1
|
Wen K, Zhong W, Feng L, Han T, Suo H, Ren H, Yuan Q, Wu Z, Chen Y, Li X, Liao D. Genome-wide identification of SABATH gene family in soybean relate to salt, aluminum, chromium toxicity. Sci Rep 2025; 15:14030. [PMID: 40268999 PMCID: PMC12019346 DOI: 10.1038/s41598-025-98467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
SABATH gene family in plants participates in metabolic processes such as methylation of various hormones and plays an essential role in plant response to abiotic stress. In this study, we identified and sequenced 28 SABATH genes in soybean and divided them into three groups. Genome mapping annotation suggested that tandem repeat was the cause of SABATH gene amplification in soybean. Phylogenetic and homology analyses show that the three groups may have originated from different ancestors. Transcriptome analysis was performed in six soybean tissues using data from public transcriptome. In addition, transcriptome and gene expression analyses revealed their expression patterns under different soybean varieties and various abiotic stresses. These results reveal the differential expression of GmSABATHs gene under these stresses, indicating their potential role in the mechanism of soybean adapting to environmental challenges. These results provide reference information for the evolutionary study of the SABATH family and the potential role of GmSABATHs in soybean resistance to abiotic stress.
Collapse
Grants
- 2022KJCX11 the Sanya Science and Technology Innovation Special Project
- 2022KJCX11 the Sanya Science and Technology Innovation Special Project
- 2022KJCX11 the Sanya Science and Technology Innovation Special Project
- 2022KJCX11 the Sanya Science and Technology Innovation Special Project
- 2022KJCX11 the Sanya Science and Technology Innovation Special Project
- 2022KJCX11 the Sanya Science and Technology Innovation Special Project
- 2022KJCX11 the Sanya Science and Technology Innovation Special Project
- 2022KJCX11 the Sanya Science and Technology Innovation Special Project
- 2022KJCX11 the Sanya Science and Technology Innovation Special Project
- 2022KJCX11 the Sanya Science and Technology Innovation Special Project
- 2022KJCX11 the Sanya Science and Technology Innovation Special Project
- NHXXRCXM202333 Hainan Province "Nanhai Xinxing" Science and Technology Innovation Talent Platform Project
- NHXXRCXM202333 Hainan Province "Nanhai Xinxing" Science and Technology Innovation Talent Platform Project
- NHXXRCXM202333 Hainan Province "Nanhai Xinxing" Science and Technology Innovation Talent Platform Project
- NHXXRCXM202333 Hainan Province "Nanhai Xinxing" Science and Technology Innovation Talent Platform Project
- NHXXRCXM202333 Hainan Province "Nanhai Xinxing" Science and Technology Innovation Talent Platform Project
- NHXXRCXM202333 Hainan Province "Nanhai Xinxing" Science and Technology Innovation Talent Platform Project
- NHXXRCXM202333 Hainan Province "Nanhai Xinxing" Science and Technology Innovation Talent Platform Project
- NHXXRCXM202333 Hainan Province "Nanhai Xinxing" Science and Technology Innovation Talent Platform Project
- NHXXRCXM202333 Hainan Province "Nanhai Xinxing" Science and Technology Innovation Talent Platform Project
- NHXXRCXM202333 Hainan Province "Nanhai Xinxing" Science and Technology Innovation Talent Platform Project
- NHXXRCXM202333 Hainan Province "Nanhai Xinxing" Science and Technology Innovation Talent Platform Project
- HAAS2023RCQD06 Start-up fee project for introducing talents to Hainan Academy of Agricultural Sciences
- HAAS2023RCQD06 Start-up fee project for introducing talents to Hainan Academy of Agricultural Sciences
- HAAS2023RCQD06 Start-up fee project for introducing talents to Hainan Academy of Agricultural Sciences
- HAAS2023RCQD06 Start-up fee project for introducing talents to Hainan Academy of Agricultural Sciences
- HAAS2023RCQD06 Start-up fee project for introducing talents to Hainan Academy of Agricultural Sciences
- HAAS2023RCQD06 Start-up fee project for introducing talents to Hainan Academy of Agricultural Sciences
- HAAS2023RCQD06 Start-up fee project for introducing talents to Hainan Academy of Agricultural Sciences
- HAAS2023RCQD06 Start-up fee project for introducing talents to Hainan Academy of Agricultural Sciences
- HAAS2023RCQD06 Start-up fee project for introducing talents to Hainan Academy of Agricultural Sciences
- HAAS2023RCQD06 Start-up fee project for introducing talents to Hainan Academy of Agricultural Sciences
- HAAS2023RCQD06 Start-up fee project for introducing talents to Hainan Academy of Agricultural Sciences
- ITFT2024PT0104 The joint open project of Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Fruit Tree Biology of Hainan Province
- ITFT2024PT0104 The joint open project of Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Fruit Tree Biology of Hainan Province
- ITFT2024PT0104 The joint open project of Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Fruit Tree Biology of Hainan Province
- ITFT2024PT0104 The joint open project of Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Fruit Tree Biology of Hainan Province
- ITFT2024PT0104 The joint open project of Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Fruit Tree Biology of Hainan Province
- ITFT2024PT0104 The joint open project of Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Fruit Tree Biology of Hainan Province
- ITFT2024PT0104 The joint open project of Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Fruit Tree Biology of Hainan Province
- ITFT2024PT0104 The joint open project of Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Fruit Tree Biology of Hainan Province
- ITFT2024PT0104 The joint open project of Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Fruit Tree Biology of Hainan Province
- ITFT2024PT0104 The joint open project of Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Fruit Tree Biology of Hainan Province
- ITFT2024PT0104 The joint open project of Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Fruit Tree Biology of Hainan Province
- Hainan Province “Nanhai Xinxing” Science and Technology Innovation Talent Platform Project
- The joint open project of Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Key Laboratory of Tropical Fruit Tree Biology of Hainan Province
Collapse
Affiliation(s)
- Ke Wen
- Sanya Research Institute, Hainan Academy of Agricultural Sciences, Sanya, 572000, Hainan, China
- Key Laboratory of Vegetable Biology of Hainan Province, Vegetable Research Institute of Hainan Academy of Agricultural Sciences, Haikou, 570228, Hainan, China
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co- construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hainan Academy of Agricultural Sciences, Haikou, 572000, China
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Fruit Research Institute of Hainan Academy of Agricultural Sciences, Haikou, 570228, Hainan, China
- College of Agriculture, The Guangdong Subcenter of the National Center for Soybean Improvement, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wangyi Zhong
- Sanya Research Institute, Hainan Academy of Agricultural Sciences, Sanya, 572000, Hainan, China
- Key Laboratory of Vegetable Biology of Hainan Province, Vegetable Research Institute of Hainan Academy of Agricultural Sciences, Haikou, 570228, Hainan, China
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co- construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hainan Academy of Agricultural Sciences, Haikou, 572000, China
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Fruit Research Institute of Hainan Academy of Agricultural Sciences, Haikou, 570228, Hainan, China
| | - Liying Feng
- Yazhouwan National Laboratory, Sanya, 572024, Hainan, China
| | - Tiantian Han
- Yazhouwan National Laboratory, Sanya, 572024, Hainan, China
| | - Haicui Suo
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Hailong Ren
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Qinghua Yuan
- Provincial Key Laboratory of Crops Genetic Improvement, Research Institute of Crops, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Zhuangsheng Wu
- Sanya Research Institute, Hainan Academy of Agricultural Sciences, Sanya, 572000, Hainan, China
- Key Laboratory of Vegetable Biology of Hainan Province, Vegetable Research Institute of Hainan Academy of Agricultural Sciences, Haikou, 570228, Hainan, China
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co- construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hainan Academy of Agricultural Sciences, Haikou, 572000, China
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Fruit Research Institute of Hainan Academy of Agricultural Sciences, Haikou, 570228, Hainan, China
| | - Yisong Chen
- Sanya Research Institute, Hainan Academy of Agricultural Sciences, Sanya, 572000, Hainan, China
- Key Laboratory of Vegetable Biology of Hainan Province, Vegetable Research Institute of Hainan Academy of Agricultural Sciences, Haikou, 570228, Hainan, China
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co- construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hainan Academy of Agricultural Sciences, Haikou, 572000, China
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Fruit Research Institute of Hainan Academy of Agricultural Sciences, Haikou, 570228, Hainan, China
| | - Xingang Li
- College of Agriculture, The Guangdong Subcenter of the National Center for Soybean Improvement, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Daolong Liao
- Sanya Research Institute, Hainan Academy of Agricultural Sciences, Sanya, 572000, Hainan, China.
- Key Laboratory of Vegetable Biology of Hainan Province, Vegetable Research Institute of Hainan Academy of Agricultural Sciences, Haikou, 570228, Hainan, China.
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co- construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hainan Academy of Agricultural Sciences, Haikou, 572000, China.
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Fruit Research Institute of Hainan Academy of Agricultural Sciences, Haikou, 570228, Hainan, China.
| |
Collapse
|
2
|
Ikram AU, Chen H, Chen J. H 2O 2 sulfenylates CHE to activate systemic acquired resistance. TRENDS IN PLANT SCIENCE 2025; 30:238-240. [PMID: 39743404 DOI: 10.1016/j.tplants.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Salicylic acid (SA) is an important systemic acquired resistance (SAR) signal in plants. However, the mobile signal that directly regulates systematic SA biosynthesis was previously unknown. Recently, Cao et al. found that hydrogen peroxide acts as a mobile signal by sulfenylating CCA1 HIKING EXPEDITION (CHE) and inducing SA production in systemic tissues.
Collapse
Affiliation(s)
- Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Hu F, Fang Y, Xing L. Salicylic acid-induced upregulation of AtAACT and AtMVD expression enhances triterpene biosynthesis in Athelia termitophila. World J Microbiol Biotechnol 2025; 41:87. [PMID: 40011284 DOI: 10.1007/s11274-025-04301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Triterpenoids exhibit great potential in the food and pharmaceutical industries and are the predominant secondary metabolites of Athelia termitophila (TMB). AtAACT catalyzes the conversion of acetyl-CoA and acetoacetate in mevalonate biosynthesis, while AtMVD catalyzes the decarboxylation of mevalonate diphosphate, producing key precursors essential for triterpenoid synthesis. To augment the biosynthesis of TMB triterpenes, we cloned the AtAACT and AtMVD genes into plasmids, which were subsequently used to transform Escherichia coli. The resulting bacterial strains were used for sequencing and bioinformatic analyses to elucidate the encoded amino acid sequences. Furthermore, salicylic acid (SA) was employed as an elicitor to enhance triterpene biosynthesis in TMB. The SA treatment was initiated on the 6th day of incubation and maintained continuously across all time points (36, 48, and 60 h and others), achieving a maximal triterpene concentration of 41.83 ± 0.5 mg/100 mL, corresponding to a 26% increase compared to the uninduced group. Comparative transcriptomic analysis showed that the expression of AtAACT and AtMVD was significantly upregulated in the SA-treated group compared to the control. This upregulation underscores the crucial roles of these genes in facilitating triterpene biosynthesis in TMB. Furthermore, qPCR temporal profiling revealed that AtAACT achieved peak transcript levels at 36 h post-induction, whereas AtMVD peaked at 48 h. This study provides an effective strategy to enhance TMB triterpene content and offers new insights into the mechanisms of SA-treated triterpene biosynthesis.
Collapse
Affiliation(s)
- Fangcheng Hu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yonggang Fang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Lianxi Xing
- College of Life Sciences, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory for Animal Conservation (Northwest University), Xi'an, 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, China.
| |
Collapse
|
4
|
Wang K, Li C, Cao S, Lei C, Ji N, Zou Y, Tan M, Wang J, Zheng Y, Gao H. VOZ-dependent priming of salicylic acid-dependent defense against Rhizopus stolonifer by β-aminobutyric acid requires the TCP protein TCP2 in peach fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17176. [PMID: 39621553 DOI: 10.1111/tpj.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Vascular plant one-zinc finger (VOZ) transcription factors (TFs) play crucial roles in plant immunity. Nevertheless, how VOZs modulate defense signaling in response to elicitor-induced resistance is not fully understood. Here, the defense elicitor β-aminobutyric acid (BABA) resulted in the visible suppression of Rhizopus rot disease of peach fruit caused by Rhizopus stolonifer. Defense priming by BABA was notably associated with increased levels of salicylic acid (SA) and SA-dependent gene expression. Data-independent acquisition proteomic analysis revealed that two VOZ proteins (PpVOZ1 and PpVOZ2) were substantially upregulated in BABA-induced resistance (BABA-IR). Furthermore, the interaction of PpVOZ1 and PpVOZ2 and their potential target of the TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP)-family protein PpTCP2 screened from protein-protein interaction networks was confirmed by yeast two-hybrid (Y2H), luciferase complementation imaging and glutathione S-transferase pull-down assays. Furthermore, subcellular localization, yeast one-hybrid, electrophoretic mobility shift assay and dual-luciferase reporter assays demonstrated that nuclear localization of both PpVOZ1 and PpVOZ2 was critical for their contribution to BABA-IR, as these proteins potentiated the PpTCP2-mediated transcriptional activation of isochorismate synthase genes (ICS1/2). The overexpression of both PpVOZ1 and PpVOZ2 could activate the transcription of SA-dependent genes and provide disease resistance in transgenic Arabidopsis. In contrast, the ppvoz1cas9 and ppvoz2cas9 loss-of-function mutations and the voz1cas9 voz2cas9 double mutation attenuated BABA-IR against R. stolonifer. Therefore, the three identified positive TFs, PpVOZ1, PpVOZ2, and PpTCP2, synergistically contribute to the BABA-activated priming of systemic acquired resistance in postharvest peach fruit by a VOZ-TCP-ICS regulatory module.
Collapse
Affiliation(s)
- Kaituo Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, P.R. China
| | - Chunhong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, P.R. China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Nana Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Yanyu Zou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Meilin Tan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Jinsong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Haiyan Gao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, P.R. China
| |
Collapse
|
5
|
Sagharyan M, Sharifi M, Samari E, Karimi F. Changes in MicroRNAs expression mediate molecular mechanism underlying the effect of MeJA on the biosynthesis of podophyllotoxin in Linum album cells. Sci Rep 2024; 14:30738. [PMID: 39730376 DOI: 10.1038/s41598-024-78715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/04/2024] [Indexed: 12/29/2024] Open
Abstract
Podophyllotoxin (PTOX), produced by Linum album, is a monolignol that participates in plant defense strategies. Our previous study established that methyl jasmonate (MeJA) significantly stimulates PTOX production in L. album cells. However; the mechanisms by which MeJA regulates PTOX biosynthesis are uncovered. In the present study, we demonstrated that MeJA induces a time-dependent hydrogen peroxide (H2O2) and salicylic acid (SA) accumulation but reduces nitric oxide (NO) generation in L. album cells. PTOX biosynthetic genes such as PAL, CCR, CAD, and PLR were upregulated in response to MeJA exposure. Furthermore, the results of RT-qPCR revealed a positive correlation between the expression of PTOX biosynthetic genes and MeJA-induced upregulation of four miRNAs such as miR156, miR159, miR172, and miR396 at 12 h. Generally, this study revealed that MeJA mediates PTOX biosynthesis in L. album cells by inducing H2O2 and SA formation, which can probably upregulate the expression level of some miRNAs and biosynthetic genes in a redox balance-dependent manner.
Collapse
Affiliation(s)
- Mostafa Sagharyan
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
- Center of Excellence in Medicinal Plant Metabolites, Tarbiat Modares University, Tehran, Iran.
| | - Elaheh Samari
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farah Karimi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| |
Collapse
|
6
|
Yan L, Jiang X, Zhang Y, Dong Y, Zhao C, Xu K, Huo Z, Wang W. Induction of Salt Stress Tolerance in Wheat Seeds by Parental Treatment with Salicylic Acid. PLANTS (BASEL, SWITZERLAND) 2024; 13:3373. [PMID: 39683166 DOI: 10.3390/plants13233373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Soil salinization is an important factor that limits crop production. The effects of spraying salicylic acid (SA) during the grain-filling stage on the salt tolerance of progeny seeds in wheat (Triticum aestivum L.) were investigated in this study. The results showed that spraying SA during the grain-filling stage significantly increased the grain weight and yield of wheat plants. Meanwhile, the seeds from the SA-treated plants showed a higher germination rate, length and dry mass of the coleoptile and radicle, and a lower mean germination time compared to the seeds of water-treated plants under the salt germination condition, indicating that SA pretreatment during the grain-filling stage could effectively improve the salt tolerance of progeny seeds in wheat. SA pretreatment significantly increased the activities of amylases and the respiration rate, accompanied by a decrease in starch content, and a higher accumulation in the level of soluble sugars and adenosine triphosphate (ATP) in the germinated seedlings compared to the water pretreatment under salt stress. In addition, SA pretreatment obviously alleviated the increase in malondialdehyde (MDA) content and the reactive oxygen species (ROS) release rate in seedlings by activating antioxidant enzymes (superoxide dismutase (SOD) and peroxidase (POD)) under salt stress. Moreover, the seedlings of the SA-treated plants showed lower Na+ and higher K+ contents compared to the seeds of water-treated plants under salt stress. The results of this study indicate that spraying SA during the grain-filling stage improves the capacity of offspring seeds to maintain osmotic and ion balance and redox homeostasis under salt stress, thereby conferring salt tolerance to the wheat seeds.
Collapse
Affiliation(s)
- Lei Yan
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Xue Jiang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Yuman Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Yongwen Dong
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Can Zhao
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Ke Xu
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Zhongyang Huo
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| | - Weiling Wang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, No. 88 Daxue South Road, Yangzhou 225009, China
| |
Collapse
|
7
|
Zhang JR, Liu YM, Li D, Wu YJ, Zhao SX, Wang XW, Liu SS, Walling LL, Pan LL. Viral proteins resolve the virus-vector conundrum during hemipteran-mediated transmission by subverting salicylic acid signaling pathway. Nat Commun 2024; 15:9448. [PMID: 39487136 PMCID: PMC11530440 DOI: 10.1038/s41467-024-53894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Hemipteran insects transmit viruses when infesting plants, during which vectors activate salicylic acid (SA)-regulated antiviral defenses. How vector-borne plant viruses circumvent these antiviral defenses is largely unexplored. During co-infections of begomoviruses and betasatellites in plants, betasatellite-encoded βC1 proteins interfere with SA signaling and reduce the activation of antiviral resistance. βC1 inhibits SA-induced degradation of NbNPR3 (Nicotiana benthamiana nonexpressor of pathogenesis-related genes 3), a negative regulator of SA signaling. βC1 does not bind directly to NbNPR3, but regulates NbNPR3 degradation via heat shock protein 90s (NbHSP90s). NbHSP90s bind to both NbNPR3 and βC1 and suppress SA signaling. This viral success strategy appears to be conserved as it is also documented for viral proteins encoded by two aphid-borne viruses. Our findings reveal an exquisite mechanism that facilitates the persistence of vector-borne plant viruses and provide important insights into the intricacies of the virus life cycle.
Collapse
Affiliation(s)
- Jing-Ru Zhang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yi-Ming Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Di Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yi-Jie Wu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Shi-Xing Zhao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Linda L Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, 92521-0124, Riverside, USA
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China.
- The Rural Development Academy, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
8
|
Li J, Chen Y, Zhang R, Wang R, Wu B, Zhang H, Xiao G. OsWRKY70 Plays Opposite Roles in Blast Resistance and Cold Stress Tolerance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:61. [PMID: 39271542 PMCID: PMC11399497 DOI: 10.1186/s12284-024-00741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
The transcription factor WRKYs play pivotal roles in the adapting to adverse environments in plants. Prior research has demonstrated the involvement of OsWRKY70 in resistance against herbivores and its response to abiotic stress. Here, we reported the functional analysis of OsWRKY70 in immunity against fungal diseases and cold tolerance. The results revealed that OsWRKY70 was induced by various Magnaporthe oryzae strains. Knock out mutants of OsWRKY70, which were generated by the CRISPR/Cas9 system, exhibited enhanced resistance to M. oryzae. This was consistent with fortifying the reactive oxygen species (ROS) burst after inoculation in the mutants, elevated transcript levels of defense-responsive genes (OsPR1b, OsPBZ1, OsPOX8.1 and OsPOX22.3) and the observation of the sluggish growth of invasive hyphae under fluorescence microscope. RNA sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) validations demonstrated that differentially expressed genes were related to plant-pathogen interactions, hormone transduction and MAPK cascades. Notably, OsbHLH6, a key component of the JA signaling pathway, was down-regulated in the mutants compared to wild type plants. Further investigation confirmed that OsWRKY70 bound to the promoter of OsbHLH6 by semi-in vivo chromatin immunoprecipitation (ChIP). Additionally, the loss-function of OsWRKY70 impaired cold tolerance in rice. The enhanced susceptibility in the mutants characterized by excessive ROS production, elevated ion leakage rate and increased malondialdehyde content, as well as decreased activity of catalase (CAT) and peroxidase (POD) under low temperature stress was, which might be attributed to down-regulation of cold-responsive genes (OsLti6b and OsICE1). In conclusion, our findings indicate that OsWRKY70 negatively contributes to blast resistance but positively regulates cold tolerance in rice, providing a strategy for crop breeding with tolerance to stress.
Collapse
Affiliation(s)
- Jiangdi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yating Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Rujie Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
9
|
Songsaeng A, Boonchuen P, Nareephot P, Piromyou P, Wongdee J, Greetatorn T, Inthaisong S, Tantasawat PA, Teamtisong K, Tittabutr P, Sato S, Boonkerd N, Songwattana P, Teaumroong N. Enhancing Resistance to Cercospora Leaf Spot in Mung Bean (Vigna radiata L.) through Bradyrhizobium sp. DOA9 Priming: Molecular Insights and Bio-Priming Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:2495. [PMID: 39273979 PMCID: PMC11396852 DOI: 10.3390/plants13172495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mung bean (Vigna radiata L.), a vital legume in Asia with significant nutritional benefits, is highly susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens, leading to significant yield losses. As an alternative to chemical fungicides, bio-priming with rhizobacteria can enhance plant resistance. This study explores the potential of Bradyrhizobium sp. strain DOA9 to augment resistance in mung bean against CLS via root priming. The results reveal that short (3 days) and double (17 and 3 days) priming with DOA9 before fungal infection considerably reduces lesion size on infected leaves by activating defense-related genes, including Pti1, Pti6, EDS1, NDR1, PR-1, PR-2, Prx, and CHS, or by suppressing the inhibition of PR-5 and enhancing peroxidase (POD) activity in leaves. Interestingly, the Type 3 secretion system (T3SS) of DOA9 may play a role in establishing resistance in V. radiata CN72. These findings suggest that DOA9 primes V. radiata CN72's defense mechanisms, offering an effective bio-priming strategy to alleviate CLS. Hence, our insights propose the potential use of DOA9 as a bio-priming agent to manage CLS in V. radiata CN72, providing a sustainable alternative to chemical fungicide applications.
Collapse
Affiliation(s)
- Apisit Songsaeng
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Phongkeat Nareephot
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongdet Piromyou
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jenjira Wongdee
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Teerana Greetatorn
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sukanya Inthaisong
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piyada Alisha Tantasawat
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongpan Songwattana
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
10
|
Wang H, Bi Y, Yan Y, Yuan X, Gao Y, Noman M, Li D, Song F. A NAC transcription factor MNAC3-centered regulatory network negatively modulates rice immunity against blast disease. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2017-2041. [PMID: 38953747 DOI: 10.1111/jipb.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/02/2024] [Indexed: 07/04/2024]
Abstract
NAC transcription factors (TFs) are pivotal in plant immunity against diverse pathogens. Here, we report the functional and regulatory network of MNAC3, a novel NAC TF, in rice immunity. MNAC3, a transcriptional activator, negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen-associated molecular pattern (PAMP)-triggered immune responses. MNAC3 binds to a CACG cis-element and activates the transcription of immune-negative target genes OsINO80, OsJAZ10, and OsJAZ11. The negative function of MNAC3 in rice immunity depends on its transcription of downstream genes such as OsINO80 and OsJAZ10. MNAC3 interacts with immunity-related OsPP2C41 (a protein phosphatase), ONAC066 (a NAC TF), and OsDjA6 (a DnaJ chaperone). ONAC066 and OsPP2C41 attenuate MNAC3 transcriptional activity, while OsDjA6 promotes it. Phosphorylation of MNAC3 at S163 is critical for its negative functions in rice immunity. OsPP2C41, which plays positive roles in rice blast resistance and chitin-triggered immune responses, dephosphorylates MNAC3, suppressing its transcriptional activity on the target genes OsINO80, OsJAZ10, and OsJAZ11 and promoting the translocation of MNAC3 from nucleus to cytoplasm. These results establish a MNAC3-centered regulatory network in which OsPP2C41 dephosphorylates MNAC3, attenuating its transcriptional activity on downstream immune-negative target genes in rice. Together, these findings deepen our understanding of molecular mechanisms in rice immunity and offer a novel strategy for genetic improvement of rice disease resistance.
Collapse
Affiliation(s)
- Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xi Yuan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Noman
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Wójcikowska B, Chwiałkowska K, Nowak K, Citerne S, Morończyk J, Wójcik AM, Kiwior-Wesołowska A, Francikowski J, Kwaśniewski M, Gaj MD. Transcriptomic profiling reveals histone acetylation-regulated genes involved in somatic embryogenesis in Arabidopsis thaliana. BMC Genomics 2024; 25:788. [PMID: 39148037 PMCID: PMC11325840 DOI: 10.1186/s12864-024-10623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Somatic embryogenesis (SE) exemplifies the unique developmental plasticity of plant cells. The regulatory processes, including epigenetic modifications controlling embryogenic reprogramming of cell transcriptome, have just started to be revealed. RESULTS To identify the genes of histone acetylation-regulated expression in SE, we analyzed global transcriptomes of Arabidopsis explants undergoing embryogenic induction in response to treatment with histone deacetylase inhibitor, trichostatin A (TSA). The TSA-induced and auxin (2,4-dichlorophenoxyacetic acid; 2,4-D)-induced transcriptomes were compared. RNA-seq results revealed the similarities of the TSA- and auxin-induced transcriptomic responses that involve extensive deregulation, mostly repression, of the majority of genes. Within the differentially expressed genes (DEGs), we identified the master regulators (transcription factors - TFs) of SE, genes involved in biosynthesis, signaling, and polar transport of auxin and NITRILASE-encoding genes of the function in indole-3-acetic acid (IAA) biosynthesis. TSA-upregulated TF genes of essential functions in auxin-induced SE, included LEC1/LEC2, FUS3, AGL15, MYB118, PHB, PHV, PLTs, and WUS/WOXs. The TSA-induced transcriptome revealed also extensive upregulation of stress-related genes, including those related to stress hormone biosynthesis. In line with transcriptomic data, TSA-induced explants accumulated salicylic acid (SA) and abscisic acid (ABA), suggesting the role of histone acetylation (Hac) in regulating stress hormone-related responses during SE induction. Since mostly the adaxial side of cotyledon explant contributes to SE induction, we also identified organ polarity-related genes responding to TSA treatment, including AIL7/PLT7, RGE1, LBD18, 40, HB32, CBF1, and ULT2. Analysis of the relevant mutants supported the role of polarity-related genes in SE induction. CONCLUSION The study results provide a step forward in deciphering the epigenetic network controlling embryogenic transition in somatic cells of plants.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland.
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Nowak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Sylvie Citerne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, 78000, France
| | - Joanna Morończyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Anna Maria Wójcik
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Agnieszka Kiwior-Wesołowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Jacek Francikowski
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Mirosław Kwaśniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Małgorzata Danuta Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
12
|
Elsisi M, Elshiekh M, Sabry N, Aziz M, Attia K, Islam F, Chen J, Abdelrahman M. The genetic orchestra of salicylic acid in plant resilience to climate change induced abiotic stress: critical review. STRESS BIOLOGY 2024; 4:31. [PMID: 38880851 PMCID: PMC11180647 DOI: 10.1007/s44154-024-00160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Climate change, driven by human activities and natural processes, has led to critical alterations in varying patterns during cropping seasons and is a vital threat to global food security. The climate change impose several abiotic stresses on crop production systems. These abiotic stresses include extreme temperatures, drought, and salinity, which expose agricultural fields to more vulnerable conditions and lead to substantial crop yield and quality losses. Plant hormones, especially salicylic acid (SA), has crucial roles for plant resiliency under unfavorable environments. This review explores the genetics and molecular mechanisms underlying SA's role in mitigating abiotic stress-induced damage in plants. It also explores the SA biosynthesis pathways, and highlights the regulation of their products under several abiotic stresses. Various roles and possible modes of action of SA in mitigating abiotic stresses are discussed, along with unraveling the genetic mechanisms and genes involved in responses under stress conditions. Additionally, this review investigates molecular pathways and mechanisms through which SA exerts its protective effects, such as redox signaling, cross-talks with other plant hormones, and mitogen-activated protein kinase pathways. Moreover, the review discusses potentials of using genetic engineering approaches, such as CRISPR technology, for deciphering the roles of SA in enhancing plant resilience to climate change related abiotic stresses. This comprehensive analysis bridges the gap between genetics of SA role in response to climate change related stressors. Overall goal is to highlight SA's significance in safeguarding plants and by offering insights of SA hormone for sustainable agriculture under challenging environmental conditions.
Collapse
Affiliation(s)
- Mohamed Elsisi
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Moaz Elshiekh
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Nourine Sabry
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Mark Aziz
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Kotb Attia
- College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | | |
Collapse
|
13
|
Inazu M, Nemoto T, Omata Y, Suzuki S, Ono S, Kanno Y, Seo M, Oikawa A, Masuda S. Complete Loss of RelA and SpoT Homologs in Arabidopsis Reveals the Importance of the Plastidial Stringent Response in the Interplay between Chloroplast Metabolism and Plant Defense Response. PLANT & CELL PHYSIOLOGY 2024; 65:631-643. [PMID: 37925598 DOI: 10.1093/pcp/pcad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
The highly phosphorylated nucleotide, guanosine tetraphosphate (ppGpp), functions as a secondary messenger in bacteria and chloroplasts. The accumulation of ppGpp alters plastidial gene expression and metabolism, which are required for proper photosynthetic regulation and robust plant growth. However, because four plastid-localized ppGpp synthases/hydrolases function redundantly, the impact of the loss of ppGpp-dependent stringent response on plant physiology remains unclear. We used CRISPR/Cas9 technology to generate an Arabidopsis thaliana mutant lacking all four ppGpp synthases/hydrolases and characterized its phenotype. The mutant showed over 20-fold less ppGpp levels than the wild type under normal growth conditions and exhibited leaf chlorosis and increased expression of defense-related genes as well as salicylic acid and jasmonate levels upon transition to nitrogen-starvation conditions. These results demonstrate that proper levels of ppGpp in plastids are required for controlling not only plastid metabolism but also phytohormone signaling, which is essential for plant defense.
Collapse
Affiliation(s)
- Masataka Inazu
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takanari Nemoto
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Yuto Omata
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Sae Suzuki
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Sumire Ono
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
14
|
Ang MCY, Saju JM, Porter TK, Mohaideen S, Sarangapani S, Khong DT, Wang S, Cui J, Loh SI, Singh GP, Chua NH, Strano MS, Sarojam R. Decoding early stress signaling waves in living plants using nanosensor multiplexing. Nat Commun 2024; 15:2943. [PMID: 38580637 PMCID: PMC10997764 DOI: 10.1038/s41467-024-47082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Increased exposure to environmental stresses due to climate change have adversely affected plant growth and productivity. Upon stress, plants activate a signaling cascade, involving multiple molecules like H2O2, and plant hormones such as salicylic acid (SA) leading to resistance or stress adaptation. However, the temporal ordering and composition of the resulting cascade remains largely unknown. In this study we developed a nanosensor for SA and multiplexed it with H2O2 nanosensor for simultaneous monitoring of stress-induced H2O2 and SA signals when Brassica rapa subsp. Chinensis (Pak choi) plants were subjected to distinct stress treatments, namely light, heat, pathogen stress and mechanical wounding. Nanosensors reported distinct dynamics and temporal wave characteristics of H2O2 and SA generation for each stress. Based on these temporal insights, we have formulated a biochemical kinetic model that suggests the early H2O2 waveform encodes information specific to each stress type. These results demonstrate that sensor multiplexing can reveal stress signaling mechanisms in plants, aiding in developing climate-resilient crops and pre-symptomatic stress diagnoses.
Collapse
Affiliation(s)
- Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Jolly Madathiparambil Saju
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Thomas K Porter
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Sayyid Mohaideen
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Sreelatha Sarangapani
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Song Wang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Suh In Loh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Nam-Hai Chua
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore.
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Rajani Sarojam
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore.
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
15
|
Doddavarapu B, Lata C, Shah JM. Epigenetic regulation influenced by soil microbiota and nutrients: Paving road to epigenome editing in plants. Biochim Biophys Acta Gen Subj 2024; 1868:130580. [PMID: 38325761 DOI: 10.1016/j.bbagen.2024.130580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/25/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Soil is a complex ecosystem that houses microbes and nutrients that are necessary for plant development. Edaphic properties of the soil and environmental conditions influence microbial growth and nutrient accessibility. Various environmental stimuli largely affect the soil microbes and ionic balance, in turn influencing plants. Soil microflora helps decompose organic matter and is involved in mineral uptake. The combination of soil microbes and mineral nutrients notably affects plant growth. Recent advancements have enabled a deeper understanding of plant genetic/molecular regulators. Deficiencies/sufficiencies of soil minerals and microbes also alter plant gene regulation. Gene regulation mediated by epigenetic mechanisms comprises conformational alterations in chromatin structure, DNA/histone modifications, or involvement of small RNAs. Epigenetic regulation is unique due to its potential to inherit without involving alteration of the DNA sequence. Thus, the compilation study of heritable epigenetic changes driven by nutrient imbalances and soil microbes would facilitate understanding this molecular phenomenon in plants. This information can aid in epigenome editing, which has recently emerged as a promising technology for plant non-transgenic/non-mutagenic modification. Potential epigenetic marks induced by biotic and abiotic stresses in plants could be explored as target sites for epigenome editing. This review discusses novel ways of epigenome editing to create epigenome edited plants with desirable and heritable phenotypes. As plants are sessile and in constant exposure to the soil microbiome and nutrients, epigenetic changes induced by these factors could provide more effective, stable and a sustainable molecular solution for crop improvement.
Collapse
Affiliation(s)
- Bhavya Doddavarapu
- Department of Plant Science, Central University of Kerala, Kerala, India
| | - Charu Lata
- Inclusive Health & Traditional Knowledge Studies Division, CSIR- National Institute of Science Communication and Policy Research, New Delhi, India
| | - Jasmine M Shah
- Department of Plant Science, Central University of Kerala, Kerala, India.
| |
Collapse
|
16
|
You L, Shi C, Wang D, Fu ZQ. Helicases clear hurdles during plant defense protein translation. Trends Biochem Sci 2024; 49:192-194. [PMID: 37923611 DOI: 10.1016/j.tibs.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Plants undergo translational reprogramming when they are under attack by pathogens. Xiang et al. recently revealed that plant helicases induced by pathogen recognition unwind RNA hairpins upstream of the main open reading frames (mORFs), thus allowing ribosomes to bypass the upstream ORFs (uORFs) and translate downstream defense proteins, a mechanism that is also found in mammals.
Collapse
Affiliation(s)
- Liyuan You
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Cuilan Shi
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
17
|
Jaiswal S, Tripathi DK, Gupta R, He J, Chen ZH, Singh VP. Methyl-salicylate: A surveillance system for triggering immunity in neighboring plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:163-165. [PMID: 38314644 DOI: 10.1111/jipb.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
After being infested by aphids, plants trigger a signaling pathway that involves methyl salicylate as an airborne signaling molecule. Thus, the regulation of communication for systemically acquired resistance produced via methyl salicylate is helpful in generating stress resistance among plants against aphid infestation.
Collapse
Affiliation(s)
- Saumya Jaiswal
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, 201313, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea
| | - Jing He
- School of Science, Western Sydney University, Sydney, 2751, New South Wales, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Sydney, 2751, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, 2751, New South Wales, Australia
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| |
Collapse
|
18
|
Zhao C, Liu W, Zhang Y, Li Y, Ma C, Tian R, Li R, Li M, Huang L. Two transcription factors, AcREM14 and AcC3H1, enhance the resistance of kiwifruit Actinidiachinensis var. chinensis to Pseudomonas syringae pv. actinidiae. HORTICULTURE RESEARCH 2024; 11:uhad242. [PMID: 38222821 PMCID: PMC10782502 DOI: 10.1093/hr/uhad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/12/2023] [Indexed: 01/16/2024]
Abstract
Kiwifruit bacterial canker is a global disease caused by Pseudomonas syringae pv. actinidiae (Psa), which poses a major threat to kiwifruit production worldwide. Despite the economic importance of Actinidia chinensis var. chinensis, only a few resistant varieties have been identified to date. In this study, we screened 44 kiwifruit F1 hybrid lines derived from a cross between two A. chinensis var. chinensis lines and identified two offspring with distinct resistance to Psa: resistant offspring RH12 and susceptible offspring SH14. To identify traits associated with resistance, we performed a comparative transcriptomic analysis of these two lines. We identified several highly differentially expressed genes (DEGs) associated with flavonoid synthesis, pathogen interactions, and hormone signaling pathways, which play essential roles in disease resistance. Additionally, using weighted gene co-expression network analysis, we identified six core transcription factors. Moreover, qRT-PCR results demonstrated the high expression of AcC3H1 and AcREM14 in Psa-induced highly resistant hybrid lines. Ultimately, Overexpression of AcC3H1 and AcREM14 in kiwifruit enhanced disease resistance, and this was associated with upregulation of enzymatic activity and gene expression in the salicylic acid (SA) signaling pathway. Our study elucidates a molecular mechanism underlying disease resistance in kiwifruit and contributes to the advancement of research on kiwifruit breeding.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Wei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yali Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yuanzhe Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Chao Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Rui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
19
|
Sun Y, Wang Y, Zhang Y, Hasan N, Yang N, Xie Y, Tang C. Identification and characterization of the Bicupin domain family and functional analysis of GhBCD11 in response to verticillium wilt in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111875. [PMID: 37769874 DOI: 10.1016/j.plantsci.2023.111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Bicupin domain protein (BCD) family, an important component of Cupin domain superfamily, plays important roles in oxalic acid (OA) degradation and stress responses in high plants. However, no studies have been reported on the Cupin domain family in cotton up till now. In our study, a total 110 proteins including Cupin domain were identified from the upland cotton (Gossypium hirsutum). Among them, 17 proteins contained Bicupin domain. Subsequently, we found that V. dahliae produces OA leading to cotton leaf wilting. RT-qPCR analysis of GhBCDs revealed that OA and V. dahliae Vd080 significantly enhanced the expression of GhBCD11. The Virus-induced gene silencing and overexpression analysis showed that GhBCD11 positively regulates plant resistance to V. dahliae. Subcellular localization showed GhBCD11 located on the plasma membrane. The analysis of expression pattern showed that GhBCD11 can be induced via hormone-mediated signal pathway including salicylic acid (SA), ethephon (ET), methyl jasmonate (JA) and abscisic acid (ABA). In addition, we identified an interaction between 60 S ribosomal protein GhRPL12-3 and GhBCD11 by yeast double hybridization. Overall, this is the first study, where we identified Cupin domain family in cotton, clarified the role of GhBCD11 in cotton for resistance to V. dahliae and found an interaction between GhRPL12-3 and GhBCD11.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, Henan, China
| | - Nadeem Hasan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Na Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yijing Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
20
|
Lihavainen J, Šimura J, Bag P, Fataftah N, Robinson KM, Delhomme N, Novák O, Ljung K, Jansson S. Salicylic acid metabolism and signalling coordinate senescence initiation in aspen in nature. Nat Commun 2023; 14:4288. [PMID: 37463905 DOI: 10.1038/s41467-023-39564-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Deciduous trees exhibit a spectacular phenomenon of autumn senescence driven by the seasonality of their growth environment, yet there is no consensus which external or internal cues trigger it. Senescence starts at different times in European aspen (Populus tremula L.) genotypes grown in same location. By integrating omics studies, we demonstrate that aspen genotypes utilize similar transcriptional cascades and metabolic cues to initiate senescence, but at different times during autumn. The timing of autumn senescence initiation appeared to be controlled by two consecutive "switches"; 1) first the environmental variation induced the rewiring of the transcriptional network, stress signalling pathways and metabolic perturbations and 2) the start of senescence process was defined by the ability of the genotype to activate and sustain stress tolerance mechanisms mediated by salicylic acid. We propose that salicylic acid represses the onset of leaf senescence in stressful natural conditions, rather than promoting it as often observed in annual plants.
Collapse
Affiliation(s)
- Jenna Lihavainen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90189, Umeå, Sweden
| | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Pushan Bag
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90189, Umeå, Sweden
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, UK
| | - Nazeer Fataftah
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90189, Umeå, Sweden
| | - Kathryn Megan Robinson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90189, Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90189, Umeå, Sweden.
| |
Collapse
|
21
|
Waldo BD, Branham SE, Levi A, Wechter WP, Rutter WB. Distinct Genomic Loci Underlie Quantitative Resistance to Meloidogyne enterolobii Galling and Reproduction in Citrullus amarus. PLANT DISEASE 2023; 107:2126-2132. [PMID: 36548923 DOI: 10.1094/pdis-09-22-2228-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Meloidogyne enterolobii is a virulent species of root-knot nematode that threatens watermelon (Citrullus lanatus) production in the southeastern United States. There are no known sources of root-knot nematode resistance in cultivated C. lanatus. Specific genotypes of a wild watermelon relative, C. amarus, are resistant against M. incognita but the genetics that underly this resistance are still unknown and it is not clear that this same resistance will be effective against M. enterolobii. To identify and characterize new sources of resistance to M. enterolobii, we screened 108 diverse C. amarus lines alongside a susceptible C. lanatus cultivar (Charleston Gray) for resistance against M. enterolobii. Different C. amarus genotypes ranged from resistant to susceptible for the three resistance phenotypes measured; mean percent root system galled ranged from 10 to 73%, mean egg mass counts ranged from 0.3 to 64.5, and mean eggs per gram of root ranged from 326 to 146,160. We used each of these three resistance phenotypes combined with whole-genome resequencing data to conduct a genome-wide association scan that identified significant associations between M. enterolobii resistance and 11 single-nucleotide polymorphisms (SNPs) within the C. amarus genome. Interestingly, SNPs associated with reduced galling and egg masses were located within a single quantitative trait locus (QTL) on chromosome Ca03, while reductions in nematode eggs per gram of root were associated with separate QTL on chromosomes Ca04 and Ca08. The results of this study suggest that multiple genes are involved with M. enterolobii resistance in C. amarus and the SNPs identified will assist with efforts to breed for M. enterolobii resistance in watermelon.
Collapse
Affiliation(s)
- Benjamin D Waldo
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD 20705
| | - Sandra E Branham
- Coastal Research and Education Center, Clemson University, Charleston, SC 29414
| | - Amnon Levi
- USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC 29414
| | | | | |
Collapse
|
22
|
Chen J, Chen J, Sun Z. Staying vigilant: NLR monitors virus invasion. TRENDS IN PLANT SCIENCE 2023; 28:617-619. [PMID: 36935266 DOI: 10.1016/j.tplants.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 05/13/2023]
Abstract
Phytohormones play important roles in plant immunity. Recently, Chen et al. discovered that the tomato spotted wilt virus attacks the plant hormone receptor to promote infection. Plants evolved an immune receptor to mimic the attacked hormone receptors to recognize the virus, thereby activating a robust immune response.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China.
| |
Collapse
|
23
|
Mao H, Zhang W, Lv J, Yang J, Yang S, Jia B, Song J, Wu M, Pei W, Ma J, Zhang B, Zhang J, Wang L, Yu J. Overexpression of cotton Trihelix transcription factor GhGT-3b_A04 enhances resistance to Verticillium dahliae and affects plant growth in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2023; 283:153947. [PMID: 36898190 DOI: 10.1016/j.jplph.2023.153947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Verticillium wilt is a soil-borne fungal disease that severely affects cotton fiber yield and quality. Herein, a cotton Trihelix family gene, GhGT-3b_A04, was strongly induced by the fungal pathogen Verticillium dahliae. Overexpression of the gene in Arabidopsis thaliana enhanced the plant's resistance to Verticillium wilt but inhibited the growth of rosette leaves. In addition, the primary root length, root hair number, and root hair length increased in GhGT-3b_A04-overexpressing plants. The density and length of trichomes on the rosette leaves also increased. GhGT-3b_A04 localized to the nucleus, and transcriptome analysis revealed that it induced gene expression for salicylic acid synthesis and signal transduction and activated gene expression for disease resistance. The gene expression for auxin signal transduction and trichome development was reduced in GhGT-3b_A04-overexpressing plants. Our results highlight important regulatory genes for Verticillium wilt resistance and cotton fiber quality improvement. The identification of GhGT-3b_A04 and other important regulatory genes can provide crucial reference information for future research on transgenic cotton breeding.
Collapse
Affiliation(s)
- Haoming Mao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Wenqing Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Junyuan Lv
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Jiaxiang Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Shuxian Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Bing Jia
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Jikun Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Man Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Wenfeng Pei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Jianjiang Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Bingbing Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, 880033, USA.
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Jiwen Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
24
|
Wang Y, Wang X, Fang J, Yin W, Yan X, Tu M, Liu H, Zhang Z, Li Z, Gao M, Lu H, Wang Y, Wang X. VqWRKY56 interacts with VqbZIPC22 in grapevine to promote proanthocyanidin biosynthesis and increase resistance to powdery mildew. THE NEW PHYTOLOGIST 2023; 237:1856-1875. [PMID: 36527243 DOI: 10.1111/nph.18688] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Powdery mildew (PM) is a severe fungal disease of cultivated grapevine world-wide. Proanthocyanidins (PAs) play an important role in resistance to fungal pathogens; however, little is known about PA-mediated PM resistance in grapevine. We identified a WRKY transcription factor, VqWRKY56, from Vitis quinquangularis, the expression of which was significantly induced by PM. Overexpression (OE) of VqWRKY56 in Vitis vinifera increased PA content and reduced susceptibility to PM. Furthermore, the transgenic plants showed more cell death and increased accumulation of salicylic acid and reactive oxygen species. Transient silencing of VqWRKY56 in V. quinquangularis and V. vinifera reduced PA accumulation and increased the susceptibility to PM. VqWRKY56 interacted with VqbZIPC22 in vitro and in planta. The protein VqWRKY56 can bind to VvCHS3, VvLAR1, and VvANR promoters, and VqbZIPC22 can bind to VvANR promoter. Co-expression of VqWRKY56 and VqbZIPC22 significantly increased the transcript level of VvCHS3, VvLAR1, and VvANR genes. Finally, transient OE of VqbZIPC22 in V. vinifera promoted PA accumulation and improved resistance to PM, while transient silencing in V. quinquangularis had the opposite effect. Our study provides new insights into the mechanism of PA regulation by VqWRKY56 in grapevine and provides a basis for further metabolic engineering of PA biosynthesis to improve PM resistance.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianhang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinghao Fang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wuchen Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxiao Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingxing Tu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhengda Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
25
|
Bi Y, Wang H, Yuan X, Yan Y, Li D, Song F. The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:854-875. [PMID: 36308720 DOI: 10.1111/jipb.13399] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
NAC transcription factors (TFs) play critical roles in plant immunity by modulating the expression of downstream genes via binding to specific cis-elements in promoters. Here, we report the function and regulatory network of a pathogen- and defense phytohormone-inducible NAC TF gene, ONAC083, in rice (Oryza sativa) immunity. ONAC083 localizes to the nucleus and exhibits transcriptional activation activity that depends on its C-terminal region. Knockout of ONAC083 enhances rice immunity against Magnaporthe oryzae, strengthening pathogen-induced defense responses, and boosting chitin-induced pattern-triggered immunity (PTI), whereas ONAC083 overexpression has opposite effects. We identified ONAC083-binding sites in the promoters of 82 genes, and showed that ONAC083 specifically binds to a conserved element with the core sequence ACGCAA. ONAC083 activated the transcription of the genes OsRFPH2-6, OsTrx1, and OsPUP4 by directly binding to the ACGCAA element. OsRFPH2-6, encoding a RING-H2 protein with an N-terminal transmembrane region and a C-terminal typical RING domain, negatively regulated rice immunity against M. oryzae and chitin-triggered PTI. These data demonstrate that ONAC083 negatively contributes to rice immunity against M. oryzae by directly activating the transcription of OsRFPH2-6 through the ACGCAA element in its promoter. Overall, our study provides new insight into the molecular regulatory network of NAC TFs in rice immunity.
Collapse
Affiliation(s)
- Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xi Yuan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
26
|
Zhou Y, Niu R, Tang Z, Mou R, Wang Z, Zhu S, Yang H, Ding P, Xu G. Plant HEM1 specifies a condensation domain to control immune gene translation. NATURE PLANTS 2023; 9:289-301. [PMID: 36797349 DOI: 10.1038/s41477-023-01355-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Translational reprogramming is a fundamental layer of immune regulation, but how such a global regulatory mechanism operates remains largely unknown. Here we perform a genetic screen and identify Arabidopsis HEM1 as a global translational regulator of plant immunity. The loss of HEM1 causes exaggerated cell death to restrict bacterial growth during effector-triggered immunity (ETI). By improving ribosome footprinting, we reveal that the hem1 mutant increases the translation efficiency of pro-death immune genes. We show that HEM1 contains a plant-specific low-complexity domain (LCD) absent from animal homologues. This LCD endows HEM1 with the capability of phase separation in vitro and in vivo. During ETI, HEM1 interacts and condensates with the translation machinery; this activity is promoted by the LCD. CRISPR removal of this LCD causes more ETI cell death. Our results suggest that HEM1 condensation constitutes a brake mechanism of immune activation by controlling the tissue health and disease resistance trade-off during ETI.
Collapse
Affiliation(s)
- Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Sitao Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Hongchun Yang
- School of Life Sciences, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
27
|
Beihammer G, Romero-Pérez A, Maresch D, Figl R, Mócsai R, Grünwald-Gruber C, Altmann F, Van Damme EJM, Strasser R. Pseudomonas syringae DC3000 infection increases glucosylated N-glycans in Arabidopsis thaliana. Glycoconj J 2023; 40:97-108. [PMID: 36269466 PMCID: PMC9925501 DOI: 10.1007/s10719-022-10084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
Abstract
Studying the interaction between the hemibiotrophic bacterium Pseudomonas syringae pv. tomato DC3000 and Arabidopsis thaliana has shed light onto the various forms of mechanisms plants use to defend themselves against pathogen attack. While a lot of emphasis has been put on investigating changes in protein expression in infected plants, only little information is available on the effect infection plays on the plants N-glycan composition. To close this gap in knowledge, total N-glycans were enriched from P. syringae DC3000-infected and mock treated Arabidopsis seedlings and analyzed via MALDI-TOF-MS. Additionally, fluorescently labelled N-glycans were quantified via HPLC-FLD. N-glycans from infected plants were overall less processed and displayed increased amounts of oligomannosidic N-glycans. As multiple peaks for certain oligomannosidic glycoforms were detected upon separation via liquid chromatography, a porous graphitic carbon (PGC)-analysis was conducted to separate individual N-glycan isomers. Indeed, multiple different N-glycan isomers with masses of two N-acetylhexosamine residues plus 8, 9 or 10 hexoses were detected in the infected plants which were absent in the mock controls. Treatment with jack bean α-mannosidase resulted in incomplete removal of hexoses from these N-glycans, indicating the presence of glucose residues. This hints at the accumulation of misfolded glycoproteins in the infected plants, likely because of endoplasmic reticulum (ER) stress. In addition, poly-hexose structures susceptible to α-amylase treatment were found in the DC3000-infected plants, indicating alterations in starch metabolism due to the infection process.
Collapse
Affiliation(s)
- Gernot Beihammer
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andrea Romero-Pérez
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Daniel Maresch
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rudolf Figl
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Réka Mócsai
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
28
|
Chen J. Need help? Recently identified phosphorylation targets of MAP kinase 4 aid plant immunity. PLANT PHYSIOLOGY 2022; 190:1556-1558. [PMID: 35944224 PMCID: PMC9614446 DOI: 10.1093/plphys/kiac366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
29
|
Azevedo V, Daddiego L, Cardone MF, Perrella G, Sousa L, Santos RB, Malhó R, Bergamini C, Marsico AD, Figueiredo A, Alagna F. Transcriptomic and methylation analysis of susceptible and tolerant grapevine genotypes following Plasmopara viticola infection. PHYSIOLOGIA PLANTARUM 2022; 174:e13771. [PMID: 36053855 PMCID: PMC9826190 DOI: 10.1111/ppl.13771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most economically significant grapevine diseases worldwide. Current strategies to cope with this threat rely on the massive use of chemical compounds during each cultivation season. The economic costs and negative environmental impact associated with these applications increased the urge to search for sustainable strategies of disease control. Improved knowledge of plant mechanisms to counteract pathogen infection may allow the development of alternative strategies for plant protection. Epigenetic regulation, in particular DNA methylation, is emerging as a key factor in the context of plant-pathogen interactions associated with the expression modulation of defence genes. To improve our understanding of the genetic and epigenetic mechanisms underpinning grapevine response to P. viticola, we studied the modulation of both 5-mC methylation and gene expression at 6 and 24 h post-infection (hpi). Leaves of two table grape genotypes (Vitis vinifera), selected by breeding activities for their contrasting level of susceptibility to the pathogen, were analysed. Following pathogen infection, we found variations in the 5-mC methylation level and the gene expression profile. The results indicate a genotype-specific response to pathogen infection. The tolerant genotype (N23/018) at 6 hpi exhibits a lower methylation level compared to the susceptible one (N20/020), and it shows an early modulation (at 6 hpi) of defence and epigenetic-related genes during P. viticola infection. These data suggest that the timing of response is an important mechanism to efficiently counteract the pathogen attack.
Collapse
Affiliation(s)
- Vanessa Azevedo
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Loretta Daddiego
- Energy Technologies and Renewable Sources DepartmentNational Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research CentreRotondellaMateraItaly
| | - Maria Francesca Cardone
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | | | - Lisete Sousa
- Department of Statistics and Operations Research, Faculdade de Ciências; Centre of Statistics and its Applications (CEAUL)Universidade de LisboaLisbonPortugal
| | - Rita B. Santos
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Rui Malhó
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Carlo Bergamini
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | - Antonio Domenico Marsico
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | - Andreia Figueiredo
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Fiammetta Alagna
- Energy Technologies and Renewable Sources DepartmentNational Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research CentreRotondellaMateraItaly
| |
Collapse
|
30
|
Chavan SN, De Kesel J, Desmedt W, Degroote E, Singh RR, Nguyen GT, Demeestere K, De Meyer T, Kyndt T. Dehydroascorbate induces plant resistance in rice against root-knot nematode Meloidogyne graminicola. MOLECULAR PLANT PATHOLOGY 2022; 23:1303-1319. [PMID: 35587614 PMCID: PMC9366072 DOI: 10.1111/mpp.13230] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/01/2023]
Abstract
Ascorbic acid (AsA) is an important antioxidant in plants and regulates various physiological processes. In this study, we show that exogenous treatments with the oxidized form of AsA, that is, dehydroascorbate (DHA), activates induced systemic resistance in rice against the root-knot nematode Meloidogyne graminicola, and investigate the molecular and biochemical mechanisms underlying this phenotype. Detailed transcriptome analysis on roots of rice plants showed an early and robust transcriptional response on foliar DHA treatment, with induction of several genes related to plant stress responses, immunity, antioxidant activity, and secondary metabolism already at 1 day after treatment. Quantitative and qualitative evaluation of H2 O2 levels confirmed the appearance of a reactive oxygen species (ROS) burst on DHA treatment, both at the site of treatment and systemically. Experiments using chemical ROS inhibitors or scavengers confirmed that H2 O2 accumulation contributes to DHA-based induced resistance. Furthermore, hormone measurements in DHA-treated plants showed a significant systemic accumulation of the defence hormone salicylic acid (SA). The role of the SA pathway in DHA-based induced resistance was confirmed by nematode infection experiments using an SA-signalling deficient WRKY45-RNAi line and reverse transcription-quantitative PCR on SA marker genes. Our results collectively reveal that DHA activates induced systemic resistance in rice against the root-knot nematode M. graminicola, mediated through the production of ROS and activation of the SA pathway.
Collapse
Affiliation(s)
- Satish Namdeo Chavan
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- ICAR – Indian Institute of Rice ResearchHyderabadIndia
| | - Jonas De Kesel
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Willem Desmedt
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Eva Degroote
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Richard Raj Singh
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Department Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Giang Thu Nguyen
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical ModellingGhent UniversityGhentBelgium
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
31
|
Chen J. Bringing it in: a transporter of extracellular amino acids for regulation of plant immunity. PLANT PHYSIOLOGY 2022; 190:190-192. [PMID: 35751611 PMCID: PMC9434176 DOI: 10.1093/plphys/kiac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
|
32
|
Wu Z, Singh SK, Lyu R, Pattanaik S, Wang Y, Li Y, Yuan L, Liu Y. Metabolic engineering to enhance the accumulation of bioactive flavonoids licochalcone A and echinatin in Glycyrrhiza inflata (Licorice) hairy roots. FRONTIERS IN PLANT SCIENCE 2022; 13:932594. [PMID: 36061790 PMCID: PMC9434314 DOI: 10.3389/fpls.2022.932594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 06/01/2023]
Abstract
Echinatin and licochalcone A (LCA) are valuable chalcones preferentially accumulated in roots and rhizomes of licorice (Glycyrrhiza inflata). The licorice chalcones (licochalcones) are valued for their anti-inflammatory, antimicrobial, and antioxidant properties and have been widely used in cosmetic, pharmaceutical, and food industries. However, echinatin and LCA are accumulated in low quantities, and the biosynthesis and regulation of licochalcones have not been fully elucidated. In this study, we explored the potential of a R2R3-MYB transcription factor (TF) AtMYB12, a known regulator of flavonoid biosynthesis in Arabidopsis, for metabolic engineering of the bioactive flavonoids in G. inflata hairy roots. Overexpression of AtMYB12 in the hairy roots greatly enhanced the production of total flavonoids (threefold), echinatin (twofold), and LCA (fivefold). RNA-seq analysis of AtMYB12-overexpressing hairy roots revealed that expression of phenylpropanoid/flavonoid pathway genes, such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3'-hydroxylase (F3'H), is significantly induced compared to the control. Transient promoter activity assay indicated that AtMYB12 activates the GiCHS1 promoter in plant cells, and mutation to the MYB-binding motif in the GiCHS1 promoter abolished activation. In addition, transcriptomic analysis revealed that AtMYB12 overexpression reprograms carbohydrate metabolism likely to increase carbon flux into flavonoid biosynthesis. Further, AtMYB12 activated the biotic defense pathways possibly by activating the salicylic acid and jasmonic acid signaling, as well as by upregulating WRKY TFs. The transcriptome of AtMYB12-overexpressing hairy roots serves as a valuable source in the identification of potential candidate genes involved in LCA biosynthesis. Taken together, our findings suggest that AtMYB12 is an effective gene for metabolic engineering of valuable bioactive flavonoids in plants.
Collapse
Affiliation(s)
- Zhigeng Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Yongliang Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
33
|
Selma S, Sanmartín N, Espinosa‐Ruiz A, Gianoglio S, Lopez‐Gresa MP, Vázquez‐Vilar M, Flors V, Granell A, Orzaez D. Custom-made design of metabolite composition in N. benthamiana leaves using CRISPR activators. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1578-1590. [PMID: 35514036 PMCID: PMC9342607 DOI: 10.1111/pbi.13834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 05/25/2023]
Abstract
Transcriptional regulators based on CRISPR architecture expand our ability to reprogramme endogenous gene expression in plants. One of their potential applications is the customization of plant metabolome through the activation of selected enzymes in a given metabolic pathway. Using the previously described multiplexable CRISPR activator dCasEV2.1, we assayed the selective enrichment in Nicotiana benthamiana leaves of four different flavonoids, namely, naringenin, eriodictyol, kaempferol, and quercetin. After careful selection of target genes and guide RNAs combinations, we created successful activation programmes for each of the four metabolites, each programme activating between three and seven genes, and with individual gene activation levels ranging from 4- to 1500-fold. Metabolic analysis of the flavonoid profiles of each multigene activation programme showed a sharp and selective enrichment of the intended metabolites and their glycosylated derivatives. Remarkably, principal component analysis of untargeted metabolic profiles clearly separated samples according to their activation treatment, and hierarchical clustering separated the samples into five groups, corresponding to the expected four highly enriched metabolite groups, plus an un-activated control. These results demonstrate that dCasEV2.1 is a powerful tool for re-routing metabolic fluxes towards the accumulation of metabolites of interest, opening the door for the custom-made design of metabolic contents in plants.
Collapse
Affiliation(s)
- Sara Selma
- Instituto Biologia Molecular de PlantasCSIC‐UPVValenciaSpain
| | - Neus Sanmartín
- Escuela Superior de Tecnología y Ciencias ExperimentalesUniversidad Jaume ICastellón de la PlanaSpain
| | | | | | | | | | - Victor Flors
- Escuela Superior de Tecnología y Ciencias ExperimentalesUniversidad Jaume ICastellón de la PlanaSpain
| | - Antonio Granell
- Instituto Biologia Molecular de PlantasCSIC‐UPVValenciaSpain
| | - Diego Orzaez
- Instituto Biologia Molecular de PlantasCSIC‐UPVValenciaSpain
| |
Collapse
|
34
|
Pham G, Shin DM, Kim Y, Kim SH. Ran-GTP/-GDP-dependent nuclear accumulation of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and TGACG-BINDING FACTOR2 controls salicylic acid-induced leaf senescence. PLANT PHYSIOLOGY 2022; 189:1774-1793. [PMID: 35417014 PMCID: PMC9237681 DOI: 10.1093/plphys/kiac164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/08/2022] [Indexed: 05/11/2023]
Abstract
Leaf senescence is the final stage of leaf development and can be triggered by various external factors, such as hormones and light deprivation. In this study, we demonstrate that the overexpression of the GTP-bound form of Arabidopsis (Arabidopsis thaliana) Ran1 (a Ras-related nuclear small G-protein, AtRan1) efficiently promotes age-dependent and dark-triggered leaf senescence, while Ran-GDP has the opposite effect. Transcriptome analysis comparing AtRan1-GDP- and AtRan1-GTP-overexpressing transgenic plants (Ran1T27Nox and Ran1G22Vox, respectively) revealed that differentially expressed genes (DEGs) related to the senescence-promoting hormones salicylic acid (SA), jasmonic acid, abscisic acid, and ethylene (ET) were significantly upregulated in dark-triggered senescing leaves of Ran1G22Vox, indicating that these hormones are actively involved in Ran-GTP/-GDP-dependent, dark-triggered leaf senescence. Bioinformatic analysis of the promoter regions of DEGs identified diverse consensus motifs, including the bZIP motif, a common binding site for TGACG-BINDING FACTOR (TGA) transcription factors. Interestingly, TGA2 and its interactor, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), which are two positive transcriptional regulators of SA signaling, differed in their extent of accumulation in the nucleus versus cytoplasm of Ran1T27Nox and Ran1G22Vox plants. Moreover, SA-induced, Ran-GTP-/-GDP-dependent functions of NPR1 included genome-wide global transcriptional reprogramming of genes involved in cell death, aging, and chloroplast organization. Furthermore, the expression of AtRan1-GTP in SA signaling-defective npr1 and SA biosynthesis-deficient SA-induction deficient2 genetic backgrounds abolished the effects of AtRan1-GTP, thus retarding age-promoted leaf senescence. However, ET-induced leaf senescence was not mediated by Ran machinery-dependent nuclear shuttling of ETHYLENE-INSENSITIVE3 and ETHYLENE-INSENSITIVE3-LIKE1 proteins. We conclude that Ran-GTP/-GDP-dependent nuclear accumulation of NPR1 and TGA2 represents another regulatory node for SA-induced leaf senescence.
Collapse
Affiliation(s)
| | | | - Yoon Kim
- Division of Biological Science and Technology, Yonsei University, Yonseidae 1 Gil, Wonju-Si 220-710, South Korea
| | | |
Collapse
|
35
|
The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022; 23:ijms23084272. [PMID: 35457090 PMCID: PMC9032328 DOI: 10.3390/ijms23084272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.
Collapse
|
36
|
ERF Transcription Factor OsBIERF3 Positively Contributes to Immunity against Fungal and Bacterial Diseases but Negatively Regulates Cold Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23020606. [PMID: 35054806 PMCID: PMC8775505 DOI: 10.3390/ijms23020606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
We previously showed that overexpression of the rice ERF transcription factor gene OsBIERF3 in tobacco increased resistance against different pathogens. Here, we report the function of OsBIERF3 in rice immunity and abiotic stress tolerance. Expression of OsBIERF3 was induced by Xanthomonas oryzae pv. oryzae, hormones (e.g., salicylic acid, methyl jasmonate, 1-aminocyclopropane-1-carboxylic acid, and abscisic acid), and abiotic stress (e.g., drought, salt and cold stress). OsBIERF3 has transcriptional activation activity that depends on its C-terminal region. The OsBIERF3-overexpressing (OsBIERF3-OE) plants exhibited increased resistance while OsBIERF3-suppressed (OsBIERF3-Ri) plants displayed decreased resistance to Magnaporthe oryzae and X. oryzae pv. oryzae. A set of genes including those for PRs and MAPK kinases were up-regulated in OsBIERF3-OE plants. Cell wall biosynthetic enzyme genes were up-regulated in OsBIERF3-OE plants but down-regulated in OsBIERF3-Ri plants; accordingly, cell walls became thicker in OsBIERF3-OE plants but thinner in OsBIERF3-Ri plants than WT plants. The OsBIERF3-OE plants attenuated while OsBIERF3-Ri plants enhanced cold tolerance, accompanied by altered expression of cold-responsive genes and proline accumulation. Exogenous abscisic acid and 1-aminocyclopropane-1-carboxylic acid, a precursor of ethylene biosynthesis, restored the attenuated cold tolerance in OsBIERF3-OE plants while exogenous AgNO3, an inhibitor of ethylene action, significantly suppressed the enhanced cold tolerance in OsBIERF3-Ri plants. These data demonstrate that OsBIERF3 positively contributes to immunity against M. oryzae and X. oryzae pv. oryzae but negatively regulates cold stress tolerance in rice.
Collapse
|
37
|
Khan MSS, Islam F, Chen H, Chang M, Wang D, Liu F, Fu ZQ, Chen J. Transcriptional Coactivators: Driving Force of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:823937. [PMID: 35154230 PMCID: PMC8831314 DOI: 10.3389/fpls.2022.823937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) is a plant defense signal that mediates local and systemic immune responses against pathogen invasion. However, the underlying mechanism of SA-mediated defense is very complex due to the involvement of various positive and negative regulators to fine-tune its signaling in diverse pathosystems. Upon pathogen infections, elevated level of SA promotes massive transcriptional reprogramming in which Non-expresser of PR genes 1 (NPR1) acts as a central hub and transcriptional coactivator in defense responses. Recent findings show that Enhanced Disease Susceptibility 1 (EDS1) also functions as a transcriptional coactivator and stimulates the expression of PR1 in the presence of NPR1 and SA. Furthermore, EDS1 stabilizes NPR1 protein level, while NPR1 sustains EDS1 expression during pathogenic infection. The interaction of NPR1 and EDS1 coactivators initiates transcriptional reprogramming by recruiting cyclin-dependent kinase 8 in the Mediator complex to control immune responses. In this review, we highlight the recent breakthroughs that considerably advance our understanding on how transcriptional coactivators interact with their functional partners to trigger distinct pathways to facilitate immune responses, and how SA accumulation induces dynamic changes in NPR1 structure for transcriptional reprogramming. In addition, the functions of different Mediator subunits in SA-mediated plant immunity are also discussed in light of recent discoveries. Taken together, the available evidence suggests that transcriptional coactivators are essential and potent regulators of plant defense pathways and play crucial roles in coordinating plant immune responses during plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Ming Chang
- The Key Laboratory of Bio-interactions and Plant Health, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Fengquan Liu,
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Zheng Qing Fu,
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
- Jian Chen,
| |
Collapse
|
38
|
Bhar A, Chakraborty A, Roy A. Plant Responses to Biotic Stress: Old Memories Matter. PLANTS (BASEL, SWITZERLAND) 2021; 11:84. [PMID: 35009087 PMCID: PMC8747260 DOI: 10.3390/plants11010084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/20/2023]
Abstract
Plants are fascinating organisms present in most ecosystems and a model system for studying different facets of ecological interactions on Earth. In the environment, plants constantly encounter a multitude of abiotic and biotic stresses. The zero-avoidance phenomena make them more resilient to such environmental odds. Plants combat biotic stress or pathogenic ingression through a complex orchestration of intracellular signalling cascades. The plant-microbe interaction primarily relies on acquired immune response due to the absence of any specialised immunogenic cells for adaptive immune response. The generation of immune memory is mainly carried out by T cells as part of the humoral immune response in animals. Recently, prodigious advancements in our understanding of epigenetic regulations in plants invoke the "plant memory" theory afresh. Current innovations in cutting-edge genomic tools have revealed stress-associated genomic alterations and strengthened the idea of transgenerational memory in plants. In plants, stress signalling events are transferred as genomic imprints in successive generations, even without any stress. Such immunogenic priming of plants against biotic stresses is crucial for their eco-evolutionary success. However, there is limited literature capturing the current knowledge of the transgenerational memory of plants boosting biotic stress responses. In this context, the present review focuses on the general concept of memory in plants, recent advancements in this field and comprehensive implications in biotic stress tolerance with future perspectives.
Collapse
Affiliation(s)
- Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, West Bengal, India
| | - Amrita Chakraborty
- EVA4.0-Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Amit Roy
- EVA4.0-Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500 Prague, Czech Republic
| |
Collapse
|
39
|
Wang H, Bi Y, Gao Y, Yan Y, Yuan X, Xiong X, Wang J, Liang J, Li D, Song F. A Pathogen-Inducible Rice NAC Transcription Factor ONAC096 Contributes to Immunity Against Magnaprothe oryzae and Xanthomonas oryzae pv. oryzae by Direct Binding to the Promoters of OsRap2.6, OsWRKY62, and OsPAL1. FRONTIERS IN PLANT SCIENCE 2021; 12:802758. [PMID: 34956298 PMCID: PMC8702954 DOI: 10.3389/fpls.2021.802758] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The rice NAC transcriptional factor family harbors 151 members, and some of them play important roles in rice immunity. Here, we report the function and molecular mechanism of a pathogen-inducible NAC transcription factor, ONAC096, in rice immunity against Magnaprothe oryzae and Xanthomonas oryzae pv. oryzae. Expression of ONAC096 was induced by M. oryzae and by abscisic acid and methyl jasmonate. ONAC096 had the DNA binding ability to NAC recognition sequence and was found to be a nucleus-localized transcriptional activator whose activity depended on its C-terminal. CRISPR/Cas9-mediated knockout of ONAC096 attenuated rice immunity against M. oryzae and X. oryzae pv. oryzae as well as suppressed chitin- and flg22-induced reactive oxygen species burst and expression of PTI marker genes OsWRKY45 and OsPAL4; by contrast, overexpression of ONAC096 enhanced rice immunity against these two pathogens and strengthened chitin- or flg22-induced PTI. RNA-seq transcriptomic profiling and qRT-PCR analysis identified a small set of defense and signaling genes that are putatively regulated by ONAC096, and further biochemical analysis validated that ONAC096 could directly bind to the promoters of OsRap2.6, OsWRKY62, and OsPAL1, three known defense and signaling genes that regulate rice immunity. ONAC096 interacts with ONAC066, which is a positive regulator of rice immunity. These results demonstrate that ONAC096 positively contributes to rice immunity against M. oryzae and X. oryzae pv. oryzae through direct binding to the promoters of downstream target genes including OsRap2.6, OsWRKY62, and OsPAL1.
Collapse
Affiliation(s)
- Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xi Yuan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Xiaohui Xiong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiajing Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiayu Liang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Zhang Y, Song R, Yuan H, Li T, Wang L, Lu K, Guo J, Liu W. Overexpressing the N-terminus of CATALASE2 enhances plant jasmonic acid biosynthesis and resistance to necrotrophic pathogen Botrytis cinerea B05.10. MOLECULAR PLANT PATHOLOGY 2021; 22:1226-1238. [PMID: 34247446 PMCID: PMC8435237 DOI: 10.1111/mpp.13106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 05/31/2023]
Abstract
Salicylic acid (SA) acts antagonistically to jasmonic acid (JA) in plant immunity. We previously reported that CATALASE2 (CAT2) promotes JA-biosynthetic acyl-CoA oxidase (ACX) activity to enhance plant resistance to necrotrophic Botrytis cinerea, and SA represses JA biosynthesis through inhibiting CAT2 activity, while the underlying mechanism remains to be further elucidated. Here, we report that the truncated CAT2 N-terminus (CAT2-N) interacts with and promotes ACX2/3, and CAT2-N-overexpressing plants have increased JA accumulation and enhanced resistance to B. cinerea B05.10, but compromised antagonism of SA on JA. Catalase inhibitor treatment or mutating CAT2 active amino acids abolished CAT2 H2 O2 -decomposing activity but did not affect its promotion of ACX2/3 activity via interaction. CAT2-N, a truncated protein with no catalase activity, interacted with and promoted ACX2/3. Overexpressing CAT2-N in Arabidopsis plants resulted in increased ACX activity, higher JA accumulation, and stronger resistance to B. cinerea B05.10 infection. Additionally, SA dramatically repressed JA biosynthesis and resistance to B. cinerea in the wild type but not in the CAT2-N-overexpressing plants. Together, our study reveals that CAT2-N can be utilized as an accelerator for JA biosynthesis during plant resistance to B. cinerea B05.10, and this truncated protein partly relieves SA repression of JA biosynthesis in plant defence responses.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Ru‐Feng Song
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Hong‐Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Ting‐Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound ScreeningJiangsu Ocean UniversityLianyungangChina
| | - Lin‐Feng Wang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Kai‐Kai Lu
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Jia‐Xing Guo
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Wen‐Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
41
|
Yuan X, Wang H, Bi Y, Yan Y, Gao Y, Xiong X, Wang J, Li D, Song F. ONAC066, A Stress-Responsive NAC Transcription Activator, Positively Contributes to Rice Immunity Against Magnaprothe oryzae Through Modulating Expression of OsWRKY62 and Three Cytochrome P450 Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:749186. [PMID: 34567053 PMCID: PMC8458891 DOI: 10.3389/fpls.2021.749186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
NAC transcriptional factors constitute a large family in rice and some of them have been demonstrated to play crucial roles in rice immunity. The present study investigated the function and mechanism of ONAC066 in rice immunity. ONAC066 shows transcription activator activity that depends on its C-terminal region in rice cells. ONAC066-OE plants exhibited enhanced resistance while ONAC066-Ri and onac066-1 plants showed attenuated resistance to Magnaporthe oryzae. A total of 81 genes were found to be up-regulated in ONAC066-OE plants, and 26 of them were predicted to be induced by M. oryzae. Four OsWRKY genes, including OsWRKY45 and OsWRKY62, were up-regulated in ONAC066-OE plants but down-regulated in ONAC066-Ri plants. ONAC066 bound to NAC core-binding site in OsWRKY62 promoter and activated OsWRKY62 expression, indicating that OsWRKY62 is a ONAC066 target. A set of cytochrome P450 genes were found to be co-expressed with ONAC066 and 5 of them were up-regulated in ONAC066-OE plants but down-regulated in ONAC066-Ri plants. ONAC066 bound to promoters of cytochrome P450 genes LOC_Os02g30110, LOC_Os06g37300, and LOC_Os02g36150 and activated their transcription, indicating that these three cytochrome P450 genes are ONAC066 targets. These results suggest that ONAC066, as a transcription activator, positively contributes to rice immunity through modulating the expression of OsWRKY62 and a set of cytochrome P450 genes to activate defense response.
Collapse
Affiliation(s)
- Xi Yuan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaohui Xiong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiajing Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Zhang JR, Liu SS, Pan LL. Enhanced Age-Related Resistance to Tomato Yellow Leaf Curl Virus in Tomato Is Associated With Higher Basal Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:685382. [PMID: 34394140 PMCID: PMC8358113 DOI: 10.3389/fpls.2021.685382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most notorious plant pathogens affecting the production of tomato worldwide. While the occurrence of age-related resistance (ARR) against TYLCV has been reported, the factors impacting its development remain unknown. We conducted a series of experiments with three tomato cultivars that vary in basal resistance to TYLCV to explore factors involved in the development of ARR. Our data indicate that ARR is more pronounced in tomato cultivars with higher basal resistance. Additionally, increased plant biomass in older plants does not contribute to ARR. Virus source plants with a younger age at initial inoculation facilitates virus acquisition by whiteflies. Finally, an analysis on plant hormones suggests that salicylic acid (SA) may play a major role in the development of ARR in tomato against TYLCV. These findings provide new insights into the developmental resistance in tomato against TYLCV as well as clues for the deployment of ARR in the management of diseases caused by TYLCV.
Collapse
|
43
|
Xiao S, Hu Q, Zhang X, Si H, Liu S, Chen L, Chen K, Berne S, Yuan D, Lindsey K, Zhang X, Zhu L. Orchestration of plant development and defense by indirect crosstalk of salicylic acid and brassinosteorid signaling via transcription factor GhTINY2. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4721-4743. [PMID: 33928361 DOI: 10.1093/jxb/erab186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) and brassinosteroids (BRs) are well known to regulate diverse processes of plant development and stress responses, but the mechanisms by which these phytohormones mediate the growth and defense trade-off are largely unclear. In addition, little is known about the roles of DEHYDRATION RESPONSIVE ELEMENT BINDING transcription factors, especially in biotic stress and plant growth. Here, we identified a cotton (Gossypium hirsutum) APETALA2/ETHYLENE RESPONSIVE FACTOR gene GhTINY2 that is strongly induced by Verticillium dahliae. Overexpression of GhTINY2 in cotton and Arabidopsis enhanced tolerance to V. dahliae, while knockdown of expression increased the susceptibility of cotton to the pathogen. GhTINY2 was found to promote SA accumulation and SA signaling transduction by directly activating expression of WRKY51. Moreover, GhTINY2-overexpressing cotton and Arabidopsis showed retardation of growth, increased sensitivity to inhibitors of BR biosynthesis, down-regulation of several BR-induced genes, and up-regulation of BR-repressed genes, while GhTINY2-RNAi cotton showed the opposite effects. We further determined that GhTINY2 negatively regulates BR signaling by interacting with BRASSINAZOLE-RESISTANT 1 (BZR1) and restraining its transcriptional activation of the expression of INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19). These findings indicate that GhTINY2 fine-tunes the trade-off between immunity and growth via indirect crosstalk between WRKY51-mediated SA biosynthesis and BZR1-IAA19-regulated BR signaling.
Collapse
Affiliation(s)
- Shenghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430000, Hubei, China
| | - Xiaojun Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huan Si
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Sabina Berne
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
44
|
Chen J, Zhang J, Kong M, Freeman A, Chen H, Liu F. More stories to tell: NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1, a salicylic acid receptor. PLANT, CELL & ENVIRONMENT 2021; 44:1716-1727. [PMID: 33495996 DOI: 10.1111/pce.14003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) plays pivotal role in plant defense against biotrophic and hemibiotrophic pathogens. Tremendous progress has been made in the field of SA biosynthesis and SA signaling pathways over the past three decades. Among the key immune players in SA signaling pathway, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) functions as a master regulator of SA-mediated plant defense. The function of NPR1 as an SA receptor has been controversial; however, after years of arguments among several laboratories, NPR1 has finally been proven as one of the SA receptors. The function of NPR1 is strictly regulated via post-translational modifications and transcriptional regulation that were recently found. More recent advances in NPR1 biology, including novel functions of NPR1 and the structure of SA receptor proteins, have brought this field forward immensely. Therefore, based on these recent discoveries, this review acts to provide a full picture of how NPR1 functions in plant immunity and how NPR1 gene and NPR1 protein are regulated at multiple levels. Finally, we also discuss potential challenges in future studies of SA signaling pathway.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Jingyi Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Mengmeng Kong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Lab of Biocontrol & Bacterial Molecular Biology, Nanjing, China
| | - Andrew Freeman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
45
|
Park YS, Ryu CM. Understanding Plant Social Networking System: Avoiding Deleterious Microbiota but Calling Beneficials. Int J Mol Sci 2021; 22:ijms22073319. [PMID: 33805032 PMCID: PMC8037233 DOI: 10.3390/ijms22073319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 01/24/2023] Open
Abstract
Plant association with microorganisms elicits dramatic effects on the local phytobiome and often causes systemic and transgenerational modulation on plant immunity against insect pests and microbial pathogens. Previously, we introduced the concept of the plant social networking system (pSNS) to highlight the active involvement of plants in the recruitment of potentially beneficial microbiota upon exposure to insects and pathogens. Microbial association stimulates the physiological responses of plants and induces the development of their immune mechanisms while interacting with multiple enemies. Thus, beneficial microbes serve as important mediators of interactions among multiple members of the multitrophic, microscopic and macroscopic communities. In this review, we classify the steps of pSNS such as elicitation, signaling, secreting root exudates, and plant protection; summarize, with evidence, how plants and beneficial microbes communicate with each other; and also discuss how the molecular mechanisms underlying this communication are induced in plants exposed to natural enemies. Collectively, the pSNS modulates robustness of plant physiology and immunity and promotes survival potential by helping plants to overcome the environmental and biological challenges.
Collapse
Affiliation(s)
- Yong-Soon Park
- Biotechnology Research Institute, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infection Disease Research Center, KRIBB, Daejeon 34141, Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST) KRIBB School, Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
46
|
Genome-wide transcriptome reveals mechanisms underlying Rlm1-mediated blackleg resistance on canola. Sci Rep 2021; 11:4407. [PMID: 33623070 PMCID: PMC7902848 DOI: 10.1038/s41598-021-83267-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/01/2021] [Indexed: 11/08/2022] Open
Abstract
Genetic resistance to blackleg (Leptosphaeria maculans, Lm) of canola (Brassica napus, Bn) has been extensively studied, but the mechanisms underlying the host-pathogen interaction are still not well understood. Here, a comparative transcriptome analysis was performed on a resistant doubled haploid Bn line carrying the resistance gene Rlm1 following inoculation with a virulent (avrLm1) or avirulent (AvrLm1) Lm isolate on cotyledons. A total of 6999 and 3015 differentially expressed genes (DEGs) were identified, respectively, in inoculated local tissues with compatible (susceptible) and incompatible (resistant) interactions. Functional enrichment analysis found several biological processes, including protein targeting to membrane, ribosome and negative regulation of programmed cell death, were over-represented exclusively among up-regulated DEGs in the resistant reaction, whereas significant enrichment of salicylic acid (SA) and jasmonic acid (JA) pathways observed for down-regulated DEGs occurred only in the susceptible reaction. A heat-map analysis showed that both biosynthesis and signaling of SA and JA were induced more significantly in the resistant reaction, implying that a threshold level of SA and JA signaling is required for the activation of Rlm1-mediated resistance. Co-expression network analysis revealed close correlation of a gene module with the resistance, involving DEGs regulating pathogen-associated molecular pattern recognition, JA signaling and transcriptional reprogramming. Substantially fewer DEGs were identified in mock-inoculated (control) cotyledons, relative to those in inoculated local tissues, including those involved in SA pathways potentially contributing to systemic acquired resistance (SAR). Pre-inoculation of cotyledon with either an avirulent or virulent Lm isolate, however, failed to induce SAR on remote tissues of same plant despite elevated SA and PR1 protein. This study provides insights into the molecular mechanism of Rlm1-mediated resistance to blackleg.
Collapse
|
47
|
Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. Int J Mol Sci 2021; 22:ijms22042013. [PMID: 33670556 PMCID: PMC7922328 DOI: 10.3390/ijms22042013] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Sessile plants are exposed throughout their existence to environmental abiotic and biotic stress factors, such as cold, heat, salinity, drought, dehydration, submergence, waterlogging, and pathogen infection. Chromatin organization affects genome stability, and its dynamics are crucial in plant stress responses. Chromatin dynamics are epigenetically regulated and are required for stress-induced transcriptional regulation or reprogramming. Epigenetic regulators facilitate the phenotypic plasticity of development and the survival and reproduction of plants in unfavorable environments, and they are highly diversified, including histone and DNA modifiers, histone variants, chromatin remodelers, and regulatory non-coding RNAs. They contribute to chromatin modifications, remodeling and dynamics, and constitute a multilayered and multifaceted circuitry for sophisticated and robust epigenetic regulation of plant stress responses. However, this complicated epigenetic regulatory circuitry creates challenges for elucidating the common or differential roles of chromatin modifications for transcriptional regulation or reprogramming in different plant stress responses. Particularly, interacting chromatin modifications and heritable stress memories are difficult to identify in the aspect of chromatin-based epigenetic regulation of transcriptional reprogramming and memory. Therefore, this review discusses the recent updates from the three perspectives—stress specificity or dependence of transcriptional reprogramming, the interplay of chromatin modifications, and transcriptional stress memory in plants. This helps solidify our knowledge on chromatin-based transcriptional reprogramming for plant stress response and memory.
Collapse
|
48
|
Parry G, Pradillo M, Probst AV, Tatout C. Untangling chromatin interactions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5115-5118. [PMID: 32803270 DOI: 10.1093/jxb/eraa334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Geraint Parry
- GARNet, School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Aline V Probst
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Christophe Tatout
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| |
Collapse
|