1
|
Schorova L, Pronot M, Poupon G, Prieto M, Folci A, Khayachi A, Brau F, Cassé F, Gwizdek C, Martin S. The synaptic balance between sumoylation and desumoylation is maintained by the activation of metabotropic mGlu5 receptors. Cell Mol Life Sci 2019; 76:3019-3031. [PMID: 30904951 PMCID: PMC11105596 DOI: 10.1007/s00018-019-03075-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
Sumoylation is a reversible post-translational modification essential to the modulation of neuronal function, including neurotransmitter release and synaptic plasticity. A tightly regulated equilibrium between the sumoylation and desumoylation processes is critical to the brain function and its disruption has been associated with several neurological disorders. This sumoylation/desumoylation balance is governed by the activity of the sole SUMO-conjugating enzyme Ubc9 and a group of desumoylases called SENPs, respectively. We previously demonstrated that the activation of type 5 metabotropic glutamate receptors (mGlu5R) triggers the transient trapping of Ubc9 in dendritic spines, leading to a rapid increase in the overall synaptic sumoylation. However, the mechanisms balancing this increased synaptic sumoylation are still not known. Here, we examined the diffusion properties of the SENP1 enzyme using a combination of advanced biochemical approaches and restricted photobleaching/photoconversion of individual hippocampal spines. We demonstrated that the activation of mGlu5R leads to a time-dependent decrease in the exit rate of SENP1 from dendritic spines. The resulting post-synaptic accumulation of SENP1 restores synaptic sumoylation to initial levels. Altogether, our findings reveal the mGlu5R system as a central activity-dependent mechanism to maintaining the homeostasis of sumoylation at the mammalian synapse.
Collapse
Affiliation(s)
- Lenka Schorova
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Marie Pronot
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Gwénola Poupon
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Marta Prieto
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Alessandra Folci
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Anouar Khayachi
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Frédéric Brau
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Frédéric Cassé
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Carole Gwizdek
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 660 route des lucioles, 06560, Valbonne, France.
| |
Collapse
|
2
|
Kiyose M, Wagner M, Männer A, Reitz SC, Klein KM, Strzelczyk A, Bauer S, Rosenow F. Long term seizure freedom on perampanel in highly drug-resistant epilepsy caused by bilateral periventricular nodular heterotopia: A case report. EPILEPSY & BEHAVIOR CASE REPORTS 2019; 11:99-102. [PMID: 30891403 PMCID: PMC6403409 DOI: 10.1016/j.ebcr.2019.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/30/2022]
Abstract
NMDA-receptor subunit expression of NR2A and NR2B is downregulated in heterotopias. Glutamatergic transmission in the hyperexcitability of nodular heterotopias is implicated. Mechanisms in PVNH to establish etiology specific therapies are still to be defined.
Collapse
Affiliation(s)
- Makoto Kiyose
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital Frankfurt and Goethe University Frankfurt, Frankfurt, Germany.,LOEWE Center for Personalized translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Center of Radiology, University Hospital Frankfurt and Goethe University Frankfurt, Frankfurt, Germany.,LOEWE Center for Personalized translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Annika Männer
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital Frankfurt and Goethe University Frankfurt, Frankfurt, Germany
| | - Sarah C Reitz
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital Frankfurt and Goethe University Frankfurt, Frankfurt, Germany
| | - Karl Martin Klein
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital Frankfurt and Goethe University Frankfurt, Frankfurt, Germany.,LOEWE Center for Personalized translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital Frankfurt and Goethe University Frankfurt, Frankfurt, Germany.,LOEWE Center for Personalized translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Sebastian Bauer
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital Frankfurt and Goethe University Frankfurt, Frankfurt, Germany.,LOEWE Center for Personalized translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital Frankfurt and Goethe University Frankfurt, Frankfurt, Germany.,LOEWE Center for Personalized translational Epilepsy Research (CePTER), Frankfurt, Germany
| |
Collapse
|
3
|
Abstract
Focal cortical dysplasia is a common cause of medication resistant epilepsy. A better understanding of its presentation, pathophysiology and consequences have helped us improved its treatment and outcome. This paper reviews the most recent classification, pathophysiology and imaging findings in clinical research as well as the knowledge gained from studying genetic and lesional animal models of focal cortical dysplasia. This review of this recently gained knowledge will most likely help develop new research models and new therapeutic targets for patients with epilepsy associated with focal cortical dysplasia.
Collapse
|
4
|
Models of cortical malformation--Chemical and physical. J Neurosci Methods 2015; 260:62-72. [PMID: 25850077 DOI: 10.1016/j.jneumeth.2015.03.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/21/2022]
Abstract
Pharmaco-resistant epilepsies, and also some neuropsychiatric disorders, are often associated with malformations in hippocampal and neocortical structures. The mechanisms leading to these cortical malformations causing an imbalance between the excitatory and inhibitory system are largely unknown. Animal models using chemical or physical manipulations reproduce different human pathologies by interfering with cell generation and neuronal migration. The model of in utero injection of methylazoxymethanol (MAM) acetate mimics periventricular nodular heterotopia. The freeze lesion model reproduces (poly)microgyria, focal heterotopia and schizencephaly. The in utero irradiation model causes microgyria and heterotopia. Intraperitoneal injections of carmustine 1-3-bis-chloroethyl-nitrosurea (BCNU) to pregnant rats produces laminar disorganization, heterotopias and cytomegalic neurons. The ibotenic acid model induces focal cortical malformations, which resemble human microgyria and ulegyria. Cortical dysplasia can be also observed following prenatal exposure to ethanol, cocaine or antiepileptic drugs. All these models of cortical malformations are characterized by a pronounced hyperexcitability, few of them also produce spontaneous epileptic seizures. This dysfunction results from an impairment in GABAergic inhibition and/or an increase in glutamatergic synaptic transmission. The cortical region initiating or contributing to this hyperexcitability may not necessarily correspond to the site of the focal malformation. In some models wide-spread molecular and functional changes can be observed in remote regions of the brain, where they cause pathophysiological activities. This paper gives an overview on different animal models of cortical malformations, which are mostly used in rodents and which mimic the pathology and to some extent the pathophysiology of neuronal migration disorders associated with epilepsy in humans.
Collapse
|
5
|
Colciaghi F, Finardi A, Nobili P, Locatelli D, Spigolon G, Battaglia GS. Progressive brain damage, synaptic reorganization and NMDA activation in a model of epileptogenic cortical dysplasia. PLoS One 2014; 9:e89898. [PMID: 24587109 PMCID: PMC3937400 DOI: 10.1371/journal.pone.0089898] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/28/2014] [Indexed: 01/17/2023] Open
Abstract
Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Adele Finardi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Paola Nobili
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Giada Spigolon
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Giorgio Stefano Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| |
Collapse
|
6
|
Atypical febrile seizures, mesial temporal lobe epilepsy, and dual pathology. EPILEPSY RESEARCH AND TREATMENT 2012; 2012:342928. [PMID: 22957226 PMCID: PMC3420631 DOI: 10.1155/2012/342928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 12/02/2022]
Abstract
Febrile seizures occurring in the neonatal period, especially when prolonged, are thought to be involved in the later development of mesial temporal lobe epilepsy (mTLE) in children. The presence of an often undetected, underlying cortical malformation has also been reported to be implicated in the epileptogenesis process following febrile seizures. This paper highlights some of the various animal models of febrile seizures and of cortical malformation and portrays a two-hit model that efficiently mimics these two insults and leads to spontaneous recurrent seizures in adult rats. Potential mechanisms are further proposed to explain how these two insults may each, or together, contribute to network hyperexcitability and epileptogenesis. Finally the clinical relevance of the two-hit model is briefly discussed in light of a therapeutic and preventive approach to mTLE.
Collapse
|
7
|
Colciaghi F, Finardi A, Frasca A, Balosso S, Nobili P, Carriero G, Locatelli D, Vezzani A, Battaglia G. Status epilepticus-induced pathologic plasticity in a rat model of focal cortical dysplasia. ACTA ACUST UNITED AC 2011; 134:2828-43. [PMID: 21482549 DOI: 10.1093/brain/awr045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have generated an experimental 'double-hit' model of chronic epilepsy to recapitulate the co-existence of abnormal cortical structure and frequently recurrent seizures as observed in human focal cortical dysplasia. We induced cortical malformations by exposing rats prenatally to methylazoxymethanol acetate and triggered status epilepticus and recurrent seizures in adult methylazoxymethanol acetate rats with pilocarpine. We studied the course of epilepsy and the long-term morphologic and molecular changes induced by the occurrence of status epilepticus and subsequent chronic epilepsy in the malformed methylazoxymethanol acetate exposed brain. Behavioural and electroencephalographic analyses showed that methylazoxymethanol acetate pilocarpine rats develop more severe epilepsy than naïve rats. Morphologic and molecular analyses demonstrated that status epilepticus and subsequent seizures, but not pilocarpine treatment per se, was capable of affecting both cortical architectural and N-methyl-D-aspartate receptor abnormalities induced by methylazoxymethanol acetate. In particular, cortical thickness was further decreased and N-methyl-D-aspartate regulatory subunits were recruited at the postsynaptic membrane. In addition, methylazoxymethanol acetate pilocarpine rats showed abnormally large cortical pyramidal neurons with neurofilament over-expression. These neurons bear similarities to the hypertrophic/dysmorphic pyramidal neurons observed in acquired human focal cortical dysplasia. These data show that status epilepticus sets in motion a pathological process capable of significantly changing the cellular and molecular features of pre-existing experimental cortical malformations. They suggest that seizure recurrence in human focal cortical dysplasia might be an additional factor in establishing a pathological circuitry that favours chronic neuronal hyperexcitability.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurological Institute C. Besta, via Temolo 4, 20126 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Qu M, Aronica E, Boer K, Fällmar D, Kumlien E, Nistér M, Wester K, Pontén F, Smits A. DLG3/SAP102 protein expression in malformations of cortical development: A study of human epileptic cortex by tissue microarray. Epilepsy Res 2009; 84:33-41. [DOI: 10.1016/j.eplepsyres.2008.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/08/2008] [Accepted: 12/13/2008] [Indexed: 11/15/2022]
|
9
|
Affiliation(s)
- Giorgio Battaglia
- Molecular Neuroanatomy Laboratory, Experimental Neurophysiology and Epileptology Department, Neurological Institute C. Besta, Via Celoria 11, Milan, Italy.
| | | |
Collapse
|
10
|
Poluch S, Jablonska B, Juliano SL. Alteration of interneuron migration in a ferret model of cortical dysplasia. ACTA ACUST UNITED AC 2007; 18:78-92. [PMID: 17443019 DOI: 10.1093/cercor/bhm032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
During cerebral cortical development, gamma-aminobutyric acidergic (GABAergic) interneurons arise from a different site than projection neurons. GABAergic cells are generated in the subpallial ganglionic eminence (GE), while excitatory projection neurons arise from the neocortical ventricular zone. Our laboratory studies a model of cortical dysplasia that displays specific disruption of GABAergic mechanisms and an alteration in the overall balance of excitation in the neocortex. To produce this model, the birth of neurons on a specific gestational day in ferrets (embryonic day 33 [E33]) is interrupted by injection of the antimitotic methylazoxymethanol (MAM). We hypothesized that migration of interneurons might be disrupted in this cortical dysplasia paradigm. We observed that although interneurons migrate into the neocortex in both normal and dysplastic cortex, the migrating cells become disoriented over time after E33 MAM treatment. Coculture experiments using normal GE and MAM-treated cortex (and vice versa) demonstrate that cues dictating proper orientation of migrating interneurons arise from the cortex and are not intrinsic to the migrating cells. As a consequence, interneurons in mature brains of MAM-treated animals are abnormally distributed. We report that GABA(A) receptor activation is crucial to the proper positioning of interneurons migrating into the cortex from the GE in normal and MAM-treated animals.
Collapse
Affiliation(s)
- Sylvie Poluch
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
11
|
Bandyopadhyay S, Hablitz JJ. NR2B antagonists restrict spatiotemporal spread of activity in a rat model of cortical dysplasia. Epilepsy Res 2006; 72:127-39. [PMID: 16962290 DOI: 10.1016/j.eplepsyres.2006.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 06/29/2006] [Accepted: 07/17/2006] [Indexed: 11/21/2022]
Abstract
Freeze-lesion-induced focal cortical dysplasia in rats closely resembles human microgyria, a neuronal migration disorder associated with drug-resistant epilepsy. Alterations in expression of N-methyl-D-aspartate receptors (NMDARs) containing NR2B subunits have been suggested to play a role in the hyperexcitability seen in this model. We examined the effect of NMDAR antagonists selective for NR2B subunits (Ro 25-6981 and ifenprodil) on activity evoked by intracortical stimulation in brain slices from freeze-lesioned rat neocortex. Whole-cell voltage-clamp recordings showed that Ro 25-6981 (1 microM) significantly reduced the response area of evoked postsynaptic currents in pyramidal cells from the paramicrogyral area whereas responses were unaffected in slices from control (sham operated) animals. Voltage-sensitive dye imaging was used to examine spatiotemporal spread of evoked activity in lesioned and control cortices. The imaging experiments revealed that peak amplitude, duration, and lateral spread of evoked activity in the paramicrogyral area was reduced by bath application of Ro 25-6981 (1 microM) and ifenprodil (10 microM). Ro 25-6981 had no effect on evoked activity in neocortical slices from control animals. The non-selective NMDAR antagonist d-2-amino-5-phosphonvaleric acid (APV, 20 microM) reduced activity evoked in presence of 50 microM 4-aminopyridine (known to increase excitability by enhancing neurotransmitter release) in neocortical slices from control animals whereas Ro 25-6981 (1 microM) did not. These results suggest that NR2B subunit-containing NMDARs contribute significantly to the enhanced spatiotemporal spread of paroxysmal activity observed in vitro in the rat freeze-lesion model of focal cortical dysplasia.
Collapse
Affiliation(s)
- Susanta Bandyopadhyay
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
12
|
Marchi N, Guiso G, Caccia S, Rizzi M, Gagliardi B, Noé F, Ravizza T, Bassanini S, Chimenti S, Battaglia G, Vezzani A. Determinants of drug brain uptake in a rat model of seizure-associated malformations of cortical development. Neurobiol Dis 2006; 24:429-42. [PMID: 17027274 DOI: 10.1016/j.nbd.2006.07.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 11/19/2022] Open
Abstract
We examined the blood-brain barrier (BBB) function in methylazoxymethanol acetate (MAM)-treated rats, a model of human developmental brain malformations. We found aberrant vessels morphology and serum albumin leakage in the heterotopic (malformed) hippocampus; these changes were associated with a significant increase in endothelial P-glycoprotein (P-gp) expression. Seizures exacerbated BBB leakage and greatly augmented P-gp expression in vessels and additionally in perivascular/parenchymal astrocytes. The effects of seizures were observed to a much larger extent in malformed than in normal brain tissue. The intrinsic changes in BBB function in MAM-exposed rats were associated with increased blood-to-brain penetration of ondansetron, a P-gp substrate. However, a marked reduction in drug brain levels was provoked by seizures, and this effect was reversed by selective blockade of P-gp activity with tariquidar. Changes in BBB function may critically contribute to determine the brain uptake and distribution of P-gp substrates in epileptic tissue associated with developmental malformations.
Collapse
Affiliation(s)
- Nicola Marchi
- Dept Neuroscience, Mario Negri Inst for Pharmacol Res, Via Eritrea 62, 20157 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim E, Ko J. Molecular organization and assembly of the postsynaptic density of excitatory brain synapses. Results Probl Cell Differ 2006; 43:1-23. [PMID: 17068965 DOI: 10.1007/400_011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The postsynaptic density (PSD) is a postsynaptic membrane specialization at excitatory synapses. The PSD is made of macromolecular multiprotein complexes, which contain a variety of synaptic proteins including membrane, scaffolding, and signaling proteins. By coaggregating with postsynaptic cell adhesion molecules, PSD proteins promote the formation and maturation of excitatory synapses. PSD proteins organize signaling pathways to coordinate structural and functional changes in synapses, and they regulate trafficking and recycling of glutamate receptors, which determines synaptic strength and plasticity. Synaptic activity dynamically regulates the assembly of the PSD through mechanisms including protein phosphorylation, palmitoylation, and protein degradation. PSD proteins associate with diverse motor proteins, suggesting that they function as adaptors linking motors to their specific cargoes.
Collapse
Affiliation(s)
- Eunjoon Kim
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon.
| | | |
Collapse
|
14
|
Gardoni F, Polli F, Cattabeni F, Di Luca M. Calcium-calmodulin-dependent protein kinase II phosphorylation modulates PSD-95 binding to NMDA receptors. Eur J Neurosci 2006; 24:2694-704. [PMID: 17156196 DOI: 10.1111/j.1460-9568.2006.05140.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At the postsynaptic membrane of excitatory synapses, NMDA-type receptors are bound to scaffolding and signalling proteins that regulate the strength of synaptic transmission. The cytosolic tails of the NR2A and NR2B subunits of NMDA receptor bind to calcium-calmodulin-dependent protein kinase II (CaMKII) and to members of the MAGUK family such as PSD-95. In particular, although NR2A and NR2B subunits are highly homologous, the sites of their interaction with CaMKII as well as the regulation of this binding differ. We identified PSD-95 phosphorylation as a molecular mechanism responsible for the dynamic regulation of the interaction of both PSD-95 and CaMKII with the NR2A subunit. CaMKII-dependent phosphorylation of PSD-95 occurs both in vitro, in GST-PSD-95 fusion proteins phosphorylated by purified active CaMKII, and in vivo, in transfected COS-7 as well as in cultured hippocampal neurons. We identified Ser73 as major phosphorylation site within the PDZ1 domain of PSD-95, as confirmed by point mutagenesis experiments and by using a phospho-specific antibody. PSD-95 Ser73 phosphorylation causes NR2A dissociation from PSD-95, while it does not interfere with NR2B binding to PSD-95. These results identify CaMKII-dependent phosphorylation of the PDZ1 domain of PSD-95 as a mechanism regulating the signalling transduction pathway downstream NMDA receptor.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
15
|
Finardi A, Gardoni F, Bassanini S, Lasio G, Cossu M, Tassi L, Caccia C, Taroni F, LoRusso G, Di Luca M, Battaglia G. NMDA Receptor Composition Differs Among Anatomically Diverse Malformations of Cortical Development. J Neuropathol Exp Neurol 2006; 65:883-93. [PMID: 16957582 DOI: 10.1097/01.jnen.0000235117.67558.6d] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Altered excitatory synaptic activity is likely a key factor in the neuronal hyperexcitability of developmental cerebral malformations. Using a combined morphologic and molecular approach, we investigated the NMDA receptor and related protein composition in human epileptic patients affected by periventricular nodular heterotopia, subcortical band heterotopia, or focal cortical dysplasia. Our results indicate that expression levels of specific NMDA receptor subunits are altered in both cerebral heterotopia and cortical dysplasia. A selective increase in the NR2B subunit was present in all cortical dysplasia, whereas the expression level of NR2A and NR2B subunits was significantly downregulated in all patients with heterotopia. NR2B upregulation in cortical dysplasia was greater in the total homogenate than the postsynaptic membrane fraction, suggesting that mechanisms other than increased ionic influx through the postsynaptic membrane may sustain hyperexcitability in dysplastic neurons. In cerebral heterotopia, the NR2A and NR2B downregulation was accompanied by less evident reduction of the SAP97 and PSD-95 proteins of the MAGUK family, thus suggesting that NMDA impairment was associated with altered molecular structure of the postsynaptic membrane. Our results demonstrate that diverse human developmental malformations are associated with different alterations of the NMDA receptor, which may contribute to the genesis of epileptic phenomena.
Collapse
Affiliation(s)
- Adele Finardi
- Molecular Neuroanatomy Lab, Experimental Neurophysiology and Epileptology Unit, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gardoni F, Di Luca M. New targets for pharmacological intervention in the glutamatergic synapse. Eur J Pharmacol 2006; 545:2-10. [PMID: 16831414 DOI: 10.1016/j.ejphar.2006.06.022] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 03/20/2006] [Accepted: 06/13/2006] [Indexed: 12/13/2022]
Abstract
Excitotoxicity is thought to be a major mechanism in many human disease states such as ischemia, trauma, epilepsy and chronic neurodegenerative disorders. Briefly, synaptic overactivity leads to the excessive release of glutamate that activates postsynaptic cell membrane receptors, which upon activation open their associated ion channel pore to produce ion influx. To date, although molecular basis of glutamate toxicity remain uncertain, there is general agreement that N-methyl-d-aspartate (NMDA) subtype of ionotropic glutamate receptors plays a key role in mediating at least some aspects of glutamate neurotoxicity. On this view, research has focused in the discovery of new compounds able to either reduce glutamate release or activation of postsynaptic NMDA receptors. Although NMDA receptor antagonists prevent excitotoxicity in cellular and animal models, these drugs have limited usefulness clinically. Side effects such as psychosis, nausea, vomiting, memory impairment, and neuronal cell death accompany complete NMDA receptor blockade, dramatizing the crucial role of the NMDA receptor in normal neuronal processes. Recently, however, well-tolerated compounds such as memantine has been shown to be able to block excitotoxic cell death in a clinically tolerated manner. Understanding the biochemical properties of the multitude of NMDA receptor subtypes offers the possibility of developing more effective and clinically useful drugs. The increasing knowledge of the structure and function of this postsynaptic NMDA complex may improve the identification of specific molecular targets whose pharmacological or genetic manipulation might lead to innovative therapies for brain disorders.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milano, via Balzaretti 9, 20133 Milano, Italy.
| | | |
Collapse
|
17
|
Gardoni F, Picconi B, Ghiglieri V, Polli F, Bagetta V, Bernardi G, Cattabeni F, Di Luca M, Calabresi P. A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. J Neurosci 2006; 26:2914-22. [PMID: 16540568 PMCID: PMC6673976 DOI: 10.1523/jneurosci.5326-05.2006] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abnormal function of NMDA receptor has been suggested to be correlated with the pathogenesis of Parkinson's disease (PD) as well as with the development of l-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia. Here we show that NMDA receptor NR2 subunits display specific alterations of their subcellular distribution in striata from unilateral 6-hydroxydopamine-lesioned, L-DOPA-treated dyskinetic, and L-DOPA-treated nondyskinetic rats. Dyskinetic animals have significantly higher levels of NR2A subunit in the postsynaptic compartment than all other experimental groups, whereas NR2B subunit shows a significant reduction in both dopamine-denervated and dyskinetic rats. These events are paralleled by profound modifications of NMDA receptor NR2B subunit association with interacting elements, i.e., members of the membrane-associated guanylate kinase (MAGUK) protein family postsynaptic density-95, synapse-associated protein-97 and synapse-associated protein-102. Treatment of nondyskinetic animals with a synthetic peptide (TAT2B) able to affect NR2B binding to MAGUK proteins as well as synaptic localization of this subunit in nondyskinetic rats was sufficient to induce a shift of treated rats toward a dyskinetic motor behavior. These data indicate abnormal NR2B redistribution between synaptic and extrasynaptic membranes as an important molecular disturbance of the glutamatergic synapse involved in L-DOPA-induced dyskinesia.
Collapse
|
18
|
Zhong WX, Dong ZF, Tian M, Cao J, Xu L, Luo JH. N-methyl-d-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus. Neuroscience 2006; 141:1399-413. [PMID: 16766131 DOI: 10.1016/j.neuroscience.2006.04.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 03/12/2006] [Accepted: 04/28/2006] [Indexed: 11/29/2022]
Abstract
Long term potentiation in hippocampus, evoked by high-frequency stimulation, is mediated by two major glutamate receptor subtypes, alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate receptors and N-methyl-D-aspartate receptors. Receptor subunit composition and its interaction with cytoplasmic proteins constitute different pathways regulating synaptic plasticity. Here, we provide further evidence that N-methyl-D-aspartate receptor-mediated long term potentiation evoked at hippocampal CA1 region of rats induced by high-frequency stimulation of the Schaffer collateral-commissural pathway in vivo is not dependent on N-methyl-D-aspartate receptor subunit NR2B. Applying semi-quantitative immunoblotting, we found that in the whole tetanized hippocampus, synaptic expression of the N-methyl-D-aspartate and alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate receptor subunits (NR1, NR2A, glutamate receptor 1) and their associated partners, e.g. synaptic associated protein 97, postsynaptic density protein 95, alpha subunit of Ca2+/calmodulin-dependent protein kinase II, neuronal nitricoxide synthase, increased 180 min post-high-frequency stimulation. Moreover, phosphorylation of Ca2+/calmodulin-dependent protein kinase II at thr286 and glutamate receptor 1 at ser831 was increased 30 min post-high-frequency stimulation and blocked by N-methyl-D-aspartate receptor antagonists (AP-5 and MK-801). In sham group and controls, these changes were not observed. The expression of several other synaptic proteins (NR2B, glutamate receptors 2/3, N-ethylmaleimide sensitive factor) was not affected by long term potentiation induction. In hippocampal homogenates, the level of these proteins remained unchanged. These data indicate that N-methyl-D-aspartate receptor-dependent long term potentiation in CA1 region in vivo mainly affects the synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus. The alteration of molecular aspects can play a role in regulating the long-lasting synaptic modification in hippocampal long term potentiation in vivo.
Collapse
Affiliation(s)
- W X Zhong
- Department of Neurobiology, Zhejiang University School of Medicine, 353 Yanan Road, Hangzhou 310006, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Calcagnotto ME, Baraban SC. Prolonged NMDA-mediated responses, altered ifenprodil sensitivity, and epileptiform-like events in the malformed hippocampus of methylazoxymethanol exposed rats. J Neurophysiol 2005; 94:153-62. [PMID: 15772235 DOI: 10.1152/jn.01155.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical malformations are often associated with refractory epilepsy and cognitive deficit. Clinical and experimental studies have demonstrated an important role for glutamate-mediated synaptic transmission in these conditions. Using whole cell voltage-clamp techniques, we examined evoked glutamate-mediated excitatory postsynaptic currents (eEPSCs) and responses to exogenously applied glutamate on hippocampal heterotopic cells in an animal model of malformation i.e., rats exposed to methylazoxymethanol (MAM) in utero. Analysis revealed that the late N-methyl-D-aspartate (NMDA) receptor-mediated eEPSC component was significantly increased on heterotopic cells compared with age-matched normotopic pyramidal cells. At a holding potential of +40 mV, heterotopic cells also exhibited eEPSCs with a slower decay-time constant. No differences in the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) component of eEPSCs were detected. In 23% of heterotopic pyramidal cells, electrical stimulation evoked prolonged burst-like responses. Focal application of glutamate (10 mM) targeted to different sites near the heterotopia also evoked epileptiform-like bursts on heterotopic cells. Ifenprodil (10 microM), an NR2B subunit antagonist, only slightly reduced the NMDA receptor (NMDAR)-mediated component and amplitude of eEPSCs on heterotopic cells (MAM) but significantly decreased the late component and peak amplitude of eEPSCs in normotopic cells (control). Our data demonstrate a functional alteration in the NMDA-mediated component of excitatory synaptic transmission in heterotopic cells and suggest that this alteration may be attributable, at least in part, to changes in composition and function of the NMDAR subunit. Changes in NMDAR function may directly contribute to the hyperexcitability and cognitive deficits reported in animal models and patients with brain malformations.
Collapse
Affiliation(s)
- Maria Elisa Calcagnotto
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, USA
| | | |
Collapse
|
20
|
Abstract
The vital roles played by NMDA receptors in CNS physiology depend critically on powerful voltage-dependent channel block by external Mg(2+) (Mg(2+)(o)). NMDA receptor channel block by Mg(2+)(o) depends on receptor subunit composition: NR1/2A receptors (receptors composed of NR1 and NR2A subunits) and NR1/2B receptors are more strongly inhibited by Mg(2+)(o) than are NR1/2C or NR1/2D receptors. We investigated the effects of Mg(2+)(o) on single-channel and whole-cell currents recorded from recombinant NR1/2D and NR1/2A receptors expressed in HEK293 and 293T cells. The main conclusions are as follows: (1) Voltage-dependent inhibition by Mg(2+)(o) of whole-cell NR1/2D receptor responses was at least 4-fold weaker than inhibition of NR1/2A receptor responses at all voltages tested. (2) Channel block by Mg(2+)(o) reduced the duration of NR1/2D receptor single-channel openings; this reduction was used to estimate the apparent blocking rate of Mg(2+)(o) (k(+,app)). The k(+,app) for NR1/2D receptors was similar to but moderately slower than the k(+,app) obtained from cortical NMDA receptors composed of NR1, NR2A and NR2B subunits at all voltages tested. (3) Mg(2+)(o) blocking events induced an additional component in the closed-duration distribution; this component was used to estimate the apparent unblocking rate of Mg(2+)(o) (k(-,app)). The k(-,app) for NR1/2D receptors was much faster than the k(-,app) for cortical receptors at all voltages tested. The voltage-dependence of the k(-,app) of NR1/2D and cortical receptors differed in a manner that suggested that Mg(2+)(o) may permeate NR1/2D receptors more easily than cortical receptors. (4) Mg(2+)(o) inhibits NR1/2D receptors less effectively than cortical receptors chiefly because Mg(2+)(o) unbinds much more rapidly from NR1/2D receptors.
Collapse
Affiliation(s)
- Anqi Qian
- Department of Neuroscience, 446 Crawford Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
21
|
Abstract
PDZ domains are protein-interaction domains that are often found in multi-domain scaffolding proteins. PDZ-containing scaffolds assemble specific proteins into large molecular complexes at defined locations in the cell. In the postsynaptic density of neuronal excitatory synapses, PDZ proteins such as PSD-95 organize glutamate receptors and their associated signalling proteins and determine the size and strength of synapses. PDZ scaffolds also function in the dynamic trafficking of synaptic proteins by assembling cargo complexes for transport by molecular motors. As key organizers that control synaptic protein composition and structure, PDZ scaffolds are themselves highly regulated by synthesis and degradation, subcellular distribution and post-translational modification.
Collapse
Affiliation(s)
- Eunjoon Kim
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea.
| | | |
Collapse
|
22
|
Picconi B, Gardoni F, Centonze D, Mauceri D, Cenci MA, Bernardi G, Calabresi P, Di Luca M. Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism. J Neurosci 2004; 24:5283-91. [PMID: 15190099 PMCID: PMC6729313 DOI: 10.1523/jneurosci.1224-04.2004] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The NMDA receptor complex represents a key molecular element in the pathogenesis of long-term synaptic changes and motor abnormalities in Parkinson's disease (PD). Here we show that NMDA receptor 1 (NR1) subunit and postsynaptic density (PSD)-95 protein levels are selectively reduced in the PSD of dopamine (DA)-denervated striata. These effects are accompanied by an increase in striatal levels of alphaCa2+-calmodulin-dependent protein kinase II (alphaCaMKII) autophosphorylation, along with a higher recruitment of activated alphaCaMKII to the regulatory NMDA receptor NR2A-NR2B subunits. Acute treatment of striatal slices with R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride, but not with l-sulpiride, mimicked the effect of DA denervation on both alphaCaMKII autophosphorylation and corticostriatal synaptic plasticity. In addition to normalizing alphaCaMKII autophosphorylation levels as well as assembly and anchoring of the kinase to the NMDA receptor complex, intrastriatal administration of the CaMKII inhibitors KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide) and antennapedia autocamtide-related inhibitory peptide II is able to reverse both the alterations in corticostriatal synaptic plasticity and the deficits in spontaneous motor behavior that are found in an animal model of PD. The same beneficial effects are produced by a regimen of l-3,4-dihydroxyphenylalanine (L-DOPA) treatment, which is able to normalize alphaCaMKII autophosphorylation. These data indicate that abnormal alphaCaMKII autophosphorylation plays a causal role in the alterations of striatal plasticity and motor behavior that follow DA denervation. Normalization of CaMKII activity may be an important underlying mechanism of the therapeutic action of L-DOPA in PD.
Collapse
Affiliation(s)
- Barbara Picconi
- Clinica Neurologica, Dipartimento di Neuroscienze, Universita di Roma Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|