1
|
Mzizi Y, Mbambara S, Moetlhoa B, Mahapane J, Mdanda S, Sathekge M, Kgatle M. Ionising radiation exposure-induced regulation of selected biomarkers and their impact in cancer and treatment. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1469897. [PMID: 39498386 PMCID: PMC11532091 DOI: 10.3389/fnume.2024.1469897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024]
Abstract
Ionising radiation (IR) is a form of energy that travels as electromagnetic waves or particles. While it is vital in medical and occupational health settings, IR can also damage DNA, leading to mutations, chromosomal aberrations, and transcriptional changes that disrupt the functions of certain cell regulators, genes, and transcription factors. These disruptions can alter functions critical for cancer development, progression, and treatment response. Additionally, IR can affect various cellular proteins and their regulators within different cell signalling pathways, resulting in physiological changes that may promote cancer development, progression, and resistance to treatment. Understanding these impacts is crucial for developing strategies to mitigate the harmful effects of IR exposure and improve cancer treatment outcomes. This review focuses on specific genes and protein biomarkers regulated in response to chronic IR exposure, and how their regulation impacts disease onset, progression, and treatment response.
Collapse
Affiliation(s)
- Yonwaba Mzizi
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Saidon Mbambara
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Biomedical Sciences, Tropical Diseases Research Centre, Ndola, Zambia
| | - Boitumelo Moetlhoa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Johncy Mahapane
- Department of Radiography, University of Pretoria, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mankgopo Kgatle
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
2
|
Karapetyan L, Iheagwara UK, Olson AC, Chmura SJ, Skinner HK, Luke JJ. Radiation dose, schedule, and novel systemic targets for radio-immunotherapy combinations. J Natl Cancer Inst 2023; 115:1278-1293. [PMID: 37348864 PMCID: PMC10637035 DOI: 10.1093/jnci/djad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Immunotherapy combinations are being investigated to expand the benefit of immune checkpoint blockade across many cancer types. Radiation combinations, in particular using stereotactic body radiotherapy, are of keen interest because of underlying mechanistic rationale, safety, and availability as a standard of care in certain cancers. In addition to direct tumor cytotoxicity, radiation therapy has immunomodulatory effects such as induction of immunogenic cell death, enhancement of antigen presentation, and expansion of the T-cell receptor repertoire as well as recruitment and increased activity of tumor-specific effector CD8+ cells. Combinations of radiation with cytokines and/or chemokines and anti-programmed death 1 and anticytotoxic T-lymphocyte antigen 4 therapies have demonstrated safety and feasibility, as well as the potential to improve long-term outcomes and possibly induce out of irradiated field or abscopal responses. Novel immunoradiotherapy combinations represent a promising therapeutic approach to overcome radioresistance and further enhance systemic immunotherapy. Potential benefits include reversing CD8+ T-cell exhaustion, inhibiting myeloid-derived suppressor cells, and reversing M2 macrophage polarization as well as decreasing levels of colony-stimulating factor-1 and transforming growth factor-β. Here, we discuss current data and mechanistic rationale for combining novel immunotherapy agents with radiation therapy.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Uzoma K Iheagwara
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Olson
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Chmura
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Heath K Skinner
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason J Luke
- Department of Medicine, University of Pittsburgh Medical Center and Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Kashino G, Kobashigawa S, Uchikoshi A, Tamari Y. VEGF affects mitochondrial ROS generation in glioma cells and acts as a radioresistance factor. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:213-220. [PMID: 36941405 DOI: 10.1007/s00411-023-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/08/2023] [Indexed: 05/18/2023]
Abstract
Vascular endothelial growth factor (VEGF) is closely related to angiogenesis. Anticancer therapy by inhibiting VEGF signaling is well established. However, the role of VEGF in cell-cell communication during the response to ionizing radiation is not well understood. Here, we examined the role of VEGF on radiosensitivity of cells. The addition of recombinant VEGF (rVEGF) on cultured rat C6 glioma cells showed a radioprotective effects on X-ray irradiation and reduced oxidative stress. These effects were also observed by endogenous VEGF in supernatant of C6 glioma cells. Reduction of oxidative stress by VEGF is suggested to underlie the radioprotective effects. The mechanism of VEGF-induced reduction of oxidative stress was indicated by a decreased oxygen consumption rate (OCR) in mitochondria. However, the number of DNA double-strand breaks (DSB) immediately after irradiation was not reduced by the treatment with VEGF. These results suggest that VEGF plays a role in cell survival after irradiation by controlling the oxidative condition through mitochondrial function that is independent of the efficiency of DSB induction.
Collapse
Affiliation(s)
- Genro Kashino
- Radioisotope Research Center, Nara Medical University, Shijo-Machi, Kashihara, Japan.
| | - Shinko Kobashigawa
- Radioisotope Research Center, Nara Medical University, Shijo-Machi, Kashihara, Japan
| | - Aoki Uchikoshi
- Radioisotope Research Center, Nara Medical University, Shijo-Machi, Kashihara, Japan
| | - Yuki Tamari
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
DGKB mediates radioresistance by regulating DGAT1-dependent lipotoxicity in glioblastoma. Cell Rep Med 2023; 4:100880. [PMID: 36603576 PMCID: PMC9873821 DOI: 10.1016/j.xcrm.2022.100880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/08/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) currently has a dismal prognosis. GBM cells that survive radiotherapy contribute to tumor progression and recurrence with metabolic advantages. Here, we show that diacylglycerol kinase B (DGKB), a regulator of the intracellular concentration of diacylglycerol (DAG), is significantly downregulated in radioresistant GBM cells. The downregulation of DGKB increases DAG accumulation and decreases fatty acid oxidation, contributing to radioresistance by reducing mitochondrial lipotoxicity. Diacylglycerol acyltransferase 1 (DGAT1), which catalyzes the formation of triglycerides from DAG, is increased after ionizing radiation. Genetic inhibition of DGAT1 using short hairpin RNA (shRNA) or microRNA-3918 (miR-3918) mimic suppresses radioresistance. We discover that cladribine, a clinical drug, activates DGKB, inhibits DGAT1, and sensitizes GBM cells to radiotherapy in vitro and in vivo. Together, our study demonstrates that DGKB downregulation and DGAT1 upregulation confer radioresistance by reducing mitochondrial lipotoxicity and suggests DGKB and DGAT1 as therapeutic targets to overcome GBM radioresistance.
Collapse
|
5
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Tan KX, Chang T, Lin XL. Secretomes as an emerging class of bioactive ingredients for enhanced cosmeceutical applications. Exp Dermatol 2022; 31:674-688. [PMID: 35338666 DOI: 10.1111/exd.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/23/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Skin aging is predominantly caused by either intrinsic or extrinsic factors, leading to undesirable skin features. Advancements in both molecular and cellular fields have created possibilities in developing novel stem cell-derived active ingredients for cosmeceutical applications and the beauty industry. Mesenchymal stromal cell (MSC)-derived secretomes or conditioned media hold great promise for advancing skin repair and regeneration due to the presence of varying cytokines. These cytokines signal our cells and trigger biological mechanisms associated with anti-inflammatory, antioxidant, anti-aging, proliferative, and immunomodulatory effects. In this review, we discuss the potential of MSC secretomes as novel biomaterials for skincare and rejuvenation by illustrating their mechanism of action related to wound healing, anti-aging, and whitening properties. The advantages and disadvantages of secretomes are compared to both plant-based and animal-derived extracts. In addition, this paper reviews the current safety standards, regulations, market products and research work related to the cosmeceutical applications of secretomes along with strategies to maintain and improve the therapeutic efficacy and production of secretomes. The future outlook of beauty industry is also presented. Lastly, we highlight significant challenges to be addressed for the clinical realization of MSC secretomes-based skin therapies as well as providing perspectives for the future direction of secretomes.
Collapse
Affiliation(s)
- Kei-Xian Tan
- Esco Aster, Block 67, Ayer Rajah Crescent, 139950, Singapore
| | - Trixie Chang
- Esco Aster, Block 67, Ayer Rajah Crescent, 139950, Singapore
| | - Xiang-Liang Lin
- Esco Aster, Block 67, Ayer Rajah Crescent, 139950, Singapore
| |
Collapse
|
7
|
Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, López-Camarillo C, Hernández-de la Cruz ON. Biological Adaptations of Tumor Cells to Radiation Therapy. Front Oncol 2021; 11:718636. [PMID: 34900673 PMCID: PMC8652287 DOI: 10.3389/fonc.2021.718636] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation therapy has been used worldwide for many decades as a therapeutic regimen for the treatment of different types of cancer. Just over 50% of cancer patients are treated with radiotherapy alone or with other types of antitumor therapy. Radiation can induce different types of cell damage: directly, it can induce DNA single- and double-strand breaks; indirectly, it can induce the formation of free radicals, which can interact with different components of cells, including the genome, promoting structural alterations. During treatment, radiosensitive tumor cells decrease their rate of cell proliferation through cell cycle arrest stimulated by DNA damage. Then, DNA repair mechanisms are turned on to alleviate the damage, but cell death mechanisms are activated if damage persists and cannot be repaired. Interestingly, some cells can evade apoptosis because genome damage triggers the cellular overactivation of some DNA repair pathways. Additionally, some surviving cells exposed to radiation may have alterations in the expression of tumor suppressor genes and oncogenes, enhancing different hallmarks of cancer, such as migration, invasion, and metastasis. The activation of these genetic pathways and other epigenetic and structural cellular changes in the irradiated cells and extracellular factors, such as the tumor microenvironment, is crucial in developing tumor radioresistance. The tumor microenvironment is largely responsible for the poor efficacy of antitumor therapy, tumor relapse, and poor prognosis observed in some patients. In this review, we describe strategies that tumor cells use to respond to radiation stress, adapt, and proliferate after radiotherapy, promoting the appearance of tumor radioresistance. Also, we discuss the clinical impact of radioresistance in patient outcomes. Knowledge of such cellular strategies could help the development of new clinical interventions, increasing the radiosensitization of tumor cells, improving the effectiveness of these therapies, and increasing the survival of patients.
Collapse
Affiliation(s)
- Angeles Carlos-Reyes
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Marcos A. Muñiz-Lino
- Laboratorio de Patología y Medicina Bucal, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City, Mexico
| | - Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico City
| | | |
Collapse
|
8
|
Sun L, Morikawa K, Sogo Y, Sugiura Y. MHY1485 enhances X-irradiation-induced apoptosis and senescence in tumor cells. JOURNAL OF RADIATION RESEARCH 2021; 62:782-792. [PMID: 34265852 PMCID: PMC8438247 DOI: 10.1093/jrr/rrab057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a sensor of nutrient status and plays an important role in cell growth and metabolism. Although inhibition of mTOR signaling promotes tumor cell death and several mTOR inhibitors have been used clinically, recent reports have shown that co-treatment with MHY1485, an mTOR activator, enhances the anti-cancer effects of anti-PD-1 antibody and 5-fluorouracil. However, it remains unclear whether MHY1485 treatment alters the effects of radiation on tumor cells. In this study, the radiosensitizing effects of MHY1485 were investigated using murine CT26 and LLC cell lines. We examined mTOR signaling, tumor cell growth, colony formation, apoptosis, senescence, oxidative stress, p21 accumulation and endoplasmic reticulum (ER) stress levels in cells treated with MHY1485 and radiation, either alone or together. We found that MHY1485 treatment inhibited growth and colony formation in both cell lines under irradiation and no-irradiation conditions, results that were not fully consistent with MHY1485's known role in activating mTOR signaling. Furthermore, we found that combined treatment with MHY1485 and radiation significantly increased apoptosis and senescence in tumor cells in association with oxidative stress, ER stress and p21 stabilization, compared to radiation treatment alone. Our results suggested that MHY1485 enhances the radiosensitivity of tumor cells by a mechanism that may differ from MHY1485's role in mTOR activation.
Collapse
Affiliation(s)
- Lue Sun
- Corresponding author. Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. Tel: +81-29-849-1564; Fax: +81-29-861-6149; E-mail:
| | - Kumi Morikawa
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yu Sogo
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuki Sugiura
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu, Kagawa 761-0895, Japan
| |
Collapse
|
9
|
Yeo ECF, Brown MP, Gargett T, Ebert LM. The Role of Cytokines and Chemokines in Shaping the Immune Microenvironment of Glioblastoma: Implications for Immunotherapy. Cells 2021; 10:607. [PMID: 33803414 PMCID: PMC8001644 DOI: 10.3390/cells10030607] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most common form of primary brain tumour in adults. For more than a decade, conventional treatment has produced a relatively modest improvement in the overall survival of glioblastoma patients. The immunosuppressive mechanisms employed by neoplastic and non-neoplastic cells within the tumour can limit treatment efficacy, and this can include the secretion of immunosuppressive cytokines and chemokines. These factors can play a significant role in immune modulation, thus disabling anti-tumour responses and contributing to tumour progression. Here, we review the complex interplay between populations of immune and tumour cells together with defined contributions by key cytokines and chemokines to these intercellular interactions. Understanding how these tumour-derived factors facilitate the crosstalk between cells may identify molecular candidates for potential immunotherapeutic targeting, which may enable better tumour control and improved patient survival.
Collapse
Affiliation(s)
- Erica C. F. Yeo
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Michael P. Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Tessa Gargett
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Lisa M. Ebert
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia; (E.C.F.Y.); (M.P.B.); (T.G.)
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
10
|
Olivier C, Oliver L, Lalier L, Vallette FM. Drug Resistance in Glioblastoma: The Two Faces of Oxidative Stress. Front Mol Biosci 2021; 7:620677. [PMID: 33585565 PMCID: PMC7873048 DOI: 10.3389/fmolb.2020.620677] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
Glioblastomas (GBM) are the most common primary brain tumor with a median survival of 15 months. A population of cells with stem cell properties (glioblastoma stem cells, GSCs) drives the initiation and progression of GBM and is localized in specialized microenvironments which support their behavior. GBM are characterized as extremely resistant to therapy, resulting in tumor recurrence. Reactive oxygen species (ROS) control the cellular stability by influencing different signaling pathways. Normally, redox systems prevent cell oxidative damage; however, in gliomagenesis, the cellular redox mechanisms are highly impaired. Herein we review the dual nature of the redox status in drug resistance. ROS generation in tumor cells affects the cell cycle and is involved in tumor progression and drug resistance in GBM. However, excess ROS production has been found to induce cell death programs such as apoptosis and autophagy. Since GBM cells have a high metabolic rate and produce high levels of ROS, metabolic adaptation in these cells plays an essential role in resistance to oxidative stress-induced cell death. Finally, the microenvironment with the stromal components participates in the enhancement of the oxidative stress to promote tumor progression and drug resistance.
Collapse
Affiliation(s)
- Christophe Olivier
- Faculté des Sciences Pharmaceutiques et Biologiques, Nantes, France.,Université de Nantes, INSERM, CRCINA, Nantes, France
| | - Lisa Oliver
- Université de Nantes, INSERM, CRCINA, Nantes, France.,CHU de Nantes, Nantes, France
| | - Lisenn Lalier
- Université de Nantes, INSERM, CRCINA, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| | - François M Vallette
- Université de Nantes, INSERM, CRCINA, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| |
Collapse
|
11
|
Hutson KH, Willis K, Nwokwu CD, Maynard M, Nestorova GG. Photon versus proton neurotoxicity: Impact on mitochondrial function and 8-OHdG base-excision repair mechanism in human astrocytes. Neurotoxicology 2020; 82:158-166. [PMID: 33347902 DOI: 10.1016/j.neuro.2020.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
This study assesses and compares the neurotoxic effects of proton and photon radiation on mitochondrial function and DNA repair capabilities of human astrocytes. Human astrocytes received either proton (0.5 Gy and 3 Gy), photon (0.5 Gy and 3 Gy), or sham-radiation treatment. The mRNA expression level of the DNA repair protein OGG1 was determined via RT-qPCR. The levels of 8-OHdG in the cell media were measured via ELISA. Real-time kinetic analysis of extracellular oxygen consumption rates was performed to assess mitochondrial function. Radiation-induced changes in mitochondrial mass and oxidative activity were assessed using fluorescent imaging with MitoTracker™ Green FM and MitoTracker™ Orange CM-H2TMRos dyes respectively. PCR was used to quantify the alteration in the mitochondrial DNA content, measured as the mitochondrial to nuclear DNA ratio. A significant increase in mitochondrial mass and levels of reactive oxygen species was observed after radiation treatment. Additionally, real-time PCR analysis indicated a significant depletion of mitochondrial DNA content in the irradiated cells when compared to the control. This was accompanied by a decreased gene expression of the DNA base-excision repair protein OGG1 and reduced clearance of 8-OHdG adducts from the genome. Photon radiation treatment was associated with a more detrimental cellular impact when compared to the same dose of proton radiation. These results are indicative of a radiation-induced dose-dependent decrease in mitochondrial function, an increase in senescence and astrogliosis, and impairment of the DNA repair capabilities in healthy glial cells. Photon irradiation was associated with a more significant disruption in mitochondrial function and base-excision repair mechanisms in vitro in comparison to proton treatment.
Collapse
Affiliation(s)
- Kristen H Hutson
- Molecular Sciences and Nanotechnology, Louisiana Tech University, Ruston, USA
| | - Kaitlynn Willis
- School of Biological Sciences, Louisiana Tech University, Ruston, USA
| | | | | | | |
Collapse
|
12
|
Chen S, He Z, Xu J. Application of adipose-derived stem cells in photoaging: basic science and literature review. Stem Cell Res Ther 2020; 11:491. [PMID: 33225962 PMCID: PMC7682102 DOI: 10.1186/s13287-020-01994-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Photoaging is mainly induced by continuous exposure to sun light, causing multiple unwanted skin characters and accelerating skin aging. Adipose-derived stem cells(ADSCs) are promising in supporting skin repair because of their significant antioxidant capacity and strong proliferation, differentiation, and migration ability, as well as their enriched secretome containing various growth factors and cytokines. The identification of the mechanisms by which ADSCs perform these functions for photoaging has great potential to explore therapeutic applications and combat skin aging. We also review the basic mechanisms of UV-induced skin aging and recent improvement in pre-clinical applications of ADSCs associated with photoaging. Results showed that ADSCs are potential to address photoaging problem and might treat skin cancer. Compared with ADSCs alone, the secretome-based approaches and different preconditionings of ADSCs are more promising to overcome the current limitations and enhance the anti-photoaging capacity.
Collapse
Affiliation(s)
- Shidie Chen
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Zhigang He
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
13
|
Hasegawa K, Saga R, Takahashi R, Fukui R, Chiba M, Okumura K, Tsuruga E, Hosokawa Y. 4-methylumbelliferone inhibits clonogenic potency by suppressing high molecular weight-hyaluronan in fibrosarcoma cells. Oncol Lett 2020; 19:2801-2808. [PMID: 32218833 PMCID: PMC7068617 DOI: 10.3892/ol.2020.11370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/21/2020] [Indexed: 01/13/2023] Open
Abstract
The inflammatory response is closely associated with cancer cell survival. It has been reported that inflammatory signaling cascades promote tumor survival and exert detrimental effects in normal tissue. Hyaluronans have different cellular functions depending on their molecular weights and high molecular weight-hyaluronan (HMW-HA) exhibits anti-inflammatory effects. A previous study determined that the co-administration of 4-methylumbelliferone (4-MU) and X-ray irradiation enhanced anti-tumor and anti-inflammatory effects in HT1080 human fibrosarcoma cells. However, many mechanisms underlie the effect of hyaluronan molecular weight on cells and the induction of anti-inflammatory effects via 4-MU. The present study aimed to determine the relationship between hyaluronan synthesis inhibition by 4-MU and its anti-inflammatory and radio-sensitizing effect in the context of hyaluronan molecular weight. The hyaluronan concentration following 2 Gy X-ray irradiation and/or 4-MU administration was analyzed via ELISA. Additionally, the mRNA expressions of hyaluronan synthase (HAS) by 4-MU and various inflammatory cytokines and interleukins (IL) following exogenous HMW-HA administration were evaluated via Reverse transcription-quantitative PCR. Invasive potential was assessed by matrigel transwell assays and cell survival following exposure to 4-MU with HMW-HA was determined using a clonogenic potency assay. The results of the present study demonstrated that 4-MU suppressed HMW-HA production by inhibiting HAS2 and HAS3 expression. In addition, the surviving fraction of fibrosarcoma cells were rescued from the cell-killing effect of 4-MU via the exogenous administration of HMW-HA. The mRNA levels of certain inflammatory cytokines, including IL-1α, IL-36γ and IL-37 were elevated following HMW-HA administration. The surviving fraction of cells irradiated with 2 Gy alone did not increase following exogenous HMW-HA administration. The results of the present study indicated that the radio-sensitizing effect of 4-MU and the inhibitory effect on hyaluronan synthesis were not closely associated. It was also revealed that IL-1α, IL-36γ and IL-37 were associated with the cell-killing effect of 4-MU in HT1080 cells.
Collapse
Affiliation(s)
- Kazuki Hasegawa
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Ryo Saga
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Rei Takahashi
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Roman Fukui
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Kazuhiko Okumura
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Health Science University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Eichi Tsuruga
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
14
|
Lamano JB, Lamano JB, Li YD, DiDomenico JD, Choy W, Veliceasa D, Oyon DE, Fakurnejad S, Ampie L, Kesavabhotla K, Kaur R, Kaur G, Biyashev D, Unruh DJ, Horbinski CM, James CD, Parsa AT, Bloch O. Glioblastoma-Derived IL6 Induces Immunosuppressive Peripheral Myeloid Cell PD-L1 and Promotes Tumor Growth. Clin Cancer Res 2019; 25:3643-3657. [PMID: 30824583 PMCID: PMC6571046 DOI: 10.1158/1078-0432.ccr-18-2402] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/02/2019] [Accepted: 02/25/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Upregulation of programmed death-ligand 1 (PD-L1) on circulating and tumor-infiltrating myeloid cells is a critical component of GBM-mediated immunosuppression that has been associated with diminished response to vaccine immunotherapy and poor survival. Although GBM-derived soluble factors have been implicated in myeloid PD-L1 expression, the identity of such factors has remained unknown. This study aimed to identify factors responsible for myeloid PD-L1 upregulation as potential targets for immune modulation. EXPERIMENTAL DESIGN Conditioned media from patient-derived GBM explant cell cultures was assessed for cytokine expression and utilized to stimulate naïve myeloid cells. Myeloid PD-L1 induction was quantified by flow cytometry. Candidate cytokines correlated with PD-L1 induction were evaluated in tumor sections and plasma for relationships with survival and myeloid PD-L1 expression. The role of identified cytokines on immunosuppression and survival was investigated in vivo utilizing immunocompetent C57BL/6 mice bearing syngeneic GL261 and CT-2A tumors. RESULTS GBM-derived IL6 was identified as a cytokine that is necessary and sufficient for myeloid PD-L1 induction in GBM through a STAT3-dependent mechanism. Inhibition of IL6 signaling in orthotopic murine glioma models was associated with reduced myeloid PD-L1 expression, diminished tumor growth, and increased survival. The therapeutic benefit of anti-IL6 therapy proved to be CD8+ T-cell dependent, and the antitumor activity was additive with that provided by programmed death-1 (PD-1)-targeted immunotherapy. CONCLUSIONS Our findings suggest that disruption of IL6 signaling in GBM reduces local and systemic myeloid-driven immunosuppression and enhances immune-mediated antitumor responses against GBM.
Collapse
Affiliation(s)
- Jonathan B Lamano
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | | | - Yuping D Li
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | | | - Winward Choy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Dorina Veliceasa
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Daniel E Oyon
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Shayan Fakurnejad
- Stanford School of Medicine, Stanford University, Stanford, California
| | - Leonel Ampie
- Department of Neurosurgery, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - Kartik Kesavabhotla
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Rajwant Kaur
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Gurvinder Kaur
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Dauren Biyashev
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Dusten J Unruh
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
- Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C David James
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
- Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | | | - Orin Bloch
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
- Lou and Jean Malnati Brain Tumor Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
15
|
Chen X, Chen F, Ren Y, Weng G, Xu L, Xue X, Keng PC, Lee SO, Chen Y. IL-6 signaling contributes to radioresistance of prostate cancer through key DNA repair-associated molecules ATM, ATR, and BRCA 1/2. J Cancer Res Clin Oncol 2019; 145:1471-1484. [PMID: 31020420 DOI: 10.1007/s00432-019-02917-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE To study an association between IL-6 signaling and resistance to radiotherapy of prostate cancer (PCa) and explore the molecular mechanisms involved. METHODS IL-6 expressing C4-2 and CWR22Rv1 (C4-2IL-6/CWRIL-6) and vector control (C4-2vec/CWRvec) cell lines were developed. Radiation-sensitivities of these cells were compared in clonogenic assay, Comet assay, and γH2AX staining. In xenograft animal studies, radiation-sensitivity of C4-2IL-6 cell-derived tumors vs. C4-2vec cell-derived tumors was investigated. To reveal IL-6 downstream molecules involved in DNA repair after radiation, qPCR and Western blot analyses as well as immunofluorescence staining were performed. Transcriptional control of IL-6 on ATM and ATR molecules was also investigated. RESULTS We found C4-2IL-6 and CWRIL-6 cells survived better than their vector control cells after irradiation, and animal studies confirmed such in vitro results. We discovered that DNA repair-related molecules such as ATM, ATR, BRCA1, and BRCA2 were significantly upregulated in irradiated IL-6 expressing cells compared with vector control cells. We further defined that IL-6 signaling regulated cellular expressions of ATM and ATR at the transcriptional level through the activation of Stat3 signaling pathway. CONCLUSIONS IL-6 leads to PCa resistance to radiation through upregulation of DNA repair associated molecules ATM, ATR, BRCA1, and BRCA2.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 647, Rochester, NY, 14642, USA
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Feng Chen
- Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 647, Rochester, NY, 14642, USA
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Yu Ren
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Guobin Weng
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Lijun Xu
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Xiang Xue
- Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 647, Rochester, NY, 14642, USA
| | - Peter C Keng
- Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 647, Rochester, NY, 14642, USA
| | - Soo Ok Lee
- Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 647, Rochester, NY, 14642, USA.
| | - Yuhchyau Chen
- Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box 647, Rochester, NY, 14642, USA.
| |
Collapse
|
16
|
Pyrazinib (P3), [(E)-2-(2-Pyrazin-2-yl-vinyl)-phenol], a small molecule pyrazine compound enhances radiosensitivity in oesophageal adenocarcinoma. Cancer Lett 2019; 447:115-129. [DOI: 10.1016/j.canlet.2019.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/13/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
|
17
|
Regulatory roles of miR-22/Redd1-mediated mitochondrial ROS and cellular autophagy in ionizing radiation-induced BMSC injury. Cell Death Dis 2019; 10:227. [PMID: 30846680 PMCID: PMC6405932 DOI: 10.1038/s41419-019-1373-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 11/27/2018] [Accepted: 01/15/2019] [Indexed: 12/26/2022]
Abstract
Ionizing radiation (IR) response has been extensively investigated in BMSCs with an increasing consensus that this type of cells showed relative radiosensitivity in vitro analysis. However, the underlying mechanism of IR-induced injury of BMSCs has not been elucidated. In current study, the regulatory role of miR-22/Redd1 pathway-mediated mitochondrial reactive oxygen species (ROS) and cellular autophagy in IR-induced apoptosis of BMSCs was determined. IR facilitated the generation and accumulation of mitochondrial ROS, which promoted IR-induced apoptosis in BMSCs; meanwhile, cellular autophagy activated by IR hold a prohibitive role on the apoptosis program. The expression of miR-22 significantly increased in BMSCs after IR exposure within 24 h. Overexpression of miR-22 evidently accelerated IR-induced accumulation of mitochondrial ROS, whereas attenuated IR stimulated cellular autophagy, thus advancing cellular apoptosis. Furthermore, we verified Redd1 as a novel target for miR-22 in rat genome. Redd1 overexpression attenuated the regulatory role of miR-22 on mitochondrial ROS generation and alleviated the inhibitive role of miR-22 on cell autophagy activated by IR, thus protecting BMSCs from miR-22-mediated cell injury induced by IR exposure. These results confirmed the role of miR-22/Redd1 pathway in the regulation of IR-induced mitochondrial ROS and cellular autophagy, and subsequent cellular apoptosis.
Collapse
|
18
|
Liu X, Chen H, Hou Y, Ma X, Ye M, Huang R, Hu B, Cao H, Xu L, Liu M, Li L, Gao J, Bai Y. Adaptive EGF expression sensitizes pancreatic cancer cells to ionizing radiation through activation of the cyclin D1/P53/PARP pathway. Int J Oncol 2019; 54:1466-1480. [PMID: 30968148 DOI: 10.3892/ijo.2019.4719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/02/2019] [Indexed: 11/05/2022] Open
Abstract
It is well-known that the activation status of the P53, signal transducer and activator of transcription (Stat)3 and nuclear factor (NF)‑κB signaling pathways determines the radiosensitivity of cancer cells. However, the function of these pathways in radiosensitive vs radioresistant cancer cells remains elusive. The present study demonstrated that adaptive expression of epidermal growth factor (EGF) following exposure to ionizing radiation (IR) may induce radiosensitization of pancreatic cancer (PC) cells through induction of the cyclin D1/P53/poly(ADP‑ribose) polymerase pathway. By contrast, adaptively expressed interleukin (IL)‑6 and insulin‑like growth factor (IGF)‑1 may promote radioresistance of PC cells, likely through activation of the Stat3 and NF‑κB pathways. In addition, cyclin D1 and survivin, which are specifically expressed in the G1/S and G2/M phase of the cell cycle, respectively, are mutually exclusive in radiosensitive and radioresistant PC cells, while Bcl‑2 and Bcl‑xL expression does not differ between radiosensitive and radioresistant PC cells. Therefore, adaptively expressed EGF and IL‑6/IGF‑1 may alter these pathways to promote the radiosensitivity of PC cancers. The findings of the present study highlight potential makers for the evaluation of radiosensitivity and enable the development of effective regimens for cancer radiotherapy.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Haiyan Chen
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Yanli Hou
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Xiumei Ma
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Ming Ye
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Renhua Huang
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Bin Hu
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Hongbin Cao
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Lei Xu
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Mengyao Liu
- Laboratory of Tumorigenesis and Immunity, Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Linfeng Li
- Laboratory of Tumorigenesis and Immunity, Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Jianxin Gao
- Laboratory of Tumorigenesis and Immunity, Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Yongrui Bai
- Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
19
|
Saga R, Hasegawa K, Murata K, Chiba M, Nakamura T, Okumura K, Tsuruga E, Hosokawa Y. Regulation of radiosensitivity by 4-methylumbelliferone via the suppression of interleukin-1 in fibrosarcoma cells. Oncol Lett 2019; 17:3555-3561. [PMID: 30867797 DOI: 10.3892/ol.2019.9990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Tumor recurrence and distant metastasis following radiotherapy, which can lead to poor prognosis, are caused by residual cancer cells that acquire radioresistance. Chemotherapy or a combination of targeted inhibitors can potentially enhance radiation sensitivity and prevent metastasis. It was previously reported that co-administration of the hyaluronan synthesis inhibitor 4-methylumbelliferone (4-MU) enhanced the lethality of X-ray irradiation in HT1080 human fibrosarcoma cells and decreased their invasiveness to a greater extent than either treatment alone. To clarify the molecular basis of these effects, the present study conducted mRNA expression profiling by cDNA microarray to identify the signaling pathways that are altered under this combination treatment. The activation state of the signaling pathways was classified by z-scores in the Ingenuity Pathway Analysis. The results revealed that the pro-inflammatory cytokines interleukin (IL)-6 and IL-8 were activated by 2 Gy X-ray irradiation, an effect that was abolished by co-administration of 4-MU. Similar trends were observed for the upstream signaling component IL-1. These results indicate that the radiosensitivity of fibrosarcoma cells is improved by suppressing inflammation through the administration of 4-MU.
Collapse
Affiliation(s)
- Ryo Saga
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Kazuki Hasegawa
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Kosho Murata
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Toshiya Nakamura
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Kazuhiko Okumura
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Eichi Tsuruga
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
20
|
You GR, Cheng AJ, Lee LY, Huang YC, Liu H, Chen YJ, Chang JT. Prognostic signature associated with radioresistance in head and neck cancer via transcriptomic and bioinformatic analyses. BMC Cancer 2019; 19:64. [PMID: 30642292 PMCID: PMC6332600 DOI: 10.1186/s12885-018-5243-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023] Open
Abstract
Background Radiotherapy is an indispensable treatment modality in head and neck cancer (HNC), while radioresistance is the major cause of treatment failure. The aim of this study is to identify a prognostic molecular signature associated with radio-resistance in HNC for further clinical applications. Methods Affymetrix cDNA microarrays were used to globally survey different transcriptomes between HNC cell lines and isogenic radioresistant sublines. The KEGG and Partek bioinformatic analytical methods were used to assess functional pathways associated with radioresistance. The SurvExpress web tool was applied to study the clinical association between gene expression profiles and patient survival using The Cancer Genome Atlas (TCGA)-head and neck squamous cell carcinoma (HNSCC) dataset (n = 283). The Kaplan-Meier survival analyses were further validated after retrieving clinical data from the TCGA-HNSCC dataset (n = 502) via the Genomic Data Commons (GDC)-Data-Portal of National Cancer Institute. A panel maker molecule was generated to assess the efficacy of prognostic prediction for radiotherapy in HNC patients. Results In total, the expression of 255 molecules was found to be significantly altered in the radioresistant cell sublines, with 155 molecules up-regulated 100 down-regulated. Four core functional pathways were identified to enrich the up-regulated genes and were significantly associated with a worse prognosis in HNC patients, as the modulation of cellular focal adhesion, the PI3K-Akt signaling pathway, the HIF-1 signaling pathway, and the regulation of stem cell pluripotency. Total of 16 up-regulated genes in the 4 core pathways were defined, and 11 over-expressed molecules showed correlated with poor survival (TCGA-HNSCC dataset, n = 283). Among these, 4 molecules were independently validated as key molecules associated with poor survival in HNC patients receiving radiotherapy (TCGA-HNSCC dataset, n = 502), as IGF1R (p = 0.0454, HR = 1.43), LAMC2 (p = 0.0235, HR = 1.50), ITGB1 (p = 0.0336, HR = 1.46), and IL-6 (p = 0.0033, HR = 1.68). Furthermore, the combined use of these 4 markers product an excellent result to predict worse radiotherapeutic outcome in HNC (p < 0.0001, HR = 2.44). Conclusions Four core functional pathways and 4 key molecular markers significantly contributed to radioresistance in HNC. These molecular signatures may be used as a predictive biomarker panel, which can be further applied in personalized radiotherapy or as radio-sensitizing targets to treat refractory HNC. Electronic supplementary material The online version of this article (10.1186/s12885-018-5243-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-Rung You
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ann-Joy Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Yu-Chen Huang
- Department of Oral Maxillofacial Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Hsuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Joseph T Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan. .,Department of Radiation Oncology, Xiamen Chang Gung Memorial Hospital, Xiamen, Fujian, China.
| |
Collapse
|
21
|
Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Deng H, Cao K, Zhou M, Xiang B, Li X, Li Y, Li G, Xiong W, Zeng Z. Role of metabolism in cancer cell radioresistance and radiosensitization methods. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:87. [PMID: 29688867 PMCID: PMC5914062 DOI: 10.1186/s13046-018-0758-7] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Radioresistance is a major factor leading to the failure of radiotherapy and poor prognosis in tumor patients. Following the application of radiotherapy, the activity of various metabolic pathways considerably changes, which may result in the development of resistance to radiation. MAIN BODY Here, we discussed the relationships between radioresistance and mitochondrial and glucose metabolic pathways, aiming to elucidate the interplay between the tumor cell metabolism and radiotherapy resistance. In this review, we additionally summarized the potential therapeutic targets in the metabolic pathways. SHORT CONCLUSION The aim of this review was to provide a theoretical basis and relevant references, which may lead to the improvement of the sensitivity of radiotherapy and prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Le Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Cao
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
22
|
Kong EY, Cheng SH, Yu KN. Induction of autophagy and interleukin 6 secretion in bystander cells: metabolic cooperation for radiation-induced rescue effect? JOURNAL OF RADIATION RESEARCH 2018; 59:129-140. [PMID: 29385614 PMCID: PMC5951087 DOI: 10.1093/jrr/rrx101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 05/06/2023]
Abstract
We hypothesized that radiation-induced rescue effect (RIRE) shared similar mechanisms with 'metabolic cooperation', in which nutrient-deprived cancer cells prompted normal cells to provide nutrients. Our data demonstrated that X-ray irradiation induced autophagy in HeLa cells, which could last at least 18 h, and proved that the irradiated cells (IRCs) resorted to breaking down their own intracellular components to supply the molecules required for cell-repair enhancement (e.g. to activate the NF-κB pathway) in the absence of support from bystander unirradiated cells (UICs). Furthermore, autophagy accumulation in IRCs was significantly reduced when they were partnered with UICs, and more so with UICs with pre-induced autophagy before partnering (through starvation using Earle's Balanced Salt Solution), which showed that the autophagy induced in UICs supported the IRCs. Our results also showed that interleukin 6 (IL-6) was secreted by bystander UICs, particularly the UICs with pre-induced autophagy, when they were cultured in the medium having previously conditioned irradiated HeLa cells. It was established that autophagy could activate the signal transducer and activator of transcription 3 (STAT3) that was required for the IL-6 production in the autophagy process. Taken together, the metabolic cooperation of RIRE was likely initiated by the bystander factors released from IRCs, which induced autophagy and activated STAT3 to produce IL-6 in bystander UICs, and was finally manifested in the activation of the NF-κB pathway in IRCs by the IL-6 secreted by the UICs.
Collapse
Affiliation(s)
- Eva Yi Kong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- Corresponding author: Tel: +852-344-27812; Fax: +852-344-20538;
| |
Collapse
|