (2-pyridylmethyl) ethylene diamine (TPEN), or in TPEN-treated media supplemented with 3 μM Zn (TPEN + Zn). Cardiac NCC were collected after 6, 8, and 24 h of treatment to assess cell viability, proliferation, and apoptosis. RESULTS The addition of TPEN to the culture media reduced free intracellular Zn pools and cell viability as assessed by low ATP production, compared to cells grown in control or Zn-supplemented media. There was an accumulation of reactive oxygen species, a release of mitochondrial cytochrome c into the cytoplasm, and an increased cellular expression of active caspase-3 in TPEN-treated cNCC compared to cNCC cultured in CTRL or TPEN + Zn media. CONCLUSION Zn deficiency can result in oxidative stress in cNCC, and subsequent decreases in their population and metabolic activity. These data support the concept that Zn deficiency associated developmental heart defects may arise in part as a consequence of altered cNCC metabolism.
Collapse
Affiliation(s)
- Hsunhui Yang
- Department of Nutrition, University of California, Davis, California
| | | | | |
Collapse
|
41
|
Holubova M, Axmanova M, Gumulec J, Raudenska M, Sztalmachova M, Babula P, Adam V, Kizek R, Masarik M. KRAS NF-κB is involved in the development of zinc resistance and reduced curability in prostate cancer. Metallomics 2015; 6:1240-53. [PMID: 24927480 DOI: 10.1039/c4mt00065j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Zinc(II) ions are important components of many proteins and are involved in numerous cellular processes such as apoptosis or drug resistance. Prostate cancer has a unique relationship with zinc(II) ions. However, the relationship was examined only in short-term zinc(II) treatments. Therefore, the aim of this study was to create zinc-resistant prostatic cell lines at various stages of the disease (22Rv1 and PC-3) and a normal prostate epithelium (PNT1A) using a long-term zinc exposure. Consequently, the expression profile of the following genes was analyzed: BAX, Bcl-2, Beclin-1, CFLAR, HIF1α, KRAS, mTOR, MT1A, MT2A, NF-κB1, p53, survivin, ZIP1, ZnT-1. The resistance was verified using the MTT test; on average a 1.35-fold lower zinc(II) toxicity (higher IC50) was determined in zinc(II)-resistant cells. The associated resistance to cisplatin was also determined; IC50 for cisplatin was 1.52-fold higher. With regard to the gene expression profiles, our results indicate that differential mechanisms participate in the short-term zinc toxicity regulation and long-term resistance; the short-term treatment was associated with MT2A (p < 0.001), ZnT-1 (p < 0.001), and MT1A (p < 0.03) and the long-term resistance was associated particularly with NF-κB1 (p < 0.001), CFLAR (p < 0.001), KRAS (p < 0.001), p53 (p < 0.002), survivin (p = 0.02), ZIP1 (p = 0.002), BAX (p = 0.005), and HIF1α (p = 0.05). Therefore, the KRAS-PI3K-NF-κB pathway is expected to play a crucial role in the regulation of zinc resistance. In summary, compared to previous studies, identical mechanisms of resistance were demonstrated on multiple cell lines, both non-tumor and tumorous, derived both from primary and advanced secondary sites.
Collapse
Affiliation(s)
- Monika Holubova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pal A, Dey TK, Singhal A, Bindal RC, Tewari PK. Nano-ZnO impregnated inorganic–polymer hybrid thinfilm nanocomposite nanofiltration membranes: an investigation of variation in structure, morphology and transport properties. RSC Adv 2015. [DOI: 10.1039/c4ra14854a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TFN-NF membranes prepared byin situinterfacial polymerization of branched polyethyleneimine and trimesoyl chloride, with simultaneous impregnation of as-synthesized hexagonal wurtzite nano-ZnO either through aqueous or organic phase.
Collapse
Affiliation(s)
- Avishek Pal
- Desalination Division
- Bhabha Atomic Research Centre
- Mumbai
- India 400085
| | - T. K. Dey
- Desalination Division
- Bhabha Atomic Research Centre
- Mumbai
- India 400085
| | - Anshu Singhal
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai
- India 400085
| | - R. C. Bindal
- Desalination Division
- Bhabha Atomic Research Centre
- Mumbai
- India 400085
| | - P. K. Tewari
- Desalination Division
- Bhabha Atomic Research Centre
- Mumbai
- India 400085
| |
Collapse
|
43
|
Joray ML, Yu TW, Ho E, Clarke SL, Stanga Z, Gebreegziabher T, Hambidge KM, Stoecker BJ. Zinc supplementation reduced DNA breaks in Ethiopian women. Nutr Res 2014; 35:49-55. [PMID: 25491347 DOI: 10.1016/j.nutres.2014.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 12/19/2022]
Abstract
Assessment of zinc status remains a challenge largely because serum/plasma zinc may not accurately reflect an individual's zinc status. The comet assay, a sensitive method capable of detecting intracellular DNA strand breaks, may serve as a functional biomarker of zinc status. We hypothesized that effects of zinc supplementation on intracellular DNA damage could be assessed from samples collected in field studies in Ethiopia using the comet assay. Forty women, from villages where reported consumption of meat was less than once per month and phytate levels were high, received 20 mg zinc as zinc sulfate or placebo daily for 17 days in a randomized placebo-controlled trial. Plasma zinc concentrations were determined by inductively coupled plasma mass spectrometry. Cells from whole blood at the baseline and end point of the study were embedded in agarose, electrophoresed, and stained before being scored by an investigator blinded to the treatments. Although zinc supplementation did not significantly affect plasma zinc, mean (± SEM) comet tail moment measurement of supplemented women decreased from 39.7 ± 2.7 to 30.0 ± 1.8 (P< .005), indicating a decrease in DNA strand breaks in zinc-supplemented individuals. These findings demonstrated that the comet assay could be used as a functional assay to assess the effects of zinc supplementation on DNA integrity in samples collected in a field setting where food sources of bioavailable zinc are limited. Furthermore, the comet assay was sufficiently sensitive to detect changes in zinc status as a result of supplementation despite no significant changes in plasma zinc.
Collapse
Affiliation(s)
- Maya L Joray
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Tian-Wei Yu
- School of Biological & Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Emily Ho
- School of Biological & Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Zeno Stanga
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital, Bern, Switzerland; Department of Internal Medicine, University Hospital, Bern, Switzerland.
| | - Tafere Gebreegziabher
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA; Institute of Nutrition, Food Science and Technology, Hawassa University, Hawassa, Ethiopia.
| | - K Michael Hambidge
- Section of Nutrition, Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, CO, USA.
| | - Barbara J Stoecker
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
44
|
Lee E, Levine EA, Franco VI, Allen GO, Gong F, Zhang Y, Hu JJ. Combined genetic and nutritional risk models of triple negative breast cancer. Nutr Cancer 2014; 66:955-63. [PMID: 25023197 DOI: 10.1080/01635581.2014.932397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Triple negative breast cancer (TNBC) presents clinical challenges due to unknown etiology, lack of treatment targets, and poor prognosis. We examined combined genetic and nutritional risk models of TNBC in 354 breast cancer cases. We evaluated 18 DNA-repair nonsynonymous single nucleotide polymorphisms (nsSNPs) and dietary/nutritional intakes. Multivariate Adaptive Regression Splines models were used to select nutrients of interest and define cut-off values for logistic regression models. Our results suggest that TNBC was associated with 6 DNA-repair nsSNPs, ERCC4 R415Q (rs1800067), MSH3 R940Q (rs184967), MSH6 G39E (rs1042821), POLD1 R119H (rs1726801), XRCC1 R194W (rs1799782), and XPC A499V (rs2228000) and/or deficiencies in 3 micronutrients (zinc, folate, and β-carotene). Combined analyses of these 6 nsSNPs and 3 micronutrients showed significant association with TNBC: odds ratios = 2.77 (95% confidence interval = 1.01-7.64) and 10.89 (95% confidence interval = 3.50-33.89) for 2 and at least 3 risk factors, respectively. To the best of our knowledge, this is the first study to suggest that multiple genetic and nutritional factors are associated with TNBC, particularly in combination. Our findings, if validated in larger studies, will have important clinical implication that dietary modulations and/or micronutrient supplementations may prevent or reverse TNBC phenotype, so tumors can be treated with less toxic therapeutic strategies, particularly in genetically susceptible women.
Collapse
Affiliation(s)
- Eunkyung Lee
- a Department of Public Health Sciences and Sylvester Comprehensive Cancer Center , University of Miami Miller School of Medicine , Miami , Florida , USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Could Intracrine Biology Play a Role in the Pathogenesis of Transmissable Spongiform Encephalopathies Alzheimer’s Disease and Other Neurodegenerative Diseases? Am J Med Sci 2014; 347:312-20. [DOI: 10.1097/maj.0b013e3182a28af3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Sharif R, Thomas P, Zalewski P, Fenech M. The role of zinc in genomic stability. Mutat Res 2012; 733:111-121. [PMID: 21939673 DOI: 10.1016/j.mrfmmm.2011.08.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
Zinc (Zn) is an essential trace element required for maintaining both optimal human health and genomic stability. Zn plays a critical role in the regulation of DNA repair mechanisms, cell proliferation, differentiation and apoptosis involving the action of various transcriptional factors and DNA or RNA polymerases. Zn is an essential cofactor or structural component for important antioxidant defence proteins and DNA repair enzymes such as Cu/Zn SOD, OGG1, APE and PARP and may also affect activities of enzymes such as BHMT and MTR involved in methylation reactions in the folate-methionine cycle. This review focuses on the role of Zn in the maintenance of genome integrity and the effects of deficiency or excess on genomic stability events and cell death.
Collapse
Affiliation(s)
- Razinah Sharif
- CSIRO Food and Nutritional Sciences, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
47
|
Sharif R, Thomas P, Zalewski P, Fenech M. Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells. GENES AND NUTRITION 2011; 7:139-54. [PMID: 21935692 DOI: 10.1007/s12263-011-0248-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/08/2011] [Indexed: 12/13/2022]
Abstract
Zinc (Zn) is an essential component of Zn-finger proteins and acts as a cofactor for enzymes required for cellular metabolism and in the maintenance of DNA integrity. The study investigated the genotoxic and cytotoxic effects of Zn deficiency or excess in a primary human oral keratinocyte cell line and determined the optimal concentration of two Zn compounds (Zn Sulphate (ZnSO(4)) and Zn Carnosine (ZnC)) to minimise DNA damage. Zn-deficient medium (0 μM) was produced using Chelex treatment, and the two Zn compounds ZnSO(4) and ZnC were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0 μM. Cell viability was decreased in Zn-depleted cells (0 μM) as well as at 32 μM and 100 μM for both Zn compounds (P < 0.0001) as measured via the MTT assay. DNA strand breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P < 0.05). The Cytokinesis Block Micronucleus Cytome assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P < 0.05). Furthermore, elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were observed at 0 and 0.4 μM Zn, whereas these biomarkers were minimised for both Zn compounds at 4 and 16 μM Zn (P < 0.05), suggesting these concentrations are optimal to maintain genome stability. Expression of PARP, p53 and OGG1 measured by western blotting was increased in Zn-depleted cells indicating that DNA repair mechanisms are activated. These results suggest that maintaining Zn concentrations within the range of 4-16 μM is essential for DNA damage prevention in cultured human oral keratinocytes.
Collapse
Affiliation(s)
- Razinah Sharif
- CSIRO Food and Nutritional Sciences, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
48
|
Sapota A, Darago A, Taczalski J, Kilanowicz A. Disturbed homeostasis of zinc and other essential elements in the prostate gland dependent on the character of pathological lesions. Biometals 2011; 22:1041-9. [PMID: 19629715 DOI: 10.1007/s10534-009-9255-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/10/2009] [Indexed: 12/23/2022]
Abstract
Pathophysiological changes in the prostate take the form of benign prostate hyperplasia (BPH) and prostate adenocarcinoma (PCa). In prostate, zinc is particularly important to its normal functioning, especially in terms of the consequences of hormone disturbance. The aim of this study was to assess the levels of Zn, Cu, Ca, Mg, and Se in the prostate dependent on the character of patological changes. Zinc, copper, magnesium and calcium were determined by AAS and selenium with spectrofluorometric method. Zn levels in BPH patients were over twofold higher than in controls. On the other hand, in the patients with PCa, the levels of Zn were found almost three times lower than in BPH patients and by almost 50% lower than in controls. In this study, significant changes in the levels of other essential elements were observed. The results apparently confirm the disturbed homeostasis of zinc and other essential elements in the etiology of BPH and PCa.
Collapse
Affiliation(s)
- Andrzej Sapota
- Department of Toxicology, Faculty of Pharmacy, Medical University, Muszynskiego 1, 90-151 Lodz, Poland.
| | | | | | | |
Collapse
|
49
|
Kumari D, Nair N, Bedwal RS. Testicular apoptosis after dietary zinc deficiency: Ultrastructural and TUNEL studies. Syst Biol Reprod Med 2011; 57:233-43. [DOI: 10.3109/19396368.2011.584500] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Kelleher SL, McCormick NH, Velasquez V, Lopez V. Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr 2011; 2:101-11. [PMID: 22332039 PMCID: PMC3065755 DOI: 10.3945/an.110.000232] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zinc (Zn) is an essential micronutrient required for over 300 different cellular processes, including DNA and protein synthesis, enzyme activity, and intracellular signaling. Cellular Zn homeostasis necessitates the compartmentalization of Zn into intracellular organelles, which is tightly regulated through the integration of Zn transporting mechanisms. The pancreas, prostate, and mammary gland are secretory tissues that have unusual Zn requirements and thus must tightly regulate Zn metabolism through integrating Zn import, sequestration, and export mechanisms. Recent findings indicate that these tissues utilize Zn for basic cellular processes but also require Zn for unique cellular needs. In addition, abundant Zn is transported into the secretory pathway and a large amount is subsequently secreted in a tightly regulated manner for unique biological processes. Expression of numerous members of the SLC30A (ZnT) and SLC39A (Zip) gene families has been documented in these tissues, yet there is limited understanding of their precise functional role in Zn metabolism or their regulation. Impairments in Zn secretion from the pancreas, prostate, and mammary gland are associated with disorders such as diabetes, infertility, and cancer, respectively. In this review, we will provide a brief summary of the specific role of Zn in each tissue and describe our current knowledge regarding how Zn metabolism is regulated. Finally, in each instance, we will reflect upon how this information shapes our current understanding of the role of Zn in these secretory tissues with respect to human health and disease.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802-6110, USA.
| | | | | | | |
Collapse
|