1
|
Abuelafia AM, Santofimia-Castaño P, Estaras M, Grasso D, Chuluyan E, Lomberk G, Urrutia R, Dusetti N, Fraunhoffer N, Iovanna J. KRAS inhibition reverses chemotherapy resistance promoted by therapy-induced senescence-like in pancreatic ductal adenocarcinoma. Transl Oncol 2025; 57:102421. [PMID: 40382842 DOI: 10.1016/j.tranon.2025.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 05/01/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Emerging evidence suggests that chemotherapy can accumulate senescent-like cells within tumor tissues, a phenomenon linked to therapy resistance. The aim of this study is to analyze the senescence-like state of after-treatment persistent cells associated with KRAS mutational status to offer a therapeutic strategy to target these cells in pancreatic ductal adenocarcinoma (PDAC). EXPERIMENTAL DESIGN Three commercial cell lines and five patient-derived primary cell cultures with different KRAS statuses were studied following gemcitabine treatment. Senescence-like status was assessed using SA-β-gal, together with cell cycle regulators such as p21. Additionally, KRAS mutations were modulated using MRTX1133 and AMG-510, and the signaling pathways ERK and AKT were analyzed and modulated in vitro. Finally, p21 expression, associated with the senescence-like state, on patient outcomes and treatment response was analyzed in publicly available bulk RNA-seq and single-nucleus datasets. RESULTS We observed an overexpression of p21 alongside an increase in SA-β-gal signal in response to gemcitabine treatment, indicating the induction of a senescence-like state. Specific inhibition of KRAS G12D or G12C mutations reduced SA-β-gal signal and sensitized PDAC cells to gemcitabine. Moreover, ERK inhibition but not AKT inhibition decreased SA-β-gal signal. Additionally, we characterized p21 expression levels in relation to patient outcomes and found that they are modulated by treatment. CONCLUSIONS This dual-targeted therapeutic strategy holds promises for overcoming the challenges posed by KRAS-driven cancers, particularly in addressing the formidable obstacle of pancreatic cancer.
Collapse
Affiliation(s)
- Analia Meilerman Abuelafia
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, Equipe labélisée Ligue Nationale contre le cancer, France; Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, Equipe labélisée Ligue Nationale contre le cancer, France; Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina
| | - Matias Estaras
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, Equipe labélisée Ligue Nationale contre le cancer, France
| | - Daniel Grasso
- Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina; Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Chuluyan
- Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina; Buenos Aires University, Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires C1121ABG, Argentina; Buenos Aires University, Faculty of Medicine, Department of Microbiology, Parasitology and Immunology, Buenos Aires C1121ABG, Argentina
| | - Gwen Lomberk
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul Urrutia
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, Equipe labélisée Ligue Nationale contre le cancer, France; Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina
| | - Nicolas Fraunhoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, Equipe labélisée Ligue Nationale contre le cancer, France; Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina; Buenos Aires University, Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires C1121ABG, Argentina.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, Equipe labélisée Ligue Nationale contre le cancer, France; Programa franco-argentino de estudio del Cáncer de Páncreas, Argentina; Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina; University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Xie J, Shu X, Xie Z, Tang J, Wang G. Pharmacological modulation of cellular senescence: Implications for breast cancer progression and therapeutic strategies. Eur J Pharmacol 2025; 997:177475. [PMID: 40049574 DOI: 10.1016/j.ejphar.2025.177475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 05/02/2025]
Abstract
Senescence, defined by the cessation of cell proliferation, plays a critical and multifaceted role in breast cancer progression and treatment. Senescent cells produce senescence-associated secretory phenotypes (SASP) comprising inflammatory cytokines, chemokines, and small molecules, which actively shape the tumor microenvironment, influencing cancer development, progression, and metastasis. This review provides a comprehensive analysis of the types and origins of senescent cells in breast cancer, alongside their markers and detection methods. Special focus is placed on pharmacological strategies targeting senescence, including drugs that induce or inhibit senescence, their molecular mechanisms, and their roles in therapeutic outcomes when combined with chemotherapy and radiotherapy. By exploring these pharmacological interventions and their impact on breast cancer treatment, this review underscores the potential of senescence-targeting therapies to revolutionize breast cancer management.
Collapse
Affiliation(s)
- Jialing Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Xianlong Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
| |
Collapse
|
3
|
Jing F, Mu J, Liu J, Hu C, Wu F, Gao Q. Senescent vascular endothelial cells promote oral squamous cell carcinoma progression through complement C3 activation. Arch Oral Biol 2025; 174:106242. [PMID: 40158302 DOI: 10.1016/j.archoralbio.2025.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/09/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE The tumour microenvironment (TME) plays a critical role in therapeutic response and clinical outcomes in cancer. Senescent stromal cells have been shown to promote tumour progression; however, the role of senescent vascular endothelial cells (VECs) in oral squamous cell carcinoma (OSCC) remains largely unknown. In this study, we aimed to explore the effects and potential mechanisms of senescent VECs in OSCC progression. DESIGN Cisplatin was used to induce senescence in two endothelial cell lines. Senescence-associated β-galactosidase (SA-β-gal) staining, immunoblotting, cell cycle and proliferation assays, and migration and invasion assays were performed to access senescence development and biological behavior. Additionally, RNA sequencing analysis, multiplex immunohistochemical staining, immunoblotting, and xenograft mouse models were used to investigate the senescence-associated secretory phenotype of senescent VECs during OSCC progression and its potential molecular mechanisms. RESULTS Cisplatin-induced senescent VECs exhibited senescence-related changes, including positive SA-β-gal expression and upregulation of p16, p21, and p53, along with attenuated proliferation and migration. Notably, cisplatin-induced VEC senescence promoted OSCC cell proliferation, migration, and invasion by activating complement C3. Increased gene and protein levels of C3 were observed in cisplatin-treated senescent VECs. Inhibition of C3 in vitro and in vivo reduced OSCC cell proliferation and invasion. CONCLUSION Senescent VECs induced by cisplatin promote OSCC proliferation and invasion through complement C3 activation. Targeting complement C3 in senescent VECs may offer a novel therapeutic strategy for OSCC treatment.
Collapse
Affiliation(s)
- Fangqi Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Can Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Qinghong Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Grossi E, Marchese FP, González J, Goñi E, Fernández-Justel JM, Amadoz A, Herranz N, Puchades-Carrasco L, Montes M, Huarte M. A lncRNA-mediated metabolic rewiring of cell senescence. Cell Rep 2025; 44:115747. [PMID: 40408249 DOI: 10.1016/j.celrep.2025.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/21/2025] [Accepted: 05/06/2025] [Indexed: 05/25/2025] Open
Abstract
Despite not proliferating, senescent cells remain metabolically active to maintain the senescence program. However, the mechanisms behind this metabolic reprogramming are not well understood. We identify senescence-induced long noncoding RNA (sin-lncRNA), a previously uncharacterized long noncoding RNA (lncRNA), a key player in this response. While strongly activated in senescence by C/EBPβ, sin-lncRNA loss reinforces the senescence program by altering oxidative phosphorylation and rewiring mitochondrial metabolism. By interacting with dihydrolipoamide S-succinyltransferase (DLST), it facilitates its mitochondrial localization. Depletion of sin-lncRNA causes DLST nuclear translocation, leading to transcriptional changes in oxidative phosphorylation (OXPHOS) genes. While not expressed in highly proliferative cancer cells, it is strongly induced upon cisplatin-induced senescence. Depletion of sin-lncRNA in ovarian cancer cells reduces oxygen consumption and increases extracellular acidification, sensitizing cells to cisplatin treatment. Altogether, these results indicate that sin-lncRNA is specifically induced in senescence to maintain metabolic homeostasis, unveiling an RNA-dependent metabolic rewiring specific to senescent cells.
Collapse
Affiliation(s)
- Elena Grossi
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Francesco P Marchese
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Goñi
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - José Miguel Fernández-Justel
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Alicia Amadoz
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Nicolás Herranz
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Leonor Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46026 Valencia, Spain
| | - Marta Montes
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
5
|
Ali MM, Simmons P, Warren A, Gatrell LB, Resende-Coelho A, McElroy T, Allen AR, Almeida M. The adverse effects of chemotherapy on bone mass are not prevented by senolytics. Sci Rep 2025; 15:17279. [PMID: 40389522 PMCID: PMC12089391 DOI: 10.1038/s41598-025-01717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
Cancer survivors experience many short- and long-term side effects caused by chemotherapy, including low bone mineral density and deterioration of bone microarchitecture. Administration of chemotherapy drugs to disease free mice causes rapid bone loss. However, whether the bone effects persist throughout life and the mechanisms responsible remain unclear. One plausible cause of chemotherapy-induced bone loss is cellular senescence. Here, female mice were administered doxorubicin, cyclophosphamide and docetaxel, a chemotherapy regimen commonly used in breast cancer patients, in combination with two types of drugs that kill senescent cells (senolytics), namely dasatinib + quercetin or piperlongumine. Mice receiving chemotherapy experienced a rapid decrease in trabecular bone mass, which was detectable two weeks after initiation of treatment and was associated with increased expression of senescence markers. None of the senolytics prevented the effects of chemotherapy on bone mass. In separate experiments, we examined the skeletal effects of chemotherapy six and twelve months after the cessation of treatment. The deleterious effects of chemotherapy on bone mass remained up to 12 months after cessation of treatment, while no markers of senescence could be detected in bone. Together, these results suggest that the deleterious effects of this chemotherapy regimen on bone health are not due to the accumulation of senescent cells.
Collapse
Affiliation(s)
- Md Mohsin Ali
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aaron Warren
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Landon B Gatrell
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ana Resende-Coelho
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
6
|
Jochems F, Baltira C, MacDonald JA, Daniels V, Mathur A, de Gooijer MC, van Tellingen O, Letai A, Bernards R. Senolysis by ABT-263 is associated with inherent apoptotic dependence of cancer cells derived from the non-senescent state. Cell Death Differ 2025; 32:855-865. [PMID: 39706991 DOI: 10.1038/s41418-024-01439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
Cellular senescence is a stress response that cells can employ to resist cell death. Senescent cells rely on anti-apoptotic signaling for their survival, which can be targeted by senolytic agents, like the BCL-XL, BCL-2, BCL-W inhibitor ABT-263. However, the response to ABT-263 of senescent cancer cells ranges from highly sensitive to refractory. Using BH3 profiling, we identify here apoptotic blocks in cancer cells that are resistant to this senolytic treatment and discover a correlation between mitochondrial apoptotic priming and cellular sensitivity to ABT-263 in senescence. Intriguingly, ABT-263 sensitivity correlates with overall mitochondrial apoptotic priming, not only in senescence but also in the parental state. Moreover, we confirm that ABT-263 exposure increases dependency on MCL-1, which is most enhanced in ABT-263 sensitive cells. ABT-263 resistant cells however upregulate MCL-1, while sensitive cells exhibit low levels of this anti-apoptotic protein. Overall, our data indicate that the response of senescent cells to ABT-263 is predetermined by the mitochondrial apoptotic priming state of the parental cells, which could serve as a predictive biomarker for response to senolytic therapy.
Collapse
Affiliation(s)
- Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Chrysiida Baltira
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Julie A MacDonald
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Veerle Daniels
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Abhijeet Mathur
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester; The Christie NHS Foundation Trust, Manchester, UK
| | - Olaf van Tellingen
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Anthony Letai
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands.
| |
Collapse
|
7
|
Rys RN, Calcinotto A. Senescent neutrophils: a hidden role in cancer progression. Trends Cell Biol 2025; 35:399-411. [PMID: 39362804 DOI: 10.1016/j.tcb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Neutrophils have recently received increased attention in cancer because they contribute to all stages of cancer. Neutrophils are so far considered to have a short half-life. However, a growing body of literature has shown that tumor-associated neutrophils (TANs) acquire a prolonged lifespan. This review discusses recent work surrounding the mechanisms by which neutrophils can persist in the tumor microenvironment (TME). It also highlights different scenarios for therapeutic targeting of protumorigenic neutrophils, supporting the idea that, in tumors, inhibition of neutrophil recruitment is not sufficient because these cells can persist and remain hidden from current interventions. Hence, the elimination of long-lived neutrophils should be pursued to increase the efficacy of standard therapy.
Collapse
Affiliation(s)
- Ryan N Rys
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland.
| |
Collapse
|
8
|
Lavarti R, Alvarez-Diaz T, Marti K, Kar P, Raju RP. The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging. Ageing Res Rev 2025; 109:102760. [PMID: 40318767 DOI: 10.1016/j.arr.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Aging is characterized by a steady loss of physiological integrity, leading to impaired function and increased vulnerability to death. Cell senescence is a biological process that progresses with aging and is believed to be a key driver of age-related diseases. Senescence, a hallmark of aging, also demonstrates its beneficial physiological aspects as an anti-cancer, pro-regenerative, homeostatic, and developmental mechanism. A transitory response in which the senescent cells are quickly formed and cleared may promote tissue regeneration and organismal fitness. At the same time, senescence-related secretory phenotypes associated with extended senescence can have devastating effects. The fact that the interaction between senescent cells and their surroundings is very context-dependent may also help to explain this seemingly opposing pleiotropic function. Further, mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. This review summarizes the mechanism of cellular senescence and the significance of acute senescence. We concisely introduced the context-dependent role of senescent cells and SASP, aspects of mitochondrial biology altered in the senescent cells, and their impact on the senescent phenotype. Finally, we conclude with recent therapeutic advancements targeting cellular senescence, focusing on acute injuries and age-associated diseases. Collectively, these insights provide a future roadmap for the role of senescence in organismal fitness and life span extension.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tatiana Alvarez-Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kyarangelie Marti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
9
|
Bajtai E, Kiss C, Bakos É, Langó T, Lovrics A, Schád É, Tisza V, Hegedűs K, Fürjes P, Szabó Z, Tusnády GE, Szakács G, Tantos Á, Spisák S, Tóvári J, Füredi A. Therapy-induced senescence is a transient drug resistance mechanism in breast cancer. Mol Cancer 2025; 24:128. [PMID: 40312750 PMCID: PMC12044945 DOI: 10.1186/s12943-025-02310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/23/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Therapy-induced senescence (TIS) is considered a permanent cell cycle arrest following DNA-damaging treatments; however, its irreversibility has recently been challenged. Here, we demonstrate that escape from TIS is universal across breast cancer cells. Moreover, TIS provides a reversible drug resistance mechanism that ensures the survival of the population, and could contribute to relapse. METHODS TIS was induced in four different breast cancer cell line with high-dose chemotherapy and cultured until cells escaped TIS. Parental, TIS and repopulating cells were analyzed by bulk and single-cell RNA sequencing and surface proteomics. A genetically engineered mouse model of triple-negative breast cancer was used to prove why current senolytics cannot overcome TIS in tumors. RESULTS Screening the toxicity of a diverse panel of FDA-approved anticancer drugs revealed that TIS meditates resistance to half of these compounds, despite their distinct mechanism of action. Bulk and single-cell RNA sequencing, along with surface proteome analysis, showed that while parental and repopulating cells are almost identical, TIS cells are significantly different from both, highlighting their transient nature. Furthermore, investigating dozens of known drug resistance mechanisms offered no explanation for this unique drug resistance pattern. Additionally, TIS cells expressed a gene set associated with immune evasion and a potential KRAS-driven escape mechanism from TIS. CONCLUSION Our results reveal that TIS, as a transient drug resistance mechanism, could contribute to overcome the immune response and to relapse by reverting to a proliferative stage.
Collapse
Affiliation(s)
- Eszter Bajtai
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Semmelweis University Doctoral School, Budapest, 1085, Hungary
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
- National Laboratory for Drug Research and Development, Budapest, 1117, Hungary
| | - Csaba Kiss
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Éva Bakos
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Tamás Langó
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Anna Lovrics
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Éva Schád
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Viktória Tisza
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Károly Hegedűs
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Semmelweis University Doctoral School, Budapest, 1085, Hungary
| | - Péter Fürjes
- Institute of Technical Physics and Materials Science, HUN-REN Centre of Energy Research, Budapest, 1121, Hungary
| | - Zoltán Szabó
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6725, Hungary
| | - Gábor E Tusnády
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, 1085, Hungary
| | - Gergely Szakács
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Center for Cancer Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Ágnes Tantos
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Sándor Spisák
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| | - József Tóvári
- Semmelweis University Doctoral School, Budapest, 1085, Hungary.
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary.
| | - András Füredi
- Institute of Molecular Life Sciences, Center of Excellence of The Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
- Semmelweis University Doctoral School, Budapest, 1085, Hungary.
- National Laboratory for Drug Research and Development, Budapest, 1117, Hungary.
- Institute of Technical Physics and Materials Science, HUN-REN Centre of Energy Research, Budapest, 1121, Hungary.
- Physiological Controls Research Center, University Research and Innovation Center, Obuda University, Budapest, 1034, Hungary.
| |
Collapse
|
10
|
Alcon C, Kovatcheva M, Morales-Sánchez P, López-Polo V, Torres T, Puig S, Lu A, Samitier J, Enrich C, Serrano M, Montero J. HRK downregulation and augmented BCL-xL binding to BAK confer apoptotic protection to therapy-induced senescent melanoma cells. Cell Death Differ 2025; 32:646-656. [PMID: 39627361 PMCID: PMC11982230 DOI: 10.1038/s41418-024-01417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 04/11/2025] Open
Abstract
Senescent cells are commonly detected in tumors after chemo and radiotherapy, leading to a characteristic cellular phenotype that resists apoptotic cell death. In this study, we used multiple melanoma cell lines, molecular markers, and therapies to investigate the key role of the BCL-2 family proteins in the survival of senescent cells. We first used BH3 profiling to assess changes in apoptotic priming upon senescence induction. Unexpectedly, not all cell types analyzed showed a decrease in apoptotic priming, BIM was downregulated, there was variability in BAX expression and BAK remained constant or increased. Therefore, there was not a clear pattern for pro-survival adaptation. Many studies have been devoted to find ways to eliminate senescent cells, leading to one of the most studied senolytic agents: navitoclax, a promiscuous BH3 mimetic that inhibits BCL-2, BCL-xL and BCL-W. While it is known that the BCL-2 family of proteins is commonly upregulated in senescent cells, the complexity of the apoptotic network has not been fully explored. Interestingly, we found distinct protein expression changes always leading to a BCL-xL mediated pro-survival adaptation, as assessed by BH3 profiling. When analyzing potential therapeutic strategies, we observed a stronger senolytic activity in these melanoma cell lines when specifically targeting BCL-xL using A-1331852, navitoclax or the PROTAC BCL-xL degrader DT2216. We found that the sensitizer protein HRK was systematically downregulated when senescence was induced, leading to an increased availability of BCL-xL. Furthermore, we identified that the main apoptotic inhibition was shaped by BCL-xL and BAK binding increase that prevented mitochondrial permeabilization and apoptosis. To our knowledge, this is the first time that the molecular basis for BCL-xL anti-apoptotic adaptation in senescence is described, paving the way for the development of new molecules that either prevent HRK downregulation or displace BCL-xL binding to BAK to be used as senolytics.
Collapse
Affiliation(s)
- Clara Alcon
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Paula Morales-Sánchez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Vanessa López-Polo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Teresa Torres
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Susana Puig
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica., Barcelona, Spain
| | - Albert Lu
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Joan Montero
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
11
|
Nehme J, Maassen S, Bravaccini S, Zanoni M, Gianni C, De Giorgi U, Soto-Gamez A, Altulea A, Gheorghe T, Wang B, Demaria M. Pharmacological CDK4/6 inhibition promotes vulnerability to lysosomotropic agents in breast cancer. EMBO J 2025; 44:1921-1942. [PMID: 39930269 PMCID: PMC11961731 DOI: 10.1038/s44318-025-00371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is a leading cause of mortality worldwide. Pharmacological inhibitors of cyclin-dependent kinases (CDK) 4 and 6 (CDK4/6i) inhibit breast cancer growth by inducing a senescent-like state. However, the long-term treatment efficacy remains limited by the development of drug resistance, so clearance of senescent-like cancer cells may extend the durability of treatment. However, we show here that while CDK4/6i-treated breast cancer cells exhibit various senescence-associated phenotypes, they remain insensitive to common senolytic compounds. By searching for novel vulnerabilities, we identify a significantly increased lysosomal mass and altered lysosomal structure across various breast cancer cell types upon exposure to CDK4/6i in preclinical systems and clinical specimens. We demonstrate that these CDK4/6i-induced lysosomal alterations render breast cancer cells sensitive to lysosomotropic agents, such as L-leucyl-L-leucine methyl ester (LLOMe) and salinomycin. Importantly, sequential treatment with CDK4/6i and lysosomotropic agents effectively reduces the growth of both hormone receptor-positive (HR+) and subsets of triple-negative breast cancer (TNBC) cells in vivo. This sequential therapeutic strategy offers a promising approach to eliminate CDK4/6i-induced senescent(-like) cells, potentially reducing tumor recurrence and enhancing the overall efficacy of breast cancer therapy.
Collapse
Affiliation(s)
- Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Sjors Maassen
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Caterina Gianni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Abel Soto-Gamez
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Abdullah Altulea
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Teodora Gheorghe
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands.
| |
Collapse
|
12
|
Belmonte-Fernández A, Herrero-Ruíz J, Limón-Mortés MC, Sáez C, Japón MÁ, Mora-Santos M, Romero F. Overexpression of βTrCP1 elicits cell death in cisplatin-induced senescent cells. Cell Death Dis 2025; 16:203. [PMID: 40133262 PMCID: PMC11937513 DOI: 10.1038/s41419-025-07556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/22/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Senescence is a non-proliferative cellular state derived from aging or in response to exogenous insults, such as those that cause DNA damage. As a result of cancer treatments like cisplatin, certain tumor cells may undergo senescence. However, rather than being beneficial for patients, this is detrimental because these cells might proliferate again under specific conditions and, more importantly, because they synthesize and secrete molecules that promote the proliferation of nearby cells. Therefore, to achieve complete tumor remission, it is necessary to develop senolytic compounds to eliminate senescent cells. Here, we studied the role of βTrCP1 in cell proliferation and senescence and found that lentiviral overexpression of βTrCP1 induces the death of senescent cells obtained after cisplatin treatment in both two-dimensional cell cultures and tumorspheres. Mechanistically, we demonstrated that overexpression of βTrCP1 triggers proteasome-dependent degradation of p21 CIP1, allowing damaged cells to progress through the cell cycle and consequently die. Furthermore, we identified nucleophosmin 1 (NPM1) as the intermediary molecule involved in the effect of βTrCP1 on p21 CIP1. We determined that increased amounts of βTrCP1 partially retains NPM1 in the nucleoli, preventing it from associating with p21 CIP1, thus leaving it unprotected from degradation by the proteasome. These results have allowed us to discover a potential new target for senolytic drugs, as retaining NPM1 in the nucleoli under senescent conditions induces cell death.
Collapse
Affiliation(s)
| | - Joaquín Herrero-Ruíz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Miguel Á Japón
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Mar Mora-Santos
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
13
|
Zhang X, Gao Y, Zhang S, Wang Y, Du Y, Hao S, Ni T. The Regulation of Cellular Senescence in Cancer. Biomolecules 2025; 15:448. [PMID: 40149983 PMCID: PMC11940315 DOI: 10.3390/biom15030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Cellular senescence is a stable state of cell cycle arrest caused by telomere shortening or various stresses. After senescence, cells cease dividing and exhibit many age-related characteristics. Unlike the halted proliferation of senescence cells, cancer cells are considered to have unlimited growth potential. When cells display senescence-related features, such as telomere loss or stem cell failure, they can inhibit tumor development. Therefore, inducing cells to enter a senescence state can serve as a barrier to tumor cell development. However, many recent studies have found that sustained senescence of tumor cells or normal cells under certain circumstances can exert environment-dependent effects of tumor promotion and inhibition by producing various cytokines. In this review, we first introduce the causes and characteristics of induced cellular senescence, analyze the senescence process of immune cells and cancer cells, and then discuss the dual regulatory role of cell senescence on tumor growth and senescence-induced therapies targeting cancer cells. Finally, we discuss the role of senescence in tumor progression and treatment opportunities, and propose further studies on cellular senescence and cancer therapy.
Collapse
Affiliation(s)
- Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Siyu Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yixiong Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| |
Collapse
|
14
|
Pioger A, Loison I, Metatla I, Spruyt N, Abbadie C, Dehennaut V. Comparative analysis of senescence induction by different chemotherapeutic agents in HCT116 colon cancer cells. Biochem Biophys Res Commun 2025; 752:151482. [PMID: 39946980 DOI: 10.1016/j.bbrc.2025.151482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Although chemotherapy-induced senescence (CIS) can slow tumor progression by halting the cell cycle, recent studies suggest that some cancer cells may escape this state, resume proliferation, and acquire a more aggressive phenotype. This phenomenon may contribute to chemotherapy resistance in colorectal cancer, highlighting the need to identify which treatments can effectively induce senescence. We previously demonstrated that low doses of SN38 (the active form of irinotecan) and etoposide induce senescence in HCT116 colon cancer cells, accompanied by reprogramming of the Hexosamine Biosynthesis Pathway (HBP) and O-GlcNAcylation. Here, we investigated whether other chemotherapeutic agents also induce senescence in these cells and whether changes in HBP and O-GlcNAcylation are hallmark features of CIS. Our results show that doxorubicin and cisplatin induce senescence, while 5-FU and oxaliplatin do not. Senescence induced by doxorubicin and cisplatin was associated with decreased expression of GFAT (the rate-limiting enzyme of the HBP), OGT, and OGA (the enzymes driving O-GlcNAcylation cycling), along with reduced O-GlcNAcylation levels, consistent with our previous findings. This suggests that HBP reprogramming and O-GlcNAcylation changes are hallmarks of CIS. Furthermore, they highlight the differential ability of chemotherapeutic agents to induce senescence in colorectal cancer cells, which could have implications for optimizing treatment strategies and exploring therapeutic approaches to counteract CIS.
Collapse
Affiliation(s)
- Adrien Pioger
- Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Ingrid Loison
- Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Inès Metatla
- Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Nathalie Spruyt
- Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Corinne Abbadie
- Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Vanessa Dehennaut
- Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France.
| |
Collapse
|
15
|
Liu S, Meng Y, Zhang Y, Qiu L, Wan X, Yang X, Zhang Y, Liu X, Wen L, Lei X, Zhang B, Han J. Integrative analysis of senescence-related genes identifies robust prognostic clusters with distinct features in hepatocellular carcinoma. J Adv Res 2025; 69:107-123. [PMID: 38614215 PMCID: PMC11954806 DOI: 10.1016/j.jare.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024] Open
Abstract
INTRODUCTION Senescence refers to a state of permanent cell growth arrest and is regarded as a tumor suppressive mechanism, whereas accumulative evidence demonstrate that senescent cells play an adverse role during cancer progression. The scarcity of specific and reliable markers reflecting senescence level in cancer impede our understanding of this biological basis. OBJECTIVES Senescence-related genes (SRGs) were collected for integrative analysis to reveal the role of senescence in hepatocellular carcinoma (HCC). METHODS Consensus clustering was used to subtype HCC based on SRGs. Several computational methods, including single sample gene set enrichment analysis (ssGSEA), fuzzy c-means algorithm, were performed. Data of drug sensitivities were utilized to screen potential therapeutic agents for different senescence patients. Additionally, we developed a method called signature-related gene analysis (SRGA) for identification of markers relevant to phenotype of interest. Experimental strategies consisting quantitative real-time PCR (qRT-PCR), β-galactosidase assay, western blot, and tumor-T cell co-culture system were used to validate the findings in vitro. RESULTS We identified three robust prognostic clusters of HCC patients with distinct survival outcome, mutational landscape, and immune features. We further extracted signature genes of senescence clusters to construct the senescence scoring system and profile senescence level in HCC at bulk and single-cell resolution. Senescence-induced stemness reprogramming was confirmed both in silico and in vitro. HCC patients with high senescence were immune suppressed and sensitive to Tozasertib and other drugs. We suggested that MAFG, PLIN3, and 4 other genes were pertinent to HCC senescence, and MAFG potentially mediated immune suppression, senescence, and stemness. CONCLUSION Our findings provide insights into the role of SRGs in patients stratification and precision medicine.
Collapse
Affiliation(s)
- Sicheng Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Meng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaguang Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyang Yang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linda Wen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xue Lei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Aleksandrova Y, Neganova M. Antioxidant Senotherapy by Natural Compounds: A Beneficial Partner in Cancer Treatment. Antioxidants (Basel) 2025; 14:199. [PMID: 40002385 PMCID: PMC11851806 DOI: 10.3390/antiox14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Aging is a general biological process inherent in all living organisms. It is characterized by progressive cellular dysfunction. For many years, aging has been widely recognized as a highly effective mechanism for suppressing the progression of malignant neoplasms. However, in recent years, increasing evidence suggests a "double-edged" role of aging in cancer development. According to these data, aging is not only a tumor suppressor that leads to cell cycle arrest in neoplastic cells, but also a cancer promoter that ensures a chronic proinflammatory and immunosuppressive microenvironment. In this regard, in our review, we discuss recent data on the destructive role of senescent cells in the pathogenesis of cancer. We also identify for the first time correlations between the modulation of the senescence-associated secretory phenotype and the antitumor effects of naturally occurring molecules.
Collapse
Affiliation(s)
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, Bld. 1, Moscow 119991, Russia;
| |
Collapse
|
17
|
Long TT, Phuong L, Van Nguyen Dang L, Ngoc TTB, Thao DTP, Trinh NTM. Petroleum ether extract of Elephantopus mollis induces senescence and inhibits invasion in breast cancer MDA-MB-231 cells. 3 Biotech 2025; 15:45. [PMID: 39834568 PMCID: PMC11741969 DOI: 10.1007/s13205-025-04214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
Elephantopus mollis Kunth H.B et Kunth is an herbal plant employed customarily for the treatment of numerous maladies, notably cancers. Here in this research, we studied the effects of E. mollis (EM) petroleum ether extract (EM-PE) on the highly aggressive breast cancer cell line MDA-MB-231. The result from phytochemical analysis demonstrated the presence of tannins and saponins in EM-PE, of which, saponins made up more than 50% of the extract's mass. Cytotoxicity results, which were obtained from MTT assay and microscopic observation, suggested the potential of EM-PE to inhibit the growth of MDA-MB-231 cells with low IC50 value (approximately 30 μg/mL) and remarkably high selectivity index (> 4.78). Further evaluation indicated that EM-PE inhibited MDA-MB-231 cells growth in a dose-dependent manner. Interestingly, we found that EM-PE induced senescence in MDA-MB-231 cells via the activation of senescence-associated β-galactosidase and the transcriptional upregulation of p21 (3.7 times) and p27 (1.4 times). In consistent with this effect, pre-treated cancer cells showed no proliferative recovery after EM-PE removal. In addition, EM-PE could dramatically hinder breast cancer cells invasion (as much as 15.07-fold), which was shown in Transwell invasion assay, together with the decreased transcription of the important metastatic-involved SNAIL1 gene. Overall, our study, for the first time, exhibits the anti-proliferation and anti-invasion effects of EM extract on highly metastasis breast cancer cell line MDA-MB-231. Hence, these findings contributed to the knowledge of anti-cancer potential of this herbal plant. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04214-8.
Collapse
Affiliation(s)
- Tran Thanh Long
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
| | - Le Phuong
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
| | - Le Van Nguyen Dang
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
| | - Truong Thi Bich Ngoc
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Dang Thi Phuong Thao
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Laboratory of Molecular Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Laboratory of Cancer Research, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Thi My Trinh
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, 227 Nguyen Van Cu, Ho Chi Minh City, 700000 Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
18
|
Hwang HJ, Kang D, Shin J, Jung J, Ko S, Jung KH, Hong SS, Park JE, Oh MJ, An HJ, Yang WH, Ko YG, Cha JH, Lee JS. Therapy-induced senescent cancer cells contribute to cancer progression by promoting ribophorin 1-dependent PD-L1 upregulation. Nat Commun 2025; 16:353. [PMID: 39753537 PMCID: PMC11699195 DOI: 10.1038/s41467-024-54132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/02/2024] [Indexed: 01/06/2025] Open
Abstract
Conventional chemotherapy- and radiotherapy-induced cancer senescence, which is characterized by poor proliferation, drug resistance, and senescence-associated secretory phenotype, has gained attention as contributing to cancer relapse and the development of an immunosuppressive tumor microenvironment. However, the association between cancer senescence and anti-tumor immunity is not fully understood. Here, we demonstrate that senescent cancer cells increase the level of PD-L1 by promoting its transcription and glycosylation. We identify ribophorin 1 as a key regulator of PD-L1 glycosylation during cancer senescence. Ribophorin 1 depletion reduces this elevated level of PD-L1 through the ER-lysosome-associated degradation pathway, thereby increasing the susceptibility of senescent cancer cells to T-cell-mediated killing. Consistently, ribophorin 1 depletion suppresses tumor growth by decreasing PD-L1 levels and boosting cytotoxic T lymphocyte activity in male mice. Moreover, ribophorin 1-targeted or anti-PD-1 therapy reduces the number of senescent cancer cells in irradiated tumors and suppresses cancer recurrence through the activation of cytotoxic T lymphocytes. These results provide crucial insights into how senescent cancer cells can escape T-cell immunity following cancer treatment and thereby contribute to cancer recurrence. Our findings also highlight the therapeutic promise of targeting senescent cancer cells for cancer treatment.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Department of Molecular Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, Inha University, Incheon, Republic of Korea
| | - Donghee Kang
- Department of Molecular Medicine, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea
| | - Jisoo Shin
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Jonghun Jung
- Department of Molecular Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea
| | - Soyeon Ko
- Research Center for Controlling Intercellular Communication, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Kyung Hee Jung
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Soon-Sun Hong
- Research Center for Controlling Intercellular Communication, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Ji Eun Park
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia-Pacific Glycomics Reference Site, Daejeon, Republic of Korea
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia-Pacific Glycomics Reference Site, Daejeon, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia-Pacific Glycomics Reference Site, Daejeon, Republic of Korea
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jong-Ho Cha
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea.
- Biohybrid Systems Research Center, Inha University, Incheon, Republic of Korea.
| | - Jae-Seon Lee
- Department of Molecular Medicine, Inha University, Incheon, Republic of Korea.
- Research Center for Controlling Intercellular Communication, Inha University, Incheon, Republic of Korea.
- Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
19
|
Magkouta S, Markaki E, Evangelou K, Petty R, Verginis P, Gorgoulis V. Decoding T cell senescence in cancer: Is revisiting required? Semin Cancer Biol 2025; 108:33-47. [PMID: 39615809 DOI: 10.1016/j.semcancer.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Senescence is an inherent cellular mechanism triggered as a response to stressful insults. It associates with several aspects of cancer progression and therapy. Senescent cells constitute a highly heterogeneous cellular population and their identification can be very challenging. In fact, the term "senescence" has been often misused. This is also true in the case of immune cells. While several studies indicate the presence of senescent-like features (mainly in T cells), senescent immune cells are poorly described. Under this prism, we herein review the current literature on what has been characterized as T cell senescence and provide insights on how to accurately discriminate senescent cells against exhausted or anergic ones. We also summarize the major metabolic and epigenetic modifications associated with T cell senescence and underline the role of senescent T cells in the tumor microenvironment (TME). Moreover, we discuss how these cells associate with standard clinical therapeutic interventions and how they impact their efficacy. Finally, we underline the importance of precise identification and thorough characterization of "truly" senescent T cells in order to design successful therapeutic manipulations that would delay cancer incidence and maximize efficacy of immunotherapy.
Collapse
Affiliation(s)
- Sophia Magkouta
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Marianthi Simou and G.P. Livanos Labs, 1st Department of Critical Care and Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, "Evangelismos" Hospital, Athens 10676, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Efrosyni Markaki
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, Heraklion 70013, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, Heraklion 70013, Greece; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 70013, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK.
| |
Collapse
|
20
|
Zhu D, Pan Y, Yang Y, Wang S. Regulation of the Cilia as a Potential Treatment for Senescence and Tumors: A Review. J Cell Physiol 2025; 240:e31499. [PMID: 39660388 DOI: 10.1002/jcp.31499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Millions of people worldwide die from malignant tumors every year, and the current clinical treatment is still based on radiotherapy and chemotherapy. Immunotherapy-adjuvant chemotherapy is widely applied, yet resistance to various factors persists in the management of advanced malignancies. Recently researchers have gradually discovered that the integrity of primary cilia is closely related to many diseases. The phenotypic changes in primary cilia are found in some cases of progeria, tumorigenesis, and drug resistance. Primary cilia seem to mediate signaling during these diseases. Hedgehog inhibitors have emerged in recent years to treat tumors by controlling signaling proteins on primary cilia. There is evidence for the use of anti-tumor drugs to treat senescence-related disease. Considering the close relationship between aging and obesity, as well as the obesity is the phenotype of many ciliopathies. Therefore, we speculate that some anti-tumor or anti-aging drugs can treat ciliopathies. Additionally, there is evidence suggesting that anti-aging drugs for tumor treatment, in which the process may be mediated by cilia. This review elucidates for the first time that cilia may be involved in the regulation of senescence, metabolic, tumorigenesis, and tumor resistance and hypothesizes that cilia can be regulated to treat these diseases in the future.
Collapse
Affiliation(s)
- Danping Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Omole JG, Udom GJ, Aturamu A, Agbana RD, Aziakpono OM, Oritsemuelebi B, Bukke SPN, Okon IA, Yemitan OK. Cardiac glycosides: Looking beyond heart failure and atrial fibrillation. Indian J Pharmacol 2025; 57:33-47. [PMID: 40324829 DOI: 10.4103/ijp.ijp_934_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 04/01/2025] [Indexed: 05/07/2025] Open
Affiliation(s)
- Joseph G Omole
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Godswill J Udom
- Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Federal University Oye-Ekiti, Ado-Ekiti, Nigeria
| | - Ayodeji Aturamu
- Department of Medical Physiology, College of Medicine, Ekiti State University, Ado-Ekiti, Nigeria
| | - Richard D Agbana
- Department of Community Medicine, College of Medicine and Health Sciences, Afe-Babalola University, Ado-Ekiti, Nigeria
| | - Omoirri Moses Aziakpono
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Federal University Oye-Ekiti, Ado-Ekiti, Nigeria
- Department of Pharmacology, Faculty of Pharmaceutical Sciences and Medicine, Kampala International University, Gongolamboto-Dare Salaam, Tanzania
| | | | - Sarad Pawar Naik Bukke
- Department of Pharmaceutics and Pharmaceutical Technology, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Idara A Okon
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Omoniyi K Yemitan
- Department of Pharmacology, Therapeutics and Toxicology, Lagos State University College of Medicine, Ikeja, Nigeria
| |
Collapse
|
22
|
Franco-Caspueñas S, García-Montoya C, Contreras J, Lassaletta L, Varela-Nieto I, Jiménez-Lara AM. Uncovering cellular senescence as a therapeutic target in NF2-related vestibular schwannoma. Hear Res 2025; 455:109165. [PMID: 39647233 DOI: 10.1016/j.heares.2024.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Vestibular schwannomas (VS) are complex and heterogeneous human tumors arising from the Schwann cell compartment of the vestibulocochlear nerve. VS cause significant neurological deficit such as hearing loss and vestibular impairment, and in some cases death due to brainstem compression. There is an urgent need to find pharmacotherapies for VS since surgical removal and stereotactic radiosurgery are the only effective treatments. Cancer therapy based in the combination of drug-induced senescence and senolytics may provide an innovative pharmacological alternative for VS management. METHODS Senescence-associated β-galactosidase (SA-β-GAL) activity detection assay, real-time polymerase chain reaction (RT-PCR), western blotting and immunofluorescence, together with viability assays were used to analyze the response to different chemotherapy drugs of the human VS HEI-193 cell line. Human VS tumor paraffin sections were also studied for SA-β-GAL-stained cells. RESULTS We found that chemotherapy compounds induced genotoxic stress and cellular senescence in HEI-193 VS cells, as characterized by increased SA-β-GAL activity, growth arrest, increased levels of the cyclin-dependent kinase inhibitor p21 and the accumulation of DNA damage. These cellular senescence markers were also accompanied by an increase of senescence-associated secretory phenotype (SASP): IL6, IL8, IL1B and MMP1. Induction of senescence by chemotherapy rendered HEI-193 VS cells as druggable targets for senolytic compounds, as navitoclax. Thus, treatment with navitoclax selectively eliminated bleomycin-induced senescent HEI-193 VS cells by activating the extrinsic and intrinsic apoptosis pathways. Our data also show the presence of senescent cells, SA-β-GAL-positive stain, in human VS tumors, which are not present in healthy great auricular nerve sections. CONCLUSIONS These findings suggest that a one-two punch strategy of pro-senescence therapy induced by chemotherapy treatment followed by senolytic therapy represents a new paradigm for the pharmacological treatment of VS.
Collapse
Affiliation(s)
- Sandra Franco-Caspueñas
- Neuropathology of Hearing and Myelinopathies Group. Institute for Biomedical Research Sols-Morreale, Spanish National Research Council, Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; Rare Disease Network Biomedical Research Centre (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Carmen García-Montoya
- Neuropathology of Hearing and Myelinopathies Group. Institute for Biomedical Research Sols-Morreale, Spanish National Research Council, Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; Rare Disease Network Biomedical Research Centre (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Julio Contreras
- Neuropathology of Hearing and Myelinopathies Group. Institute for Biomedical Research Sols-Morreale, Spanish National Research Council, Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; Rare Disease Network Biomedical Research Centre (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Department of Anatomy, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Luis Lassaletta
- Rare Disease Network Biomedical Research Centre (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain; Department of Otorhinolaryngology, La Paz University Hospital, 28046 Madrid, Spain
| | - Isabel Varela-Nieto
- Neuropathology of Hearing and Myelinopathies Group. Institute for Biomedical Research Sols-Morreale, Spanish National Research Council, Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; Rare Disease Network Biomedical Research Centre (CIBERER), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Ana M Jiménez-Lara
- Neuropathology of Hearing and Myelinopathies Group. Institute for Biomedical Research Sols-Morreale, Spanish National Research Council, Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain.
| |
Collapse
|
23
|
Wang Z, Chen C, Ai J, Gao Y, Wang L, Xia S, Jia Y, Qin Y. The crosstalk between senescence, tumor, and immunity: molecular mechanism and therapeutic opportunities. MedComm (Beijing) 2025; 6:e70048. [PMID: 39811803 PMCID: PMC11731108 DOI: 10.1002/mco2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression. This dual role necessitates a careful evaluation of the beneficial and detrimental aspects of senescence within the tumor microenvironment (TME). Specifically, senescent cells display a unique senescence-associated secretory phenotype that releases a diverse array of soluble factors affecting the TME. Furthermore, the impact of senescence on tumor-immune interaction is complex and often underappreciated. Senescent immune cells create an immunosuppressive TME favoring tumor progression. In contrast, senescent tumor cells could promote a transition from immune evasion to clearance. Given these intricate dynamics, therapies targeting senescence hold promise for advancing antitumor strategies. This review aims to summarize the dual effects of senescence on tumor progression, explore its influence on tumor-immune interactions, and discuss potential therapeutic strategies, alongside challenges and future directions. Understanding how senescence regulates antitumor immunity, along with new therapeutic interventions, is essential for managing tumor cell senescence and remodeling the immune microenvironment.
Collapse
Affiliation(s)
- Zehua Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chen Chen
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yaping Gao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lei Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shurui Xia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yongxu Jia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yanru Qin
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
24
|
Miyajima C, Nagasaka M, Aoki H, Toriuchi K, Yamanaka S, Hashiguchi S, Morishita D, Aoyama M, Hayashi H, Inoue Y. The Hippo Signaling Pathway Manipulates Cellular Senescence. Cells 2024; 14:13. [PMID: 39791714 PMCID: PMC11719916 DOI: 10.3390/cells14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest. It acts as a powerful defense mechanism against normal organ development and aging-related diseases. On the other hand, the accumulation of senescent cells without their proper removal contributes to the development or worsening of cancer and age-related diseases. A correlation was recently reported between the Hippo pathway and cellular senescence, which preserves tissue homeostasis. This review is the first to describe the close relationship between aging and the Hippo pathway, and provides insights into the mechanisms of aging and the development of age-related diseases. In addition, it describes advanced findings that may lead to the development of tissue regeneration therapies and drugs targeting rejuvenation.
Collapse
Affiliation(s)
- Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
- Department of Experimental Chemotherapy, Cancer Chemotherapy Center of JFCR, Tokyo 135-8550, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Kohki Toriuchi
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Shogo Yamanaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Sakura Hashiguchi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| |
Collapse
|
25
|
Zarco N, Dovas A, de Araujo Farias V, Nagaiah NK, Haddock A, Sims PA, Hambardzumyan D, Meyer CT, Canoll P, Rosenfeld SS, Kenchappa RS. Resistance to spindle inhibitors in glioblastoma depends on STAT3 and therapy induced senescence. iScience 2024; 27:111311. [PMID: 39640583 PMCID: PMC11617384 DOI: 10.1016/j.isci.2024.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
While mitotic spindle inhibitors specifically kill proliferating tumor cells without the toxicities of microtubule poisons, resistance has limited their clinical utility. Treating glioblastomas with the spindle inhibitors ispinesib, alisertib, or volasertib creates a subpopulation of therapy induced senescent cells that resist these drugs by relying upon the anti-apoptotic and metabolic effects of activated STAT3. Furthermore, these senescent cells expand the repertoire of cells resistant to these drugs by secreting an array of factors, including TGFβ, which induce proliferating cells to exit mitosis and become quiescent-a state that also resists spindle inhibitors. Targeting STAT3 restores sensitivity to each of these drugs by depleting the senescent subpopulation and inducing quiescent cells to enter the mitotic cycle. These results support a therapeutic strategy of targeting STAT3-dependent therapy-induced senescence to enhance the efficacy of spindle inhibitors for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Natanael Zarco
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Ashley Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dolores Hambardzumyan
- Departments of Oncological Sciences and Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven S. Rosenfeld
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rajappa S. Kenchappa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
26
|
Shih WH, Huang HL, HuangFu WC, Lin TE, Sung TY, Li MC, Huang GL, Chang YW, Yen SC, Hsieh HP, Hsu KC, Pan SL. Discovery of novel TANK-Binding Kinase 1 (TBK1) inhibitor against pancreatic ductal adenocarcinoma. Int J Biol Macromol 2024; 283:137296. [PMID: 39515714 DOI: 10.1016/j.ijbiomac.2024.137296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has limited treatment options, underscoring the urgent need for developing new therapies. The upregulation of TBK1 activity plays a crucial role in multiple pancreatic cancer-related signaling pathways, suggesting that inhibiting the kinase activity of TBK1 could be a promising strategy. Herein, we discovered a novel TBK1 inhibitor, LIB3S0280, using a structure-based virtual screening (SBVS) strategy. In the anti-proliferative and viability assays, LIB3S0280 showed significant inhibition against pancreatic cancer cell lines that highly express TBK1 with the GI50 values of 2.24 and 4.71 μM and IC50 values of 6.64 and 10.98 μM at 96 h. For the downstream targets, LIB3S0280 can inhibit TBK1 downstream signaling by decreasing the phosphorylation of IκBα and AKT better than a known TBK1 inhibitor, BX-795. Furthermore, PDAC cells were arrested in G2/M and underwent apoptosis or senescence with the treatment of LIB3S0280. These findings suggest that TBK1 inhibitor LIB3S0280 has great potential as a lead compound in the further development of a novel treatment for PDAC.
Collapse
Affiliation(s)
- Wan-Hsi Shih
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Li Huang
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mu-Chun Li
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Guan-Lin Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Wei Chang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung Medical Center, Keelung, Taiwan
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Cheng Hsu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Shiow-Lin Pan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
27
|
Hartono M, Baker AG, Else TR, Evtushenko AS, Bohndiek SE, Muñoz-Espín D, Fruk L. Photoacoustic polydopamine-indocyanine green (PDA-ICG) nanoprobe for detection of senescent cells. Sci Rep 2024; 14:29506. [PMID: 39604512 PMCID: PMC11603024 DOI: 10.1038/s41598-024-79667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Cellular senescence is considered an important tumour suppression mechanism in response to damage and oncogenic stress in early lesions. However, when senescent cells are not immune-cleared and persist in the tumour microenvironment, they can drive a variety of tumour-promoting activities, including cancer initiation, progression, and metastasis. Additionally, there is compelling evidence demonstrating a direct connection between chemo(radio)therapy-induced senescence and the development of drug resistance and cancer recurrence. Therefore, detection of senescent cells in tissues holds great promise for predicting cancer occurrence earlier, assessing tumour progression, aiding patient stratification and prognosis, and informing about the efficacy of potential senotherapies. However, effective detection of senescent cells is limited by lack of biomarkers and readout strategies suitable for in vivo clinical imaging. To this end, a nanoprobe composed of biocompatible polydopamine (PDA) nanoparticle doped with FDA-approved indocyanine green (ICG) dye, namely PDA-ICG, was designed as a contrast agent for senescence detection using photoacoustic imaging (PAI). In an in vitro model of chemotherapy-induced senescence, PDA-ICG nanoprobe showed an elevated uptake in senescent cells relative to cancer cells. In addition to its improved photostability, 2.5-fold enhancement in photoacoustic signal relative to ICG was observed. Collectively, the results indicate that the PDA-ICG nanoprobe has the potential to be used as a contrast agent for senescence detection of chemotherapy-induced senescence using PAI.
Collapse
Affiliation(s)
- Muhamad Hartono
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Andrew G Baker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Thomas R Else
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Alexander S Evtushenko
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Sarah E Bohndiek
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Yang S, Ko M, Hur SC, Lee EK, Jeong SM. SF3B4 Regulates Cellular Senescence and Suppresses Therapy-induced Senescence of Cancer Cells. Cancer Genomics Proteomics 2024; 21:622-629. [PMID: 39467623 PMCID: PMC11534033 DOI: 10.21873/cgp.20478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND/AIM Cellular senescence is a state in which cells permanently exit the cell cycle, preventing tumor growth, but it can also contribute to aging and chronic inflammation. Senescence induced by cancer therapies, known as therapy-induced senescence (TIS), halts cancer cell proliferation and prevents metastasis. TIS has been investigated as an important therapeutic approach that could minimize cytotoxicity effects. This study aimed to elucidate the role of splicing factor 3B subunit 4 (SF3B4) in cellular senescence and TIS in cancer cells. MATERIALS AND METHODS β-galactosidase staining was used to examine senescence induction. SF3B4 and p21 expression were determined by RT-qPCR and western blot. Cell proliferation and cell death were evaluated. RESULTS SF3B4 expression decreases in replicative senescent human fibroblasts and its knockdown induces senescence via a p21-dependent pathway. In A549 non-small cell lung cancer (NSCLC) cells, SF3B4 knockdown also increased senescence markers. Notably, SF3B4 overexpression mitigated doxorubicin-induced senescence in A549 cells. CONCLUSION SF3B4 regulates senescence, and this study highlights its potential as a therapeutic target for developing better cancer treatment strategies by leveraging TIS to suppress tumor growth and enhance treatment efficacy.
Collapse
Affiliation(s)
- Seungyeon Yang
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Republic of Korea
| | - Minbeom Ko
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Republic of Korea
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, U.S.A
| | - Eun Kyung Lee
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Min Jeong
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
29
|
Wang Z, Chen Y, Fang H, Xiao K, Wu Z, Xie X, Liu J, Chen F, He Y, Wang L, Yang C, Pei R, Shao D. Reprogramming cellular senescence in the tumor microenvironment augments cancer immunotherapy through multifunctional nanocrystals. SCIENCE ADVANCES 2024; 10:eadp7022. [PMID: 39485841 PMCID: PMC11529718 DOI: 10.1126/sciadv.adp7022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024]
Abstract
Harnessing the immunogenic potential of senescent tumor cells provides an opportunity to remodel tumor microenvironment (TME) and boost antitumor immunity. However, this potential needs to be sophisticatedly wielded to avoid additional immunosuppressive capacity of senescent cells. Our study shows that blocking the JAK2/STAT3 pathway enhances immunogenic efficacy of Aurora kinase inhibitor alisertib (Ali)-induced senescence by reducing immunosuppressive senescence-associated secretory phenotype (SASP) while preserving immunogenic SASP. Hypothesizing that SASP reprogramming with Ali and JAK2 inhibitor ruxolitinib (Rux) will benefit cancer immunotherapy, we create nanoparticulate crystals (Ali-Rux) composed of Ali and Rux with a fully active pharmaceutical ingredient. Immunization with Ali-Rux-orchestrated senescent cells promotes stronger activation of antigen-presenting cells, enhancing antitumor immune surveillance. This approach remodels the TME by increasing CD8+ T cell and NK recruitment and activation while decreasing MDSCs. Combined with PD-L1 blockade, Ali-Rux elicits a durable antitumor immune response, suggesting the TME reshaping approach as a potential cancer immunotherapy.
Collapse
Affiliation(s)
- Zheng Wang
- Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yinglu Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Hui Fang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Kai Xiao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Ziping Wu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jie Liu
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Liang Wang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Renjun Pei
- Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Dan Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
30
|
Loison I, Pioger A, Paget S, Metatla I, Vincent A, Abbadie C, Dehennaut V. O-GlcNAcylation inhibition redirects the response of colon cancer cells to chemotherapy from senescence to apoptosis. Cell Death Dis 2024; 15:762. [PMID: 39426963 PMCID: PMC11490504 DOI: 10.1038/s41419-024-07131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
The potential use of pro-senescence therapies, known as TIS (Therapy-Induced Senescence), for the treatment of colorectal cancer (CRC) generated significant interest since they require lower doses compared to those required for inducing apoptosis. However, the senescent cell cycle-arrested cancer cells are long-lived, and studies have revealed escape mechanisms contributing to tumor recurrence. To deepen our understanding of the survival pathways used by senescent cancer cells, we delved into the potential involvement of the hexosamine biosynthetic pathway (HBP). HBP provides UDP-GlcNAc, the substrate for O-GlcNAc transferase (OGT), which catalyzes O-GlcNAcylation, a post-translational modification implicated in regulating numerous cellular functions and aberrantly elevated in CRC. In this study, we demonstrated, in the p53-proficient colon cancer cell lines HCT116 and LS174T, that TIS induced by low-dose SN38 or etoposide treatment was accompanied with a decrease of GFAT (the rate limiting enzyme of the HBP), OGT and O-GlcNAcase (OGA) expression correlated with a slight reduction in O-GlcNAcylation levels. Further decreasing this level of O-GlcNAcylation by knocking-down GFAT or OGT redirected the cellular response to subtoxic chemotherapy doses from senescence to apoptosis, in correlation with an enhancement of DNA damages. Pharmacological inhibition of OGT with OSMI-4 in HCT116 and LS174T cells and in a patient-derived colon tumoroid model supported these findings. Taken together, these results suggest that combing O-GlcNAcylation inhibitors to low doses of conventional chemotherapeutic drugs could potentially reduce treatment side effects while preserving efficacy. Furthermore, this approach may increase treatment specificity, as CRC cells exhibit higher O-GlcNAcylation levels compared to normal tissues.
Collapse
Affiliation(s)
- Ingrid Loison
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Adrien Pioger
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Sonia Paget
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
- University Lille, CNRS, OrgaLille Platform, F-59000, Lille, France
| | - Inès Metatla
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
- Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015, Paris, France
| | - Audrey Vincent
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
- University Lille, CNRS, OrgaLille Platform, F-59000, Lille, France
| | - Corinne Abbadie
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Vanessa Dehennaut
- University Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France.
| |
Collapse
|
31
|
Abdelmoaty AAA, Chen J, Zhang K, Wu C, Li Y, Li P, Xu J. Senolytic effect of triterpenoid complex from Ganoderma lucidum on adriamycin-induced senescent human hepatocellular carcinoma cells model in vitro and in vivo. Front Pharmacol 2024; 15:1422363. [PMID: 39364046 PMCID: PMC11447279 DOI: 10.3389/fphar.2024.1422363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Background Ganoderma lucidum (G. lucidum) is a famous medicinal mushroom that has been reported to prevent and treat a variety of diseases. Different extractions from G. lucidum have been used to manage age-related diseases, including cancer. Nevertheless, the senolytic activity of G. lucidum against senescent cancer cells has not been investigated. Although cellular senescence causes tumor growth inhibition, senescent cells promote the growth of the neighboring tumor cells through paracrine effects. Therefore, the elimination of senescent cells is a new strategy for cancer treatment. Methods In this study, senescence was triggered in HCC cells by the chemotherapeutic agent Adriamycin (ADR), and subsequently, cells were treated with TC to assess its senolytic activity. Results We found for the first time that the triterpenoid complex (TC) from G. lucidum had senolytic effect, which could selectively eliminate adriamycin (ADR)-induced senescent cells (SCs) of hepatocellular carcinoma (HCC) cells via caspase-dependent and mitochondrial pathways-mediated apoptosis and reduce the levels of senescence markers, thereby inhibiting the progression of cancers caused by SCs. TC could block autophagy at the late stage in SCs, resulting in a significant activation of TC-induced apoptosis. Furthermore, TC inhibited the senescence-associated secretory phenotype (SASP) in SCs through the inhibition of NF-κB, TFEB, P38, ERK, and mTOR signaling pathways and reducing the number of SCs. Sequential administration of ADR and TC in vivo significantly reduced tumor growth and reversed the toxicity of ADR. Conclusion A triterpenoid complex isolated from G. lucidum may serve as a novel senolytic agent against SCs, and its combination with chemotherapeutic agents may enhance their antitumor efficacy.
Collapse
Affiliation(s)
- Ahmed Attia Ahmed Abdelmoaty
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Jing Chen
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Kun Zhang
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Changhui Wu
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Peng Li
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jianhua Xu
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
32
|
Zhang F, Guo J, Yu S, Zheng Y, Duan M, Zhao L, Wang Y, Yang Z, Jiang X. Cellular senescence and metabolic reprogramming: Unraveling the intricate crosstalk in the immunosuppressive tumor microenvironment. Cancer Commun (Lond) 2024; 44:929-966. [PMID: 38997794 PMCID: PMC11492308 DOI: 10.1002/cac2.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
The intrinsic oncogenic mechanisms and properties of the tumor microenvironment (TME) have been extensively investigated. Primary features of the TME include metabolic reprogramming, hypoxia, chronic inflammation, and tumor immunosuppression. Previous studies suggest that senescence-associated secretory phenotypes that mediate intercellular information exchange play a role in the dynamic evolution of the TME. Specifically, hypoxic adaptation, metabolic dysregulation, and phenotypic shifts in immune cells regulated by cellular senescence synergistically contribute to the development of an immunosuppressive microenvironment and chronic inflammation, thereby promoting the progression of tumor events. This review provides a comprehensive summary of the processes by which cellular senescence regulates the dynamic evolution of the tumor-adapted TME, with focus on the complex mechanisms underlying the relationship between senescence and changes in the biological functions of tumor cells. The available findings suggest that components of the TME collectively contribute to the progression of tumor events. The potential applications and challenges of targeted cellular senescence-based and combination therapies in clinical settings are further discussed within the context of advancing cellular senescence-related research.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
- Department of Hepatobiliary and Pancreatic SurgeryPeking University First HospitalBeijingP. R. China
| | - Junchen Guo
- Department of RadiologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Shengmiao Yu
- Outpatient DepartmentThe Fourth Affiliated HospitalChina Medical UniversityShenyangLiaoningP. R. China
| | - Youwei Zheng
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Meiqi Duan
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Liang Zhao
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Yihan Wang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhi Yang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaofeng Jiang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
33
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
34
|
Ding C, Xu X, Zhang X, Zhang E, Li S, Fan X, Ma J, Yang X, Zang L. Investigating the role of senescence biomarkers in colorectal cancer heterogeneity by bulk and single-cell RNA sequencing. Sci Rep 2024; 14:20083. [PMID: 39209895 PMCID: PMC11362543 DOI: 10.1038/s41598-024-70300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Colorectal cancer (CRC) is one of most common tumors worldwide, causing a prominent global health burden. Cell senescence is a complex physiological state, characterized by proliferation arrest. Here, we investigated the role of cellular senescence in the heterogeneity of CRC. Based on senescence-associated genes, CRC samples were classified into different senescence patterns with different survival, cancer-related biological processes and immune cell infiltrations. A senescence-related model was then developed to calculate the senescence-related score to comprehensively explore the heterogeneity of each CRC sample such as stromal activities, immunoreactivities and drug sensitivity. Single-cell analysis revealed there were different immune cell infiltrations between low and high senescence-related model genes enrichment groups, which was confirmed by multiplex immunofluorescence staining. Pseudotime analysis indicated model genes play a pivotal role in the evolution of B cells. Besides, intercellular communication modeled by NicheNet showed tumor cells with higher enrichment of senescence-related model genes highly expressed CXCL2/3 and CCL3/4, which attracted immunosuppressive cell infiltration and promoted tumor metastasis. Finally, top 6 hub genes were identified from senescence-related model genes by PPI analysis. And RT-qPCR revealed the expression differences of hub genes between normal and CRC cell lines, indicating to some extent the clinical practicability of senescence-related model. To sum up, our study explores the impact of cellular senescence on the prognosis, TME and treatment of CRC based on senescence patterns. This provides a new perspective for CRC treatment.
Collapse
Affiliation(s)
- Chengsheng Ding
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ximo Xu
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xian Zhang
- Department of General Practice, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Shuchun Li
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaodong Fan
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Junjun Ma
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Xiao Yang
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Department of General Surgery and Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China.
| | - Lu Zang
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
35
|
Pacifico F, Magni F, Leonardi A, Crescenzi E. Therapy-Induced Senescence: Novel Approaches for Markers Identification. Int J Mol Sci 2024; 25:8448. [PMID: 39126015 PMCID: PMC11313450 DOI: 10.3390/ijms25158448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Therapy-induced senescence (TIS) represents a major cellular response to anticancer treatments. Both malignant and non-malignant cells in the tumor microenvironment undergo TIS and may be harmful for cancer patients since TIS cells develop a senescence-associated secretory phenotype (SASP) that can sustain tumor growth. The SASP also modulates anti-tumor immunity, although the immune populations involved and the final results appear to be context-dependent. In addition, senescent cancer cells are able to evade senescence growth arrest and to resume proliferation, likely contributing to relapse. So, research data suggest that TIS induction negatively affects therapy outcomes in cancer patients. In line with this, new interventions aimed at the removal of senescent cells or the reprogramming of their SASP, called senotherapy, have become attractive therapeutic options. To date, the lack of reliable, cost-effective, and easy-to-use TIS biomarkers hinders the application of recent anti-senescence therapeutic approaches in the clinic. Hence, the identification of biomarkers for the detection of TIS tumor cells and TIS non-neoplastic cells is a high priority in cancer research. In this review article, we describe the current knowledge about TIS, outline critical gaps in our knowledge, and address recent advances and novel approaches for the discovery of TIS biomarkers.
Collapse
Affiliation(s)
- Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini 5, 80131 Naples, Italy;
| | - Fulvio Magni
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
36
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
37
|
Nishimura J, Morita Y, Tobe-Nishimoto A, Kitahira Y, Takayama S, Kishimoto S, Matsumiya-Matsumoto Y, Takeshita A, Matsunaga K, Imai T, Uzawa N. CDDP-induced desmoplasia-like changes in oral cancer tissues are related to SASP-related factors induced by the senescence of cancer cells. Int Immunopharmacol 2024; 136:112377. [PMID: 38838554 DOI: 10.1016/j.intimp.2024.112377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
The tumor microenvironment (TME) concept has been proposed and is currently being actively studied. The development of extracellular matrix (ECM) in the TME is known as desmoplasia and is observed in many solid tumors. It has also been strongly associated with poor prognosis and resistance to drug therapy. Recently, cellular senescence has gained attention as an effect of drug therapy on cancer cells. Cellular senescence is a phenomenon wherein proliferating cells become resistant to growth-promoting stimuli, secrete the SASP (senescence-associated phenotypic) factors, and stably arrest the cell cycle. These proteins are rich in pro-inflammatory factors, such as interleukin (IL)-6, IL-8, C-X-C motif chemokine ligand 1, C-C motif chemokine ligand (CCL)2, CCL5, and matrix metalloproteinase 3. This study aimed to investigate the desmoplasia-like changes in the TME before and after cancer drug therapy in oral squamous cell carcinomas, evaluate the effect of anticancer drugs on the TME, and the potential involvement of cancer cell senescence. Using a syngeneic oral cancer transplant mouse model, we confirmed that cis-diamminedichloroplatinum (II) (CDDP) administration caused desmoplasia-like changes in cancer tissues. Furthermore, CDDP treatment-induced senescence in tumor-bearing mouse tumor tissues and cultured cancer cells. These results suggest CDDP administration-induced desmoplasia-like structural changes in the TME are related to cellular senescence. Our findings suggest that the administration of anticancer drugs alters the TME of oral cancer cells. Additionally, oral cancer cells undergo senescence, which may influence the TME through the production of SASP factors.
Collapse
Affiliation(s)
- Junya Nishimura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Yoshihiro Morita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan.
| | - Ayano Tobe-Nishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Yukiko Kitahira
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Shun Takayama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Satoko Kishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Yuka Matsumiya-Matsumoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Akinori Takeshita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Kazuhide Matsunaga
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Tomoaki Imai
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Chembukavu SN, Lindsay AJ. Therapy-induced senescence in breast cancer: an overview. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:902-920. [PMID: 39280248 PMCID: PMC11390292 DOI: 10.37349/etat.2024.00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 09/18/2024] Open
Abstract
Outcomes for women with breast cancer have improved dramatically in recent decades. However, many patients present with intrinsic drug resistance and others are initially sensitive to anti-cancer drugs but acquire resistance during the course of their treatment, leading to recurrence and/or metastasis. Drug therapy-induced senescence (TIS) is a form of drug resistance characterised by the induction of cell cycle arrest and the emergence of a senescence-associated secretory phenotype (SASP) that can develop in response to chemo- and targeted- therapies. A wide range of anticancer interventions can lead to cell cycle arrest and SASP induction, by inducing genotoxic stress, hyperactivation of signalling pathways or oxidative stress. TIS can be anti-tumorigenic in the short-term, but pro-tumorigenic in the long-term by creating a pro-inflammatory and immunosuppressive microenvironment. Moreover, the SASP can promote angiogenesis and epithelial-mesenchymal transition in neighbouring cells. In this review, we will describe the characteristics of TIS in breast cancer and detail the changes in phenotype that accompany its induction. We also discuss strategies for targeting senescent cancer cells in order to prevent or delay tumour recurrence.
Collapse
Affiliation(s)
- Suraj Narayanan Chembukavu
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
39
|
Imawari Y, Nakanishi M. Senescence and senolysis in cancer: The latest findings. Cancer Sci 2024; 115:2107-2116. [PMID: 38641866 PMCID: PMC11247613 DOI: 10.1111/cas.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/21/2024] Open
Abstract
Aging is a life phenomenon that occurs in most living organisms and is a major risk factor for many diseases, including cancer. Cellular senescence is a cellular trait induced by various genomic and epigenetic stresses. Senescent cells are characterized by irreversible cell growth arrest and excessive secretion of inflammatory cytokines (senescence-associated secretory phenotypes, SASP). Chronic tissue microinflammation induced by SASP contributes to the pathogenesis of a variety of age-related diseases, including cancer. Senolysis is a promising new strategy to selectively eliminate senescent cells in order to suppress chronic inflammation, suggesting its potential use as an anticancer therapy. This review summarizes recent findings on the molecular basis of senescence in cancer cells and senolysis.
Collapse
Affiliation(s)
- Yoshimi Imawari
- Division of Cancer Cell Biology, Institute of Medical ScienceUniversity of TokyoTokyoJapan
- Department of SurgeryJikei University School of MedicineTokyoJapan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical ScienceUniversity of TokyoTokyoJapan
| |
Collapse
|
40
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
41
|
Yue Y, She X, Ding W, Chen S, Xiao Q, Pan B, Zhou L, Yin Y, Li Y, Wang S, Xu M. A novel Senescence-Based prognostic model unveils tumor interactions and drug resistance in colorectal cancer. Int Immunopharmacol 2024; 134:112197. [PMID: 38733826 DOI: 10.1016/j.intimp.2024.112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND In China, CRC incidence is escalating. The main hurdles are heterogeneity and drug resistance. This research delves into cellular senescence in CRC, aiming to devise a prognostic model and pinpoint mechanisms impacting drug resistance. METHODS Mendelian randomization (MR) analysis confirmed the association between CRC and cellular aging. The Cancer Genome Atlas (TCGA)-CRC data served as the training set, with GSE38832 and GSE39582 as validation sets. Various bioinformatics methods were employed to construct and validate a risk model. CRC cells with NADPH Oxidase 4 (NOX4) knockout were generated using CRISPR-Cas9 technology. Protein blotting and colony formation assays elucidated the role of NOX4 in CRC cell aging and drug resistance. RESULTS A prognostic model, derived from dataset analysis, uncovered a link between high-risk groups and cancer progression. Notable differences in the tumor microenvironment were observed between risk groups. Finally, NOX4 was found to be linked with aging and drug resistance in CRC. CONCLUSION This research presents a novel senescence-based CRC prognosis model. It identifies NOX4's role in CRC drug resistance, suggesting it is a potential treatment target.
Collapse
Affiliation(s)
- Yanzhe Yue
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; School of Basic-Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, 211198, Nanjing, Jiangsu, China
| | - Xiangjian She
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; School of Basic-Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, 211198, Nanjing, Jiangsu, China
| | - Wenbo Ding
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; School of Basic-Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, 211198, Nanjing, Jiangsu, China
| | - Shuyu Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; School of Basic-Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, 211198, Nanjing, Jiangsu, China
| | - Qianni Xiao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; School of Basic-Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, 211198, Nanjing, Jiangsu, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
| | - Linpeng Zhou
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; School of Basic-Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, 211198, Nanjing, Jiangsu, China
| | - Yujuan Yin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
| | - Youyue Li
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 211166, Nanjing, Jiangsu, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; School of Basic-Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, 211198, Nanjing, Jiangsu, China; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, Jiangsu, China.
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
42
|
Zarco N, Dovas A, de Araujo Farias V, Nagaiah NK, Haddock A, Sims PA, Hambardzumyan D, Meyer CT, Canoll P, Rosenfeld SS, Kenchappa RS. Resistance to Spindle Inhibitors in Glioblastoma Depends on STAT3 and Therapy Induced Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598115. [PMID: 38895402 PMCID: PMC11185785 DOI: 10.1101/2024.06.09.598115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
While mitotic spindle inhibitors specifically kill proliferating tumor cells without the toxicities of microtubule poisons, resistance has limited their clinical utility. Treating glioblastomas with the spindle inhibitors ispinesib, alisertib, or volasertib creates a subpopulation of therapy induced senescent cells that resist these drugs by relying upon the anti-apoptotic and metabolic effects of activated STAT3. Furthermore, these senescent cells expand the repertoire of cells resistant to these drugs by secreting an array of factors, including TGFβ, which induce proliferating cells to exit mitosis and become quiescent-a state that also resists spindle inhibitors. Targeting STAT3 restores sensitivity to each of these drugs by depleting the senescent subpopulation and inducing quiescent cells to enter the mitotic cycle. These results support a therapeutic strategy of targeting STAT3-dependent therapy-induced senescence to enhance the efficacy of spindle inhibitors for the treatment of glioblastoma. Highlights • Resistance to non-microtubule spindle inhibitors limits their efficacy in glioblastoma and depends on STAT3.• Resistance goes hand in hand with development of therapy induced senescence (TIS).• Spindle inhibitor resistant glioblastomas consist of three cell subpopulations-proliferative, quiescent, and TIS-with proliferative cells sensitive and quiescent and TIS cells resistant.• TIS cells secrete TGFβ, which induces proliferative cells to become quiescent, thereby expanding the population of resistant cells in a spindle inhibitor resistant glioblastoma• Treatment with a STAT3 inhibitor kills TIS cells and restores sensitivity to spindle inhibitors.
Collapse
|
43
|
Reynolds LE, Maallin S, Haston S, Martinez-Barbera JP, Hodivala-Dilke KM, Pedrosa AR. Effects of senescence on the tumour microenvironment and response to therapy. FEBS J 2024; 291:2306-2319. [PMID: 37873605 DOI: 10.1111/febs.16984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Cellular senescence is a state of durable cell arrest that has been identified both in vitro and in vivo. It is associated with profound changes in gene expression and a specific secretory profile that includes pro-inflammatory cytokines, growth factors and matrix-remodelling enzymes, referred to as the senescence-associated secretory phenotype (SASP). In cancer, senescence can have anti- or pro-tumour effects. On one hand, it can inhibit tumour progression in a cell autonomous manner. On the other hand, senescence can also promote tumour initiation, progression, metastatic dissemination and resistance to therapy in a paracrine manner. Therefore, despite efforts to target senescence as a potential strategy to inhibit tumour growth, senescent cancer and microenvironmental cells can eventually lead to uncontrolled proliferation and aggressive tumour phenotypes. This can happen either through overcoming senescence growth arrest or through SASP-mediated effects in adjacent tumour cells. This review will discuss how senescence affects the tumour microenvironment, including extracellular matrix remodelling, the immune system and the vascular compartment, to promote tumourigenesis, metastasis and resistance to DNA-damaging therapies. It will also discuss current approaches used in the field to target senescence: senolytics, improving the immune clearance of senescent cells and targeting the SASP.
Collapse
Affiliation(s)
- Louise E Reynolds
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Seynab Maallin
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Scott Haston
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Ana-Rita Pedrosa
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| |
Collapse
|
44
|
Suzuki M, Kobayashi H, Hara D, Hanaoka H. Elimination of radiation-induced senescent cancer cells and stromal cells in vitro by near-infrared photoimmunotherapy. Cancer Med 2024; 13:e7381. [PMID: 38888415 PMCID: PMC11184651 DOI: 10.1002/cam4.7381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Therapy-induced senescent cancer and stromal cells secrete cytokines and growth factors to promote tumor progression. Therefore, senescent cells may be novel targets for tumor treatment. Near-infrared photoimmunotherapy (NIR-PIT) is a highly tumor-selective therapy that employs conjugates of a molecular-targeting antibody and photoabsorber. Thus, NIR-PIT has the potential to be applied as a novel senolytic therapy. This study aims to investigate the efficacy of NIR-PIT treatment on senescent cancer and stromal cells. METHODS Two cancer cell lines (human lung adenocarcinoma A549 cells and human pancreatic cancer MIA PaCa-2 cells) and two normal cell lines (mouse fibroblast transfected with human epidermal growth factor receptor 2 [HER2] cells and human fibroblast WI38 cells) were used. The cytotoxicity of NIR-PIT was evaluated using anti-epidermal growth factor receptor (EGFR) antibody panitumumab and anti-HER2 antibody transtuzumab. RESULTS Cellular senescence was induced in A549 and MIA PaCa-2 cells by 10 Gy γ-irradiation. The up-regulation of cellular senescence markers and characteristic morphological changes in senescent cells, including enlargement, flattening, and multinucleation, were observed in cancer cells after 5 days of γ-irradiation. Then, NIR-PIT targeting EGFR was performed on these senescent cancer cells. The NIR-PIT induced morphological changes, including bleb formation, swelling, and the inflow of extracellular fluid, and induced a significant decrease in cellular viability. These results suggested that NIR-PIT may induce cytotoxicity using the same mechanism in senescent cancer cells. In addition, similar morphological changes were also induced in radiation-induced senescent 3T3-HER2 fibroblasts by NIR-PIT targeting human epidermal growth factor receptor 2. CONCLUSION NIR-PIT eliminates both senescent cancer and stromal cells in vitro suggesting it may be a novel strategy for tumor treatment.
Collapse
Affiliation(s)
- Motofumi Suzuki
- Division of Fundamental Technology DevelopmentNear InfraRed Photo‐ImmunoTherapy Research Institute at Kansai Medical UniversityHirakataOsakaJapan
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Daiki Hara
- Division of Fundamental Technology DevelopmentNear InfraRed Photo‐ImmunoTherapy Research Institute at Kansai Medical UniversityHirakataOsakaJapan
| | - Hirofumi Hanaoka
- Division of Fundamental Technology DevelopmentNear InfraRed Photo‐ImmunoTherapy Research Institute at Kansai Medical UniversityHirakataOsakaJapan
| |
Collapse
|
45
|
Jha SK, De Rubis G, Devkota SR, Zhang Y, Adhikari R, Jha LA, Bhattacharya K, Mehndiratta S, Gupta G, Singh SK, Panth N, Dua K, Hansbro PM, Paudel KR. Cellular senescence in lung cancer: Molecular mechanisms and therapeutic interventions. Ageing Res Rev 2024; 97:102315. [PMID: 38679394 DOI: 10.1016/j.arr.2024.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Lung cancer stands as the primary contributor to cancer-related fatalities worldwide, affecting both genders. Two primary types exist where non-small cell lung cancer (NSCLC), accounts for 80-85% and SCLC accounts for 10-15% of cases. NSCLC subtypes include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Smoking, second-hand smoke, radon gas, asbestos, and other pollutants, genetic predisposition, and COPD are lung cancer risk factors. On the other hand, stresses such as DNA damage, telomere shortening, and oncogene activation cause a prolonged cell cycle halt, known as senescence. Despite its initial role as a tumor-suppressing mechanism that slows cell growth, excessive or improper control of this process can cause age-related diseases, including cancer. Cellular senescence has two purposes in lung cancer. Researchers report that senescence slows tumor growth by constraining multiplication of impaired cells. However, senescent cells also demonstrate the pro-inflammatory senescence-associated secretory phenotype (SASP), which is widely reported to promote cancer. This review will look at the role of cellular senescence in lung cancer, describe its diagnostic markers, ask about current treatments to control it, look at case studies and clinical trials that show how senescence-targeting therapies can be used in lung cancer, and talk about problems currently being faced, and possible solutions for the same in the future.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Shankar Raj Devkota
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia
| | - Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Laxmi Akhileshwar Jha
- Naraina Vidya Peeth Group of Institutions, Faculty of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 0208020, India
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India; Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam 781035, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Nisha Panth
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| |
Collapse
|
46
|
Patra S, Naik PP, Mahapatra KK, Alotaibi MR, Patil S, Patro BS, Sethi G, Efferth T, Bhutia SK. Recent advancement of autophagy in polyploid giant cancer cells and its interconnection with senescence and stemness for therapeutic opportunities. Cancer Lett 2024; 590:216843. [PMID: 38579893 DOI: 10.1016/j.canlet.2024.216843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/11/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Recurrent chemotherapy-induced senescence and resistance are attributed to the polyploidization of cancer cells that involve genomic instability and poor prognosis due to their unique form of cellular plasticity. Autophagy, a pre-dominant cell survival mechanism, is crucial during carcinogenesis and chemotherapeutic stress, favouring polyploidization. The selective autophagic degradation of essential proteins associated with cell cycle progression checkpoints deregulate mitosis fidelity and genomic integrity, imparting polyploidization of cancer cells. In connection with cytokinesis failure and endoreduplication, autophagy promotes the formation, maintenance, and generation of the progeny of polyploid giant cancer cells. The polyploid cancer cells embark on autophagy-guarded elevation in the expression of stem cell markers, along with triggered epithelial and mesenchymal transition and senescence. The senescent polyploid escapers represent a high autophagic index than the polyploid progeny, suggesting regaining autophagy induction and subsequent autophagic degradation, which is essential for escaping from senescence/polyploidy, leading to a higher proliferative phenotypic progeny. This review documents the various causes of polyploidy and its consequences in cancer with relevance to autophagy modulation and its targeting for therapeutic intervention as a novel therapeutic strategy for personalized and precision medicine.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Prajna Paramita Naik
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India; Department of Zoology Panchayat College, Bargarh, 768028, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India; Department of Agriculture and Allied Sciences (Zoology), C. V. Raman Global University, Bhubaneswar, 752054, Odisha, India
| | - Moureq Rashed Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, 84095, USA
| | - Birija Sankar Patro
- Chemical Biology Section, Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
47
|
Mentzel J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. Effective Radiosensitization of HNSCC Cell Lines by DNA-PKcs Inhibitor AZD7648 and PARP Inhibitors Talazoparib and Niraparib. Int J Mol Sci 2024; 25:5629. [PMID: 38891817 PMCID: PMC11172136 DOI: 10.3390/ijms25115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Head and neck squamous cell carcinoma (HNSCC) is common, while treatment is difficult, and mortality is high. Kinase inhibitors are promising to enhance the effects of radiotherapy. We compared the effects of the PARP inhibitors talazoparib and niraparib and that of the DNA-PKcs inhibitor AZD7648, combined with ionizing radiation. (2) Seven HNSCC cell lines, including Cal33, CLS-354, Detroit 562, HSC4, RPMI2650 (HPV-negative), UD-SCC-2 and UM-SCC-47 (HPV-positive), and two healthy fibroblast cell lines, SBLF8 and SBLF9, were studied. Flow cytometry was used to analyze apoptosis and necrosis induction (AnnexinV/7AAD) and cell cycle distribution (Hoechst). Cell inactivation was studied by the colony-forming assay. (3) AZD7648 had the strongest effects, radiosensitizing all HNSCC cell lines, almost always in a supra-additive manner. Talazoparib and niraparib were effective in both HPV-positive cell lines but only consistently in one and two HPV-negative cell lines, respectively. Healthy fibroblasts were not affected by any combined treatment in apoptosis and necrosis induction or G2/M-phase arrest. AZD7648 alone was not toxic to healthy fibroblasts, while the combination with ionizing radiation reduced clonogenicity. (4) In conclusion, talazoparib, niraparib and, most potently, AZD7648 could improve radiation therapy in HNSCC. Healthy fibroblasts tolerated AZD7648 alone extremely well, but irradiation-induced effects might occur. Our results justify in vivo studies.
Collapse
Affiliation(s)
- Jacob Mentzel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.M.); (L.S.H.); (L.K.); (R.F.)
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
48
|
Tóth F, Moftakhar Z, Sotgia F, Lisanti MP. In Vitro Investigation of Therapy-Induced Senescence and Senescence Escape in Breast Cancer Cells Using Novel Flow Cytometry-Based Methods. Cells 2024; 13:841. [PMID: 38786063 PMCID: PMC11120107 DOI: 10.3390/cells13100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Although cellular senescence was originally defined as an irreversible form of cell cycle arrest, in therapy-induced senescence models, the emergence of proliferative senescence-escaped cancer cells has been reported by several groups, challenging the definition of senescence. Indeed, senescence-escaped cancer cells may contribute to resistance to cancer treatment. Here, to study senescence escape and isolate senescence-escaped cells, we developed novel flow cytometry-based methods using the proliferation marker Ki-67 and CellTrace CFSE live-staining. We investigated the role of a novel senescence marker (DPP4/CD26) and a senolytic drug (azithromycin) on the senescence-escaping ability of MCF-7 and MDA-MB-231 breast cancer cells. Our results show that the expression of DPP4/CD26 is significantly increased in both senescent MCF-7 and MDA-MB-231 cells. While not essential for senescence induction, DPP4/CD26 contributed to promoting senescence escape in MCF-7 cells but not in MDA-MB-231 cells. Our results also confirmed the potential senolytic effect of azithromycin in senescent cancer cells. Importantly, the combination of azithromycin and a DPP4 inhibitor (sitagliptin) demonstrated a synergistic effect in senescent MCF-7 cells and reduced the number of senescence-escaped cells. Although further research is needed, our results and novel methods could contribute to the investigation of the mechanisms of senescence escape and the identification of potential therapeutic targets. Indeed, DPP4/CD26 could be a promising marker and a novel target to potentially decrease senescence escape in cancer.
Collapse
Affiliation(s)
- Fanni Tóth
- Translational Medicine, University of Salford, Salford M5 4WT, UK; (F.T.)
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Wien, Vienna, Austria
| | - Zahra Moftakhar
- Translational Medicine, University of Salford, Salford M5 4WT, UK; (F.T.)
| | - Federica Sotgia
- Translational Medicine, University of Salford, Salford M5 4WT, UK; (F.T.)
| | - Michael P. Lisanti
- Translational Medicine, University of Salford, Salford M5 4WT, UK; (F.T.)
| |
Collapse
|
49
|
Dolan M, Shi Y, Mastri M, Long MD, McKenery A, Hill JW, Vaghi C, Benzekry S, Barbi J, Ebos JM. A senescence-mimicking (senomimetic) VEGFR TKI side-effect primes tumor immune responses via IFN/STING signaling. Mol Cancer Ther 2024; 23:745113. [PMID: 38690835 PMCID: PMC11527799 DOI: 10.1158/1535-7163.mct-24-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) that block the vascular endothelial growth factor receptors (VEGFRs) disrupt tumor angiogenesis but also have many unexpected side-effects that impact tumor cells directly. This includes the induction of molecular markers associated with senescence, a form of cellular aging that typically involves growth arrest. We have shown that VEGFR TKIs can hijack these aging programs by transiently inducting senescence-markers (SMs) in tumor cells to activate senescence-associated secretory programs that fuel drug resistance. Here we show that these same senescence-mimicking ('senomimetic') VEGFR TKI effects drive an enhanced immunogenic signaling that, in turn, can alter tumor response to immunotherapy. Using a live-cell sorting method to detect beta-galactosidase, a commonly used SM, we found that subpopulations of SM-expressing (SM+) tumor cells have heightened interferon (IFN) signaling and increased expression of IFN-stimulated genes (ISGs). These ISG increases were under the control of the STimulator of INterferon Gene (STING) signaling pathway, which we found could be directly activated by several VEGFR TKIs. TKI-induced SM+ cells could stimulate or suppress CD8 T-cell activation depending on host:tumor cell contact while tumors grown from SM+ cells were more sensitive to PD-L1 inhibition in vivo, suggesting that offsetting immune-suppressive functions of SM+ cells can improve TKI efficacy overall. Our findings may explain why some (but not all) VEGFR TKIs improve outcomes when combined with immunotherapy and suggest that exploiting senomimetic drug side-effects may help identify TKIs that uniquely 'prime' tumors for enhanced sensitivity to PD-L1 targeted agents.
Collapse
Affiliation(s)
- Melissa Dolan
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Yuhao Shi
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - Mark D. Long
- Department of Bioinformatics and Statistics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Amber McKenery
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - James W. Hill
- Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, New York, 14263. USA
| | - Cristina Vaghi
- Inria Team MONC, Inria Bordeaux Sud-Ouest, Talence, France
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis–Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France
| | - Sebastien Benzekry
- Inria Team MONC, Inria Bordeaux Sud-Ouest, Talence, France
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis–Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - John M.L. Ebos
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
- Lead Contact
| |
Collapse
|
50
|
Zheng H, Liu M, Shi S, Huang H, Yang X, Luo Z, Song Y, Xu Q, Li T, Xue L, Lu F, Wang J. MAP4K4 and WT1 mediate SOX6-induced cellular senescence by synergistically activating the ATF2-TGFβ2-Smad2/3 signaling pathway in cervical cancer. Mol Oncol 2024; 18:1327-1346. [PMID: 38383842 PMCID: PMC11076992 DOI: 10.1002/1878-0261.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/23/2024] Open
Abstract
SRY-box transcription factor 6 (SOX6) is a member of the SOX gene family and inhibits the proliferation of cervical cancer cells by inducing cell cycle arrest. However, the final cell fate and significance of these cell-cycle-arrested cervical cancer cells induced by SOX6 remains unclear. Here, we report that SOX6 inhibits the proliferation of cervical cancer cells by inducing cellular senescence, which is mainly mediated by promoting transforming growth factor beta 2 (TGFB2) gene expression and subsequently activating the TGFβ2-Smad2/3-p53-p21WAF1/CIP1-Rb pathway. SOX6 promotes TGFB2 gene expression through the MAP4K4-MAPK (JNK/ERK/p38)-ATF2 and WT1-ATF2 pathways, which is dependent on its high-mobility group (HMG) domain. In addition, the SOX6-induced senescent cervical cancer cells are resistant to cisplatin treatment. ABT-263 (navitoclax) and ABT-199 (venetoclax), two classic senolytics, can specifically eliminate the SOX6-induced senescent cervical cancer cells, and thus significantly improve the chemosensitivity of cisplatin-resistant cervical cancer cells. This study uncovers that the MAP4K4/WT1-ATF2-TGFβ2 axis mediates SOX6-induced cellular senescence, which is a promising therapeutic target in improving the chemosensitivity of cervical cancer.
Collapse
Affiliation(s)
- Han Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Mingchen Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Shu Shi
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Hongxin Huang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Xingwen Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Ziheng Luo
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Yarong Song
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Qiang Xu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Lixiang Xue
- Department of Radiation OncologyCancer Center of Peking University Third Hospital, Peking University Third HospitalBeijingChina
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Jie Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| |
Collapse
|