1
|
Bulgarelli J, Piccinini C, Scarpi E, Gentili G, Renzi L, Carloni S, Limarzi F, Pancisi E, Granato AM, Petrini M, De Rosa F, Guidoboni M, Fanelli D, Tumedei MM, Tazzari M, Baravelli S, Bronico I, Cortesi P, Pignatta S, Capelli L, Ancarani V, Foschi G, Turci L, Tauceri F, Framarini M, Ridolfi L. Adjuvant dendritic cell-based immunotherapy in melanoma: insights into immune cell dynamics and clinical evidence from a phase II trial. J Transl Med 2025; 23:455. [PMID: 40251644 PMCID: PMC12007200 DOI: 10.1186/s12967-025-06403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/19/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Dendritic cells (DCs) are the most efficient antigen-presenting cells and play a central role in the immune system, orchestrating immune response against tumors. We previously demonstrated that DC-based vaccination effectively induces anti-tumor immunity, yet at the same time showing a robust safety profile, making this treatment a potential candidate for effective adjuvant immunotherapy. To explore this possibility, we designed a randomized phase II trial (EudraCT no. 2014-005123-27) to provide a complementary autologous DC vaccination to patients (pts) with resected stage III/IV melanoma. METHODS Overall, a total of 18 eligible pts were included in this study, 10 of whom received 6 monthly DC vaccination cycles combined with IL-2 administration (arm A), and 8 pts were enrolled in the follow-up observational cohort (arm B). A deep immune biomarkers profiling by multiplex immunoassay, human leukocyte antigens (HLA) typing, multiparametric flow cytometry and in situ tumor microenvironment analysis was performed for the entire pts cohort. The immunological response was assessed in vivo by DTH test and ex vivo against selected melanoma-associated antigens applying the IFN-γ ELISPOT assay. RESULTS Pts receiving DC vaccination showed a better relapse-free survival compared to the observational cohort (median 6.6 months, 95% CI, 2.3-not reached (nr) (arm A) vs 5.2 months, 95% CI, 2.5-nr (arm B), not significant), with a favorable trends for female pts (median 15.5 months, 95% CI, 2.6-nr (female) vs 3.3, 95% CI, 2.3-nr (male)), pts with less than 60 years (median 22.5 months, 95% CI, 2.6-nr (age < 60) vs 4.7 months, 95% CI, 2.3-nr (age ≥ 60), and pts with wild-type BRAF status (median 22.5 months, 95% CI, 8.6-nr (BRAF wt) vs 3.8 months, 95% CI, 2.3-nr (BRAF mutated). The toxicity profile was favourable, with no severe adverse events and only mild, manageable reactions. Moreover, additional immune response data suggested increased immune modulation in vaccinated patients, which may reflect a shift in immune dynamics. CONCLUSIONS Our findings support the safety and tolerability of DC vaccination as an adjuvant treatment for melanoma, demonstrating significant immune modulation at both the tumor site and peripherally in relapsed and non-relapsed patients. These results highlight the potential of autologous, personalised DC-based therapies and pave the way for the development of innovative immunotherapy combinations in future treatment strategies. Trial registration ClinicalTrials.gov NCT02718391; EudraCT no. 2014-005123-27.
Collapse
Affiliation(s)
- Jenny Bulgarelli
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Claudia Piccinini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy.
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Giorgia Gentili
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Laura Renzi
- Medical Genetics Unit, AUSL Romagna, 47522, Cesena, Italy
| | - Silvia Carloni
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Francesco Limarzi
- Pathology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, 47121, Forlì, Italy
| | - Elena Pancisi
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Anna Maria Granato
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Massimiliano Petrini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Francesco De Rosa
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Massimo Guidoboni
- Department of Oncology, University Hospital of Ferrara, 44124, Ferrara, Italy
| | - Dalila Fanelli
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Maria Maddalena Tumedei
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Marcella Tazzari
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Stefano Baravelli
- Unit of Immunohematology and Transfusion Medicine, Morgagni-Pierantoni Hospital, AUSL Romagna, 47121, Forlì, Italy
| | - Ilaria Bronico
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Pietro Cortesi
- Cardio-Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Sara Pignatta
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Laura Capelli
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" (IRST), 47014, Meldola, Italy
| | - Valentina Ancarani
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Giovanni Foschi
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Livia Turci
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Francesca Tauceri
- Advanced Oncological Surgery Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, 47121, Forlì, Italy
| | - Massimo Framarini
- Advanced Oncological Surgery Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, 47121, Forlì, Italy
| | - Laura Ridolfi
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| |
Collapse
|
2
|
Nachankar A, Pelak M, Schafasand M, Martino G, Tubin S, Hug E, Carlino A, Lütgendorf-Caucig C, Stock M, Fossati P. Carbon-Ion Radiotherapy for Head and Neck Mucosal Melanoma: Preliminary Clinical Outcomes and the MedAustron Approach for Reporting RBE-Weighted Dose With 2 Models. Int J Part Ther 2025; 15:100738. [PMID: 39896178 PMCID: PMC11786705 DOI: 10.1016/j.ijpt.2025.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Purpose Head and neck mucosal melanomas (HNMMs) are aggressive, radiotherapy-resistant cancers. Previous JCROS studies demonstrated improved local control with carbon-ion radiotherapy (CIRT). This study evaluates early outcomes of CIRT for HNMM using the European and Japanese relative biological effectiveness (RBE)-adapted dose prescriptions. Materials and Methods Between November 2019 and April 2023, 14 HNMM patients received CIRT treatment. Postoperative CIRT for R2 resection: 9 cases; biopsies only: 5 cases. Immune checkpoint inhibitors used as primary treatment: 6 cases; salvage: 8 cases. CIRT delivered in DRBE dose of 68.8 (64.5-68.8) Gy (RBE)/16 fractions, optimized with the local effect model I (LEM-I, European) for RBE-weighted dose, recalculated using the modified-microdosimetric kinetic model (mMKM, Japanese). Results HNMM tumor and nodal stages: cT3: 2 (14%), cT4: 12 (86%), cN1: 1 (7%). The median follow-up was 22 months (range, 4-54). The 2-year local recurrence-free survival, regional recurrence-free survival, overall survival, and distant metastasis-free survival were 100%, 89% (CI, 71-100), 64% (CI, 44-95), and 43% (CI, 22-84), respectively. The median relative volumetric tumor regression at 3, 6, and 12 months post-CIRT was 40%, 63%, and 72%, respectively. CIRT-associated late toxicities were G3 mucositis: 2 (14%) and G3 anosmia: 1 (7%). The immune checkpoint inhibition-related late toxicities were G2 hypophysitis: 1 (11%) and G3 peripheral neuropathy: 1 (11%). The average attainable DRBE coverage for 95% of high-dose clinical target volume was 63.2 ± 6 Gy (RBE) (LEM-I) and 57.4 ± 5 Gy (RBE) (mMKM). The LETd distribution in high-dose clinical target volume was satisfactory, LETd50% (median) = 57.3 ± 6 keV/µm and LETd98% (near minimum) = 46.5 ± 6.1 keV/µm. Conclusion Bi-RBE model (LEM-I, mMKM) optimized CIRT protocol improved dose comparability of plans between different systems. It also improved intratumoral LETd distribution and resulted in rapid tumor regression, favorable toxicity profile, and excellent early loco-regional control. It provides a promising alternative to surgery, though distant metastasis remains the key prognostic factor.
Collapse
Affiliation(s)
- Ankita Nachankar
- ACMIT Gmbh, Wiener Neustadt, Austria
- Department of Radiation Oncology, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Maciej Pelak
- University Clinic for Radiotherapy and Radio-Oncology of the Paracelsus Medical University of Salzburg, Austria
| | - Mansure Schafasand
- Department of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Division Medical Physics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Giovanna Martino
- Department of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Slavisa Tubin
- Department of Radiation Oncology, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Eugen Hug
- Department of Radiation Oncology, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Antonio Carlino
- Department of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - Markus Stock
- Department of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Division Medical Physics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Division Radiation Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
3
|
Godsk SH, Jensen CMS, Larsen TV, Ahrenfeldt J, Gammelgaard KR, Jakobsen MR. IFNλ1 is a STING-dependent mediator of DNA damage and induces immune activation in lung cancer. Front Immunol 2025; 15:1525083. [PMID: 40012911 PMCID: PMC11862833 DOI: 10.3389/fimmu.2024.1525083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
Introduction The importance of the cGAS-STING pathway and type I interferon (IFN) in anti-tumor immunity has been widely studied. However, there is limited knowledge about the role of type III IFNs in cancer settings. Type III IFNs, comprising IFNλ1-4, are opposite to type I IFN only expressed by a few cell types, including epithelial cells, and the receptor subunit IFNLR1, is equally only expressed on limited types of cells. Methods Gene and protein expression of the cGAS-STING signaling pathway was characterized in a series of non-small cell lung cancer (NSCLC) cell lines. Herring-testis DNA stimulation and chemotherapy drugs (doxorubicin and cisplatin) were used to activate the cGAS-STING pathway, and the level of activation was determined by measuring changes in the transcriptomic profile as well as type I and III IFNs by ELISA. Re-expression of IFNLR1 on cancer cell lines was achieved using CRISPR activation (CRISPRa) followed by evaluating chemotherapy-induced apoptosis using flow cytometry assays. Results STING was not broadly expressed across the NSCLC cell lines. Those cancer cell lines expressing all relevant factors supporting the cGAS-STING pathway secreted IFNλ following STING activation whereas only few of them expressed IFNβ. Treatment with chemotherapy drugs likewise preferentially induced IFNλ, which was abrogated in CRISPR-Cas9 STING knock-out cells. Expression of IFNLR1 was found downregulated in the cancer cell lines compared to the benign epithelial cell line Nuli-1. Rescuing IFNLR1 expression by CRISPRa in multiple cancer cell lines sensitization them to IFNλ-stimulation and resulted in significant reduction in cell viability. Conclusion Downregulation of IFNLR1 can be an immune evasion mechanism developed by cancer cells to avoid responding to endogenous type III IFNs. Thus, rescuing IFNLR1 expression in NSCLC in conjunction to chemotherapy may potentially be harnessed to elevate the anti-tumoral responses.
Collapse
Affiliation(s)
| | | | | | - Johanne Ahrenfeldt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
4
|
Babaei S, Fadaee M, Abbasi-Kenarsari H, Shanehbandi D, Kazemi T. Exosome-based immunotherapy as an innovative therapeutic approach in melanoma. Cell Commun Signal 2024; 22:527. [PMID: 39482766 PMCID: PMC11526674 DOI: 10.1186/s12964-024-01906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
The malignant form of melanoma is one of the deadliest human cancers that accounts for almost all of the skin tumor-related fatalities in its later stages. Achieving an exhaustive understanding of reliable cancer-specific markers and molecular pathways can provide numerous practical techniques and direct the way toward the development of rational curative medicines to increase the lifespan of patients. Immunotherapy has significantly enhanced the treatment of metastatic and late-stage melanoma, resulting in an incredible increase in positive responses to therapy. Despite the increasing occurrence of melanoma, the median survival rate for patients with advanced, inoperable terminal disease has increased from around six months to almost six years. The current knowledge of the tumor microenvironment (TME) and its interaction with the immune system has resulted in the swift growth of innovative immunotherapy treatments. Exosomes are small extracellular vesicles (EVs), ranging from 30 to 150 nm in size, that the majority of cells released them. Exosomes possess natural advantages such as high compatibility with living organisms and low potential for causing immune reactions, making them practical for delivering therapeutic agents like chemotherapy drugs, nucleic acids, and proteins. This review highlights recent advancements in using exosomes as an approach to providing medications for the treatment of melanoma.
Collapse
Affiliation(s)
- Shabnam Babaei
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dariush Shanehbandi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center , Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, P.O. Box: 5165683146.
| |
Collapse
|
5
|
Tarhini AA, Castellano E, Eljilany I. Treatment of Stage III Resectable Melanoma-Adjuvant and Neoadjuvant Approaches. Cancer J 2024; 30:54-70. [PMID: 38527258 DOI: 10.1097/ppo.0000000000000706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT Patients with stage III resectable melanoma carry a high risk of melanoma recurrence that ranges from approximately 40% to 90% at 5 years following surgical management alone. Postoperative systemic adjuvant therapy targets residual micrometastatic disease that could be the source of future recurrence and death from melanoma. Randomized phase III adjuvant trials reported significant improvements in overall survival with high-dose interferon α in 2 of 3 studies (compared with observation and GMK ganglioside vaccine) and with anti-cytotoxic T-lymphocyte antigen 4 ipilimumab at 10 mg/kg compared with placebo and ipilimumab 3 mg/kg compared with high-dose interferon α. In the modern era, more recent phase III trials demonstrated significant recurrence-free survival improvements with anti-programmed cell death protein 1, pembrolizumab, and BRAF-MEK inhibitor combination dabrafenib-trametinib (for BRAF mutant melanoma) versus placebo. Furthermore, anti-programmed cell death protein 1, nivolumab and pembrolizumab have both been shown to significantly improve recurrence-free survival as compared with ipilimumab 10 mg/kg. For melanoma patients with clinically or radiologically detectable locoregionally advanced disease, emerging data support an important role for preoperative systemic neoadjuvant therapy. Importantly, a recent cooperative group trial (S1801) reported superior event-free survival rates with neoadjuvant versus adjuvant therapy. Collectively, current data from neoadjuvant immunotherapy and targeted therapy trials support a future change in clinical practice in favor of neoadjuvant therapy for eligible melanoma patients.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- From the H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Islam Eljilany
- From the H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
6
|
Amin T, Hossain A, Jerin N, Mahmud I, Rahman MA, Rafiqul Islam SM, Islam SMBUL. Immunoediting Dynamics in Glioblastoma: Implications for Immunotherapy Approaches. Cancer Control 2024; 31:10732748241290067. [PMID: 39353594 PMCID: PMC11459535 DOI: 10.1177/10732748241290067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Glioblastoma is an aggressive primary brain tumor that poses many therapeutic difficulties because of the high rate of proliferation, genetic variability, and its immunosuppressive microenvironment. The theory of cancer immunoediting, which includes the phases of elimination, equilibrium, and escape, offers a paradigm for comprehending interactions between the immune system and glioblastoma. Immunoediting indicates the process by which immune cells initially suppress tumor development, but thereafter select for immune-resistant versions leading to tumor escape and progression. The tumor microenvironment (TME) in glioblastoma is particularly immunosuppressive, with regulatory T cells and myeloid-derived suppressor cells being involved in immune escape. To achieve an efficient immunotherapy for glioblastoma, it is crucial to understand these mechanisms within the TME. Existing immunotherapeutic modalities such as chimeric antigen receptor T cells and immune checkpoint inhibitors have been met with some level of resistance because of the heterogeneous nature of the immune response to glioblastoma. Solving these issues is critical to develop novel strategies capable of modulating the TME and re-establishing normal immune monitoring. Further studies should be conducted to identify the molecular and cellular events that underlie the immunosuppressive tumor microenvironment in glioblastoma. Comprehending and modifying the stages of immunoediting in glioblastoma could facilitate the development of more potent and long-lasting therapies.
Collapse
Affiliation(s)
- Tasbir Amin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Amana Hossain
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Nusrat Jerin
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Imteaz Mahmud
- Department of Public Health, North South University, Dhaka, Bangladesh
| | - Md Ahasanur Rahman
- Department of Physiology and Biophysics, Howard University, College of Medicine, Washington, DC, USA
| | - SM Rafiqul Islam
- Surgery Branch, National Cancer Institute, National Institute of Health, Bethesda, USA
| | - S M Bakhtiar UL Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| |
Collapse
|
7
|
Khalid M, Sutterfield B, Minley K, Ottwell R, Abercrombie M, Heath C, Torgerson T, Hartwell M, Vassar M. The Reporting and Methodological Quality of Systematic Reviews Underpinning Clinical Practice Guidelines Focused on the Management of Cutaneous Melanoma: Cross-Sectional Analysis. JMIR DERMATOLOGY 2023; 6:e43821. [PMID: 38060306 PMCID: PMC10739238 DOI: 10.2196/43821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/28/2023] [Accepted: 09/15/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Clinical practice guidelines (CPGs) inform evidence-based decision-making in the clinical setting; however, systematic reviews (SRs) that inform these CPGs may vary in terms of reporting and methodological quality, which affects confidence in summary effect estimates. OBJECTIVE Our objective was to appraise the methodological and reporting quality of the SRs used in CPGs for cutaneous melanoma and evaluate differences in these outcomes between Cochrane and non-Cochrane reviews. METHODS We conducted a cross-sectional analysis by searching PubMed for cutaneous melanoma guidelines published between January 1, 2015, and May 21, 2021. Next, we extracted SRs composing these guidelines and appraised their reporting and methodological rigor using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and AMSTAR (A Measurement Tool to Assess Systematic Reviews) checklists. Lastly, we compared these outcomes between Cochrane and non-Cochrane SRs. All screening and data extraction occurred in a masked, duplicate fashion. RESULTS Of the SRs appraised, the mean completion rate was 66.5% (SD 12.29%) for the PRISMA checklist and 44.5% (SD 21.05%) for AMSTAR. The majority of SRs (19/50, 53%) were of critically low methodological quality, with no SRs being appraised as high quality. There was a statistically significant association (P<.001) between AMSTAR and PRISMA checklists. Cochrane SRs had higher PRISMA mean completion rates and higher methodological quality than non-Cochrane SRs. CONCLUSIONS SRs supporting CPGs focused on the management of cutaneous melanoma vary in reporting and methodological quality, with the majority of SRs being of low quality. Increasing adherence to PRISMA and AMSTAR checklists will likely increase the quality of SRs, thereby increasing the level of evidence supporting cutaneous melanoma CPGs.
Collapse
Affiliation(s)
- Mahnoor Khalid
- Office of Medical Student Research, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Bethany Sutterfield
- Oklahoma State University College of Osteopathic Medicine, Tulsa, OK, United States
| | - Kirstien Minley
- Oklahoma State University College of Osteopathic Medicine, Tulsa, OK, United States
| | - Ryan Ottwell
- Oklahoma State University College of Osteopathic Medicine, Tulsa, OK, United States
| | - McKenna Abercrombie
- Dermatology Residency, Trinity Health Ann Arbor Hospital, Ypsilanti, MI, United States
| | - Christopher Heath
- Dermatology Residency, Trinity Health Ann Arbor Hospital, Ypsilanti, MI, United States
| | - Trevor Torgerson
- Oklahoma State University College of Osteopathic Medicine, Tulsa, OK, United States
| | - Micah Hartwell
- Oklahoma State University College of Osteopathic Medicine, Tulsa, OK, United States
| | - Matt Vassar
- Oklahoma State University College of Osteopathic Medicine, Tulsa, OK, United States
| |
Collapse
|
8
|
Sposito M, Belluomini L, Pontolillo L, Tregnago D, Trestini I, Insolda J, Avancini A, Milella M, Bria E, Carbognin L, Pilotto S. Adjuvant Targeted Therapy in Solid Cancers: Pioneers and New Glories. J Pers Med 2023; 13:1427. [PMID: 37888038 PMCID: PMC10608226 DOI: 10.3390/jpm13101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Targeted therapy (TT) has revolutionized cancer treatment, successfully applied in various settings. Adjuvant TT in resected early-stage gastrointestinal stromal tumors (GIST), melanoma, non-small cell lung cancer (NSCLC), and breast cancer has led to practice-changing achievements. In particular, standard treatments include BRAF inhibitors for melanoma, osimertinib for NSCLC, hormone therapy or HER2 TT for breast cancer, and imatinib for GIST. Despite the undeniable benefit derived from adjuvant TT, the optimal duration of TT and the appropriate managing of the relapse remain open questions. Furthermore, neoadjuvant TT is emerging as valuable, particularly in breast cancer, and ongoing studies evaluate TT in the perioperative setting for early-stage NSCLC. In this review, we aim to collect and describe the large amount of data available in the literature about adjuvant TT across different histologies, focusing on epidemiology, major advances, and future directions.
Collapse
Affiliation(s)
- Marco Sposito
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Lorenzo Belluomini
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Letizia Pontolillo
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (L.P.); (E.B.)
- Medical Oncology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Daniela Tregnago
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Ilaria Trestini
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Jessica Insolda
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Alice Avancini
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Michele Milella
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (L.P.); (E.B.)
- Medical Oncology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Luisa Carbognin
- Gynecology Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Roma, Italy;
| | - Sara Pilotto
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (M.S.); (L.B.); (D.T.); (I.T.); (J.I.); (A.A.); (M.M.)
| |
Collapse
|
9
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
10
|
Eljilany I, Castellano E, Tarhini AA. Adjuvant Therapy for High-Risk Melanoma: An In-Depth Examination of the State of the Field. Cancers (Basel) 2023; 15:4125. [PMID: 37627153 PMCID: PMC10453009 DOI: 10.3390/cancers15164125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The consideration of systemic adjuvant therapy is recommended for patients with stage IIB-IV melanoma who have undergone surgical resection due to a heightened risk of experiencing melanoma relapse and mortality from melanoma. Adjuvant therapy options tested over the past three decades include high-dose interferon-α, immune checkpoint inhibitors (pembrolizumab, nivolumab), targeted therapy (dabrafenib-trametinib for BRAF mutant melanoma), radiotherapy and chemotherapy. Most of these therapies have been demonstrated to enhance relapse-free survival (RFS) but with limited to no impact on overall survival (OS), as reported in randomized trials. In contemporary clinical practice, the adjuvant treatment approach for surgically resected stage III-IV melanoma has undergone a notable shift towards the utilization of nivolumab, pembrolizumab, and BRAF-MEK inhibitors, such as dabrafenib plus trametinib (specifically for BRAF mutant melanoma) due to the significant enhancements in RFS observed with these treatments. Pembrolizumab has obtained regulatory approval in the United States to treat resected stage IIB-IIC melanoma, while nivolumab is currently under review for the same indication. This review comprehensively analyzes completed phase III adjuvant therapy trials in adjuvant therapy. Additionally, it provides a summary of ongoing trials and an overview of the main challenges and future directions with adjuvant therapy.
Collapse
Affiliation(s)
- Islam Eljilany
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ella Castellano
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Ahmad A. Tarhini
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Sun W, Xu Y, Yan W, Wang C, Hu T, Luo Z, Zhang X, Liu X, Chen Y. A real-world study of adjuvant anti-PD -1 immunotherapy on stage III melanoma with BRAF, NRAS, and KIT mutations. Cancer Med 2023; 12:15945-15954. [PMID: 37403699 PMCID: PMC10469738 DOI: 10.1002/cam4.6234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/23/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Melanoma frequently harbors BRAF, NRAS, or KIT mutations which influence both tumor development and treatment strategies. For example, it is still controversial whether adjuvant anti-PD-1 monotherapy or BRAF/MEK inhibitors may better improve the survival for resected BRAF-mutant melanoma. Furthermore, outcomes for melanoma with NRAS and KIT mutation receiving adjuvant immunotherapy remain unclear. METHODS One hundred seventy-four stage III melanoma patients who underwent radical surgery in Fudan University Shanghai Cancer Center (FUSCC) during January 2017 to December 2021 were included in this real-world study. Patients were followed up until death or May 30th, 2022. Pearson's chi-squared test or Fisher's exact test was performed for univariable analysis of the different category groups. Log-rank analysis was used to identify the prognostic factors for disease-free survival (DFS). RESULTS There were 41 (23.6%) patients with BRAF mutation, 31 (17.8%) with NRAS mutation, 17 (9.8%) with KIT mutation, and 85 (48.9%) wild-type patients without either genomic alteration of those three genes. Most ( n = 118, 67.8%) of them were acral melanoma, while 45 (25.9%) were cutaneous subtype, and 11 were (6.3%) primary unknown. Among them, 115 (66.1%) patients received pembrolizumab or toripalimab monotherapy as adjuvant therapy; 22 (12.6%) patients received high-dose interferon (IFN), and 37 (21.3%) patients were just for observation. There was no statistical difference in clinicopathologic factors between anti-PD-1 group and IFN/OBS group. Of all the enrolled patients, anti-PD-1 group had a better DFS than IFN/OBS group ( p = 0.039). In anti-PD-1 group, patients with BRAF or NRAS mutations had poorer DFS than wild-type group. No survival difference was found among patients harboring different gene mutations in IFN/OBS group. In wild-type patients, anti-PD-1 group had a better DFS than IFN/OBS group ( p = 0.003), while no survival benefits were found for patients with BRAF, NRAS, or KIT mutations. CONCLUSION Although anti-PD-1 adjuvant therapy provides a better DFS in the general population and in wild-type patients, patients with BRAF, KIT or, especially, NRAS mutation may not benefit further from immunotherapy than conventional IFN treatment or observation.
Collapse
Affiliation(s)
- Wei Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu Xu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - WangJun Yan
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - ChunMeng Wang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Tu Hu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - ZhiGuo Luo
- Department of gastrointestinal medical oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - XiaoWei Zhang
- Department of gastrointestinal medical oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xin Liu
- Department of Head&Neck tumors and Neuroendocrine tumors, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yong Chen
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
13
|
Sadeq MA, Ashry MH, Ghorab RMF, Afify AY. Causes of death among patients with cutaneous melanoma: a US population-based study. Sci Rep 2023; 13:10257. [PMID: 37355743 PMCID: PMC10290704 DOI: 10.1038/s41598-023-37333-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Research on mortality outcomes and non-cancer-related causes of death in patients with cutaneous melanoma (CM) remains limited. This study aimed to identify the prevalence of non-cancer-related deaths following CM diagnosis. The data of 224,624 patients diagnosed with malignant CM in the United States between 2000 and 2019 were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. We stratified our cohort based on their melanoma stage at diagnosis and further calculated standardized mortality ratios (SMRs) for each cause of death, comparing their relative risk to that of the general US population. The total number of fatalities among melanoma patients was 60,110, representing 26.8% of the total cases. The percentage of deaths is directly proportional to the disease stage, reaching 80% in distant melanoma. The highest fatalities among the localized melanoma group (25,332; 60.5%) occurred from non-cancer causes, followed by melanoma-attributable deaths (10,817; 25.8%). Conversely, melanoma is the leading cause of death in regional and distant melanoma cohorts. Cardiovascular and cerebrovascular diseases were the most prevalent non-cancer causes of death among the three disease-stage cohorts. Compared to the general population, we did not observe an increased risk of death due to non-cancer causes in the localized CM cohort, while patients diagnosed with regional and distant CMs had a statistically significant higher risk of death from all the reported major causes of death.
Collapse
Affiliation(s)
- Mohammed Ahmed Sadeq
- Faculty of Medicine, Misr University for Science and Technology, 6th of October, Giza, Egypt
| | | | | | | |
Collapse
|
14
|
Zitti B, Hoffer E, Zheng W, Pandey RV, Schlums H, Perinetti Casoni G, Fusi I, Nguyen L, Kärner J, Kokkinou E, Carrasco A, Gahm J, Ehrström M, Happaniemi S, Keita ÅV, Hedin CRH, Mjösberg J, Eidsmo L, Bryceson YT. Human skin-resident CD8 + T cells require RUNX2 and RUNX3 for induction of cytotoxicity and expression of the integrin CD49a. Immunity 2023:S1074-7613(23)00220-0. [PMID: 37269830 DOI: 10.1016/j.immuni.2023.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/26/2023] [Accepted: 05/05/2023] [Indexed: 06/05/2023]
Abstract
The integrin CD49a marks highly cytotoxic epidermal-tissue-resident memory (TRM) cells, but their differentiation from circulating populations remains poorly defined. We demonstrate enrichment of RUNT family transcription-factor-binding motifs in human epidermal CD8+CD103+CD49a+ TRM cells, paralleled by high RUNX2 and RUNX3 protein expression. Sequencing of paired skin and blood samples revealed clonal overlap between epidermal CD8+CD103+CD49a+ TRM cells and circulating memory CD8+CD45RA-CD62L+ T cells. In vitro stimulation of circulating CD8+CD45RA-CD62L+ T cells with IL-15 and TGF-β induced CD49a expression and cytotoxic transcriptional profiles in a RUNX2- and RUNX3-dependent manner. We therefore identified a reservoir of circulating cells with cytotoxic TRM potential. In melanoma patients, high RUNX2, but not RUNX3, transcription correlated with a cytotoxic CD8+CD103+CD49a+ TRM cell signature and improved patient survival. Together, our results indicate that combined RUNX2 and RUNX3 activity promotes the differentiation of cytotoxic CD8+CD103+CD49a+ TRM cells, providing immunosurveillance of infected and malignant cells.
Collapse
Affiliation(s)
- Beatrice Zitti
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Elena Hoffer
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Unit of Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Wenning Zheng
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Unit of Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ram Vinay Pandey
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Heinrich Schlums
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Giovanna Perinetti Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Irene Fusi
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden; University of Siena, 53100 Siena, Italy
| | - Lien Nguyen
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden
| | - Jaanika Kärner
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Unit of Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Hudddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Stockholm, Sweden
| | - Anna Carrasco
- Center for Infectious Medicine, Department of Medicine Hudddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Stockholm, Sweden
| | - Jessica Gahm
- Department of Reconstructive surgery, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | | | | | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Charlotte R H Hedin
- Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden; Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Hudddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Stockholm, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Unit of Rheumatology, Karolinska University Hospital, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, 14157 Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, 5030 Bergen, Norway.
| |
Collapse
|
15
|
Klement JD, Redd PS, Lu C, Merting AD, Poschel DB, Yang D, Savage NM, Zhou G, Munn DH, Fallon PG, Liu K. Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment. Cancer Cell 2023; 41:620-636.e9. [PMID: 36917954 PMCID: PMC10150625 DOI: 10.1016/j.ccell.2023.02.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 10/05/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023]
Abstract
The cellular and molecular mechanisms underlying tumor cell PD-L1 (tPD-L1) function in tumor immune evasion are incompletely understood. We report here that tPD-L1 does not suppress cytotoxic T lymphocyte (CTL) activity in co-cultures of tumor cells and tumor-specific CTLs and exhibits no effect on primary tumor growth. However, deleting tPD-L1 decreases lung metastasis in a CTL-dependent manner in tumor-bearing mice. Depletion of myeloid cells or knocking out PD-1 in myeloid cells (mPD-1) impairs tPD-L1 promotion of tumor lung metastasis in mice. Single-cell RNA sequencing (scRNA-seq) reveals that tPD-L1 engages mPD-1 to activate SHP2 to antagonize the type I interferon (IFN-I) and STAT1 pathway to repress Cxcl9 and impair CTL recruitment to lung metastases. Human cancer patient response to PD-1 blockade immunotherapy correlates with IFN-I response in myeloid cells. Our findings determine that tPD-L1 engages mPD-1 to activate SHP2 to suppress the IFN-I-STAT1-CXCL9 pathway to impair CTL tumor recruitment in lung metastasis.
Collapse
Affiliation(s)
- John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Alyssa D Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dakota B Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Natasha M Savage
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Augusta, GA 30912, USA
| | | | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
16
|
Ma W, Xue R, Zhu Z, Farrukh H, Song W, Li T, Zheng L, Pan CX. Increasing cure rates of solid tumors by immune checkpoint inhibitors. Exp Hematol Oncol 2023; 12:10. [PMID: 36647169 PMCID: PMC9843946 DOI: 10.1186/s40164-023-00372-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Immunotherapy has become the central pillar of cancer therapy. Immune checkpoint inhibitors (ICIs), a major category of tumor immunotherapy, reactivate preexisting anticancer immunity. Initially, ICIs were approved only for advanced and metastatic cancers in the salvage setting after or concurrent with chemotherapy at a response rate of around 20-30% with a few exceptions. With significant progress over the decade, advances in immunotherapy have led to numerous clinical trials investigating ICIs as neoadjuvant and/or adjuvant therapies for resectable solid tumors. The promising results of these trials have led to the United States Food and Drug Administration (FDA) approvals of ICIs as neoadjuvant or adjuvant therapies for non-small cell lung cancer, melanoma, triple-negative breast cancer, and bladder cancer, and the list continues to grow. This therapy represents a paradigm shift in cancer treatment, as many early-stage cancer patients could be cured with the introduction of immunotherapy in the early stages of cancer. Therefore, this topic became one of the main themes at the 2021 China Cancer Immunotherapy Workshop co-organized by the Chinese American Hematologist and Oncologist Network, the China National Medical Products Administration and the Tsinghua University School of Medicine. This review article summarizes the current landscape of ICI-based immunotherapy, emphasizing the new clinical developments of ICIs as curative neoadjuvant and adjuvant therapies for early-stage disease.
Collapse
Affiliation(s)
- Weijie Ma
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Ruobing Xue
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Ellis Fischel Cancer Center, University of Missouri, 1 Hospital Dr, Columbia, MO, 65201, USA
| | - Zheng Zhu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hizra Farrukh
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Wenru Song
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Kira Pharmaceuticals, Cambridge, MA, USA
| | - Tianhong Li
- Chinese American Hematologist and Oncologist Network, New York, NY, USA. .,Department of Medicine, Division of Hematology & Oncology, University of California Davis, Sacramento, CA, 95817, USA. .,Department of Medicine, VA Northern California Health Care System, Mather, CA, USA.
| | - Lei Zheng
- Chinese American Hematologist and Oncologist Network, New York, NY, USA. .,The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Chong-Xian Pan
- Chinese American Hematologist and Oncologist Network, New York, NY, USA. .,VA Boston Healthcare System, Boston, MA, 02132, USA. .,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Dogaru IM, ", Bahaa-Eddin W, Oproiu AM, Department of Plastic and Reconstructive Surgery, Bucharest Emergency University Hospital Department of Plastic and Reconstructive Surgery, “Carol Davila” University of Medicine and Pharmacy Bucharest", Department of Plastic and Reconstructive Surgery, Bucharest Emergency University Hospital, "Department of Plastic and Reconstructive Surgery, Bucharest Emergency University Hospital Department of Plastic and Reconstructive Surgery, “Carol Davila” University of Medicine and Pharmacy Bucharest". Melanoma: A Historical Walk-through from Palliative Treatment to Modern-day Practice. ROMANIAN JOURNAL OF MILITARY MEDICINE 2023. [DOI: 10.55453/rjmm.2023.126.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
"Melanoma is one of the most common types of malignancy in the world, and one known to carry a very poor prognosis until recent years. This review aims to outline the events in the history of the disease and the impact made by the discoveries along the way, as well as the modern-day consensus by referencing the updated literature regarding the present approach and future directions. In the last two decades, several studies and research have brought significant improvement in the diagnosis and clinical management of melanomas. The development of sentinel lymph node biopsy has brought major changes to the surgical approach to the disease, and modern therapies based on recently developed knowledge changed the death sentence this diagnosis once meant to a manageable condition despite its aggressiveness, keeping in mind that early diagnosis and safe margin excision remain the best and most optimistic course of treatment. "
Collapse
|
18
|
Cerbon D, Moya-Brown K, Mihaylov IB, Spieler B. Abscopal effect observed in visceral and osseous metastases after liver SBRT in combination with nivolumab and relatlimab for sinonasal mucosal melanoma-a case report. Front Oncol 2023; 13:1143335. [PMID: 37182135 PMCID: PMC10174457 DOI: 10.3389/fonc.2023.1143335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Background Primary sinonasal mucosal melanoma (SNMM) is a rare, aggressive histology usually diagnosed at advanced stages and associated with poor prognosis. Evidence regarding etiology, diagnosis, and treatment mainly derives from case reports, retrospective series, and national databases. In the treatment of metastatic melanoma, anti-CTLA-4 and anti-PD-1 checkpoint blockade increased 5-year overall survival from ~10% (prior to 2011) to ~50% (between 2011 and 2016). In March of 2022, the FDA approved the use of relatlimab, a novel anti-LAG3 immune checkpoint inhibitor, for the treatment of melanoma. Case presentation A 67-year-old woman with locally advanced SNMM underwent debulking surgery, adjuvant RT, and first-line immunotherapy (ImT) with nivolumab but developed local progression. The patient started a second course of ImT with nivolumab and ipilimumab, but this was discontinued after two cycles due to an immune-related adverse event (irAE, hepatitis with elevated liver enzymes). Interval imaging identified visceral and osseous metastases including multiple lesions in the liver and in the lumbar spine. She went on to receive a third course of ImT with nivolumab and the novel agent relatlimab with concurrent stereotactic body radiation therapy (SBRT) to the largest liver tumor only, delivered in five 10-Gy fractions using MRI guidance. A PET/CT performed 3 months after SBRT demonstrated complete metabolic response (CMR) of all disease sites including non-irradiated liver lesions and spinal metastatic sites. After two cycles of the third course of ImT, the patient developed severe immune-related keratoconjunctivitis and ImT was discontinued. Conclusion This case report describes the first complete abscopal response (AR) in an SNMM histology and the first report of AR following liver SBRT with the use of relatlimab/nivolumab combination ImT for metastatic melanoma in the setting of both visceral and osseous lesions. This report suggests that the combination of SBRT with ImT potentiates the adaptive immune response and is a viable path for immune-mediated tumor rejection. The mechanisms behind this response are hypothesis-generating and remain an area of active research with exceedingly promising potential.
Collapse
|
19
|
Kim AE, Nelson A, Stimpert K, Flyckt RL, Thirumavalavan N, Baker KC, Weinmann SC, Hoimes CJ. Minding the Bathwater: Fertility and Reproductive Toxicity in the Age of Immuno-Oncology. JCO Oncol Pract 2022; 18:815-822. [PMID: 36174117 PMCID: PMC10166412 DOI: 10.1200/op.22.00469] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint inhibition has resulted in significant efficacy across many cancer types, including melanoma. Melanoma is the second most common cancer among those of reproductive age, yet the reproductive toxicities of adjuvant and first-line immunotherapy are largely unknown.The normal innate and adaptive immune systems play a vital role in reproductive organ homeostasis of men and women and are essential for implantation, fertility, and a successful pregnancy. The programmed cell death-1 receptor/programmed cell death receptor ligand-1 (PD-1/PD-L1) pathway is essential in several aspects of fertility and pregnancy. Recent studies have largely focused on the role of the PD-1/PD-L1 pathway in fetomaternal tolerance, highlighting the importance of intact immune regulation in promoting a successful pregnancy.In this review, we describe a case of a reproductive-aged female with stage IIIC melanoma who sought guidance on family planning after pembrolizumab therapy. We discuss the known fertility-related toxicities of immune checkpoint inhibitors, the potential targets for reproductive toxicity in males and nonpregnant females, and the implications of anti-PD-1 therapy in relation to fetomaternal tolerance. Informed decision making will benefit from data and consensus.
Collapse
Affiliation(s)
- Anne E. Kim
- Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, PA
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Ariel Nelson
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Medicine, Division of Hematology and Oncology, The Medical College of Wisconsin, Milwaukee, WI
| | - Kyle Stimpert
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH
- VA Northeast Ohio Healthcare System, Cleveland, OH
| | | | - Nannan Thirumavalavan
- Department of Urology, University Hospitals, Case Western Reserve University, Cleveland, OH
| | | | - Sophia C. Weinmann
- Division of Rheumatology and Immunology, Duke University, Durham, NC
- Center for Cancer Immunotherapy, Duke University, Durham, NC
| | - Christopher J. Hoimes
- Center for Cancer Immunotherapy, Duke University, Durham, NC
- Duke Cancer Institute, Duke University, Durham, NC
| |
Collapse
|
20
|
Caksa S, Baqai U, Aplin AE. The future of targeted kinase inhibitors in melanoma. Pharmacol Ther 2022; 239:108200. [PMID: 35513054 PMCID: PMC10187889 DOI: 10.1016/j.pharmthera.2022.108200] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Melanoma is a cancer of the pigment-producing cells of the body and its incidence is rising. Targeted inhibitors that act against kinases in the MAPK pathway are approved for BRAF-mutant metastatic cutaneous melanoma and increase patients' survival. Response to these therapies is limited by drug resistance and is less durable than with immune checkpoint inhibition. Conversely, rare melanoma subtypes have few therapeutic options for advanced disease and MAPK pathway targeting agents show minimal anti-tumor effects. Nevertheless, there is a future for targeted kinase inhibitors in melanoma: in new applications such as adjuvant or neoadjuvant therapy and in novel combinations with immunotherapies or other targeted therapies. Pre-clinical studies continue to identify tumor dependencies and their corresponding actionable drug targets, paving the way for rational targeted kinase inhibitor combinations as a personalized medicine approach for melanoma.
Collapse
Affiliation(s)
- Signe Caksa
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Usman Baqai
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
21
|
Lian B, Si L, Chi ZH, Sheng XN, Kong Y, Wang X, Tian H, Li K, Mao LL, Bai X, Tang BX, Yan XQ, Li SM, Zhou L, Dai J, Tang XW, Ran FW, Yao S, Guo J, Cui CL. Toripalimab (anti-PD-1) versus High-Dose Interferon-α2b as Adjuvant Therapy in Resected Mucosal Melanoma: A Phase II Randomized Trial. Ann Oncol 2022; 33:1061-1070. [PMID: 35842199 DOI: 10.1016/j.annonc.2022.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND No standard of care for mucosal melanoma (MM) in the adjuvant setting has been established. Meanwhile, relapse-free survival (RFS) is only about five months after surgery alone. This phase II trial aimed to compare toripalimab vs. high-dose interferon-α2b (HDI) as an adjuvant therapy for resected MM. PATIENTS AND METHODS From July 2017 to May 2019, 145 patients with resected MM were randomized (1:1) to receive HDI (N = 72) or toripalimab (N = 73) for one year until disease relapse/distant metastasis, unacceptable toxicity, or withdrawal of consent. The primary endpoint was RFS. The secondary endpoints included distant metastasis-free survival (DMFS), overall survival (OS), and safety. RESULTS After a median follow-up of 26.3 months, the numbers of RFS, OS, and DMFS events were 51 vs. 46, 33 vs. 29, and 49 vs. 44 in the toripalimab arm and the HDI arm, respectively. The median RFS were 13.6 (95%CI: 8.31-19.02) months and 13.9 (95%CI: 8.28-19.61) months in the toripalimab arm and HDI arm, respectively. The DMFS was not significantly different between the two arms (HR: 1.00, 95%CI: 0.65-1.54). The median OS was 35.1 months (95%CI: 27.93-NR) in the toripalimab arm, with no significant difference in all-cause death (HR: 1.11, 95% CI: 0.66-1.84) for the two arms. The median sums of the patients' actual infusion doses were 3672 mg and 1054.5 MIU in the toripalimab arm and HDI arm, respectively. The incidence of treatment-emergent adverse events with a grade ≥ 3 was much higher in the HDI arm than in the toripalimab arm (87.5% vs. 27.4%). CONCLUSION Toripalimab showed a similar RFS and a more favorable safety profile than HDI, both better than historical data, suggesting that toripalimab might be the better treatment option. However, additional translational studies and better treatment regimens are still warranted to improve the clinical outcome of MM.
Collapse
Affiliation(s)
- B Lian
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - L Si
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Z H Chi
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - X N Sheng
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Y Kong
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - X Wang
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - H Tian
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - K Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, Kunming, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - L L Mao
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - X Bai
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - B X Tang
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - X Q Yan
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - S M Li
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - L Zhou
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - J Dai
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - X W Tang
- Shanghai Junshi Biosciences, Shanghai, China
| | - F W Ran
- Shanghai Junshi Biosciences, Shanghai, China
| | - S Yao
- Shanghai Junshi Biosciences, Shanghai, China
| | - J Guo
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - C L Cui
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
22
|
Peng Y, Fu S, Zhao Q. 2022 update on the scientific premise and clinical trials for IL-15 agonists as cancer immunotherapy. J Leukoc Biol 2022; 112:823-834. [PMID: 35616357 DOI: 10.1002/jlb.5mr0422-506r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Diverse cytokines and their receptors on immune cells constitute a highly complex network in the immune system. Some therapeutic cytokines and their derivatives have been approved for cancer treatment. IL-15 is an immune-regulating cytokine with multiple functions, among which the function of activating the immunity of cancer patients has great potential in cancer immunotherapy. In this review, we introduce the functions of IL-15 and discuss its role in regulating the immune system in different immune cells. Meanwhile, we will address the applications of IL-15 agonists in cancer immunotherapy and provide prospects for the next generation of therapeutic designs. Although many challenges remain, IL-15 agonists offer a new therapeutic option in the future direction of cancer immunotherapy.
Collapse
Affiliation(s)
- Yingjun Peng
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Shengyu Fu
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
23
|
Zhang Y, Brekken RA. Direct and indirect regulation of the tumor immune microenvironment by VEGF. J Leukoc Biol 2022; 111:1269-1286. [DOI: 10.1002/jlb.5ru0222-082r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yuqing Zhang
- Hamon Center for Therapeutic Oncology Research UT Southwestern Medical Center Dallas Texas USA
- Department of Surgery UT Southwestern Medical Center Dallas Texas USA
- Cancer Biology Graduate Program UT Southwestern Medical Center Dallas Texas USA
- Current affiliation: Department of Medical Oncology Dana‐Farber Cancer Institute Boston Massachusetts USA
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research UT Southwestern Medical Center Dallas Texas USA
- Department of Surgery UT Southwestern Medical Center Dallas Texas USA
- Cancer Biology Graduate Program UT Southwestern Medical Center Dallas Texas USA
| |
Collapse
|
24
|
Jo T, Noguchi K, Sakai T, Kubota-Koketsu R, Irie S, Matsuo M, Taguchi J, Abe K, Shigematsu K. HTLV-1 Tax-specific memory cytotoxic T lymphocytes in long-term survivors of aggressive-type adult T-cell leukemia/lymphoma. Cancer Med 2022; 11:3238-3250. [PMID: 35315593 PMCID: PMC9468428 DOI: 10.1002/cam4.4689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 01/08/2023] Open
Abstract
Purpose Adult T‐cell leukemia/lymphoma (ATLL) is a relatively refractory peripheral T‐cell lymphoma caused by human T‐cell lymphotropic virus type 1 (HTLV‐1). The objective of this study was to investigate the characteristics of long‐term survivors with ATLL. Methods We conducted an observational study of 75 aggressive‐type ATLL patients. Flow cytometry was conducted to analyze HTLV‐1 Tax‐specific cytotoxic T‐lymphocytes (CTLs) and T‐cell receptor Vβ gene repertoire. Results We first evaluated six long‐term survivors among 37 patients who were newly diagnosed with ATLL and then treated with intensive chemotherapy without mogamulizumab, a monoclonal antibody for C‐C chemokine receptor four antigen. Reversal of the CD4‐to‐CD8 ratio (CD4/CD8) in peripheral mononuclear cells was observed in all six patients. Three of these six patients showed reversed CD4/CD8 immediately after herpes virus infection. Four of these six patients who could be examined demonstrated long‐term maintenance of HTLV‐1 Tax‐specific CTLs. We subsequently identified four long‐term survivors among 38 patients who were newly diagnosed with ATLL and then treated with intensive chemotherapy plus mogamulizumab. All four patients showed reversed CD4/CD8, and three of the four patients contracted herpes virus infection during immunochemotherapy. Six of the total 10 patients were subjected to CTL analyses. Tax‐specific CTLs were observed, and the CTLs that were almost entirely composed of memory CTLs in all patients were recorded. HTLV‐1 provirus was also detected in all six patients. Conclusions These data suggest that Tax‐specific memory CTLs probably, together with anticancer agents, eradicate ATLL cells and exhibit long‐term preventive effects from relapse ATLL. Thus, the strong activation of cellular immunity, such as herpes virus infection, seems to be necessary to induce such a potent number of Tax‐specific CTLs.
Collapse
Affiliation(s)
- Tatsuro Jo
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Kazuhiro Noguchi
- Department of Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Takahiro Sakai
- Department of Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Ritsuko Kubota-Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Sadaharu Irie
- Department of Pharmacy, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Masatoshi Matsuo
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Jun Taguchi
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Kuniko Abe
- Department of Pathology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Kazuto Shigematsu
- Department of Pathology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| |
Collapse
|
25
|
Makunda N, Vallabhaneni S, Lefebvre B, Fradley MG. Cardiotoxicity of Systemic Melanoma Treatments. Curr Treat Options Oncol 2022; 23:240-253. [PMID: 35192138 DOI: 10.1007/s11864-021-00924-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Melanoma is the least common but most dangerous skin cancer, accounting for 75% of all deaths from a primary cutaneous malignancy, with incidence rates rising significantly over the last decade. Traditional treatments for melanoma including interferon and cytotoxic chemotherapy had marginal efficacy. With the advent of targeted and immunotherapies, the prognosis for patients with advanced melanoma has significantly improved including those with metastatic disease to the heart. BRAF and MEK inhibitors as well as immune checkpoint inhibitors have become front line therapy for eligible patients with metastatic melanoma and have led to long-term durable response and in some cases can be curative. Despite these oncologic advances, various treatment-limiting side effects can occur. In particular, cardiovascular toxicities can contribute to overall morbidity and mortality in these patients. Toxicities range from asymptomatic QT prolongation and mild LV dysfunction to fulminant myocarditis and potentially life-threatening arrhythmias. A multidisciplinary approach to the care of these patients which includes cardio-oncology evaluation is necessary to develop both risk mitigation and treatment strategies to ensure patients continue receiving necessary and effective melanoma treatments while minimizing long-term adverse cardiovascular effects.
Collapse
Affiliation(s)
- Neha Makunda
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Srilakshmi Vallabhaneni
- Cardio-Oncology Center of Excellence, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Benedicte Lefebvre
- Cardio-Oncology Center of Excellence, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Michael G Fradley
- Cardio-Oncology Center of Excellence, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
26
|
Salkeni MA, Shin JY, Gulley JL. Resistance to Immunotherapy: Mechanisms and Means for Overcoming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:45-80. [PMID: 34972962 DOI: 10.1007/978-3-030-79308-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immune checkpoint blockade transformed cancer therapy during the last decade. However, durable responses remain uncommon, early and late relapses occur over the course of treatment, and many patients with PD-L1-expressing tumors do not respond to PD-(L)1 blockade. In addition, while some malignancies exhibit inherent resistance to treatment, others develop adaptations that allow them to evade antitumor immunity after a period of response. It is crucial to understand the pathophysiology of the tumor-immune system interplay and the mechanisms of immune escape in order to circumvent primary and acquired resistance. Here we provide an outline of the most well-defined mechanisms of resistance and shed light on ongoing efforts to reinvigorate immunoreactivity.
Collapse
Affiliation(s)
- Mohamad A Salkeni
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA.
| | - John Y Shin
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Tejera-Vaquerizo A, Boada A, Ribero S, Puig S, Paradela S, Moreno-Ramírez D, Cañueto J, de Unamuno-Bustos B, Brinca A, Descalzo-Gallego MA, Osella-Abate S, Cassoni P, Podlipnik S, Carrera C, Vidal-Sicart S, Pigem R, Toll A, Rull R, Alos L, Requena C, Bolumar I, Traves V, Pla Á, Fernández-Orland A, Jaka A, Fernández-Figueras MT, Richarz NA, Vieira R, Botella-Estrada R, Román-Curto C, Ferrándiz-Pulido L, Iglesias-Pena N, Ferrándiz C, Malvehy J, Quaglino P, Nagore E. Sentinel Lymph Node Biopsy vs. Observation in Thin Melanoma: A Multicenter Propensity Score Matching Study. J Clin Med 2021; 10:5878. [PMID: 34945175 PMCID: PMC8708109 DOI: 10.3390/jcm10245878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022] Open
Abstract
The therapeutic value of sentinel lymph node biopsy (SLNB) in thin melanoma remains controversial. The aim of this study is to determine the role of SLNB in the survival of thin melanomas (≤1 mm). A multicenter retrospective observational study was designed. A propensity score matching was performed to compare patients who underwent SLNB vs. observation. A multivariate Cox regression was used. A total of 1438 patients were matched by propensity score. There were no significant differences in melanoma-specific survival (MSS) between the SLNB and observation groups. Predictors of MSS in the multivariate model were age, tumor thickness, ulceration, and interferon treatment. Results were similar for disease-free survival and overall survival. The 5- and 10-year MSS rates for SLN-negative and -positive patients were 98.5% vs. 77.3% (p < 0.001) and 97.3% vs. 68.7% (p < 0.001), respectively. SLNB does not improve MSS in patients with thin melanoma. It also had no impact on DSF or OS. However, a considerable difference in MSS, DFS, and OS between SLN-positive and -negative patients exists, confirming its value as a prognostic procedure and therefore we recommend discussing the option of SLNB with patients.
Collapse
Affiliation(s)
- Antonio Tejera-Vaquerizo
- Dermatology Department, Instituto Dermatológico GlobalDerm, 14700 Palma del Río, Spain
- Cutaneous Oncology Unit, Hospital San Juan de Dios, 14012 Córdoba, Spain
| | - Aram Boada
- Dermatology Department, Hospital Universitari Germans Trials i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (A.B.); (A.J.); (N.A.R.); (C.F.)
| | - Simone Ribero
- Medical Sciences Department, Section of Dermatology, University of Turin, 10124 Turin, Italy; (S.R.); (P.Q.)
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clinic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.); (S.P.); (C.C.); (R.P.); (A.T.); (J.M.)
- Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, 28029 Barcelona, Spain
| | - Sabela Paradela
- Departamento de Dermatología, Hospital Universitario de la Coruña, 15006 La Coruña, Spain; (S.P.); (N.I.-P.)
| | - David Moreno-Ramírez
- Melanoma Unit, Medical-&-Surgical Dermatology Department, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain; (D.M.-R.); (A.F.-O.); (L.F.-P.)
| | - Javier Cañueto
- Dermatology Department, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (J.C.); (C.R.-C.)
| | - Blanca de Unamuno-Bustos
- Dermatology Department, Hospital Universitario La Fe, 46126 Valencia, Spain; (B.d.U.-B.); (R.B.-E.)
| | - Ana Brinca
- Departament of Dermatology, University Hospital of Coimbra, 3000-075 Coimbra, Portugal; (A.B.); (R.V.)
| | | | - Simona Osella-Abate
- Medical Sciences Department, Section of Surgical Pathology, University of Turin, 10124 Turin, Italy; (S.O.-A.); (P.C.)
| | - Paola Cassoni
- Medical Sciences Department, Section of Surgical Pathology, University of Turin, 10124 Turin, Italy; (S.O.-A.); (P.C.)
| | - Sebastian Podlipnik
- Melanoma Unit, Dermatology Department, Hospital Clinic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.); (S.P.); (C.C.); (R.P.); (A.T.); (J.M.)
- Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, 28029 Barcelona, Spain
| | - Cristina Carrera
- Melanoma Unit, Dermatology Department, Hospital Clinic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.); (S.P.); (C.C.); (R.P.); (A.T.); (J.M.)
- Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, 28029 Barcelona, Spain
| | - Sergi Vidal-Sicart
- Nuclear Medicine Department, Hospital Clinic Barcelona, Universitat de Barcelona, Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Ramón Pigem
- Melanoma Unit, Dermatology Department, Hospital Clinic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.); (S.P.); (C.C.); (R.P.); (A.T.); (J.M.)
- Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, 28029 Barcelona, Spain
| | - Agustí Toll
- Melanoma Unit, Dermatology Department, Hospital Clinic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.); (S.P.); (C.C.); (R.P.); (A.T.); (J.M.)
- Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, 28029 Barcelona, Spain
| | - Ramón Rull
- Surgery Department, Hospital Clinic, Universidad de Barcelona, 08036 Barcelona, Spain;
| | - Llucìa Alos
- Pathology Department, Hospital Clinic, Universidad de Barcelona, 08036 Barcelona, Spain;
| | - Celia Requena
- Dermatology Department, Instituto Valenciano de Oncología, 46009 Valencia, Spain; (C.R.); (E.N.)
| | - Isidro Bolumar
- Surgery Department, Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - Víctor Traves
- Pathology Department, Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - Ángel Pla
- Otorhinolaringology Department, Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - Almudena Fernández-Orland
- Melanoma Unit, Medical-&-Surgical Dermatology Department, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain; (D.M.-R.); (A.F.-O.); (L.F.-P.)
| | - Ane Jaka
- Dermatology Department, Hospital Universitari Germans Trials i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (A.B.); (A.J.); (N.A.R.); (C.F.)
| | | | - Nina Anika Richarz
- Dermatology Department, Hospital Universitari Germans Trials i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (A.B.); (A.J.); (N.A.R.); (C.F.)
| | - Ricardo Vieira
- Departament of Dermatology, University Hospital of Coimbra, 3000-075 Coimbra, Portugal; (A.B.); (R.V.)
| | - Rafael Botella-Estrada
- Dermatology Department, Hospital Universitario La Fe, 46126 Valencia, Spain; (B.d.U.-B.); (R.B.-E.)
| | - Concepción Román-Curto
- Dermatology Department, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (J.C.); (C.R.-C.)
- Instituto de Investigación Biomédica de Salamanca, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Lara Ferrándiz-Pulido
- Melanoma Unit, Medical-&-Surgical Dermatology Department, Hospital Universitario Virgen Macarena, 41009 Sevilla, Spain; (D.M.-R.); (A.F.-O.); (L.F.-P.)
| | - Nicolás Iglesias-Pena
- Departamento de Dermatología, Hospital Universitario de la Coruña, 15006 La Coruña, Spain; (S.P.); (N.I.-P.)
| | - Carlos Ferrándiz
- Dermatology Department, Hospital Universitari Germans Trials i Pujol, Institut d’Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (A.B.); (A.J.); (N.A.R.); (C.F.)
| | - Josep Malvehy
- Melanoma Unit, Dermatology Department, Hospital Clinic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.); (S.P.); (C.C.); (R.P.); (A.T.); (J.M.)
- Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, 28029 Barcelona, Spain
| | - Pietro Quaglino
- Medical Sciences Department, Section of Dermatology, University of Turin, 10124 Turin, Italy; (S.R.); (P.Q.)
| | - Eduardo Nagore
- Dermatology Department, Instituto Valenciano de Oncología, 46009 Valencia, Spain; (C.R.); (E.N.)
| |
Collapse
|
28
|
Rathnasinghe R, Salvatore M, Zheng H, Jangra S, Kehrer T, Mena I, Schotsaert M, Muster T, Palese P, García-Sastre A. Interferon mediated prophylactic protection against respiratory viruses conferred by a prototype live attenuated influenza virus vaccine lacking non-structural protein 1. Sci Rep 2021; 11:22164. [PMID: 34773048 PMCID: PMC8589955 DOI: 10.1038/s41598-021-01780-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022] Open
Abstract
The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 (ΔNS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of ΔNS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a ΔNS1 virus results in an antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that ΔNS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on ΔNS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.
Collapse
Affiliation(s)
- Raveen Rathnasinghe
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA ,grid.59734.3c0000 0001 0670 2351Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Mirella Salvatore
- grid.5386.8000000041936877XDepartment of Medicine, Weill Cornell Medical College, New York, NY USA
| | - Hongyong Zheng
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA
| | - Sonia Jangra
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Thomas Kehrer
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA ,grid.59734.3c0000 0001 0670 2351Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ignacio Mena
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Michael Schotsaert
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA ,grid.59734.3c0000 0001 0670 2351Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Thomas Muster
- grid.22937.3d0000 0000 9259 8492Department of Dermatology, University of Vienna Medical School, 1090 Wien, Austria
| | - Peter Palese
- grid.59734.3c0000 0001 0670 2351Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 100229 USA ,grid.59734.3c0000 0001 0670 2351Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY, 100229, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
29
|
EZH2 Inhibitor Enhances the STING Agonist‒Induced Antitumor Immunity in Melanoma. J Invest Dermatol 2021; 142:1158-1170.e8. [PMID: 34571002 DOI: 10.1016/j.jid.2021.08.437] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022]
Abstract
STING agonists are a new class of drugs for cancer immunotherapy that activate both innate and adaptive antitumor immunity. Recently, multiple clinical trials of STING agonists have been conducted in hematological malignancies and solid tumors. However, STING is commonly suppressed in melanoma through mechanisms that remain unclear. We found that STING expression was epigenetically suppressed by H3K27me3 in melanoma, and EZH2 inhibitor could induce an H3K27 shift from trimethylation to acetylation, resulting in increased expression of STING. Furthermore, a combination of STING agonist and EZH2 inhibitor upregulated major histocompatibility complex class I expression and chemokine production. Whole-transcriptome analysis showed that IFN-1‒related genes were significantly upregulated in the combination treatment group. In addition, the combination treatment synergistically reduced tumor growth and increased CD8+ T-cell infiltration in a poorly immunogenic melanoma mouse model B16-F10. These results showed, to our knowledge, a previously unreported mechanism underlying the epigenetic regulation of STING expression in melanoma; a combination of STING agonists and EZH2 inhibitors can boost the antitumor immune response and would be a promising treatment option for patients with melanoma who are refractory to current immunotherapies.
Collapse
|
30
|
Razaghi A, Brusselaers N, Björnstedt M, Durand-Dubief M. Copy number alteration of the interferon gene cluster in cancer: Individual patient data meta-analysis prospects to personalized immunotherapy. Neoplasia 2021; 23:1059-1068. [PMID: 34555656 PMCID: PMC8458777 DOI: 10.1016/j.neo.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Interferon (IFN) therapy has been the standard of care for a variety of cancers for decades due to the pleiotropic actions of IFNs against malignancies. However, little is known about the role of copy number alteration (CNA) of the IFN gene cluster, located at the 9p21.3, in cancer. This large individual patient data meta-analysis using 9937 patients obtained from cBioportal indicates that CNA of the IFN gene cluster is prevalent among 24 cancer types. Two statistical approaches showed that notably deletion of this cluster is significantly associated with increased mortality in many cancer types particularly uterus (OR = 2.71), kidney (OR = 2.26), and brain (OR = 2.08) cancers. The Cancer Genome Atlas PanCancer analysis also showed that CNA of the IFN gene cluster is significantly associated with decreased overall survival. For instance, the overall survival of patients with brain glioma reduced from 93m (diploidy) to 24m (with the CNA of the IFN gene). In conclusion, the CNA of the IFN gene cluster is associated with increased mortality and decreased overall survival in cancer. Thus, in the prospect of immunotherapy, CNA of IFN gene may be a useful biomarker to predict the prognosis of patients and also as a potential companion diagnostic test to prescribe IFN α/β therapy.
Collapse
Affiliation(s)
- Ali Razaghi
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University-Hospital, Stockholm, Sweden
| | - Nele Brusselaers
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden; Global Health Institute, Antwerp University, Belgium; Department of Head and Skin, Ghent University, Belgium
| | - Mikael Björnstedt
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University-Hospital, Stockholm, Sweden.
| | - Mickael Durand-Dubief
- Department of Biosciences and Nutrition, Neo, Karolinska Institute, Huddinge, Sweden.
| |
Collapse
|
31
|
Bruce WJ, Koljonen JL, Romanelli MR, Khan AU, Neumeister MW. Adjuvant and Neoadjuvant Therapeutics for the Treatment of Cutaneous Melanoma. Clin Plast Surg 2021; 48:651-658. [PMID: 34503725 DOI: 10.1016/j.cps.2021.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adjuvant therapy plays an integral role in the treatment algorithm for stage III and stage IV cutaneous melanoma. Current ongoing clinical trials are exploring the effects of neoadjuvant therapeutics, specifically for the presurgical treatment of high-risk, borderline resectable disease. In both the adjuvant and neoadjuvant settings, the early chemotherapeutic and biochemical antitumor agents are making way to newer immune therapies, mutation-specific targeted therapies, and oncolytic vaccines that are transforming the treatment of malignant melanoma. The use of these systemic therapies in addition to surgical resection has been shown to increase both overall and progression-free survival.
Collapse
Affiliation(s)
- William J Bruce
- Institute for Plastic Surgery, Southern Illinois University School of Medicine, 747 North Rutledge Street #3, Springfield, IL 62702, USA
| | - Jessie L Koljonen
- Institute for Plastic Surgery, Southern Illinois University School of Medicine, 747 North Rutledge Street #3, Springfield, IL 62702, USA
| | - Michael R Romanelli
- Institute for Plastic Surgery, Southern Illinois University School of Medicine, 747 North Rutledge Street #3, Springfield, IL 62702, USA
| | - Aziz U Khan
- Division of Hematology/Oncology, Department of Internal Medicine, Southern Illinois University School of Medicine, 315 West Carpenter Street, Springfield, IL 62702, USA
| | - Michael W Neumeister
- Institute for Plastic Surgery, Southern Illinois University School of Medicine, P.O. Box 19653, Springfield, IL 62794-9653, USA.
| |
Collapse
|
32
|
Armstrong JJ, Zhang R, Fung M, Zeman-Pocrnich C, Rotenberg B, Bauman G, Gilbert K, Hutnik CM. Rapid visual field progression in a patient with glaucoma as the presenting manifestation of sarcoidosis. Am J Ophthalmol Case Rep 2021; 23:101132. [PMID: 34151046 PMCID: PMC8192818 DOI: 10.1016/j.ajoc.2021.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To report a case of accelerated visual field progression secondary to a new orbital apex lesion in a patient with a longstanding history of fatigue and cough. OBSERVATIONS A 73-year-old myopic female with known open angle glaucoma presented with accelerated unilateral visual field progression. Maximally tolerated medical therapy was instituted over a period of 1-2 years with imminent discussions of surgical intervention. Around this time the patient reported worsening cough and fatigue, which were initially attributed to glaucoma medication side effects. Consideration of the patient's remote history of melanoma and the current asymmetry of the visual field progression triggered a computerized tomography (CT) scan of the orbits as part of the management. An orbital apex lesion was discovered, raising suspicion for metastatic melanoma, and restaging CT imaging uncovered renal, hepatic, and mediastinal masses. Unexpectedly, biopsies revealed non-necrotizing granulomatous inflammatory processes consistent with a diagnosis of sarcoidosis. It is perhaps noteworthy that the patient had received interferon therapy for management of her melanoma; previous reports have associated interferon exposure with subsequent sarcoid disease, regardless of duration of therapy or elapsed time since exposure. CONCLUSIONS AND IMPORTANCE Although rare, sarcoidosis can occur virtually anywhere in the body, including the orbital apex. Its common early symptoms, fatigue and cough, are insidious and seen frequently in this patient's age group and medication side effect profile. It is important to maintain an appropriate index of suspicion when monitoring atypical visual field progression in a patient with glaucoma. In this case, imaging, subsequent biopsy, and a multi-specialty team were integral to this patient's diagnosis and management.
Collapse
Affiliation(s)
- James J. Armstrong
- Department of Ophthalmology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Richard Zhang
- Department of Ophthalmology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Matthew Fung
- Department of Ophthalmology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Cady Zeman-Pocrnich
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Brian Rotenberg
- Department of Otolaryngology – Head & Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Glenn Bauman
- Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Kenneth Gilbert
- Division of General Internal Medicine, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Cindy M.L. Hutnik
- Department of Ophthalmology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Ivey Eye Institute, St. Joseph's Hospital, London, Ontario, Canada
| |
Collapse
|
33
|
Schuitevoerder D, Vining CC, Tseng J. Adjuvant Therapy for Cutaneous Melanoma. Surg Oncol Clin N Am 2021; 29:455-465. [PMID: 32482320 DOI: 10.1016/j.soc.2020.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article presents the current data supporting adjuvant therapy for patients with cutaneous melanoma. With the recent development of novel immunotherapy agents as well as targeted therapy, there are strong data to support the use of these therapies in patients at high risk of developing recurrent or metastatic disease.
Collapse
Affiliation(s)
- Darryl Schuitevoerder
- Department of Surgery, University of Chicago, 5841 South Maryland Avenue # MC5094, Chicago, IL 60637, USA
| | - Charles C Vining
- Department of Surgery, University of Chicago, 5841 South Maryland Avenue # MC5094, Chicago, IL 60637, USA
| | - Jennifer Tseng
- Department of Surgery, University of Chicago, 5841 South Maryland Avenue # MC5094, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Dimitriou F, Long G, Menzies A. Novel adjuvant options for cutaneous melanoma. Ann Oncol 2021; 32:854-865. [DOI: 10.1016/j.annonc.2021.03.198] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
|
35
|
Trandafir CM, Tischer AA, Horhat ID, Balica NC, Sitaru AM, Guran K, Morar R, Baderca F, Jifcu EM, Moţ IC, Burlacu ON, Poenaru M, Sarău CA. Fortuitous discovery of melanomas in the ENT Department - a histopathological and immunohistochemical study. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:1163-1171. [PMID: 34171065 PMCID: PMC8343656 DOI: 10.47162/rjme.61.4.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The melanoma, having its origin in the melanocyte cells, is one of the most aggressive forms of skin cancer in the world with one of the highest rates of brain metastasis. The incidence of cutaneous melanoma in the Mediterranean countries varies from three to five cases/100 000 people/year. Its prognosis is based on an early diagnosis. Sinonasal mucosal melanoma (SNMM) is an extremely rare tumor, accounting for 0.3–2% of all melanomas. The non-specific symptomatology is often delaying the presentation of the patient at the hospital and therefore the diagnosis. The SNMM is a highly aggressive tumor, and the presence of metastasis at the diagnosis usually implies a poor prognosis. The management of the melanomas requires a precise pre-therapeutic assessment and a multidisciplinary approach for the diagnosis, with surgical treatment or radiotherapy required in order to ensure a better a quality of life. In this paper, we retrospectively analyzed two cases of mucosal melanoma and one case of cutaneous melanoma of the nose.
Collapse
Affiliation(s)
- Cornelia Marina Trandafir
- Department of Thoracic Surgery, Department of ENT, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania; ,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abdelbaky SB, Ibrahim MT, Samy H, Mohamed M, Mohamed H, Mustafa M, Abdelaziz MM, Forrest ML, Khalil IA. Cancer immunotherapy from biology to nanomedicine. J Control Release 2021; 336:410-432. [PMID: 34171445 DOI: 10.1016/j.jconrel.2021.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
With the significant drawbacks of conventional cancer chemotherapeutics, cancer immunotherapy has demonstrated the ability to eradicate cancer cells and circumvent multidrug resistance (MDR) with fewer side effects than traditional cytotoxic therapies. Various immunotherapeutic agents have been investigated for that purpose including checkpoint inhibitors, cytokines, monoclonal antibodies and cancer vaccines. All these agents aid immune cells to recognize and engage tumor cells by acting on tumor-specific pathways, antigens or cellular targets. However, immunotherapeutics are still associated with some concerns such as off-target side effects and poor pharmacokinetics. Nanomedicine may resolve some limitations of current immunotherapeutics such as localizing delivery, controlling release and enhancing the pharmacokinetic profile. Herein, we discuss recent advances of immunotherapeutic agents with respect to their development and biological mechanisms of action, along with the advantages that nanomedicine strategies lend to immunotherapeutics by possibly improving therapeutic outcomes and minimizing side effects.
Collapse
Affiliation(s)
- Salma B Abdelbaky
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Molecular, Cellular, and Developmental Biology, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, United States of America
| | - Mayar Tarek Ibrahim
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Hebatallah Samy
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Menatalla Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Hebatallah Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Mahmoud Mustafa
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt
| | - Moustafa M Abdelaziz
- Department of Bioengineering, School of Engineering, The University of Kansas, Lawrence, KS 66045, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA.
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt.
| |
Collapse
|
37
|
Madheswaran S, Mungra N, Biteghe FAN, De la Croix Ndong J, Arowolo AT, Adeola HA, Ramamurthy D, Naran K, Khumalo NP, Barth S. Antibody-Based Targeted Interventions for the Diagnosis and Treatment of Skin Cancers. Anticancer Agents Med Chem 2021; 21:162-186. [PMID: 32723261 DOI: 10.2174/1871520620666200728123006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/19/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cutaneous malignancies most commonly arise from skin epidermal cells. These cancers may rapidly progress from benign to a metastatic phase. Surgical resection represents the gold standard therapeutic treatment of non-metastatic skin cancer while chemo- and/or radiotherapy are often used against metastatic tumors. However, these therapeutic treatments are limited by the development of resistance and toxic side effects, resulting from the passive accumulation of cytotoxic drugs within healthy cells. OBJECTIVE This review aims to elucidate how the use of monoclonal Antibodies (mAbs) targeting specific Tumor Associated Antigens (TAAs) is paving the way to improved treatment. These mAbs are used as therapeutic or diagnostic carriers that can specifically deliver cytotoxic molecules, fluorophores or radiolabels to cancer cells that overexpress specific target antigens. RESULTS mAbs raised against TAAs are widely in use for e.g. differential diagnosis, prognosis and therapy of skin cancers. Antibody-Drug Conjugates (ADCs) particularly show remarkable potential. The safest ADCs reported to date use non-toxic photo-activatable Photosensitizers (PSs), allowing targeted Photodynamic Therapy (PDT) resulting in targeted delivery of PS into cancer cells and selective killing after light activation without harming the normal cell population. The use of near-infrared-emitting PSs enables both diagnostic and therapeutic applications upon light activation at the specific wavelengths. CONCLUSION Antibody-based approaches are presenting an array of opportunities to complement and improve current methods employed for skin cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Suresh Madheswaran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fleury A N Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, 8700 Beverly Blvd, Los Angeles, CA, United States
| | - Jean De la Croix Ndong
- Department of Orthopedic Surgery, New York University Langone Orthopedic Hospital, 301 East 17th Street, New York, NY, United States
| | - Afolake T Arowolo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Henry A Adeola
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Dharanidharan Ramamurthy
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
38
|
Trojaniello C, Luke JJ, Ascierto PA. Therapeutic Advancements Across Clinical Stages in Melanoma, With a Focus on Targeted Immunotherapy. Front Oncol 2021; 11:670726. [PMID: 34178657 PMCID: PMC8222774 DOI: 10.3389/fonc.2021.670726] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022] Open
Abstract
Melanoma is the most fatal skin cancer. In the early stages, it can be safely treated with surgery alone. However, since 2011, there has been an important revolution in the treatment of melanoma with new effective treatments. Targeted therapy and immunotherapy with checkpoint inhibitors have changed the history of this disease. To date, more than half of advanced melanoma patients are alive at 5 years; despite this breakthrough, approximately half of the patients still do not respond to treatment. For these reasons, new therapeutic strategies are required to expand the number of patients who can benefit from immunotherapy or combination with targeted therapy. Current research aims at preventing primary and acquired resistance, which are both responsible for treatment failure in about 50% of patients. This could increase the effectiveness of available drugs and allow for the evaluation of new combinations and new targets. The main pathways and molecules under study are the IDO inhibitor, TLR9 agonist, STING, LAG-3, TIM-3, HDAC inhibitors, pegylated IL-2 (NKTR-214), GITR, and adenosine pathway inhibitors, among others (there are currently about 3000 trials that are evaluating immunotherapeutic combinations in different tumors). Other promising strategies are cancer vaccines and oncolytic viruses. Another approach is to isolate and remove immune cells (DCs, T cells, and NK cells) from the patient's blood or tumor infiltrates, add specific gene fragments, expand them in culture with growth factors, and re-inoculate into the same patient. TILs, TCR gene transfer, and CAR-T therapy follow this approach. In this article, we give an overview over the current status of melanoma therapies, the clinical rationale for choosing treatments, and the new immunotherapy approaches.
Collapse
Affiliation(s)
- Claudia Trojaniello
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Jason J. Luke
- Cancer Immunotherapeutics Center, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, United States
| | - Paolo A. Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The use of cytokines in harnessing the immune system to eradicate cancer has been an important treatment modality. However, the dose-limiting toxicities of these cytokines limited their usage in clinic. Here, we review the basic biology of cytokines involved in the treatment of melanoma and discuss their therapeutic applications. Moreover, we describe several innovative technological approaches that have been developed to improve the pharmacokinetics, safety, and efficacy of these cytokines. RECENT FINDINGS The safety and the anti-tumor activity of newly engineered cytokines including PEGylated IL-2 (NKTR-214), PEGylated IL-10 (AM0010), and IL-15 super agonist (ALT-803) have been evaluated in clinical trials with encouraging clinical activity and acceptable safety profile, both as single agents and in combination with immuno-oncology agents. A greater understanding of the mechanisms of action and effective dosing of these newly engineered cytokine together with determination of optimum combination therapy regimens may yield greater clinical benefits in the future.
Collapse
|
40
|
Rathnasinghe R, Salvatore M, Zheng H, Jangra S, Kehrer T, Mena I, Schotsaert M, Muster T, Palese P, García-Sastre A. Prophylactic protection against respiratory viruses conferred by a prototype live attenuated influenza virus vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.28.441797. [PMID: 33948589 PMCID: PMC8095196 DOI: 10.1101/2021.04.28.441797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 (ΔNS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of ΔNS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a ΔNS1 virus results in an immediate antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that ΔNS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on ΔNS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.
Collapse
|
41
|
Ottaviano M, Giunta EF, Tortora M, Curvietto M, Attademo L, Bosso D, Cardalesi C, Rosanova M, De Placido P, Pietroluongo E, Riccio V, Mucci B, Parola S, Vitale MG, Palmieri G, Daniele B, Simeone E, on behalf of SCITO YOUTH. BRAF Gene and Melanoma: Back to the Future. Int J Mol Sci 2021; 22:ijms22073474. [PMID: 33801689 PMCID: PMC8037827 DOI: 10.3390/ijms22073474] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
As widely acknowledged, 40-50% of all melanoma patients harbour an activating BRAF mutation (mostly BRAF V600E). The identification of the RAS-RAF-MEK-ERK (MAP kinase) signalling pathway and its targeting has represented a valuable milestone for the advanced and, more recently, for the completely resected stage III and IV melanoma therapy management. However, despite progress in BRAF-mutant melanoma treatment, the two different approaches approved so far for metastatic disease, immunotherapy and BRAF+MEK inhibitors, allow a 5-year survival of no more than 60%, and most patients relapse during treatment due to acquired mechanisms of resistance. Deep insight into BRAF gene biology is fundamental to describe the acquired resistance mechanisms (primary and secondary) and to understand the molecular pathways that are now being investigated in preclinical and clinical studies with the aim of improving outcomes in BRAF-mutant patients.
Collapse
Affiliation(s)
- Margaret Ottaviano
- Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli “Federico II”, 80131 Naples, Italy; (P.D.P.); (E.P.); (V.R.); (B.M.); (S.P.)
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (L.A.); (D.B.); (C.C.); (M.R.); (B.D.)
- CRCTR Coordinating Rare Tumors Reference Center of Campania Region, 80131 Naples, Italy; (M.T.); (G.P.)
- Correspondence:
| | - Emilio Francesco Giunta
- Department of Precision Medicine, Università Degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy;
| | - Marianna Tortora
- CRCTR Coordinating Rare Tumors Reference Center of Campania Region, 80131 Naples, Italy; (M.T.); (G.P.)
| | - Marcello Curvietto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy; (M.C.); (M.G.V.); (E.S.)
| | - Laura Attademo
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (L.A.); (D.B.); (C.C.); (M.R.); (B.D.)
| | - Davide Bosso
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (L.A.); (D.B.); (C.C.); (M.R.); (B.D.)
| | - Cinzia Cardalesi
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (L.A.); (D.B.); (C.C.); (M.R.); (B.D.)
| | - Mario Rosanova
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (L.A.); (D.B.); (C.C.); (M.R.); (B.D.)
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli “Federico II”, 80131 Naples, Italy; (P.D.P.); (E.P.); (V.R.); (B.M.); (S.P.)
| | - Erica Pietroluongo
- Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli “Federico II”, 80131 Naples, Italy; (P.D.P.); (E.P.); (V.R.); (B.M.); (S.P.)
| | - Vittorio Riccio
- Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli “Federico II”, 80131 Naples, Italy; (P.D.P.); (E.P.); (V.R.); (B.M.); (S.P.)
| | - Brigitta Mucci
- Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli “Federico II”, 80131 Naples, Italy; (P.D.P.); (E.P.); (V.R.); (B.M.); (S.P.)
| | - Sara Parola
- Department of Clinical Medicine and Surgery, Università Degli Studi di Napoli “Federico II”, 80131 Naples, Italy; (P.D.P.); (E.P.); (V.R.); (B.M.); (S.P.)
| | - Maria Grazia Vitale
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy; (M.C.); (M.G.V.); (E.S.)
| | - Giovannella Palmieri
- CRCTR Coordinating Rare Tumors Reference Center of Campania Region, 80131 Naples, Italy; (M.T.); (G.P.)
| | - Bruno Daniele
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (L.A.); (D.B.); (C.C.); (M.R.); (B.D.)
| | - Ester Simeone
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy; (M.C.); (M.G.V.); (E.S.)
| | | |
Collapse
|
42
|
Salama AKS, Palta M, Rushing CN, Selim MA, Linney KN, Czito BG, Yoo DS, Hanks BA, Beasley GM, Mosca PJ, Dumbauld C, Steadman KN, Yi JS, Weinhold KJ, Tyler DS, Lee WT, Brizel DM. Ipilimumab and Radiation in Patients with High-risk Resected or Regionally Advanced Melanoma. Clin Cancer Res 2021; 27:1287-1295. [PMID: 33172894 PMCID: PMC8759408 DOI: 10.1158/1078-0432.ccr-20-2452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/22/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE In this prospective trial, we sought to assess the feasibility of concurrent administration of ipilimumab and radiation as adjuvant, neoadjuvant, or definitive therapy in patients with regionally advanced melanoma. PATIENTS AND METHODS Twenty-four patients in two cohorts were enrolled and received ipilimumab at 3 mg/kg every 3 weeks for four doses in conjunction with radiation; median dose was 4,000 cGy (interquartile range, 3,550-4,800 cGy). Patients in cohort 1 were treated adjuvantly; patients in cohort 2 were treated either neoadjuvantly or as definitive therapy. RESULTS Adverse event profiles were consistent with those previously reported with checkpoint inhibition and radiation. For the neoadjuvant/definitive cohort, the objective response rate was 64% (80% confidence interval, 40%-83%), with 4 of 10 evaluable patients achieving a radiographic complete response. An additional 3 patients in this cohort had a partial response and went on to surgical resection. With 2 years of follow-up, the 6-, 12-, and 24-month relapse-free survival for the adjuvant cohort was 85%, 69%, and 62%, respectively. At 2 years, all patients in the neoadjuvant/definitive cohort and 10/13 patients in the adjuvant cohort were still alive. Correlative studies suggested that response in some patients were associated with specific CD4+ T-cell subsets. CONCLUSIONS Overall, concurrent administration of ipilimumab and radiation was feasible, and resulted in a high response rate, converting some patients with unresectable disease into surgical candidates. Additional studies to investigate the combination of radiation and checkpoint inhibitor therapy are warranted.
Collapse
Affiliation(s)
- April K S Salama
- Department of Medicine, Division of Medical Oncology, Duke University, Durham, North Carolina.
| | - Manisha Palta
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | | | - M Angelica Selim
- Department of Pathology, Duke University, Durham, North Carolina
| | | | - Brian G Czito
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - David S Yoo
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Brent A Hanks
- Department of Medicine, Division of Medical Oncology, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Durham, North Carolina
| | | | - Paul J Mosca
- Department of Surgery, Duke University, Durham, North Carolina
| | - Chelsae Dumbauld
- Department of Immunology, Mayo Clinic Scottsdale, Scottsdale, Arizona
| | | | - John S Yi
- Department of Surgery, Duke University, Durham, North Carolina
| | - Kent J Weinhold
- Department of Surgery, Duke University, Durham, North Carolina
| | - Douglas S Tyler
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Walter T Lee
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham, North Carolina
| | - David M Brizel
- Department of Radiation Oncology, Duke University, Durham, North Carolina
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham, North Carolina
| |
Collapse
|
43
|
Darrigrand R, Pierson A, Rouillon M, Renko D, Boulpicante M, Bouyssié D, Mouton-Barbosa E, Marcoux J, Garcia C, Ghosh M, Alami M, Apcher S. Isoginkgetin derivative IP2 enhances the adaptive immune response against tumor antigens. Commun Biol 2021; 4:269. [PMID: 33649389 PMCID: PMC7921396 DOI: 10.1038/s42003-021-01801-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
The success of cancer immunotherapy relies on the induction of an immunoprotective response targeting tumor antigens (TAs) presented on MHC-I molecules. We demonstrated that the splicing inhibitor isoginkgetin and its water-soluble and non-toxic derivative IP2 act at the production stage of the pioneer translation products (PTPs). We showed that IP2 increases PTP-derived antigen presentation in cancer cells in vitro and impairs tumor growth in vivo. IP2 action is long-lasting and dependent on the CD8+ T cell response against TAs. We observed that the antigen repertoire displayed on MHC-I molecules at the surface of MCA205 fibrosarcoma is modified upon treatment with IP2. In particular, IP2 enhances the presentation of an exon-derived epitope from the tumor suppressor nischarin. The combination of IP2 with a peptide vaccine targeting the nischarin-derived epitope showed a synergistic antitumor effect in vivo. These findings identify the spliceosome as a druggable target for the development of epitope-based immunotherapies.
Collapse
Affiliation(s)
- Romain Darrigrand
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France
| | - Alison Pierson
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France
| | - Marine Rouillon
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France
- SATT Paris Saclay, Orsay, France
| | - Dolor Renko
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Mathilde Boulpicante
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France
| | - David Bouyssié
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Camille Garcia
- Institut Jacques Monod, CNRS U7592 Université Paris Diderot, Paris, France
- Institut Pasteur, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR 2000 CNRS, Paris, France
| | - Michael Ghosh
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Sébastien Apcher
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France.
| |
Collapse
|
44
|
Christofyllakis K, Pföhler C, Bewarder M, Müller CSL, Thurner L, Rixecker T, Vogt T, Stilgenbauer S, Yordanova K, Kaddu-Mulindwa D. Adjuvant Therapy of High-Risk (Stages IIC-IV) Malignant Melanoma in the Post Interferon-Alpha Era: A Systematic Review and Meta-Analysis. Front Oncol 2021; 10:637161. [PMID: 33680957 PMCID: PMC7930562 DOI: 10.3389/fonc.2020.637161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/30/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Multiple agents are approved in the adjuvant setting of completely resected high-risk (stages IIC–IV) malignant melanoma. Subgroups may benefit differently depending on the agent used. We performed a systematic review and meta-analysis to evaluate the efficiency and tolerability of available options in the post interferon era across following subgroups: patient age, stage, ulceration status, lymph node involvement, BRAF status. Methods The PubMed and Cochrane Library databases were searched without restriction in year of publication in June and September 2020. Data were extracted according to the PRISMA Guidelines from two authors independently and were pooled according to the random-effects model. The predefined primary outcome was recurrence-free survival (RFS). Post-data extraction it was noted that one trial (BRIM8) reported disease-free survival which was defined in the exact same way as RFS. Results Five prospective randomized placebo-controlled trials were included in the meta-analysis. The drug regimens included ipilimumab, pembrolizumab, nivolumab, nivolumab/ipilimumab, vemurafenib, and dabrafenib/trametinib. Adjuvant treatment was associated with a higher RFS than placebo (HR 0.57; 95% CI= 0.45–0.71). Nivolumab/ipilimumab in stage IV malignant melanoma was associated with the highest RFS benefit (HR 0.23; 97.5% CI= 0.12–0.45), followed by dabrafenib/trametinib in stage III BRAF-mutant melanoma (HR 0.49; 95% CI= 0.40–0.59). The presence of a BRAF mutation was associated with higher RFS rates (HR 0.30; 95% CI= 0.11–0.78) compared to the wildtype group (HR 0.60; 95% CI= 0.44–0.81). Patient age did not influence outcomes (≥65: HR 0.50; 95% CI= 0.36–0.70, <65: HR 0.58; 95% CI= 0.46–0.75). Immune checkpoint inhibitor monotherapy was associated with lower RFS in non-ulcerated melanoma. Patients with stage IIIA benefited equally from adjuvant treatment as those with stage IIIB/C. Nivolumab/ipilimumab and ipilimumab monotherapy were associated with higher toxicity. Conclusion Adjuvant therapy should not be withheld on account of advanced age or stage IIIA alone. The presence of a BRAF mutation is prognostically favorable in terms of RFS. BRAF/MEK inhibitors should be preferred in the adjuvant treatment of BRAF-mutant non-ulcerated melanoma.
Collapse
Affiliation(s)
- Konstantinos Christofyllakis
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Medical School, University of Saarland, Homburg, Germany
| | - Claudia Pföhler
- Department of Dermatology, Venerology and Allergology, Medical School, University of Saarland, Homburg, Germany
| | - Moritz Bewarder
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Medical School, University of Saarland, Homburg, Germany
| | - Cornelia S L Müller
- Department of Dermatology, Venerology and Allergology, Medical School, University of Saarland, Homburg, Germany
| | - Lorenz Thurner
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Medical School, University of Saarland, Homburg, Germany
| | - Torben Rixecker
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Medical School, University of Saarland, Homburg, Germany
| | - Thomas Vogt
- Department of Dermatology, Venerology and Allergology, Medical School, University of Saarland, Homburg, Germany
| | - Stephan Stilgenbauer
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Medical School, University of Saarland, Homburg, Germany
| | - Krista Yordanova
- Department of Dermatology, Venerology and Allergology, Medical School, University of Saarland, Homburg, Germany
| | - Dominic Kaddu-Mulindwa
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Medical School, University of Saarland, Homburg, Germany
| |
Collapse
|
45
|
Funck-Brentano E, Malissen N, Roger A, Lebbé C, Deilhes F, Frénard C, Dréno B, Meyer N, Grob JJ, Tétu P, Saiag P. Which adjuvant treatment for patients with BRAF V600-mutant cutaneous melanoma? Ann Dermatol Venereol 2021; 148:145-155. [PMID: 33579557 DOI: 10.1016/j.annder.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Treatment of patients with melanoma has considerably improved over the past decade and more recently with adjuvant therapies for patients with American Joint Committee on Cancer (AJCC) stage III (loco-regional metastases) or IV (distant metastases) totally resected melanoma, in order to prevent recurrence. In the adjuvant setting, two options are available to patients with BRAFV600-mutant AJCC stage III totally resected melanoma: anti-PD-1 blockers (nivolumab or pembrolizumab) or BRAF plus MEK inhibitors (dabrafenib plus trametinib). In the absence of comparative studies, it is difficult to determine which of these options is best. Our aim was to review published studies focusing on the management of patients with BRAFV600-mutant melanoma in the adjuvant setting. We also reviewed the main clinical trials of BRAF plus MEK inhibitors and immunotherapy in advanced (i.e. unresectable metastatic) BRAF-mutant melanoma in an attempt to identify results potentially affecting the management of patients on adjuvants. More adverse events are observed with targeted therapy, but all resolve rapidly upon drug discontinuation, whereas with immune checkpoint blockers some adverse events may persist. New therapeutic strategies are emerging, notably neoadjuvant therapies for stage III patients and adjuvant therapies for stage II patients; the place of the adjuvant strategy amidst all these options will soon be re-evaluated. The choice of adjuvant treatment could influence the choice of subsequent treatments in neo-adjuvant or metastatic settings. This review will lead clinicians to a better understanding of the different adjuvant treatments available for patients with totally resected AJCC stage III and IV BRAFV600-mutant melanoma before considering subsequent treatment strategies.
Collapse
Affiliation(s)
- E Funck-Brentano
- Department of General and Oncologic Dermatology, Ambroise-Paré hospital, AP-HP, Boulogne-Billancourt, France; Research unit EA4340 "Biomarkers and clinical trials in oncology and onco-hematology", Versailles-Saint-Quentin-en-Yvelines University, Paris-Saclay University, France.
| | - N Malissen
- Department of Dermatology and Skin Cancer, Aix-Marseille University, AP-HM, Hôpital Timone, Marseille, France
| | - A Roger
- Department of General and Oncologic Dermatology, Ambroise-Paré hospital, AP-HP, Boulogne-Billancourt, France; Research unit EA4340 "Biomarkers and clinical trials in oncology and onco-hematology", Versailles-Saint-Quentin-en-Yvelines University, Paris-Saclay University, France
| | - C Lebbé
- Inserm U976, Department of Dermatology, Dermatology, Paris University, Hôpital Saint-Louis, AP-HP, Paris, France
| | - F Deilhes
- Dermatology Department, CHU de Toulouse, Toulouse, France
| | - C Frénard
- Department of Dermatology, CRCINA, CIC1413, CHU de Nantes, université de Nantes, Nantes, France
| | - B Dréno
- Department of Dermatology, CRCINA, CIC1413, CHU de Nantes, université de Nantes, Nantes, France
| | - N Meyer
- Dermatology Department, CHU de Toulouse, Toulouse, France
| | - J-J Grob
- Department of Dermatology and Skin Cancer, Aix-Marseille University, AP-HM, Hôpital Timone, Marseille, France
| | - P Tétu
- Department of Dermatology, CRCINA, CIC1413, CHU de Nantes, université de Nantes, Nantes, France
| | - P Saiag
- Department of General and Oncologic Dermatology, Ambroise-Paré hospital, AP-HP, Boulogne-Billancourt, France; Research unit EA4340 "Biomarkers and clinical trials in oncology and onco-hematology", Versailles-Saint-Quentin-en-Yvelines University, Paris-Saclay University, France
| |
Collapse
|
46
|
Abstract
In this article, evidence is reviewed suggesting that the outcome of cancer immunotherapy depends on pre-treatment immune parameters of a patient. The results described in the article show that immunotherapy may prolong survival in certain subgroups of cancer patients, while in other subgroups a cancer-promoting effect of this treatment modality cannot be excluded.
Collapse
|
47
|
Simeone E, Scognamiglio G, Capone M, Giannarelli D, Grimaldi AM, Mallardo D, Madonna G, Curvietto M, Esposito A, Sandomenico F, Sabbatino F, Bayless NL, Warren S, Ong S, Botti G, Flaherty KT, Ferrone S, Ascierto PA. A monocentric phase I study of vemurafenib plus cobimetinib plus PEG-interferon (VEMUPLINT) in advanced melanoma patients harboring the V600BRAF mutation. J Transl Med 2021; 19:17. [PMID: 33407577 PMCID: PMC7789377 DOI: 10.1186/s12967-020-02680-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Studies carried out in vitro and in a mouse model have shown that BRAF inhibitors enhance the effects of IFN-α on BRAFV600E melanoma cells through the inhibition of ERK. Therefore, the combination of vemurafenib and IFN-α in patients with BRAFV600E melanoma may provide therapeutic benefits; MEK inhibition may prevent the reactivation of the MAPK pathway induced by BRAF inhibitor resistance. PATIENTS AND METHODS In a phase I study, adult patients with advanced BRAFV600-mutated melanoma were treated with vemurafenib + PEG-IFN-α-2b or vemurafenib + cobimetinib + PEG-IFN-α-2b, to assess the safety of the combination and the upregulation of IFN-α/β receptor-1 (IFNAR1). RESULTS Eight patients were treated; 59 adverse events with four serious ones (three related to study treatments) were reported. Patients with a pre-treatment IFNAR1 expression on ≤ 35% melanoma cells had a median progression-free survival of 12.0 months (range: 5.6-18.4 months) and a median overall survival of 31.0 months (range: 19.8-42.2 months), while patients with a pre-treatment IFNAR1 expression on > 35% of melanoma cells had a median progression-free survival of 4.0 months (range: 0-8.8; p = 0.03), and a median overall survival of 5 months (p = 0.02). Following treatment, responders had higher levels of growth-suppressor genes, including GAS1 and DUSP1, and genes involved in a metabolically robust immune response, including FAP. CONCLUSION Our study supports the overall safety of the vemurafenib + PEG-IFN-α-2b + cobimetinib combination. IFNAR1 expression levels correlated with response to treatment, including survival. Vemurafenib + PEG-IFN-α-2b + cobimetinib would have difficulty finding a niche in the current treatment scenario for advanced melanoma, but we speculate that our findings may contribute to identify subjects particularly responsive to treatment. TRIAL REGISTRATION The study was registered at clinicaltrials.gov (NCT01959633). Registered 10 October 2013, https://clinicaltrials.gov/ct2/show/NCT01959633.
Collapse
Affiliation(s)
- Ester Simeone
- Istituto Nazionale Tumori–IRCCS–Fondazione G Pascale, Naples, Italy
| | | | | | | | | | | | - Gabriele Madonna
- Istituto Nazionale Tumori–IRCCS–Fondazione G Pascale, Naples, Italy
| | | | - Assunta Esposito
- Istituto Nazionale Tumori–IRCCS–Fondazione G Pascale, Naples, Italy
| | | | | | | | | | - SuFey Ong
- NanoString Technologies, Seattle, WA USA
| | - Gerardo Botti
- Istituto Nazionale Tumori–IRCCS–Fondazione G Pascale, Naples, Italy
| | | | - Soldano Ferrone
- Massachusetts General Hospital Cancer Center, Boston, MA USA
| | | |
Collapse
|
48
|
Wang X, Yu B, Cao B, Zhou J, Deng Y, Wang Z, Jin G. A chemical conjugation of JQ-1 and a TLR7 agonist induces tumoricidal effects in a murine model of melanoma via enhanced immunomodulation. Int J Cancer 2020; 148:437-447. [PMID: 32683685 DOI: 10.1002/ijc.33222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
In recent years, inhibitors of the BET bromodomain proteins, such as BRD4 inhibitors, have demonstrated robust antitumor activity. JQ-1, a representative small molecular BRD4 inhibitor, is also effective to block PD-1/PD-L1 signaling by significantly decreasing the PD-L1 expression on tumor cells. However, toxicity of BRD4 inhibitors on lymphoid and hematopoietic tissues limits their clinical usage. In this research, we designed and studied an immunogenic BRD4 inhibitor, SZU-119, by coupling JQ-1 with a TLR7 agonist, SZU-101. In vitro, SZU-119 stimulated the production of cytokines in mouse BMDCs and spleen lymphocytes, and inhibited the expression of PD-L1 in mouse B16 tumor cells. In vivo, SZU-119 suppressed the B16 tumor growth at both injected and uninjected sites, and prolonged the survival time of mice. SZU-119 elevated the number of total CD8+ and IFN-γ+ CD8+ T cells in spleens, with greater CTL cytotoxicity to B16 tumor cells. It was also observed that the infiltration of CD8+ T cells was increased in tumors at both local and distant sites, and the PD-L1 expression was decreased in tumor cells at the primary site. In conclusion, we have demonstrated that SZU-119 activated the innate immune cells, kept efficacy of PD-L1 blockade and abrogated immune toxicity, showing more potent antitumor effects than the simple mixture of SZU-101 and JQ-1 in a mouse melanoma model. Our work provides new insights for the development of anti-melanoma drugs that concurrently target innate and adaptive immunity.
Collapse
Affiliation(s)
- Xiaodong Wang
- School of Pharmaceutical Sciences, National-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Bingying Yu
- School of Pharmaceutical Sciences, National-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Birong Cao
- School of Pharmaceutical Sciences, National-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Ji Zhou
- School of Pharmaceutical Sciences, National-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Yongqiang Deng
- Department of Oral and Maxillofacial Surgery, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Zhulin Wang
- School of Pharmaceutical Sciences, National-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Guangyi Jin
- School of Pharmaceutical Sciences, National-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
49
|
Aldrink JH, Polites S, Lautz TB, Malek MM, Rhee D, Bruny J, Christison-Lagay ER, Tracy ET, Abdessalam S, Ehrlich PF, Dasgupta R, Austin MT. What's new in pediatric melanoma: An update from the APSA cancer committee. J Pediatr Surg 2020; 55:1714-1721. [PMID: 31699434 DOI: 10.1016/j.jpedsurg.2019.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND/PURPOSE Melanoma is the most common skin cancer in children and often presents in an atypical fashion when compared to adults. The purpose of this review is to present an update on the epidemiology, surgical and medical management and prevention strategies in pediatric melanoma. METHODS A comprehensive review of the current literature on the epidemiology, surgical and medical management and prevention of adult and pediatric melanoma was performed by the authors and the results of this review are summarized in the manuscript. RESULTS Most recently, the incidence of melanoma in children has been declining, possibly owing to increased awareness and sun exposure prevention. The mainstay of therapy is surgical resection, often with sentinel lymph node biopsy. A positive sentinel node has prognostic value; however, completion node dissection is no longer recommended in the absence of clinically or radiographically positive nodes. Those with advanced disease also receive adjuvant systemic therapy using increasingly targeted immunologic therapies. CONCLUSIONS Sentinel lymph node positive patients no longer require completion lymph node dissection and instead may be followed by ultrasound. However, it is important to note that children have been excluded from most melanoma clinical trials to date, and therefore, recommendations for management are based on existing pediatric retrospective data and extrapolation from adult studies. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Jennifer H Aldrink
- Division of Pediatric Surgery, The Ohio State University College of Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Stephanie Polites
- Division of Pediatric Surgery, Oregon Health and Science University, Portland, OR
| | - Timothy B Lautz
- Division of Pediatric Surgery, Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL
| | - Marcus M Malek
- Division of Pediatric General and Thoracic Surgery, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Daniel Rhee
- Division of Pediatric Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jennifer Bruny
- Division of Pediatric Surgery, University of Colorado, Children's Hospital Colorado, Aurora, CO
| | | | - Elisabeth T Tracy
- Division of Pediatric Surgery, Duke University Medical Center, Durham, NC
| | - Shahab Abdessalam
- Department of Pediatric Surgery, Boys Town National Research Hospital, Omaha, NE
| | - Peter F Ehrlich
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Roshni Dasgupta
- Division of Pediatric General and Thoracic Surgery, Cincinnati Childrens Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | - Mary T Austin
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
50
|
Iacono D, Vitale MG, Basile D, Pelizzari G, Cinausero M, Poletto E, Pascoletti G, Minisini AM. Immunotherapy for older patients with melanoma: From darkness to light? Pigment Cell Melanoma Res 2020; 34:550-563. [PMID: 32745351 DOI: 10.1111/pcmr.12917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 01/12/2023]
Abstract
Approximately 40% of malignant melanomas are diagnosed in patients older than 65 years. Elderly patients with melanoma present clinicopathological features related to a more aggressive biology, and they are often diagnosed with advanced stage of disease. Interestingly, in older patients the immune system can be altered with changes both in the innate system and in the adaptive immune system with the acquisition of a pro-inflammatory and immune suppressive phenotype. Immunotherapy with immune checkpoint inhibitors has reshaped the treatment strategies and prognosis of patients with melanoma, and particularly, older age should not be considered a contraindication for immunotherapy. However, data regarding efficacy and safety of immunotherapy in elderly population are still limited because frail older patients are generally excluded from clinical trials. Recently, real-world data have shed light on similar efficacy and safety of immunotherapy in older population compared with younger counterpart. The aim of the present review was to summarize the available knowledge on the underlying immune system in older patients with a diagnosis of melanoma and the immunotherapeutic approaches in this population.
Collapse
Affiliation(s)
- Donatella Iacono
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Maria Grazia Vitale
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy.,Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Debora Basile
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Giacomo Pelizzari
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Marika Cinausero
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Elena Poletto
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Gaetano Pascoletti
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | | |
Collapse
|