1
|
Mitra D, Armijo GK, Ober EH, Baker SM, Turner HC, Broustas CG. MIIST305 mitigates gastrointestinal acute radiation syndrome injury and ameliorates radiation-induced gut microbiome dysbiosis. Gut Microbes 2025; 17:2458189. [PMID: 39930324 PMCID: PMC11817531 DOI: 10.1080/19490976.2025.2458189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal growth barrier dysfunction, and aberrant inflammatory responses. Further, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, mostly commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no U.S. Food and Drug Administration (FDA) approved countermeasures that can treat radiation-induced GI injuries. To meet this critical need, Synedgen Inc. has developed a glycopolymer radiomitigator (MIIST305) that is specifically targeted to the GI tract, which acts by intercalating into the mucus layer and the glycocalyx of intestinal epithelial cells that could potentially ameliorate the deleterious effects of radiation. Male C57BL/6J adult mice were exposed to 13 Gy partial body X-irradiation with 5% bone marrow shielding and MIIST305 was administered on days 1, 3, and 5 post-irradiation. Approximately 85% of the animals survived the irradiation exposure and were apparently healthy until the end of the 30-day study period. In contrast, no control, Vehicle-treated animals survived past day 10 at this radiation dose. We show that MIIST305 improved intestinal epithelial barrier function and suppressed systemic inflammatory responses mediated by radiation-induced pro-inflammatory cytokines. Taxonomic profiling and community structure of the fecal and colonic mucosa microbiota demonstrated that MIIST305 treatment increased microbial diversity and restored abundance of beneficial commensal bacteria, including Lactobacillus and Bifidobacterium genera while suppressing potentially pathogenic bacteria Enterococcus and Staphylococcus compared with Vehicle-treated animals. In summary, MIIST305 is a novel GI-targeted therapeutic that greatly enhances survival in mice exposed to lethal radiation and protects the GI tract from injury by restoring a balanced gut microbiota and reducing pro-inflammatory responses. Further development of this drug as an FDA-approved medical countermeasure is of critical importance.
Collapse
Affiliation(s)
- Debmalya Mitra
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gabriel K. Armijo
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth H. Ober
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Helen C. Turner
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Yue T, Dong Y, Huo Q, Li W, Wang X, Zhang S, Fan H, Wu X, He X, Zhao Y, Li D. Nicotinamide riboside alleviates ionizing radiation-induced intestinal senescence by alleviating oxidative damage and regulating intestinal metabolism. J Adv Res 2025; 72:421-432. [PMID: 39029900 DOI: 10.1016/j.jare.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024] Open
Abstract
INTRODUCTION The intestine, frequently subjected to pelvic or abdominal radiotherapy, is particularly vulnerable to delayed effects of acute radiation exposure (DEARE) owing to its high radiation sensitivity. Radiation-induced intestinal senescence, a result of DEARE, profoundly affects the well-being and quality of life of radiotherapy patients. However, targeted pharmaceutical interventions for radiation-induced senescence are currently scarce. Our findings showcase that nicotinamide riboside(NR) effectively alleviates radiation-induced intestinal senescence, offering crucial implications for utilizing NR as a pharmacological agent to combat intestinal DEARE. OBJECTIVES The aim of this study was to investigate the ability of NR to reduce radiation induced intestinal senescence and explore its related mechanisms. METHODS Male C57BL/6J mice were randomly divided into CON, IR, and IR + NR groups. The mice in the IR and IR + NR groups were subjected to a 6.0 Gy γ-ray total body exposure. After 8 weeks, the mice in the IR + NR group received NR via gavage at a dose of 400 mg/kg/d for 21 days. Then the mice were used for sample collection. RESULTS Our results demonstrate that NR can significantly mitigate radiation-induced intestinal senescence. Furthermore, our findings indicate that NR can mitigate oxidative damage, restore the normal function of intestinal stem cells, regulate the disruption of the intestinal symbiotic ecosystem and address metabolic abnormalities. In addition, the underlying mechanisms involve the activation of SIRT6, SIRT7 and the inhibition of the mTORC1 pathway by NR. CONCLUSION In conclusion, our results reveal the substantial inhibitory effects of NR on radiation-induced intestinal senescence. These findings offer valuable insights into the potential therapeutic use of NR as a pharmacological agent for alleviating intestinal DEARE.
Collapse
Affiliation(s)
- Tongpeng Yue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Qidong Huo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Shiyi Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Huirong Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xin He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
3
|
Zhang Y, Yu C, Agborbesong E, Li X. Downregulation of EZH2 Promotes Renal Epithelial Cellular Senescence and Kidney Aging. FASEB J 2025; 39:e70605. [PMID: 40326780 DOI: 10.1096/fj.202500128r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/05/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Renal epithelial cell senescence and kidney aging have become the focus of scientific investigation. However, how epigenetic regulation in these processes remains elusive. Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, regulates trimethylation of histone H3 at lysine 27 (H3K27me3) and plays an important role in renal pathophysiology. In this study, we show that the expression of EZH2 is decreased in naturally aged and irradiation (IR)-induced mouse kidneys, as well as in IR-induced human renal cortical tubular epithelial (RCTE) cells through proteasome-mediated degradation. Inhibition of EZH2 with its specific inhibitor 3-DZNeP promotes tubular cell senescence and kidney aging characterized by an increase in the expression of senescence markers, including p16 and p21, in mouse kidneys and in IR-induced RCTE cells. We show that EZH2 represses the transcription of p16 through trimethylation of H3K27me3, which directly binds to the promoter of p16. EZH2 represses the transcription of p21 through directly binding to the promoter of p21, and this process is involved in its interaction with p53 and its phosphorylation by ataxia-telangiectasia mutated (ATM), a critical protein involved in the cellular response to DNA damage. Inhibition of ATM with its inhibitor decreased the phosphorylation of EZH2 and the binding of EZH2 to the promoter of p21 in IR-treated RCTE cells in a p53-dependent manner. This study suggests that EZH2 plays a critical role in preventing kidney aging and DNA-damage-induced renal tubular cellular senescence, in which senescence and kidney aging also result in the destabilization of EZH2, forming a negative feedback loop.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Abu-Nada L, Liu Y, Saleh Al-Hamed F, Ouliass B, Millecamps M, Tran SD, Ferland G, Soleimani VD, Marino FT, Murshed M. Young bone marrow transplantation delays bone aging in old mice. Exp Gerontol 2025; 202:112704. [PMID: 39914580 DOI: 10.1016/j.exger.2025.112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Recent discoveries have shown that systemic manipulations, such as parabiosis, blood exchange, and young plasma transfer, can counteract many hallmarks of aging. This rejuvenation effect has been attributed to circulatory factors produced by cells from both hematopoietic and non-hematopoietic lineages. However, the specific involvement of bone marrow (BM) or hematopoietic cells in producing such factors and their effects on aging is still unclear. We developed a model of aged mice with transplanted young or old BM cells and assessed the impact on the aging process, specifically on energy metabolism and bone remodeling parameters. The donor BM cell engraftment in the aged mice was confirmed by flow cytometry using a transplanted cell-specific marker (green fluorescent protein). Energy metabolism was assessed using Oxymax indirect calorimetry system after 3 months of transplantation. Tibiae and L3-L4 vertebrae were analyzed using micro-CT, a three-point bending test and bone histomorphometry. Moreover, bone marrow proteome was assessed using proteomics, and blood serum/plasma was collected and analyzed using the Luminex assay. Our results showed that while the effect on energy metabolism was insignificant, rejuvenating the BM through young bone marrow transplantation reversed age-associated low bone mass traits in old mice. Specifically, young bone marrow transplantation improved bone trabecular microarchitecture both in tibiae and vertebrae of old mice and increased the number of osteoblasts and osteoclasts compared to old bone marrow transplantation. In conclusion, young bone marrow cells may represent a future therapeutic strategy for age-related diseases such as osteoporosis. The findings of this study provide important insights into our understanding of aging.
Collapse
Affiliation(s)
- Lina Abu-Nada
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Younan Liu
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | | | - Bouchra Ouliass
- Montreal Heart Institute Research Centre, Montreal, QC, Canada
| | - Magali Millecamps
- ABC-Platform (Animal Behavioral Characterization) at Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | | | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Shriners hospital for children, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Poirier A, Utecht T, Villot R, Gélinas Y, Mouchiroud M, Kordahi M, Kolnohuz A, Pasteur C, Roy J, Beaulieu MJ, Orain M, Samson N, Blanchet MR, Joubert P, Laplante M. ZNF768 loss amplifies p53 action and reduces lung tumorigenesis in mice. Oncogene 2025:10.1038/s41388-025-03352-w. [PMID: 40133474 DOI: 10.1038/s41388-025-03352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Cell proliferation is a fundamental process required for organismal development, growth, and maintenance. Failure to control this process leads to several diseases, including cancer. Zinc finger protein 768 (ZNF768) is an emerging transcription factor that plays key roles in driving proliferation. In addition to controlling a gene network supporting cell division, ZNF768 physically interacts and inhibits the activity of the tumor suppressor p53. Although the importance of ZNF768 in promoting cell proliferation has been well demonstrated in vitro, the physiological and pathological roles of ZNF768 in vivo are still unknown. Here, we report the generation and characterization of a ZNF768 null mouse model. ZNF768 null mice are viable but show a growth defect early in life. Mouse embryonic fibroblasts (MEFs) isolated from ZNF768 null embryos exhibit higher p53 levels, premature senescence, and higher sensitivity to genotoxic stress. In line with these findings, ZNF768 null mice showed increased radiosensitivity. This effect was associated not only with higher expression of a subset of p53 target genes, but also with alterations in genes regulating transmembrane receptor signaling, cell adhesion, and growth. Because ZNF768 levels are elevated in tumors, we tested the impact of ZNF768 loss on cancer development in mice. Here, we show that ZNF768 deletion was sufficient to repress lung tumor development in a KRASG12D-induced cancer mouse model. Overall, our findings establish ZNF768 as an important protein controlling cell proliferation that could potentially be targeted to reduce tumorigenesis.
Collapse
Affiliation(s)
- Audrey Poirier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, QC, Canada
| | - Timon Utecht
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Romain Villot
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Yves Gélinas
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Mathilde Mouchiroud
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Manal Kordahi
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Alona Kolnohuz
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, QC, Canada
| | - Coline Pasteur
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Joanny Roy
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Marie-Josée Beaulieu
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Michèle Orain
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Nolwenn Samson
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Philippe Joubert
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada.
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, QC, Canada.
- Faculté de médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Mitra D, Armijo GK, Ober EH, Baker SM, Turner HC, Broustas CG. MIIST305 mitigates gastrointestinal acute radiation syndrome injury and ameliorates radiation-induced gut microbiome dysbiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619652. [PMID: 39484519 PMCID: PMC11526895 DOI: 10.1101/2024.10.22.619652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal epithelial barrier dysfunction, and aberrant inflammatory responses. In addition, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, reduction in the abundance of beneficial commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no FDA-approved countermeasures that can treat radiation-induced GI injury. To meet this critical need, Synedgen Inc., has developed a glycopolymer radiomitigator (MIIST305) that is specifically targeted to the GI tract which acts by intercalating into the mucus layer and the glycocalyx of intestinal epithelial cells that could potentially ameliorate the deleterious effects of radiation. Male C57BL/6J adult mice were exposed to 13 Gy total body X-irradiation with 5% bone marrow shielding and MIIST305 was administered on days 1, 3, and 5 post-irradiation. Approximately 85% of the animals survived the irradiation exposure and were apparently healthy until the end of the 30-day study period. In contrast, no control, vehicle-treated animals survived past day 10 at this radiation dose. We show that MIIST305 improved intestinal epithelial barrier function and suppressed systemic inflammatory response mediated by radiation-induced pro-inflammatory cytokines. Taxonomic profiling and community structure of the fecal and colonic mucosa microbiota demonstrated that MIIST305 treatment increased microbial diversity and restored abundance of beneficial commensal bacteria, including Lactobacillus and Bifidobacterium genera, while suppressing potentially pathogenic bacteria compared with vehicle-treated animals. In summary, MIIST305 is a novel GI-targeted therapeutic that greatly enhances survival in mice exposed to lethal radiation and protects the GI tract from injury by restoring a balanced gut microbiota and effectively reducing proinflammatory responses. Further development of this drug as an FDA-approved medical countermeasure will be of critical importance in the event of a radiation public health emergency.
Collapse
Affiliation(s)
- Debmalya Mitra
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gabriel K. Armijo
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth H. Ober
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Helen C. Turner
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Eraqi WA, El-Sabbagh WA, Aziz RK, Elshahed MS, Youssef NH, Elkenawy NM. Gastroprotective and microbiome-modulating effects of ubiquinol in rats with radiation-induced enteropathy. Anim Microbiome 2024; 6:40. [PMID: 39030597 PMCID: PMC11264694 DOI: 10.1186/s42523-024-00320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/02/2024] [Indexed: 07/21/2024] Open
Abstract
Radiation enteritis is a frequently encountered issue for patients receiving radiotherapy and has a significant impact on cancer patients' quality of life. The gut microbiota plays a pivotal role in intestinal function, yet the impact of irradiation on gut microorganisms is not fully understood. This study explores the gastroprotective effect and gut microbiome-modulating potential of ubiquinol (Ubq), the reduced form of the powerful antioxidant CoQ-10. For this purpose, male albino rats were randomly assigned to four groups: Control, IRR (acute 7 Gy γ-radiation), Ubq_Post (Ubq for 7 days post-irradiation), and Ubq_Pre/Post (Ubq for 7 days pre and 7 days post-irradiation). The fecal microbiomes of all groups were profiled by 16S rRNA amplicon sequencing followed by bioinformatics and statistical analysis. Histopathological examination of intestinal tissue indicated severe damage in the irradiated group, which was mitigated by ubiquinol with enhanced regeneration, goblet cells, and intestinal alkaline phosphatase expression. Compared to the irradiated group, the Ubq-treated groups had a significant recovery of intestinal interleukin-1β, caspase-3, nitric oxide metabolites, and thio-barbituric reactive substances to near-healthy levels. Ubq_Pre/Post group displayed elevated peroxisome proliferator-activated receptor (PPAR-γ) level, suggesting heightened benefits. Serum insulin reduction in irradiated rats improved post-Ubq treatment, with a possible anti-inflammatory effect on the pancreatic tissue. Fecal microbiota profiling revealed a dysbiosis state with a reduction of bacterial diversity post-irradiation, which was re-modulated in the Ubq treated groups to profiles that are indistinguishable from the control group. These findings underscore Ubq's gastroprotective effects against radiation-induced enteritis and its potential in restoring the gut microbiota's diversity and balance.
Collapse
Affiliation(s)
- Walaa A Eraqi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Walaa A El-Sabbagh
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, Cairo, 11617, Egypt
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Nora M Elkenawy
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| |
Collapse
|
8
|
Horseman TS, Frank AM, Cannon G, Zhai M, Olson MG, Lin B, Li X, Hull L, Xiao M, Kiang JG, Burmeister DM. Effects of combined ciprofloxacin and Neulasta therapy on intestinal pathology and gut microbiota after high-dose irradiation in mice. Front Public Health 2024; 12:1365161. [PMID: 38807988 PMCID: PMC11130442 DOI: 10.3389/fpubh.2024.1365161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/20/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Treatments that currently exist in the strategic national stockpile for acute radiation syndrome (ARS) focus on the hematopoietic subsyndrome, with no treatments on gastrointestinal (GI)-ARS. While the gut microbiota helps maintain host homeostasis by mediating GI epithelial and mucosal integrity, radiation exposure can alter gut commensal microbiota which may leave the host susceptible to opportunistic pathogens and serious sequelae such as sepsis. To mitigate the effects of hematopoietic ARS irradiation, currently approved treatments exist in the form of colony stimulating factors and antibiotics: however, there are few studies examining how these therapeutics affect GI-ARS and the gut microbiota. The aim of our study was to examine the longitudinal effects of Neulasta and/or ciprofloxacin treatment on the gut microbiota after exposure to 9.5 Gy 60Co gamma-radiation in mice. Methods The gut microbiota of vehicle and drug-treated mice exposed to sham or gamma-radiation was characterized by shotgun sequencing with alpha diversity, beta diversity, and taxonomy analyzed on days 2, 4, 9, and 15 post-irradiation. Results No significant alpha diversity differences were observed following radiation, while beta diversity shifts and taxonomic profiles revealed significant alterations in Akkermansia, Bacteroides, and Lactobacillus. Ciprofloxacin generally led to lower Shannon diversity and Bacteroides prevalence with increases in Akkermansia and Lactobacillus compared to vehicle treated and irradiated mice. While Neulasta increased Shannon diversity and by day 9 had more similar taxonomic profiles to sham than ciprofloxacin-or vehicle-treated irradiated animals. Combined therapy of Neulasta and ciprofloxacin induced a decrease in Shannon diversity and resulted in unique taxonomic profiles early post-irradiation, returning closer to vehicle-treated levels over time, but persistent increases in Akkermansia and Bacteroides compared to Neulasta alone. Discussion This study provides a framework for the identification of microbial elements that may influence radiosensitivity, biodosimetry and the efficacy of potential therapeutics. Moreover, increased survival from H-ARS using these therapeutics may affect the symptoms and appearance of what may have been subclinical GI-ARS.
Collapse
Affiliation(s)
- Timothy S. Horseman
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andrew M. Frank
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Georgetta Cannon
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Min Zhai
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Matthew G. Olson
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bin Lin
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Xianghong Li
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lisa Hull
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Juliann G. Kiang
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David M. Burmeister
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
9
|
Janssen P, De Pauw L, Mambretti M, Lara O, Walckiers J, Mackens L, Rooman I, Guillaume B, De Ridder M, Ates G, Massie A. Characterization of the long-term effects of lethal total body irradiation followed by bone marrow transplantation on the brain of C57BL/6 mice. Int J Radiat Biol 2023; 100:385-398. [PMID: 37976378 DOI: 10.1080/09553002.2023.2283092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Total body irradiation (TBI) followed by bone marrow transplantation (BMT) is used in pre-clinical research to generate mouse chimeras that allow to study the function of a protein specifically on immune cells. Adverse consequences of irradiation on the juvenile body and brain are well described and include general fatigue, neuroinflammation, neurodegeneration and cognitive impairment. Yet, the long-term consequences of TBI/BMT performed on healthy adult mice have been poorly investigated. MATERIAL AND METHODS We developed a robust protocol to achieve near complete bone marrow replacement in mice using 2x550cGy TBI and evaluated the impact of the procedure on their general health, mood disturbances, memory, brain atrophy, neurogenesis, neuroinflammation and blood-brain barrier (BBB) permeability 2 and/or 16 months post-BMT. RESULTS We found a persistent decrease in weight along with long-term impact on locomotion after TBI and BMT. Although the TBI/BMT procedure did not lead to anxiety- or depressive-like behavior 2- or 16-months post-BMT, long-term spatial memory of the irradiated mice was impaired. We also observed radiation-induced impaired neurogenesis and cortical microglia activation 2 months post-BMT. Moreover, higher levels of hippocampal IgG in aged BMT mice suggest an enhanced age-related increase in BBB permeability that could potentially contribute to the observed memory deficit. CONCLUSIONS Overall health of the mice did not seem to be majorly impacted by TBI followed by BMT during adulthood. Yet, TBI-induced alterations in the brain and behavior could lead to erroneous conclusions on the function of a protein on immune cells when comparing mouse chimeras with different genetic backgrounds that might display altered susceptibility to radiation-induced damage. Ultimately, the BMT model we here present could also be used to study the related long-term consequences of TBI and BMT seen in patients.
Collapse
Affiliation(s)
- P Janssen
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Oncology Research Centre (ORC), VUB, Brussels, Belgium
| | - L De Pauw
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - M Mambretti
- Laboratory of Medical and Molecular Oncology, Oncology Research Centre (ORC), VUB, Brussels, Belgium
| | - O Lara
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Oncology Research Centre (ORC), VUB, Brussels, Belgium
| | - J Walckiers
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - L Mackens
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - I Rooman
- Laboratory of Medical and Molecular Oncology, Oncology Research Centre (ORC), VUB, Brussels, Belgium
| | - B Guillaume
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Centre hospitalier de Jolimont, Service de Biochimie Médicale, La Louvière, Belgium
| | - M De Ridder
- Department of Radiotherapy, UZ Brussel, VUB, Brussels, Belgium
| | - G Ates
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - A Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
10
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
11
|
Khan S, Kwak YT, Peng L, Hu S, Cantarel BL, Lewis CM, Gao Y, Mani RS, Kanneganti TD, Zaki H. NLRP12 downregulates the Wnt/β-catenin pathway via interaction with STK38 to suppress colorectal cancer. J Clin Invest 2023; 133:e166295. [PMID: 37581937 PMCID: PMC10541192 DOI: 10.1172/jci166295] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Colorectal cancer (CRC) at advanced stages is rarely curable, underscoring the importance of exploring the mechanism of CRC progression and invasion. NOD-like receptor family member NLRP12 was shown to suppress colorectal tumorigenesis, but the precise mechanism was unknown. Here, we demonstrate that invasive adenocarcinoma development in Nlrp12-deficient mice is associated with elevated expression of genes involved in proliferation, matrix degradation, and epithelial-mesenchymal transition. Signaling pathway analysis revealed higher activation of the Wnt/β-catenin pathway, but not NF-κB and MAPK pathways, in the Nlrp12-deficient tumors. Using Nlrp12-conditional knockout mice, we revealed that NLRP12 downregulates β-catenin activation in intestinal epithelial cells, thereby suppressing colorectal tumorigenesis. Consistent with this, Nlrp12-deficient intestinal organoids and CRC cells showed increased proliferation, accompanied by higher activation of β-catenin in vitro. With proteomic studies, we identified STK38 as an interacting partner of NLRP12 involved in the inhibition of phosphorylation of GSK3β, leading to the degradation of β-catenin. Consistently, the expression of NLRP12 was significantly reduced, while p-GSK3β and β-catenin were upregulated in mouse and human colorectal tumor tissues. In summary, NLRP12 is a potent negative regulator of the Wnt/β-catenin pathway, and the NLRP12/STK38/GSK3β signaling axis could be a promising therapeutic target for CRC.
Collapse
Affiliation(s)
| | | | | | | | - Brandi L. Cantarel
- Bioinformatics Core Facility, Lyda Hill Department of Bioinformatics, and
| | - Cheryl M. Lewis
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
12
|
Kun Y, Xiaodong W, Haijun W, Xiazi N, Dai Q. Exploring the oral-gut microbiota during thyroid cancer: Factors affecting the thyroid functions and cancer development. Food Sci Nutr 2023; 11:5657-5674. [PMID: 37823092 PMCID: PMC10563736 DOI: 10.1002/fsn3.3538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 10/13/2023] Open
Abstract
Thyroid cancer (TC) is categorized into papillary, follicular, medullary, and anaplastic. The TC is increasing in several countries, including China, the United States, the United Kingdom, Canada, France, Australia, Germany, Japan, Spain, and Italy. Thus, this review comprehensively covers the factors that affect thyroid gland function, TC types, risk factors, and symptoms. Lifestyle factors (such as nutrient consumption and smoking) and pollutants (such as chemicals and heavy metals) increased the thyroid-stimulating hormone (TSH) levels which are directly related to TC prevalence. The conventional and recent TC treatments are also highlighted. The role of the oral and gut microbiota as well as the application of probiotics on TC are also discussed. The variations in the composition of oral and gut microbes influence the thyroid function indirectly through alteration in metabolites (such as short-chain fatty acids) that are eminent for cellular energy metabolism. Maintenance of healthy gut and oral microbiota can help in regulating thyroid function by regulating iodine uptake. Oral or gut microbial dysbiosis can be considered as an early diagnosis factor or TC marker. High TSH during TC can increase the oral microbial diversity while disrupting the high ratio of Firmicutes and Bacteroidetes in the gut. Supplementation of probiotics as an adjuvant in TC treatment is beneficial. However, needs more extensive research to explore the direct effect of probiotics on thyroid function.
Collapse
Affiliation(s)
- Yao Kun
- Department of Nuclear MedicineGansu Provincial HospitalLanzhouChina
| | - Wei Xiaodong
- Emergency Department of Gansu Provincial HospitalLanzhouChina
| | - Wang Haijun
- Department of Nuclear MedicineGansu Provincial HospitalLanzhouChina
| | - Nie Xiazi
- Department of GynecologyGansu Provincial HospitalLanzhouChina
| | - Qiang Dai
- Department of RespiratoryGansu Provincial HospitalLanzhouChina
| |
Collapse
|
13
|
Fernandes A, Oliveira A, Soares R, Barata P. The Effects of Ionizing Radiation on Gut Microbiota: What Can Animal Models Tell Us?-A Systematic Review. Curr Issues Mol Biol 2023; 45:3877-3910. [PMID: 37232718 DOI: 10.3390/cimb45050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The gut microbiota is relatively stable; however, various factors can precipitate an imbalance that is known to be associated with various diseases. We aimed to conduct a systematic literature review of studies reporting the effects of ionizing radiation on the composition, richness, and diversity of the gut microbiota of animals. METHODS A systematic literature search was performed in PubMed, EMBASE, and Cochrane library databases. The standard methodologies expected by Cochrane were utilized. RESULTS We identified 3531 non-duplicated records and selected twenty-nine studies after considering the defined inclusion criteria. The studies were found to be heterogeneous, with significant differences in the chosen populations, methodologies, and outcomes. Overall, we found evidence of an association between ionizing radiation exposure and dysbiosis, with a reduction of microbiota diversity and richness and alterations in the taxonomic composition. Although differences in taxonomic composition varied across studies, Proteobacteria, Verrucomicrobia, Alistipes, and Akkermancia most consistently reported to be relatively more abundant after ionizing radiation exposure, whereas Bacteroidetes, Firmicutes, and Lactobacillus were relatively reduced. CONCLUSIONS This review highlights the effect of ionizing exposure on gut microbiota diversity, richness, and composition. It paves the way for further studies on human subjects regarding gastrointestinal side effects in patients submitted to treatments with ionizing radiation and the development of potential preventive, therapeutic approaches.
Collapse
Affiliation(s)
- Ana Fernandes
- Department Nuclear Medicine, Centro Hospitalar e Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Ana Oliveira
- Department Nuclear Medicine, Centro Hospitalar e Universitário de São João, E.P.E., 4200-319 Porto, Portugal
| | - Raquel Soares
- i3S-Institute for Research and Innovation in Health, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Pedro Barata
- i3S-Institute for Research and Innovation in Health, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| |
Collapse
|
14
|
Zhang Y, Gao D, Yuan Y, Zheng R, Sun M, Jia S, Liu J. Cycloastragenol: A Novel Senolytic Agent That Induces Senescent Cell Apoptosis and Restores Physical Function in TBI-Aged Mice. Int J Mol Sci 2023; 24:ijms24076554. [PMID: 37047529 PMCID: PMC10095196 DOI: 10.3390/ijms24076554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Accumulating evidence indicates that the increased burden of senescent cells (SCs) in aged organisms plays an important role in many age-associated diseases. The pharmacological elimination of SCs with “senolytics” has been emerging as a new therapy for age-related diseases and extending the healthy lifespan. In the present study, we identified that cycloastragenol (CAG), a secondary metabolite isolated from Astragalus membrananceus, delays age-related symptoms in mice through its senolytic activity against SCs. By screening a series of compounds, we found that CAG selectively kills SCs by inducing SCs apoptosis and that this process is associated with the inhibition of Bcl-2 antiapoptotic family proteins and the PI3K/AKT/mTOR pathway. In addition, CAG treatment also suppressed the development of the senescence-associated secretory phenotype (SASP) in SCs, thereby inhibiting cell migration mediated by the SASP. Furthermore, the administration of CAG for 2 weeks to mice with irradiation-induced aging alleviated the burden of SCs and improved the animals’ age-related physical dysfunction. Overall, our studies demonstrate that CAG is a novel senolytic agent with in vivo activity that has the potential to be used in the treatment of age-related diseases.
Collapse
Affiliation(s)
- Yanghuan Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxiao Gao
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Yuan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Manting Sun
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
15
|
Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol Rev 2023; 103:649-716. [PMID: 36049115 PMCID: PMC9639777 DOI: 10.1152/physrev.00004.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.
Collapse
Affiliation(s)
- Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
16
|
Saldi S, Fulcheri CPL, Zucchetti C, Abdelhamid AMH, Carotti A, Pierini A, Ruggeri L, Tricarico S, Chiodi M, Ingrosso G, Bini V, Velardi A, Martelli MF, Hui SK, Aristei C. Impact of total marrow/lymphoid irradiation dose to the intestine on graft-versus-host disease in allogeneic hematopoietic stem cell transplantation for hematologic malignancies. Front Oncol 2022; 12:1035375. [PMID: 36568236 PMCID: PMC9773831 DOI: 10.3389/fonc.2022.1035375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Background and purpose Graft-versus-host disease (GvHD) is a leading cause of non-relapse mortality in patients undergoing allogeneic hematopoietic stem cell transplantation. The Perugia Bone Marrow Transplantation Unit designed a new conditioning regimen with total marrow/lymphoid irradiation (TMLI) and adaptive immunotherapy. The present study investigated the impact of radiotherapy (RT) doses on the intestine on the incidence of acute GvHD (aGvHD) in transplant recipients, analyzing the main dosimetric parameters. Materials and methods Between August 2015 and April 2021, 50 patients with hematologic malignancies were enrolled. All patients underwent conditioning with TMLI. Dosimetric parameters (for the whole intestine and its segments) were assessed as risk factors for aGvHD. The RT dose that was received by each intestinal area with aGvHD was extrapolated from the treatment plan for each patient. Doses were compared with those of the whole intestine minus the affected area. Results Eighteen patients (36%) developed grade ≥2 aGvHD (G2 in 5, G3 in 11, and G4 in 2). Median time to onset was 41 days (range 23-69 days). The skin was involved in 11 patients, the intestine in 16, and the liver in 5. In all 50 TMLI patients, the mean dose to the whole intestine was 7.1 Gy (range 5.07-10.92 Gy). No patient developed chronic GvHD (cGvHD). No dosimetric variable emerged as a significant risk factor for aGvHD. No dosimetric parameter of the intestinal areas with aGvHD was associated with the disease. Conclusion In our clinical setting and data sample, we have found no clear evidence that current TMLI dosages to the intestine were linked to the development of aGvHD. However, due to some study limitations, this investigation should be considered as a preliminary assessment. Findings need to be confirmed in a larger cohort and in preclinical models.
Collapse
Affiliation(s)
- Simonetta Saldi
- Section of Radiation Oncology, Hospital of Santa Maria della Misericordia, Perugia, Italy
| | | | - Claudio Zucchetti
- Medical Physics, Hospital of Santa Maria della Misericordia, Perugia, Italy
| | - Amr Mohamed Hamed Abdelhamid
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia and Perugia General Hospital, Perugia, Italy,Department of Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Alessandra Carotti
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Antonio Pierini
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Loredana Ruggeri
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Sara Tricarico
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Marino Chiodi
- Radiology Unit, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia and Perugia General Hospital, Perugia, Italy
| | - Vittorio Bini
- Internal Medicine, Endocrine and Metabolic Science Section, University of Perugia, Perugia, Italy
| | - Andrea Velardi
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Massimo Fabrizio Martelli
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Susanta Kumar Hui
- Department of Radiation Oncology, City of Hope National Medical Center, CA, United States
| | - Cynthia Aristei
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia and Perugia General Hospital, Perugia, Italy,*Correspondence: Cynthia Aristei,
| |
Collapse
|
17
|
Maier I, Ruegger PM, Deutschmann J, Helbich TH, Pietschmann P, Schiestl RH, Borneman J. Particle Radiation Side-Effects: Intestinal Microbiota Composition Shapes Interferon-γ-Induced Osteo-Immunogenicity. Radiat Res 2022; 197:184-192. [PMID: 35130347 DOI: 10.1667/rade-21-00065.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/09/2021] [Indexed: 07/25/2024]
Abstract
Microbiota can both negatively and positively impact radiation-induced bone loss. Our prior research showed that compared to mice with conventional gut microbiota (CM), mice with restricted gut microbiota (RM) reduced inflammatory tumor necrosis factor (TNF) in bone marrow, interleukin (IL)-17 in blood, and chemokine (C-C motif) ligand 20 (CCL20) in bone marrow under anti-IL-17 treatment. We showed that Muribaculum intestinale was more abundant in intestinal epithelial cells (IECs) from the small intestine of female RM mice and positively associated with augmented skeletal bone structure. Female C57BL/6J pun RM mice, which were injected with anti-IL-17 antibody one day before exposure to 1.5 Gy 28Si ions of 850 MeV/u, showed high trabecular numbers in tibiae at 6 weeks postirradiation. Irradiated CM mice were investigated for lower interferon-γ and IL-17 levels in the small intestine than RM mice. IL-17 blockage resulted in bacterial indicator phylotypes being different between both microbiota groups before and after irradiation. Analysis of the fecal bacteria were performed in relation to bone quality and body weight, showing reduced tibia cortical thickness in irradiated CM mice (-15%) vs. irradiated RM mice (-9.2%). Correlation analyses identified relationships among trabecular bone parameters (TRI-BV/TV, Tb.N, Tb.Th, Tb.Sp) and Bacteroides massiliensis, Muribaculum sp. and Prevotella denticola. Turicibacter sp. was found directly correlated with trabecular separation in anti-IL-17 treated mice, whereas an unidentified Bacteroidetes correlated with trabecular thickness in anti-IL-17 neutralized and radiation-exposed mice. We demonstrated radiation-induced osteolytic damage to correlate with bacterial indicator phylotypes of the intestinal microbiota composition, and these relationships were determined from the previously discovered dose-dependent particle radiation effects on cell proliferation in bone tissue. New translational approaches were designed to investigate dynamic changes of gut microbiota in correlation with conditions of treatment and disease as well as mechanisms of systemic side-effects in radiotherapy.
Collapse
Affiliation(s)
- Irene Maier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Paul M Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| | - Julia Deutschmann
- Department for Radiologic Technology, University of Applied Sciences Wiener Neustadt for Business and Engineering Ltd., Lower Austria, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Robert H Schiestl
- Departments of Pathology and Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| |
Collapse
|
18
|
Zhou J, Hou C, Chen H, Qin Z, Miao Z, Zhao J, Wang Q, Cui M, Xie C, Wang R, Li Q, Zuo G, Miao D, Jin J. P16 I NK 4a Deletion Ameliorates Damage of Intestinal Epithelial Barrier and Microbial Dysbiosis in a Stress-Induced Premature Senescence Model of Bmi-1 Deficiency. Front Cell Dev Biol 2021; 9:671564. [PMID: 34712655 PMCID: PMC8545785 DOI: 10.3389/fcell.2021.671564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
This study aimed to determine whether Bmi-1 deficiency leads to intestinal epithelial barrier destruction and microbiota dysfunction, which members of the microbial community alter barrier function with age, and whether p16INK4a deletion could reverse the damage of intestinal epithelial barrier and microbial dysbiosis. Intestines from Bmi-1–deficient (Bmi-1–/–), Bmi-1 and p16INK4a double-knockout (Bmi-1–/–p16INK4a–/–), and wild-type mice were observed for aging and inflammation. Duolink Proximity Ligation Assay, immunoprecipitation, and construction of p16INK4a overexpressed adenovirus and the overexpressed plasmids of full-length, mutant, or truncated fragments for occludin were used for analyzing the interaction between p16INK4a and occludin. High-throughput sequencing of V4 region amplicon of 16S ribosomal RNA was conducted using intestinal microbiota. We found Bmi-1 deficiency destructed barrier structure, barrier function, and tight junction (TJ) in intestinal epithelium; decreased the TJ proteins; increased tumor necrosis factor α (TNF-α)–dependent barrier permeability; and up-regulated proinflammatory level of macrophages induced by intestinal microbial dysbiosis. The transplantation of fecal microbiota from wild-type mice ameliorated TJ in intestinal epithelium of Bmi-1–/– and Bmi-1–/–p16INK4a–/– mice. Harmful bacteria including Desulfovibrio, Helicobacter, and Oscillibacter were at a higher level in Bmi-1–/– mice. More harmful bacteria Desulfovibrio entered the epithelium and promoted macrophages-secreted TNF-α and caused TNF-α–dependent barrier permeability and aging. Accumulated p16INK4a combined with occludin at the 1st–160th residue in cytoplasm of intestinal epithelium cells from Bmi-1–/– mice, which blocked formation of TJ and the repair of intestinal epithelium barrier. P16INK4a deletion could maintain barrier function and microbiota balance in Bmi-1–/– mice through strengthening formation of TJ and decreasing macrophages-secreted TNF-α induced by Desulfovibrio entering the intestinal epithelium. Thus, Bmi-1 maintained intestinal TJ, epithelial barrier function, and microbiota balance through preventing senescence characterized by p16INK4a accumulation. The clearance of p16INK4a-positive cells in aging intestinal epithelium would be a new method for maintaining barrier function and microbiota balance. The residues 1–160 of occludin could be a novel therapeutic target for identifying small molecular antagonistic peptides to prevent the combination of p16INK4a with occludin for protecting TJ.
Collapse
Affiliation(s)
- Jiawen Zhou
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chenxing Hou
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Haiyun Chen
- Anti-Aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyue Qin
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zi'an Miao
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jingyu Zhao
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyi Wang
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Min Cui
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Li
- Department of Science and Technology, Jiangsu Jiankang Vocational College, Nanjing, China
| | - Guoping Zuo
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Anti-Aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China
| | - Jianliang Jin
- Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory for Aging and Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Li Y, Zou L, Chu L, Ye L, Ni J, Chu X, Guo T, Yang X, Zhu Z. Identification and Integrated Analysis of circRNA and miRNA of Radiation-Induced Lung Injury in a Mouse Model. J Inflamm Res 2021; 14:4421-4431. [PMID: 34511976 PMCID: PMC8422032 DOI: 10.2147/jir.s322736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Radiation-induced lung injury (RILI) is a main threat to patients who received thoracic radiotherapy. Thus, understanding the molecular mechanism of RILI is of great importance. Circular RNAs (circRNAs) have been found to act as a regulator of multiple biological processes, and the circRNA-microRNA (miRNA)-mRNA axis could play an important role in the signaling pathway of many human diseases including radiation injury. Methods First, the circRNA and miRNA of RILI in a mouse model were investigated. The mice received 12 Gy of thoracic irradiation, and the irradiated lung tissues at 48 hours after irradiation were analyzed by RNA sequencing (RNA-seq) compared with normal lung tissues. Then, Gene Ontology analysis of the target mRNAs of the significantly differently expressed circRNAs was performed. Results In the irradiated group, inflammatory changes in lungs were observed; 21 significantly up-regulated and 33 down-regulated significantly miRNAs were identified (p < 0.05). Among 27 differentially expressed circRNAs, 10 were down-regulated and 17 were up-regulated in the irradiated group [log2 (fold change) > 1 or < −1, p<0.05]. These differentially expressed miRNAs took part in a series of cellular processes, such as positive regulation of alpha-beta T-cell proliferation, interstitial matrix, collagen fibril organization, chemokine receptor activity, cellular defense response, and B-cell receptor signaling pathway. The differentially expressed circRNAs were related to Th1 and Th2 differentiation pathways, and the predicted mRNAs were verified. Conclusion This study revealed immune-related molecular pathways play an important role in the early response after radiotherapy. In the future, research on the target mechanism and early intervention of circRNAs with associated miRNAs such as circRNA5229, circRNA544, and circRNA3340, could benefit the treatment of RILI.
Collapse
Affiliation(s)
- Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Luxi Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
20
|
Chappaz S, Saunders TL, Kile BT. Generation of Murine Bone Marrow and Fetal Liver Chimeras. Curr Protoc 2021; 1:e79. [PMID: 33836122 DOI: 10.1002/cpz1.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The generation of radiation chimeras allows researchers to substitute the hematopoietic system of a mouse with that of one or more donors. A suspension of hematopoietic stem cells (HSCs) is prepared from the bone marrow (BM) or the fetal liver (FL) of a donor mouse and adoptively transferred into an irradiated recipient. Within days, the donor's HSCs will engraft, and their progeny will quickly replace the blood cells of the recipient. This simple tool, together with the large availability of genetically modified mouse lines, can be harnessed to manipulate and study various aspects of blood cell biology in vivo. We present here protocols to generate three types of radiation chimera: (1) BM chimeras, which can assist in determining whether the origin of a genetically based phenotype is the hematopoietic or radio-resistant compartment and which are also conducive for studying the ecology of blood cells and for manipulating the environment hematopoietic cells live; (2) FL chimeras, which allow the study of hematopoietic systems from animals that carry genetic modifications incompatible with postnatal life; and (3) mixed BM chimeras, in which the hematopoietic system comprises blood cells of two different genotypes. Mixed BM chimeras can be used to identify genes that affect hematopoietic cell fitness and to establish whether secreted factors mediate a phenotype of interest. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Generation of bone marrow chimera Basic Protocol 2: Generation of fetal liver chimera Basic Protocol 3: Generation of mixed bone marrow chimera Support Protocol 1: Isolation of bone marrow cells Support Protocol 2: Cell counting by flow cytometry Support Protocol 3: Assessment of chimerism.
Collapse
Affiliation(s)
- Stéphane Chappaz
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Tahnee L Saunders
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Benjamin T Kile
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
21
|
Hollingsworth BA, Cassatt DR, DiCarlo AL, Rios CI, Satyamitra MM, Winters TA, Taliaferro LP. Acute Radiation Syndrome and the Microbiome: Impact and Review. Front Pharmacol 2021; 12:643283. [PMID: 34084131 PMCID: PMC8167050 DOI: 10.3389/fphar.2021.643283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Study of the human microbiota has been a centuries-long endeavor, but since the inception of the National Institutes of Health (NIH) Human Microbiome Project in 2007, research has greatly expanded, including the space involving radiation injury. As acute radiation syndrome (ARS) is multisystemic, the microbiome niches across all areas of the body may be affected. This review highlights advances in radiation research examining the effect of irradiation on the microbiome and its potential use as a target for medical countermeasures or biodosimetry approaches, or as a medical countermeasure itself. The authors also address animal model considerations for designing studies, and the potential to use the microbiome as a biomarker to assess radiation exposure and predict outcome. Recent research has shown that the microbiome holds enormous potential for mitigation of radiation injury, in the context of both radiotherapy and radiological/nuclear public health emergencies. Gaps still exist, but the field is moving forward with much promise.
Collapse
Affiliation(s)
- Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|
22
|
Tonneau M, Elkrief A, Pasquier D, Paz Del Socorro T, Chamaillard M, Bahig H, Routy B. The role of the gut microbiome on radiation therapy efficacy and gastrointestinal complications: A systematic review. Radiother Oncol 2021; 156:1-9. [PMID: 33137398 DOI: 10.1016/j.radonc.2020.10.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
Radiation therapy (RT) is an essential component of therapy either curative or palliative armamentarium in oncology, but its efficacy varies considerably among patients through many extrinsic and intrinsic mechanisms of the tumour, which are beginning to be better understood. Recent studies have shown that the gut microbiome represents a key factor in the modulation of the systemic immune response and consequently on patients' outcome. Moreover, the emergence of biomarkers that are derived from the gut microbiota has fuelled the development of adjuvant strategies for patients treated with immunotherapy in combination or not with RT. Despite progress in development of more precise radiotherapy techniques, almost all patients undergoing RT to the abdomen, pelvis, or rectum develop acute adverse events as a consequence of several dose-limiting parameters such as the location of irradiation that may subsequently damage normal tissue including the intestinal epithelium. Several lines of evidence in preclinical models identified that vancomycin improves RT-induced gastrointestinal toxicities such as diarrhea and oral mucositis. In order to gain further insight into this rapidly evolving field, we have systematically reviewed the studies that have described how the gut microbiome may directly or indirectly modulate RT efficacy and its gastro-intestinal toxicities. Lastly, we outline current knowledge gaps and discuss potentially more satisfactory therapeutic options to restore the functionality of the gut microbiome of patients treated with RT.
Collapse
Affiliation(s)
- Marion Tonneau
- Département universitaire de radiothérapie, Centre Oscar Lambret, Lille, France
| | - Arielle Elkrief
- Centre de recherche de l'Université de Montréal, (CRCHUM), Montréal, QC, Canada
| | - David Pasquier
- Département universitaire de radiothérapie, Centre Oscar Lambret, Lille, France; CRIStAL UMR 9189, Lille University, France; Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000, Lille, France
| | | | - Mathias Chamaillard
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000, Lille, France
| | - Houda Bahig
- Centre de recherche de l'Université de Montréal, (CRCHUM), Montréal, QC, Canada; Centre hospitalier de l'Université de Montréal, (CHUM), Montréal, QC, Canada
| | - Bertrand Routy
- Centre de recherche de l'Université de Montréal, (CRCHUM), Montréal, QC, Canada; Centre hospitalier de l'Université de Montréal, (CHUM), Montréal, QC, Canada.
| |
Collapse
|
23
|
Zhong L, Dong A, Feng Y, Wang X, Gao Y, Xiao Y, Zhang J, He D, Cao J, Zhu W, Zhang S. Alteration of Metal Elements in Radiation Injury: Radiation-Induced Copper Accumulation Aggravates Intestinal Damage. Dose Response 2020. [PMID: 32110169 PMCID: PMC7000859 DOI: 10.1177/1559325820904547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ionizing radiation causes damage to a variety of tissues, especially radiation-sensitive tissues, such as the small intestine. Radiation-induced damage is caused primarily by increased oxidative stress in the body. Studies have shown that trace metal elements play an irreplaceable role in oxidative stress in humans, which may be associated with radiation-induced tissue damage. However, the alteration and functional significance of trace metal elements in radiation-induced injury is not clear. In this study, we explored the association between radiation-induced damage and 7 trace metal elements in mouse models. We found that the concentration of zinc and copper in mice serum was decreased significantly after irradiation, whereas that of nickel, manganese, vanadium, cobalt, and stannum was not changed by inductively coupled plasma mass spectrometry. The role of copper in radiation-induced intestines was characterized in detail. The concentration of copper was increased in irradiated intestine but reduced in irradiated heart. Immunohistochemistry staining showed that copper transporter protein copper transport 1 expression was upregulated in irradiated mouse intestine, suggesting its potential involvement in radiation-induced copper accumulation. At the cellular level, the addition of CuCl2potentiated radiation-induced reactive oxygen species in intestine-derived human intestinal epithelial cell and IEC-6 cells. Moreover, the level of copper in damaged cells may be related to the severity of radiation-induced damage as evidenced by a cell viability assay. These results indicate that copper may be involved in the progression of radiation-induced tissue damage and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Li Zhong
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Aijing Dong
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xi Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yiying Gao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Sichuan Center for Disease Control and Prevention, Sichuan, China
| | - Yuji Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ji Zhang
- Soochow University Affiliated Second Hospital, Soochow University, Suzhou, China
| | - Dan He
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shuyu Zhang
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|