1
|
Supriya L, Dake D, Woch N, Gupta P, Gopinath K, Padmaja G, Muthamilarasan M. Sugar sensors in plants: Orchestrators of growth, stress tolerance, and hormonal crosstalk. JOURNAL OF PLANT PHYSIOLOGY 2025; 307:154471. [PMID: 40048883 DOI: 10.1016/j.jplph.2025.154471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Sugars, vital metabolites for cellular health, play a central role in regulating diverse intracellular pathways that control plant growth and development. They also enhance stress responses, enabling plants to endure adverse conditions. A few intracellular molecules involved in sensing the intracellular sugar content and concomitantly facilitating appropriate response (growth or survivability) are known as sugar sensors. Among the numerous sugar sensors identified in plants, this review focuses on four extensively studied sugar sensors, namely hexokinase (HXK), Sucrose non-fermenting 1-related kinase-1 (Snf1-related kinase-1 or SnRK1), Target of rapamycin (TOR), and trehalose 6-phosphate (T6P). This review explores the multifaceted functions of these sugar sensors, highlighting their critical role in balancing energy metabolism and coordinating physiological processes under optimal and adverse conditions. By analyzing their involvement in plant growth, development, and stress response, this review underscores the significance of these sensors throughout the plant life cycle. Furthermore, this review highlights the intricate interplay among these sugar sensors, demonstrating how their activities are finely tuned and interdependent. We also examined the crosstalk between these sugar sensors and phytohormones, fine-tuning plant responses to environmental stimuli. Altogether, this review elucidates the significance of sugar sensors as integrators of metabolic and hormonal signals, providing a comprehensive understanding of their pivotal roles in plant biology. This knowledge paves the way for potential agricultural innovations to enhance crop productivity and resilience in the face of climate change.
Collapse
Affiliation(s)
- Laha Supriya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Dake
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Nyanthanglo Woch
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Prodosh Gupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Kodetham Gopinath
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Gudipalli Padmaja
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
2
|
Mohammed SB, Ongom PO, Belko N, Umar ML, Muñoz-Amatriaín M, Huynh BL, Togola A, Ishiyaku MF, Boukar O. Quantitative Trait Loci for Phenology, Yield, and Phosphorus Use Efficiency in Cowpea. Genes (Basel) 2025; 16:64. [PMID: 39858611 PMCID: PMC11764512 DOI: 10.3390/genes16010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cowpea is an important legume crop in sub-Saharan Africa (SSA) and beyond. However, access to phosphorus (P), a critical element for plant growth and development, is a significant constraint in SSA. Thus, it is essential to have high P-use efficiency varieties to achieve increased yields in environments where little-to- no phosphate fertilizers are applied. METHODS In this study, crop phenology, yield, and grain P efficiency traits were assessed in two recombinant inbred line (RIL) populations across ten environments under high- and low-P soil conditions to identify traits' response to different soil P levels and associated quantitative trait loci (QTLs). Single-environment (SEA) and multi-environment (MEA) QTL analyses were conducted for days to flowering (DTF), days to maturity (DTM), biomass yield (BYLD), grain yield (GYLD), grain P-use efficiency (gPUE) and grain P-uptake efficiency (gPUpE). RESULTS Phenotypic data indicated significant variation among the RILs, and inadequate soil P had a negative impact on flowering, maturity, and yield traits. A total of 40 QTLs were identified by SEA, with most explaining greater than 10% of the phenotypic variance, indicating that many major-effect QTLs contributed to the genetic component of these traits. Similarly, MEA identified 23 QTLs associated with DTF, DTM, GYLD, and gPUpE under high- and low-P environments. Thirty percent (12/40) of the QTLs identified by SEA were also found by MEA, and some of those were identified in more than one P environment, highlighting their potential in breeding programs targeting PUE. QTLs on chromosomes Vu03 and Vu08 exhibited consistent effects under both high- and low-P conditions. In addition, candidate genes underlying the QTL regions were identified. CONCLUSIONS This study lays the foundation for molecular breeding for PUE and contributes to understanding the genetic basis of cowpea response in different soil P conditions. Some of the identified genomic loci, many being novel QTLs, could be deployed in marker-aided selection and fine mapping of candidate genes.
Collapse
Affiliation(s)
- Saba B. Mohammed
- International Institute of Tropical Agriculture, PMB 3112, Kano 700223, Nigeria; (S.B.M.); (N.B.); (A.T.); (O.B.)
- Department of Plant Science, Ahmadu Bello University, PMB 1044, Zaria 810211, Nigeria; (M.L.U.); (M.F.I.)
| | - Patrick Obia Ongom
- International Institute of Tropical Agriculture, PMB 3112, Kano 700223, Nigeria; (S.B.M.); (N.B.); (A.T.); (O.B.)
| | - Nouhoun Belko
- International Institute of Tropical Agriculture, PMB 3112, Kano 700223, Nigeria; (S.B.M.); (N.B.); (A.T.); (O.B.)
- Africa Rice Center (AfricaRice), 01 B.P. 2551, Bouake 01, Côte d’Ivoire
| | - Muhammad L. Umar
- Department of Plant Science, Ahmadu Bello University, PMB 1044, Zaria 810211, Nigeria; (M.L.U.); (M.F.I.)
| | - María Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California, Riverside, CA 94607, USA;
- Departamento de Biología Molecular (Área Genética), Universidad de León, 24071 León, Spain
| | - Bao-Lam Huynh
- Department of Nematology, University of California, 900 University Avenue, Riverside, CA 92521, USA;
| | - Abou Togola
- International Institute of Tropical Agriculture, PMB 3112, Kano 700223, Nigeria; (S.B.M.); (N.B.); (A.T.); (O.B.)
- International Maize and Wheat Improvement Center, World Agroforestry Centre Campus, UN Avenue Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| | - Muhammad F. Ishiyaku
- Department of Plant Science, Ahmadu Bello University, PMB 1044, Zaria 810211, Nigeria; (M.L.U.); (M.F.I.)
| | - Ousmane Boukar
- International Institute of Tropical Agriculture, PMB 3112, Kano 700223, Nigeria; (S.B.M.); (N.B.); (A.T.); (O.B.)
| |
Collapse
|
3
|
Weselake RJ, Fell DA, Wang X, Scofield S, Chen G, Harwood JL. Increasing oil content in Brassica oilseed species. Prog Lipid Res 2024; 96:101306. [PMID: 39566857 DOI: 10.1016/j.plipres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total vegetable oils. Three species (Brassica rapa, B. juncea, B. napus) dominate with B. napus being the most common in Canada, China and Europe. Originally, B. napus was a crop producing seed with high erucic acid content, which still persists today, to some extent, and is used for industrial purposes. In contrast, cultivars which produce seed used for food and feed are low erucic acid cultivars which also have reduced glucosinolate content. Because of the limit to agricultural land, recent efforts have been made to increase productivity of oil crops, including Brassica oilseed species. In this article, we have detailed research in this regard. We have covered modern genetic, genomic and metabolic control analysis approaches to identifying potential targets for the manipulation of seed oil content. Details of work on the use of quantitative trait loci, genome-wide association and comparative functional genomics to highlight factors influencing seed oil accumulation are given and functional proteins which can affect this process are discussed. In summary, a wide variety of inputs are proving useful for the improvement of Brassica oilseed species, as major sources of global vegetable oil.
Collapse
Affiliation(s)
- Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - David A Fell
- Department of Biological and Molecular Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xiaoyu Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
4
|
Persyn F, Smagghe W, Eeckhout D, Mertens T, Smorscek T, De Winne N, Persiau G, Van De Slijke E, Crepin N, Gadeyne A, Van Leene J, De Jaeger G. A Nitrogen-specific Interactome Analysis Sheds Light on the Role of the SnRK1 and TOR Kinases in Plant Nitrogen Signaling. Mol Cell Proteomics 2024; 23:100842. [PMID: 39307424 PMCID: PMC11526089 DOI: 10.1016/j.mcpro.2024.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 10/18/2024] Open
Abstract
Nitrogen (N) is of utmost importance for plant growth and development. Multiple studies have shown that N signaling is tightly coupled with carbon (C) levels, but the interplay between C/N metabolism and growth remains largely an enigma. Nonetheless, the protein kinases Sucrose Non-fermenting 1 (SNF1)-Related Kinase 1 (SnRK1) and Target Of Rapamycin (TOR), two ancient central metabolic regulators, are emerging as key integrators that link C/N status with growth. Despite their pivotal importance, the exact mechanisms behind the sensing of N status and its integration with C availability to drive metabolic decisions are largely unknown. Especially for SnRK1, it is not clear how this kinase responds to altered N levels. Therefore, we first monitored N-dependent SnRK1 kinase activity with an in vivo Separation of Phase-based Activity Reporter of Kinase (SPARK) sensor, revealing a contrasting N-dependency in Arabidopsis thaliana (Arabidopsis) shoot and root tissues. Next, using affinity purification (AP) and proximity labeling (PL) coupled to mass spectrometry (MS) experiments, we constructed a comprehensive SnRK1 and TOR interactome in Arabidopsis cell cultures during N-starved and N-repleted growth conditions. To broaden our understanding of the N-specificity of the TOR/SnRK1 signaling events, the resulting network was compared to corresponding C-related networks, identifying a large number of novel, N-specific interactors. Moreover, through integration of N-dependent transcriptome and phosphoproteome data, we were able to pinpoint additional N-dependent network components, highlighting for instance SnRK1 regulatory proteins that might function at the crosstalk of C/N signaling. Finally, confirmation of known and identification of novel SnRK1 interactors, such as Inositol-Requiring 1 (IRE1A) and the RAB GTPase RAB18, indicate that SnRK1, present at the ER, is involved in N signaling and autophagy induction.
Collapse
Affiliation(s)
- Freya Persyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wouter Smagghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Toon Mertens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Smorscek
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nathalie Crepin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Astrid Gadeyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
5
|
Yan Y, Wang P, He J, Shi H. KIN10-mediated HB16 protein phosphorylation and self-association improve cassava disease resistance by transcriptional activation of lignin biosynthesis genes. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2709-2723. [PMID: 38768314 PMCID: PMC11536500 DOI: 10.1111/pbi.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Cassava bacterial blight significantly affects cassava yield worldwide, while major cassava cultivars are susceptible to this disease. Therefore, it is crucial to identify cassava disease resistance gene networks and defence molecules for the genetic improvement of cassava cultivars. In this study, we found that MeHB16 transcription factor as a differentially expressed gene in cassava cultivars with contrasting disease resistance, positively modulated disease resistance by modulating defence molecule lignin accumulation. Further investigation showed that MeHB16 physically interacted with itself via the leucine-Zippe domain (L-Zip), which was necessary for the transcriptional activation of downstream lignin biosynthesis genes. In addition, protein kinase MeKIN10 directly interacted with MeHB16 to promote its phosphorylation at Ser6, which in turn enhanced MeHB16 self-association and downstream lignin biosynthesis. In summary, this study revealed the molecular network of MeKIN10-mediated MeHB16 protein phosphorylation improved cassava bacterial blight resistance by fine-tuning lignin biosynthesis and provides candidate genes and the defence molecule for improving cassava disease resistance.
Collapse
Affiliation(s)
- Yu Yan
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversityHainan provinceChina
| | - Peng Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversityHainan provinceChina
| | - Jiaoyan He
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversityHainan provinceChina
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversityHainan provinceChina
| |
Collapse
|
6
|
Kaur N, Halford NG. How to switch on a master switch. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2773-2775. [PMID: 38764322 PMCID: PMC11103107 DOI: 10.1093/jxb/erae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
This article comments on:
Hu Y, Lin Y, Bai J, Xu X, Wang Z, Ding C, Ding Y, Chen L. 2024. AMPK activator 991 specifically activates SnRK1 and thereby affects seed germination in rice. Journal of Experimental Botany 75, 2917–2932.
Collapse
Affiliation(s)
- Navneet Kaur
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | |
Collapse
|
7
|
Hu Y, Lin Y, Bai J, Xu X, Wang Z, Ding C, Ding Y, Chen L. AMPK activator 991 specifically activates SnRK1 and thereby affects seed germination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2917-2932. [PMID: 38465908 DOI: 10.1093/jxb/erae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) and AMP-activated protein kinase (AMPK) are highly conserved. Compound 991 is an AMPK activator in mammals. However, whether 991 also activates SnRK1 remains unknown. The addition of 991 significantly increased SnRK1 activity in desalted extracts from germinating rice seeds in vitro. To determine whether 991 has biological activity, rice seeds were treated with different concentrations of 991. Germination was promoted at low concentrations but inhibited at high concentrations. The effects of 991 on germination were similar to those of OsSnRK1a overexpression. To explore whether 991 affects germination by specifically affecting SnRK1, germination of an snrk1a mutant and the wild type under 1 μM 991 treatment was compared. The snrk1a mutant was insensitive to 991. Phosphoproteomic analysis showed that the differential phosphopeptides induced by 991 and OsSnRK1a overexpression largely overlapped. Furthermore, SnRK1 might regulate rice germination in a dosage-dependent manner by regulating the phosphorylation of three phosphosites, namely S285-PIP2;4, S1013-SOS1, and S110-ABI5. These results indicate that 991 is a specific SnRK1 activator in rice. The promotion and inhibition of germination by 991 also occurred in wheat seeds. Thus, 991 is useful for exploring SnRK1 function and the chemical regulation of growth and development in crops.
Collapse
Affiliation(s)
- Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Jiaqi Bai
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Xuemei Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Ziteng Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| | - Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
| |
Collapse
|
8
|
Yang YY, An XH, Rui L, Liu GD, Tian Y, You CX, Wang XF. MdSnRK1.1 interacts with MdGLK1 to regulate abscisic acid-mediated chlorophyll accumulation in apple. HORTICULTURE RESEARCH 2024; 11:uhad288. [PMID: 38371633 PMCID: PMC10873579 DOI: 10.1093/hr/uhad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/17/2023] [Indexed: 02/20/2024]
Abstract
Abscisic acid (ABA), as a plant hormone, plays a positive role in leaf chlorosis; however, the underlying molecular mechanism is less known. Our findings provide ABA treatment reduced the chlorophyll accumulation in apple, and Malus × domestica Sucrose Non-fermenting 1-Related Protein Kinase 1.1 (MdSnRK1.1) participates in the process. MdSnRK1.1 interacts with MdGLK1, a GOLDEN2-like transcription factor that orchestrates development of the chloroplast. Furthermore, MdSnRK1.1 affects MdGLK1 protein stability through phosphorylation. We found that Ser468 of MdGLK1 is target site of MdSnRK1.1 phosphorylation. MdSnRK1.1-mediated phosphorylation was critical for MdGLK1 binding to the target gene MdHEMA1 promoters. Collectively, our results demonstrate that ABA activates MdSnRK1.1 to degrade MdGLK1 and inhibit the accumulation of chlorophyll. These findings extend our understanding on how MdSnRK1.1 balances normal growth and hormone response.
Collapse
Affiliation(s)
- Yu-Ying Yang
- State Key Laboratory of Crop Biology, Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
- Key Laboratory of Chinese Herbal Medicine Biology and Cultivation, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicine, Hubei Academy of Agricultral Science, Enshi 445000, China
| | - Xiu-Hong An
- National Engineering Research Center for Agriculture in Northern Mountainous Areas, Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Lin Rui
- State Key Laboratory of Crop Biology, Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Guo-Dong Liu
- State Key Laboratory of Crop Biology, Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yi Tian
- National Engineering Research Center for Agriculture in Northern Mountainous Areas, Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| |
Collapse
|
9
|
Santos-Merino M, Sakkos JK, Singh AK, Ducat DC. Coordination of carbon partitioning and photosynthesis by a two-component signaling network in Synechococcus elongatus PCC 7942. Metab Eng 2024; 81:38-52. [PMID: 37925065 DOI: 10.1016/j.ymben.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Photosynthetic organisms need to balance the rate of photosynthesis with the utilization of photosynthetic products by downstream reactions. While such "source/sink" pathways are well-interrogated in plants, analogous regulatory systems are unknown or poorly studied in single-celled algal and cyanobacterial species. Towards the identification of energy/sugar sensors in cyanobacteria, we utilized an engineered strain of Synechococcus elongatus PCC 7942 that allows experimental manipulation of carbon status. We conducted a screening of all two-component systems (TCS) and serine/threonine kinases (STKs) encoded in S. elongatus PCC 7942 by analyzing phenotypes consistent with sucrose-induced relaxation of sink inhibition. We narrowed the candidate sensor proteins by analyzing changes observed after sucrose feeding. We show that a clustered TCS network containing RpaA, CikB, ManS and NblS are involved in the regulation of genes related to photosynthesis, pigment synthesis, and Rubisco concentration in response to sucrose. Altogether, these results highlight a regulatory TCS group that may play under-appreciated functions in carbon partitioning and energy balancing in cyanobacteria.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States
| | - Jonathan K Sakkos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States
| | - Amit K Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States
| | - Daniel C Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
10
|
Zhang L, Zhang N, Wang S, Tian H, Liu L, Pei D, Yu X, Zhao L, Chen F. A TaSnRK1α Modulates TaPAP6L-Mediated Wheat Cold Tolerance through Regulating Endogenous Jasmonic Acid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303478. [PMID: 37740426 PMCID: PMC10625090 DOI: 10.1002/advs.202303478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Indexed: 09/24/2023]
Abstract
Here, a sucrose non-fermenting-1-related protein kinase alpha subunit (TaSnRK1α-1A) is identified as associated with cold stress through integration of genome-wide association study, bulked segregant RNA sequencing, and virus-induced gene silencing. It is confirmed that TaSnRK1α positively regulates cold tolerance by transgenes and ethyl methanesulfonate (EMS) mutants. A plastid-lipid-associated protein 6, chloroplastic-like (TaPAP6L-2B) strongly interacting with TaSnRK1α-1A is screened. Molecular chaperone DJ-1 family protein (TaDJ-1-7B) possibly bridged the interaction of TaSnRK1α-1A and TaPAP6L-2B. It is further revealed that TaSnRK1α-1A phosphorylated TaPAP6L-2B. Subsequently, a superior haplotype TaPAP6L-2B30S /38S is identified and confirmed that both R30S and G38S are important phosphorylation sites that influence TaPAP6L-2B in cold tolerance. Overexpression (OE) and EMS-mutant lines verified TaPAP6L positively modulating cold tolerance. Furthermore, transcriptome sequencing revealed that TaPAP6L-2B-OE lines significantly increased jasmonic acid (JA) content, possibly by improving precursor α-linolenic acid contributing to JA synthesis and by repressing JAR1 degrading JA. Exogenous JA significantly improved the cold tolerance of wheat plants. In summary, TaSnRK1α profoundly regulated cold stress, possibly through phosphorylating TaPAP6L to increase endogenous JA content of wheat plants.
Collapse
Affiliation(s)
- Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Sisheng Wang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Hongyan Tian
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Lu Liu
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Dan Pei
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Xiaodong Yu
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| |
Collapse
|
11
|
Yue Q, Yang X, Cheng P, He J, Shen W, Li Y, Ma F, Niu C, Guan Q. Heterologous Overexpression of Apple MdKING1 Promotes Fruit Ripening in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2848. [PMID: 37571003 PMCID: PMC10421076 DOI: 10.3390/plants12152848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Fruit ripening is governed by a complex regulatory network, and ethylene plays an important role in this process. MdKING1 is a γ subunit of SNF1-related protein kinases (SnRKs), but the function was unclear. Here, we characterized the role of MdKING1 during fruit ripening, which can promote fruit ripening through the ethylene pathway. Our findings reveal that MdKING1 has higher expression in early-ripening cultivars than late-ripening during the early stage of apple fruit development, and its transcription level significantly increased during apple fruit ripening. Overexpression of MdKING1 (MdKING1 OE) in tomatoes could promote early ripening of fruits, with the increase in ethylene content and the loss of fruit firmness. Ethylene inhibitor treatment could delay the fruit ripening of both MdKING1 OE and WT fruits. However, MdKING1 OE fruits turned fruit ripe faster, with an increase in carotenoid content compared with WT. In addition, the expression of genes involved in ethylene biosynthesis (SlACO1, SlACS2, and SlACS4), carotenoid biosynthesis (SlPSY1 and SlGgpps2a), and fruit firmness regulation (SlPG2a, SlPL, and SlCEL2) was also increased in the fruits of MdKING1 OE plants. In conclusion, our results suggest that MdKING1 plays a key role in promoting tomato fruit ripening, thus providing a theoretical basis for apple fruit quality improvement by genetic engineering in the future.
Collapse
Affiliation(s)
- Qianyu Yue
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Xinyue Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Pengda Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Yixuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Chundong Niu
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Qingmei Guan
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| |
Collapse
|
12
|
Lu J, Zheng D, Li M, Fu M, Zhang X, Wan X, Zhang S, Chen Q. A hierarchical model of ABA-mediated signal transduction in tea plant revealed by systematic genome mining analysis and interaction validation. TREE PHYSIOLOGY 2023; 43:867-878. [PMID: 36694977 DOI: 10.1093/treephys/tpad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 05/13/2023]
Abstract
As a critical signaling molecule, ABA plays an important role in plant growth, development and stresses response. However, tea plant [Camellia sinensis (L.)], an important economical perennial woody plant, has not been systematically reported in response to ABA signal transduction in vivo. In this study, we mined and identified the gene structure of CsPYL/CsPP2C-A/CsSnRK gene families in the ABA signal transduction pathway through the genome-wide analysis of tea plants. Spatiotemporal expression and stress response (drought, salt, chilling) expression patterns were characterized. The results showed that most members of CsPYLs were conserved, and the gene structures of members of A-type CsPP2Cs were highly similar, whereas the gene structure of CsSnRK2s was highly variable. The transcription levels of different family members were differentially expressed with plant growth and development, and their response to stress signal patterns was highly correlated. The expression patterns of CsPYL/CsPP2C-A/CsSnRK2 gene family members in different tissues of tea plant cuttings after exogenous ABA treatment were detected by qRT-PCR, and the hierarchical model of ABA signaling was constructed by correlation analysis to preliminarily obtain three potential ABA-dependent signaling transduction pathways. Subsequently, the protein interaction of the CsPYL4/7-CsPP2C-A2-CsSnRK2.8 signaling pathway was verified by yeast two-hybrid and surface plasmon resonance experiments, indicating that there is specific selectivity in the ABA signaling pathway. Our results provided novel insights into the ABA-dependent signal transduction model in tea plant and information for future functional characterizations of stress tolerance genes in tea plant.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Dongqiao Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mengshuang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036 , China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Shihua Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
13
|
Son S, Im JH, Ko J, Han K. SNF1-related protein kinase 1 represses Arabidopsis growth through post-translational modification of E2Fa in response to energy stress. THE NEW PHYTOLOGIST 2023; 237:823-839. [PMID: 36478538 PMCID: PMC10107498 DOI: 10.1111/nph.18597] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/08/2022] [Indexed: 06/01/2023]
Abstract
Cellular sugar starvation and/or energy deprivation serves as an important signaling cue for the live cells to trigger the necessary stress adaptation response. When exposed to cellular energy stress (ES) conditions, the plants reconfigure metabolic pathways and rebalance energy status while restricting vegetative organ growth. Despite the vital importance of this ES-induced growth restriction, the regulatory mechanism underlying the response remains largely elusive in plants. Using plant cell- and whole plant-based functional analyses coupled with extended genetic validation, we show that cellular ES-activated SNF1-related protein kinase 1 (SnRK1.1) directly interacts with and phosphorylates E2Fa transcription factor, a critical cell cycle regulator. Phosphorylation of E2Fa by SnRK1.1 leads to its proteasome-mediated protein degradation, resulting in S-phase repression and organ growth restriction. Our findings show that ES-dependently activated SnRK1.1 adjusts cell proliferation and vegetative growth for plants to cope with constantly fluctuating environments.
Collapse
Affiliation(s)
- Seungmin Son
- Department of Life SciencesKorea University145 Anamro, Sungbuk‐guSeoul02841Korea
- National Institute of Agricultural Sciences, Rural Development AdministrationJeonju54874Korea
| | - Jong Hee Im
- Department of Life SciencesKorea University145 Anamro, Sungbuk‐guSeoul02841Korea
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Jae‐Heung Ko
- Department of Plant & Environmental New Resources, College of Life Science and Graduate School of BiotechnologyKyung Hee UniversityYongin‐siGyeonggi‐do17104Korea
| | - Kyung‐Hwan Han
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
- Department of ForestryMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
14
|
Broucke E, Rolland F, Crepin N. Fast Identification of In Vivo Protein Phosphorylation Events Using Transient Expression in Leaf Mesophyll Protoplasts and Phos-tag TM SDS-PAGE. Methods Mol Biol 2023; 2642:215-231. [PMID: 36944881 DOI: 10.1007/978-1-0716-3044-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Phosphorylation/dephosphorylation is a key posttranslational mechanism for signal transduction and amplification. Several techniques exist for assessing protein phosphorylation status, but each has its own drawbacks. The fast, straightforward, and low-tech approach described here uses transient overexpression of peptide-tagged proteins in Arabidopsis leaf mesophyll protoplasts and immunoblotting with Phos-tag™ SDS-PAGE and commercial anti-tag antibodies. We illustrate this with two relevant examples related to the SnRK1 protein kinase, which mediates metabolic stress signaling: Arabidopsis thaliana SnRK1 activation by T-loop (auto-)phosphorylation and SnRK1 phosphorylation of the Arabidopsis RAV1 transcription factor, which is involved in seed germination and early seedling development.
Collapse
Affiliation(s)
- Ellen Broucke
- Plant Metabolic Signaling Lab, Biology Department, KU Leuven, Heverlee, Leuven, Belgium.
- KU Leuven Plant Institute (LPI), KU Leuven, Heverlee, Leuven, Belgium.
| | - Filip Rolland
- Plant Metabolic Signaling Lab, Biology Department, KU Leuven, Heverlee, Leuven, Belgium.
- KU Leuven Plant Institute (LPI), KU Leuven, Heverlee, Leuven, Belgium.
| | - Nathalie Crepin
- Plant Metabolic Signaling Lab, Biology Department, KU Leuven, Heverlee, Leuven, Belgium.
- KU Leuven Plant Institute (LPI), KU Leuven, Heverlee, Leuven, Belgium.
| |
Collapse
|
15
|
Stephen K, Beena R, Kiran AG, Shanija S, Saravanan R. Changes in physiological traits and expression of key genes involved in sugar signaling pathway in rice under high temperature stress. 3 Biotech 2022; 12:183. [PMID: 35875179 PMCID: PMC9300813 DOI: 10.1007/s13205-022-03242-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Efficient assimilate partitioning between the source and sink organs to achieve increased grain weight is coordinated by the sugar signaling mechanism. The expression of the genes involved in sugar signaling mainly hexokinases 2 (OsHXK2), Sucrose-nonfermentation1-related protein kinase1 (OsSnRK1), trehalose-6-phosphate synthase 1 (OsTPS1) and target of rapamycin (OsTOR) under high temperature stress was examined in tolerant (NL-44) and susceptible (Vandana) varieties of rice. The photosynthetic rate, stomatal conductance, water-use efficiency, photochemical efficiency (Fv/Fm), quantum yield (ϕPSII), pollen viability, spikelet fertility and 1000 grain weight were significantly higher in NL-44 compared to Vandana under stress. The difference in the gene expression levels in the vegetative and grain-filling phases as well as between the tolerant and susceptible varieties, revealed unique pathways of sugar signaling under heat stress. In the vegetative phase, the expression of OsTOR seems to be the difference between NL-44 and Vandana for their differed heat stress tolerance whereas, in the grain-filling phase, the difference between the varieties lay in the regulation of OsHXK2. The comparative changes in the expression levels between the genes under the varying conditions indicate the sugar status in the source and sink organs that are available for translocation or remobilization.
Collapse
Affiliation(s)
- K. Stephen
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - R. Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - A. G. Kiran
- Department of Plant Biotechnology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - S. Shanija
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - R. Saravanan
- ICAR-CTCRI, Thiruvananthapuram, Kerala 695017 India
| |
Collapse
|
16
|
Tang F, Gao X, Peng J. The dynamics of carbohydrate and associated gene expression in the stems and roots of upland cotton (Gossypiumhirsutum L.) during carbon remobilization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:125-136. [PMID: 35298944 DOI: 10.1016/j.plaphy.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Carbohydrates remobilization in non-leaf organs has a potential association with the formation of cotton yield. However, our understanding of the physiological and molecular mechanisms regulating carbon remobilization during flowering is still limited. The objectives of the study were to: i) evaluate the potential of carbohydrate remobilization in stems and roots to yield formation; ii) unravel the carbon metabolism and transport associated gene expression patterns regulating carbon remobilization. Two cotton lines 4003-6 and 4003-10 were employed to examine leaf photosynthesis, reproductive biomass accumulation, and carbon dynamics in stems and roots during reproductive growth. The results showed that decreasing leaf photosynthetic capacity combined with rapidly increasing reproductive biomass and leaf area index is accompanied by the initiation of carbohydrate remobilization during first flowering to peak flowering. The proportion of sucrose to total nonstructural carbohydrate was also decreased at that period. The upper and lower of stem recorded higher soluble sugars and starch concentrations, respectively compared to the two others. The gross contribution rate of carbon remobilization to seed cotton yield ranged from 2.83% to 7.12%. Key genes and sugar transporters related to starch and sucrose metabolism in the lower stem exhibited significant up- or down-regulated expressions indicating their important roles in carbon reserves remobilization. Three pivotal sugar transporters SWEET1, TMT2, and ERLD5 presented higher transcript levels at peak flowering suggesting more active sugar movement occurring at that stage. The present study provides potential target genes for engineering carbohydrate metabolism and transport to improve the remobilization efficiency of nonstructural carbohydrates.
Collapse
Affiliation(s)
- Feiyu Tang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xin Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinjian Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
17
|
Mishra BS, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13546. [PMID: 34480799 DOI: 10.1111/ppl.13546] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/07/2023]
Abstract
Under the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions. Auxin, being an important phytohormone, is associated with almost all stages of the plant's life cycle and also plays a vital role in response to the dynamic environment for better growth and survival. In the previous years, substantial progress has been made that showed a range of common responses mediated by sugars and auxin signaling. This review discusses how sugar signaling affects auxin at various levels from its biosynthesis to perception and downstream gene activation. On the same note, the review also highlights the role of auxin signaling in fine-tuning sugar metabolism and carbon partitioning. Furthermore, we discussed the crosstalk between the two signaling machineries in the regulation of various biological processes, such as gene expression, cell cycle, development, root system architecture, and shoot growth. In conclusion, the review emphasized the role of sugar and auxin crosstalk in the regulation of several agriculturally important traits. Thus, engineering of sugar and auxin signaling pathways could potentially provide new avenues to manipulate for agricultural purposes.
Collapse
Affiliation(s)
- Bhuwaneshwar Sharan Mishra
- National Institute of Plant Genome Research, New Delhi, India
- Bhuwaneshwar Sharan Mishra, Ram Gulam Rai P. G. College Banktashiv, Affiliated to Deen Dayal Upadhyaya Gorakhpur University Gorakhpur, Deoria, Uttar Pradesh, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
18
|
Shen J, Chen Q, Li Z, Zheng Q, Xu Y, Zhou H, Mao H, Shen Q, Liu P. Proteomic and metabolomic analysis of Nicotiana benthamiana under dark stress. FEBS Open Bio 2022; 12:231-249. [PMID: 34792288 PMCID: PMC8727940 DOI: 10.1002/2211-5463.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 11/08/2022] Open
Abstract
Exposure to extended periods of darkness is a common source of abiotic stress that significantly affects plant growth and development. To understand how Nicotiana benthamiana responds to dark stress, the proteomes and metabolomes of leaves treated with darkness were studied. In total, 5763 proteins and 165 primary metabolites were identified following dark treatment. Additionally, the expression of autophagy-related gene (ATG) proteins was transiently upregulated. Weighted gene coexpression network analysis (WGCNA) was utilized to find the protein modules associated with the response to dark stress. A total of four coexpression modules were obtained. The results indicated that heat-shock protein (HSP70), SnRK1-interacting protein 1, 2A phosphatase-associated protein of 46 kDa (Tap46), and glutamate dehydrogenase (GDH) might play crucial roles in N. benthamiana's response to dark stress. Furthermore, a protein-protein interaction (PPI) network was constructed and top-degreed proteins were predicted to identify potential key factors in the response to dark stress. These proteins include isopropylmalate isomerase (IPMI), eukaryotic elongation factor 5A (ELF5A), and ribosomal protein 5A (RPS5A). Finally, metabolic analysis suggested that some amino acids and sugars were involved in the dark-responsive pathways. Thus, these results provide a new avenue for understanding the defensive mechanism against dark stress at the protein and metabolic levels in N. benthamiana.
Collapse
Affiliation(s)
- Juan‐Juan Shen
- College of ChemistryZhengzhou UniversityZhengzhouChina
- Chemistry Research Institution of Henan Academy of SciencesZhengzhouChina
| | - Qian‐Si Chen
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Ze‐Feng Li
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Qing‐Xia Zheng
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Ya‐Long Xu
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Hui‐Na Zhou
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| | - Hong‐Yan Mao
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Qi Shen
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Ping‐Ping Liu
- Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
| |
Collapse
|
19
|
Wang P, Yan Y, Bai Y, Dong Y, Wei Y, Zeng H, Shi H. Phosphorylation of RAV1/2 by KIN10 is essential for transcriptional activation of CAT6/7, which underlies oxidative stress response in cassava. Cell Rep 2021; 37:110119. [PMID: 34910906 DOI: 10.1016/j.celrep.2021.110119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
Related to ABI3/VP1 (RAV) transcription factors have important roles in plant stress responses; however, it is unclear whether RAVs regulates oxidative stress response in cassava (Manihot esculenta). In this study, we report that MeRAV1/2 positively regulate oxidative stress resistance and catalase (CAT) activity in cassava. Consistently, RNA sequencing (RNA-seq) identifies three MeCATs that are differentially expressed in MeRAV1/2-silenced cassava leaves. Interestingly, MeCAT6 and MeCAT7 are identified as direct transcriptional targets of MeRAV1/2 via binding to their promoters. In addition, protein kinase MeKIN10 directly interacts with MeRAV1/2 to phosphorylate them at Ser45 and Ser44 residues, respectively, to promote their direct transcriptional activation on MeCAT6 and MeCAT7. Site mutation of MeRAV1S45A or MeRAV2S44A has no significant effect on the activities of MeCAT6 and MeCAT7 promoters or on oxidative stress resistance. In summary, this study demonstrates that the phosphorylation of MeRAV1/2 by MeKIN10 is essential for its direct transcriptional activation of MeCAT6/7 in response to oxidative stress.
Collapse
Affiliation(s)
- Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yabin Dong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
20
|
Yu W, Peng F, Wang W, Liang J, Xiao Y, Yuan X. SnRK1 phosphorylation of SDH positively regulates sorbitol metabolism and promotes sugar accumulation in peach fruit. TREE PHYSIOLOGY 2021; 41:1077-1086. [PMID: 33576402 PMCID: PMC8190949 DOI: 10.1093/treephys/tpaa163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/11/2020] [Indexed: 05/07/2023]
Abstract
Fruit quality depends largely on the type and amount of sugar accumulated in the fruit. In peach [Prunus persica (L.) Batsch], sorbitol is the main photosynthetic product and plays a crucial role in sugar metabolism. As a conserved energy sensor, SNF1-related kinase 1 (SnRK1) is involved in the regulation of carbon metabolism. In this study, SnRK1 was able to respond to induction by treatment with exogenous trehalose and sorbitol on 'Ruipan 17' peach fruit. After treatment with 100-mM trehalose for 3 h, the SnRK1 activity decreased by 18% and the activities of sorbitol dehydrogenase (SDH) and sucrose synthase (SS) also decreased significantly, but sucrose phosphate synthase (SPS) activity increased significantly; whereas sorbitol treatment under the same conditions resulted in a 12.6% increase in SnRK1 activity and the activities of SDH and SS synthase also increased significantly, compared with the control. The contents of glucose, fructose and sucrose in peach fruit increased significantly after 3 h of sorbitol treatment. In addition, the interactions between PpSnRK1α and enzymes PpSDH and PpSPS were confirmed by yeast two-hybrid method and the phosphorylation of PpSnRK1α and PpSDH was detected in vitro. Taken together, these results suggest that SnRK1 promotes sorbitol metabolism by activating SDH and it also regulates the activities of SS and SPS that enhance sucrose accumulation in peach fruit. SnRK1 protein kinase is involved in sugar metabolism and has the potential to be used for improving fruit quality.
Collapse
Affiliation(s)
- Wen Yu
- Key Laboratory of Biology and Molecular Biology in University of Shandong, College of Biological and Agricultural Engineering, Weifang University, Weifang, Shandong 261061, China
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong 271000, China
| | | | - Wenru Wang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong 271000, China
| | - Jiahui Liang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong 271000, China
| | | | - Xuefeng Yuan
- College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271000, China
| |
Collapse
|
21
|
Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2022942118. [PMID: 33963081 DOI: 10.1073/pnas.2022942118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nitrogen (N) is an essential nutrient that affects multiple plant developmental processes, including flowering. As flowering requires resources to develop sink tissues for reproduction, nutrient availability is tightly linked to this process. Low N levels accelerate floral transition; however, the molecular mechanisms underlying this response are not well understood. Here, we identify the FLOWERING BHLH 4 (FBH4) transcription factor as a key regulator of N-responsive flowering in Arabidopsis Low N-induced early flowering is compromised in fbh quadruple mutants. We found that FBH4 is a highly phosphorylated protein and that FBH4 phosphorylation levels decrease under low N conditions. In addition, decreased phosphorylation promotes FBH4 nuclear localization and transcriptional activation of the direct target CONSTANS (CO) and downstream florigen FLOWERING LOCUS T (FT) genes. Moreover, we demonstrate that the evolutionarily conserved cellular fuel sensor SNF1-RELATED KINASE 1 (SnRK1), whose kinase activity is down-regulated under low N conditions, directly phosphorylates FBH4. SnRK1 negatively regulates CO and FT transcript levels under high N conditions. Together, these results reveal a mechanism by which N levels may fine-tune FBH4 nuclear localization by adjusting the phosphorylation state to modulate flowering time. In addition to its role in flowering regulation, we also showed that FBH4 was involved in low N-induced up-regulation of nutrient recycling and remobilization-related gene expression. Thus, our findings provide insight into N-responsive growth phase transitions and optimization of plant fitness under nutrient-limited conditions.
Collapse
|
22
|
Genome-Wide Identification and Expression Analyses of AnSnRK2 Gene Family under Osmotic Stress in Ammopiptanthus nanus. PLANTS 2021; 10:plants10050882. [PMID: 33925572 PMCID: PMC8145913 DOI: 10.3390/plants10050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Abstract
Sucrose non-fermenting-1 (SNF1)-related protein kinase 2’s (SnRK2s) are plant-specific serine/threonine protein kinases and play crucial roles in the abscisic acid signaling pathway and abiotic stress response. Ammopiptanthus nanus is a relict xerophyte shrub and extremely tolerant of abiotic stresses. Therefore, we performed genome-wide identification of the AnSnRK2 genes and analyzed their expression profiles under osmotic stresses including drought and salinity. A total of 11 AnSnRK2 genes (AnSnRK2.1-AnSnRK2.11) were identified in the A. nanus genome and were divided into three groups according to the phylogenetic tree. The AnSnRK2.6 has seven introns and others have eight introns. All of the AnSnRK2 proteins are highly conserved at the N-terminus and contain similar motif composition. The result of cis-acting element analysis showed that there were abundant hormone- and stress-related cis-elements in the promoter regions of AnSnRK2s. Moreover, the results of quantitative real-time PCR exhibited that the expression of most AnSnRK2s was induced by NaCl and PEG-6000 treatments, but the expression of AnSnRK2.3 and AnSnRK2.6 was inhibited, suggesting that the AnSnRK2s might play key roles in stress tolerance. The study provides insights into understanding the function of AnSnRK2s.
Collapse
|
23
|
Wang B, Zhao X, Zhao Y, Shanklin J, Zhao Q, Liu CJ. Arabidopsis SnRK1 negatively regulates phenylpropanoid metabolism via Kelch domain-containing F-box proteins. THE NEW PHYTOLOGIST 2021; 229:3345-3359. [PMID: 33253431 DOI: 10.1111/nph.17121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 05/04/2023]
Abstract
Phenylpropanoid metabolism represents a substantial metabolic sink for photosynthetically fixed carbon. The evolutionarily conserved Sucrose Non-Fermenting Related Kinase 1 (SnRK1) is a major metabolic sensor that reprograms metabolism upon carbon deprivation. However, it is not clear if and how the SnRK1-mediated sugar signaling pathway controls phenylpropanoid metabolism. Here, we show that Arabidopsis SnRK1 negatively regulates phenylpropanoid biosynthesis via a group of Kelch domain-containing F-box (KFB) proteins that are responsible for the ubiquitination and degradation of phenylalanine ammonia lyase (PAL). Downregulation of AtSnRK1 significantly promoted the accumulation of soluble phenolics and lignin polymers and drastically increased PAL cellular accumulation but only slightly altered its transcription level. Co-expression of SnRK1α with PAL in Nicotiana benthamiana leaves resulted in the severe attenuation of the latter's protein level, but protein interaction assays suggested PAL is not a direct substrate of SnRK1. Furthermore, up or downregulation of AtSnRK1 positively affected KFBPALs gene expression, and energy starvation upregulated KFBPAL expression, which partially depends on AtSnRK1. Collectively, our study reveals that SnRK1 negatively regulates phenylpropanoid biosynthesis, and KFBPALs act as regulatory components of the SnRK1 signaling network, transcriptionally regulated by SnRK1 and subsequently mediate proteasomal degradation of PAL in response to the cellular carbon availability.
Collapse
Affiliation(s)
- Bin Wang
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xianhai Zhao
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yunjun Zhao
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Qiao Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
24
|
The Rice Small Auxin-Up RNA Gene OsSAUR33 Regulates Seed Vigor via Sugar Pathway during Early Seed Germination. Int J Mol Sci 2021; 22:ijms22041562. [PMID: 33557166 PMCID: PMC7913900 DOI: 10.3390/ijms22041562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Seed vigor affects seed germination and seedling emergence, and therefore is an important agronomic trait in rice. Small auxin-up RNAs (SAURs) function in a range of developmental processes, but their role in seed vigor remains unclear. Here, we observed that disruption of OsSAUR33 resulted in reduced germination rates and low seed uniformity in early germination. Expression of OsSAUR33 was higher in mature grains and early germinating seeds. RNA-seq analysis revealed that OsSAUR33 modulated seed vigor by affecting the mobilization of stored reserves during germination. Disruption of OsSAUR33 increased the soluble sugar content in dry mature grains and seeds during early germination. OsSAUR33 interacted with the sucrose non-fermenting-1-related protein kinase OsSnRK1A, a regulator of the sugar signaling pathway, which influences the expression of sugar signaling-related genes during germination. Disruption of OsSAUR33 increased sugar-sensitive phenotypes in early germination, suggesting OsSAUR33 likely affects seed vigor through the sugar pathway. One elite haplotype of OsSAUR33 associated with higher seed vigor was identified mainly in indica accessions. This study provides insight into the effects of OsSAUR33 on seed vigor in rice.
Collapse
|
25
|
The Molecular Regulatory Pathways and Metabolic Adaptation in the Seed Germination and Early Seedling Growth of Rice in Response to Low O 2 Stress. PLANTS 2020; 9:plants9101363. [PMID: 33066550 PMCID: PMC7602250 DOI: 10.3390/plants9101363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
Abstract
As sessile organisms, flooding/submergence is one of the major abiotic stresses for higher plants, with deleterious effects on their growth and survival. Therefore, flooding/submergence is a large challenge for agriculture in lowland areas worldwide. Long-term flooding/submergence can cause severe hypoxia stress to crop plants and can result in substantial yield loss. Rice has evolved distinct adaptive strategies in response to low oxygen (O2) stress caused by flooding/submergence circumstances. Recently, direct seeding practice has been increasing in popularity due to its advantages of reducing cultivation cost and labor. However, establishment and growth of the seedlings from seed germination under the submergence condition are large obstacles for rice in direct seeding practice. The physiological and molecular regulatory mechanisms underlying tolerant and sensitive phenotypes in rice have been extensively investigated. Here, this review focuses on the progress of recent advances in the studies of the molecular mechanisms and metabolic adaptions underlying anaerobic germination (AG) and coleoptile elongation. Further, we highlight the prospect of introducing quantitative trait loci (QTL) for AG into rice mega varieties to ensure the compatibility of flooding/submergence tolerance traits and yield stability, thereby advancing the direct seeding practice and facilitating future breeding improvement.
Collapse
|
26
|
Carianopol CS, Chan AL, Dong S, Provart NJ, Lumba S, Gazzarrini S. An abscisic acid-responsive protein interaction network for sucrose non-fermenting related kinase1 in abiotic stress response. Commun Biol 2020; 3:145. [PMID: 32218501 PMCID: PMC7099082 DOI: 10.1038/s42003-020-0866-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
Yeast Snf1 (Sucrose non-fermenting1), mammalian AMPK (5′ AMP-activated protein kinase) and plant SnRK1 (Snf1-Related Kinase1) are conserved heterotrimeric kinase complexes that re-establish energy homeostasis following stress. The hormone abscisic acid (ABA) plays a crucial role in plant stress response. Activation of SnRK1 or ABA signaling results in overlapping transcriptional changes, suggesting these stress pathways share common targets. To investigate how SnRK1 and ABA interact during stress response in Arabidopsis thaliana, we screened the SnRK1 complex by yeast two-hybrid against a library of proteins encoded by 258 ABA-regulated genes. Here, we identify 125 SnRK1- interacting proteins (SnIPs). Network analysis indicates that a subset of SnIPs form signaling modules in response to abiotic stress. Functional studies show the involvement of SnRK1 and select SnIPs in abiotic stress responses. This targeted study uncovers the largest set of SnRK1 interactors, which can be used to further characterize SnRK1 role in plant survival under stress. Carianopol et al. construct a detailed protein interaction network for the SnRK1 kinase complex to investigate the interaction of SnRK1 and ABA during stress response. They identify 125 proteins that interact with SnRK1, which can be used further to characterise the role of SnRK1 in plant survival under stress.
Collapse
Affiliation(s)
- Carina Steliana Carianopol
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.,Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Aaron Lorheed Chan
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.,Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Shaowei Dong
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.,Centre for the Analysis of Genome Evolution and Function, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada. .,Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
27
|
Cui Y, Su Y, Wang J, Jia B, Wu M, Pei W, Zhang J, Yu J. Genome-Wide Characterization and Analysis of CIPK Gene Family in Two Cultivated Allopolyploid Cotton Species: Sequence Variation, Association with Seed Oil Content, and the Role of GhCIPK6. Int J Mol Sci 2020; 21:E863. [PMID: 32013234 PMCID: PMC7037685 DOI: 10.3390/ijms21030863] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs), as key regulators, play an important role in plant growth and development and the response to various stresses. In the present study, we identified 80 and 78 CIPK genes in the Gossypium hirsutum and G. barbadense, respectively. The phylogenetic and gene structure analysis divided the cotton CIPK genes into five groups which were classified into an exon-rich clade and an exon-poor clade. A synteny analysis showed that segmental duplication contributed to the expansion of Gossypium CIPK gene family, and purifying selection played a major role in the evolution of the gene family in cotton. Analyses of expression profiles showed that GhCIPK genes had temporal and spatial specificity and could be induced by various abiotic stresses. Fourteen GhCIPK genes were found to contain 17 non-synonymous single nucleotide polymorphisms (SNPs) and co-localized with oil or protein content quantitative trait loci (QTLs). Additionally, five SNPs from four GhCIPKs were found to be significantly associated with oil content in one of the three field tests. Although most GhCIPK genes were not associated with natural variations in cotton oil content, the overexpression of the GhCIPK6 gene reduced the oil content and increased C18:1 and C18:1+C18:1d6 in transgenic cotton as compared to wild-type plants. In addition, we predicted the potential molecular regulatory mechanisms of the GhCIPK genes. In brief, these results enhance our understanding of the roles of CIPK genes in oil synthesis and stress responses.
Collapse
Affiliation(s)
- Yupeng Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Ying Su
- Laboratory of Cotton Genetics, Genomics and Breeding, College of Agronomy and Biotechnology/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China;
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| |
Collapse
|
28
|
Perochon A, Váry Z, Malla KB, Halford NG, Paul MJ, Doohan FM. The wheat SnRK1α family and its contribution to Fusarium toxin tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110217. [PMID: 31521211 DOI: 10.1016/j.plantsci.2019.110217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 05/09/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by phytopathogenic Fusarium fungi in cereal grain and plays a role as a disease virulence factor. TaFROG (Triticum aestivum Fusarium Resistance Orphan Gene) enhances wheat resistance to DON and it interacts with a sucrose non-fermenting-1 (SNF1)-related protein kinase 1 catalytic subunit α (SnRK1α). This protein kinase family is central integrator of stress and energy signalling, regulating plant metabolism and growth. Little is known regarding the role of SnRK1α in the biotic stress response, especially in wheat. In this study, 15 wheat (Triticum aestivum) SnRK1α genes (TaSnRK1αs) belonging to four homoeologous groups were identified in the wheat genome. TaSnRK1αs are expressed ubiquitously in all organs and developmental stages apart from two members predominantly detected in grain. While DON treatment had either no effect or downregulated the transcription of TaSnRK1αs, it increased both the kinase activity associated with SnRK1α and the level of active (phosphorylated) SnRK1α. Down-regulation of two TaSnRK1αs homoeolog groups using virus induced gene silencing (VIGS) increased the DON-induced damage of wheat spikelets. Thus, we demonstrate that TaSnRK1αs contribute positively to wheat tolerance of DON and conclude that this gene family may provide useful tools for the improvement of crop biotic stress resistance.
Collapse
Affiliation(s)
- Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Zsolt Váry
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Keshav B Malla
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel G Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Matthew J Paul
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
29
|
Rodriguez M, Parola R, Andreola S, Pereyra C, Martínez-Noël G. TOR and SnRK1 signaling pathways in plant response to abiotic stresses: Do they always act according to the "yin-yang" model? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110220. [PMID: 31521220 DOI: 10.1016/j.plantsci.2019.110220] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 05/20/2023]
Abstract
Plants are sessile photo-autotrophic organisms continuously exposed to a variety of environmental stresses. Monitoring the sugar level and energy status is essential, since this knowledge allows the integration of external and internal cues required for plant physiological and developmental plasticity. Most abiotic stresses induce severe metabolic alterations and entail a great energy cost, restricting plant growth and producing important crop losses. Therefore, balancing energy requirements with supplies is a major challenge for plants under unfavorable conditions. The conserved kinases target of rapamycin (TOR) and sucrose-non-fermenting-related protein kinase-1 (SnRK1) play central roles during plant growth and development, and in response to environmental stresses; these kinases affect cellular processes and metabolic reprogramming, which has physiological and phenotypic consequences. The "yin-yang" model postulates that TOR and SnRK1 act in opposite ways in the regulation of metabolic-driven processes. In this review, we describe and discuss the current knowledge about the complex and intricate regulation of TOR and SnRK1 under abiotic stresses. We especially focus on the physiological perspective that, under certain circumstances during the plant stress response, the TOR and SnRK1 kinases could be modulated differently from what is postulated by the "yin-yang" concept.
Collapse
Affiliation(s)
- Marianela Rodriguez
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km 5.5, X5020ICA, Córdoba, Argentina; Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras km 5.5 X5020ICA, Córdoba, Argentina.
| | - Rodrigo Parola
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km 5.5, X5020ICA, Córdoba, Argentina; Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras km 5.5 X5020ICA, Córdoba, Argentina.
| | - Sofia Andreola
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km 5.5, X5020ICA, Córdoba, Argentina; Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras km 5.5 X5020ICA, Córdoba, Argentina.
| | - Cintia Pereyra
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), y Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, 7600, Mar del Plata, Argentina.
| | - Giselle Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), y Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, 7600, Mar del Plata, Argentina.
| |
Collapse
|
30
|
Caldo KMP, Xu Y, Falarz L, Jayawardhane K, Acedo JZ, Chen G. Arabidopsis CTP:phosphocholine cytidylyltransferase 1 is phosphorylated and inhibited by sucrose nonfermenting 1-related protein kinase 1 (SnRK1). J Biol Chem 2019; 294:15862-15874. [PMID: 31439667 PMCID: PMC6816107 DOI: 10.1074/jbc.ra119.008047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/19/2019] [Indexed: 11/06/2022] Open
Abstract
De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway involves highly endergonic biochemical reactions that must be fine-tuned with energy homeostasis. Previous studies have shown that CTP:phosphocholine cytidylyltransferase (CCT) is an important regulatory enzyme in this pathway and that its activity can be controlled at both transcriptional and posttranslational levels. Here we identified an important additional mechanism regulating plant CCT1 activity. Comparative analysis revealed that Arabidopsis CCT1 (AtCCT1) contains catalytic and membrane-binding domains that are homologous to those of rat CCT1. In contrast, the C-terminal phosphorylation domain important for stringent regulation of rat CCT1 was apparently missing in AtCCT1. Instead, we found that AtCCT1 contains a putative consensus site (Ser-187) for modification by sucrose nonfermenting 1-related protein kinase 1 (SnRK1 or KIN10/SnRK1.1), involved in energy homeostasis. Phos-tag SDS-PAGE coupled with MS analysis disclosed that SnRK1 indeed phosphorylates AtCCT1 at Ser-187, and we found that AtCCT1 phosphorylation substantially reduces its activity by as much as 70%. An S187A variant exhibited decreased activity, indicating the importance of Ser-187 in catalysis, and this variant was less susceptible to SnRK1-mediated inhibition. Protein truncation and liposome binding studies indicated that SnRK1-mediated AtCCT1 phosphorylation directly affects the catalytic domain rather than interfering with phosphatidate-mediated AtCCT1 activation. Overexpression of the AtCCT1 catalytic domain in Nicotiana benthamiana leaves increased PC content, and SnRK1 co-expression reduced this effect. Taken together, our results suggest that SnRK1 mediates the phosphorylation and concomitant inhibition of AtCCT1, revealing an additional mode of regulation for this key enzyme in plant PC biosynthesis.
Collapse
Affiliation(s)
- Kristian Mark P Caldo
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yang Xu
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lucas Falarz
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Kethmi Jayawardhane
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jeella Z Acedo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
31
|
Dai D, Tong H, Cheng L, Peng F, Zhang T, Qi W, Song R. Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5173-5187. [PMID: 31173102 PMCID: PMC6793443 DOI: 10.1093/jxb/erz268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/28/2019] [Indexed: 05/05/2023]
Abstract
The maize (Zea mays) defective kernel 33 (dek33) mutant produces defective and occasionally viviparous kernel phenotypes. In this study, we cloned Dek33 by positional cloning and found that it encodes a pyrimidine reductase in riboflavin biosynthesis. In dek33, a single-base mutation (G to A) in the C-terminal COG3236 domain caused a premature stop codon (TGA), producing a weak mutant allele with only a truncated form of the DEK33 protein that occurred at much lower levels that the completed WT form, and with a reduced riboflavin content. The dek33 mutation significantly affected oil-body formation and suppressed endoreduplication. It also disrupted ABA biosynthesis, resulting in lower ABA content that might be responsible for the viviparous embryo. In addition, our results indicated that the COG3236 domain is important for the protein stability of DEK33. Yeast two-hybrid experiments identified several proteins that interacted with DEK33, including RGLG2 and SnRK1, suggesting possible post-translational regulation of DEK33 stability. The interaction between DEK33 and these proteins was further confirmed by luciferase complementation image assays. This study provides a weak mutant allele that can be utilized to explore cellular responses to impaired riboflavin biosynthesis during seed development. Our findings indicate that the COG3236 domain might be an essential regulatory structure for DEK33 stability in maize.
Collapse
Affiliation(s)
- Dawei Dai
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongyang Tong
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lijun Cheng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fei Peng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tingting Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
32
|
Hwang HH, Wang CH, Huang HW, Chiang CP, Chi SF, Huang FC, Yen HE. Functional analysis of McSnRK1 (SNF1-related protein kinase 1) in regulating Na/K homeostasis in transgenic cultured cells and roots of halophyte Mesembryanthemum crystallinum. PLANT CELL REPORTS 2019; 38:915-926. [PMID: 31037366 DOI: 10.1007/s00299-019-02412-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/15/2019] [Indexed: 05/05/2023]
Abstract
Transgenic callus and roots of ice plant with altered SnRK1 function were established using Agrobacterium-mediated transformation. The role of McSnRK1 in controlling Na+ influx and Na/K ratio was demonstrated. SnRK1 kinases (SNF1-related protein kinase1) control metabolic adaptation during energy deprivation and regulate protective mechanisms against environmental stress. Yeast SNF1 activates a P-type ATPase, the Na+ exclusion pump, under glucose starvation. The involvement of plant SnRK1 in salt stress response is largely unknown. We previously identified a salt-induced McSnRK1 in the halophyte ice plant (Mesembryanthemum crystallinum). In the current study, the function of McSnRK1 in salt tolerance was analyzed in transgenic cultured cells and roots of ice plant. Ice plant callus constitutively expressed a high level of McSnRK1 and introducing the full-length McSnRK1 did not alter the Na/K ratio at 24 h after 200 mM NaCl treatment. However, interfering with McSnRK1 activity by introducing a truncate McSnRK1 to produce a dominant-negative form of McSnRK1 increased cellular Na+ accumulation and Na/K ratio. As a result, the growth of cultured cells diminished under salt treatment. Hydroponically grown ice plants with roots expressing full-length McSnRK1 had better growth and lowered Na/K ratio compared to the wild-type or vector-only plants. Roots expressing a truncate McSnRK1 had reduced growth and high Na/K ratio under 400 mM NaCl treatment. The changes in Na/K ratio in transgenic cells and whole plants demonstrated the function of SnRK1 in controlling Na+ flux and maintaining Na/K homeostasis under salinity. The Agrobacterium-mediated transformation system could be a versatile tool for functional analysis of genes involved in salt tolerance in the ice plant.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Hao Wang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Hsiao-Wei Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Chih-Pin Chiang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Shin-Fei Chi
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, 40227, Taiwan
| | - Hungchen E Yen
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
33
|
Kamal H, Minhas FUAA, Farooq M, Tripathi D, Hamza M, Mustafa R, Khan MZ, Mansoor S, Pappu HR, Amin I. In silico Prediction and Validations of Domains Involved in Gossypium hirsutum SnRK1 Protein Interaction With Cotton Leaf Curl Multan Betasatellite Encoded βC1. FRONTIERS IN PLANT SCIENCE 2019; 10:656. [PMID: 31191577 PMCID: PMC6546731 DOI: 10.3389/fpls.2019.00656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/01/2019] [Indexed: 05/19/2023]
Abstract
Cotton leaf curl disease (CLCuD) caused by viruses of genus Begomovirus is a major constraint to cotton (Gossypium hirsutum) production in many cotton-growing regions of the world. Symptoms of the disease are caused by Cotton leaf curl Multan betasatellite (CLCuMB) that encodes a pathogenicity determinant protein, βC1. Here, we report the identification of interacting regions in βC1 protein by using computational approaches including sequence recognition, and binding site and interface prediction methods. We show the domain-level interactions based on the structural analysis of G. hirsutum SnRK1 protein and its domains with CLCuMB-βC1. To verify and validate the in silico predictions, three different experimental approaches, yeast two hybrid, bimolecular fluorescence complementation and pull down assay were used. Our results showed that ubiquitin-associated domain (UBA) and autoinhibitory sequence (AIS) domains of G. hirsutum-encoded SnRK1 are involved in CLCuMB-βC1 interaction. This is the first comprehensive investigation that combined in silico interaction prediction followed by experimental validation of interaction between CLCuMB-βC1 and a host protein. We demonstrated that data from computational biology could provide binding site information between CLCuD-associated viruses/satellites and new hosts that lack known binding site information for protein-protein interaction studies. Implications of these findings are discussed.
Collapse
Affiliation(s)
- Hira Kamal
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | | - Muhammad Farooq
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Diwaker Tripathi
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Muhammad Hamza
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Roma Mustafa
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Zuhaib Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
34
|
Janse van Rensburg HC, Van den Ende W, Signorelli S. Autophagy in Plants: Both a Puppet and a Puppet Master of Sugars. FRONTIERS IN PLANT SCIENCE 2019; 10:14. [PMID: 30723485 PMCID: PMC6349728 DOI: 10.3389/fpls.2019.00014] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/07/2019] [Indexed: 05/20/2023]
Abstract
Autophagy is a major pathway that recycles cellular components in eukaryotic cells both under stressed and non-stressed conditions. Sugars participate both metabolically and as signaling molecules in development and response to various environmental and nutritional conditions. It is therefore essential to maintain metabolic homeostasis of sugars during non-stressed conditions in cells, not only to provide energy, but also to ensure effective signaling when exposed to stress. In both plants and animals, autophagy is activated by the energy sensor SnRK1/AMPK and inhibited by TOR kinase. SnRK1/AMPK and TOR kinases are both important regulators of cellular metabolism and are controlled to a large extent by the availability of sugars and sugar-phosphates in plants whereas in animals AMP/ATP indirectly translate sugar status. In plants, during nutrient and sugar deficiency, SnRK1 is activated, and TOR is inhibited to allow activation of autophagy which in turn recycles cellular components in an attempt to provide stress relief. Autophagy is thus indirectly regulated by the nutrient/sugar status of cells, but also regulates the level of nutrients/sugars by recycling cellular components. In both plants and animals sugars such as trehalose induce autophagy and in animals this is independent of the TOR pathway. The glucose-activated G-protein signaling pathway has also been demonstrated to activate autophagy, although the exact mechanism is not completely clear. This mini-review will focus on the interplay between sugar signaling and autophagy.
Collapse
Affiliation(s)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Santiago Signorelli
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
- Departamento de Biologiía Vegetal, Facultad de Agronomía, Universidad de la Repuíblica, Montevideo, Uruguay
| |
Collapse
|
35
|
Song Y, Zhang H, You H, Liu Y, Chen C, Feng X, Yu X, Wu S, Wang L, Zhong S, Li Q, Zhu Y, Ding X. Identification of novel interactors and potential phosphorylation substrates of GsSnRK1 from wild soybean (Glycine soja). PLANT, CELL & ENVIRONMENT 2019; 42:145-157. [PMID: 29664126 DOI: 10.1111/pce.13217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The plant sucrose nonfermenting kinase 1 (SnRK1) kinases play the central roles in the processes of energy balance, hormone perception, stress resistance, metabolism, growth, and development. However, the functions of these kinases are still elusive. In this study, we used GsSnRK1 of wild soybean as bait to perform library-scale screens by the means of yeast two-hybrid to identify its interacting proteins. The putative interactions were verified by yeast retransformation and β-galactosidase assays, and the selected interactions were further confirmed in planta by bimolecular fluorescence complementation and biochemical Co-IP assays. Protein phosphorylation analyses were carried out by phos-tag assay and anti-phospho-(Ser/Thr) substrate antibodies. Finally, we obtained 24 GsSnRK1 interactors and several putative substrates that can be categorized into SnRK1 regulatory β subunit, protein modification, biotic and abiotic stress-related, hormone perception and signalling, gene expression regulation, water and nitrogen transport, metabolism, and unknown proteins. Intriguingly, we first discovered that GsSnRK1 interacted with and phosphorylated the components of soybean nodulation and symbiotic nitrogen fixation. The interactions and potential functions of GsSnRK1 and its associated proteins were extensively discussed and analysed. This work provides plausible clues to elucidate the novel functions of SnRK1 in response to variable environmental, metabolic, and physiological requirements.
Collapse
Affiliation(s)
- Yu Song
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hang Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongguang You
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuanming Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Feng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xingyu Yu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shengyang Wu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Libo Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shihua Zhong
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
36
|
Caldo KMP, Shen W, Xu Y, Hanley-Bowdoin L, Chen G, Weselake RJ, Lemieux MJ. Diacylglycerol acyltransferase 1 is activated by phosphatidate and inhibited by SnRK1-catalyzed phosphorylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:287-299. [PMID: 30003607 DOI: 10.1111/tpj.14029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/23/2018] [Accepted: 06/26/2018] [Indexed: 05/06/2023]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final and committed step in the Kennedy pathway for triacylglycerol (TAG) biosynthesis and, as such, elucidating its mode of regulation is critical to understand the fundamental aspects of carbon metabolism in oleaginous crops. In this study, purified Brassica napus diacylglycerol acyltransferase 1 (BnaDGAT1) in n-dodecyl-β-d-maltopyranoside micelles was lipidated to form mixed micelles and subjected to detailed biochemical analysis. The degree of mixed micelle fluidity appeared to influence acyltransferase activity. BnaDGAT1 exhibited a sigmoidal response and eventual substrate inhibition with respect to increasing concentrations of oleoyl-CoA. Phosphatidate (PA) was identified as a feed-forward activator of BnaDGAT1, enabling the final enzyme in the Kennedy pathway to adjust to the incoming flow of carbon leading to TAG. In the presence of PA, the oleoyl-CoA saturation plot became more hyperbolic and desensitized to substrate inhibition indicating that PA facilitates the transition of the enzyme into the more active state. PA may also relieve possible autoinhibition of BnaDGAT1 brought about by the N-terminal regulatory domain, which was shown to interact with PA. Indeed, PA is a key effector modulating lipid homeostasis, in addition to its well recognized role in lipid signaling. BnaDGAT1 was also shown to be a substrate of the sucrose non-fermenting-1-related kinase 1 (SnRK1), which catalyzed phosphorylation of the enzyme and converted it to a less active form. Thus, this known regulator of carbon metabolism directly influences TAG biosynthesis.
Collapse
Affiliation(s)
- Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Wei Shen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
37
|
Huang L, Yu LJ, Zhang X, Fan B, Wang FZ, Dai YS, Qi H, Zhou Y, Xie LJ, Xiao S. Autophagy regulates glucose-mediated root meristem activity by modulating ROS production in Arabidopsis. Autophagy 2018; 15:407-422. [PMID: 30208757 PMCID: PMC6351127 DOI: 10.1080/15548627.2018.1520547] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glucose produced from photosynthesis is a key nutrient signal regulating root meristem activity in plants; however, the underlying mechanisms remain poorly understood. Here, we show that, by modulating reactive oxygen species (ROS) levels, the conserved macroautophagy/autophagy degradation pathway contributes to glucose-regulated root meristem maintenance. In Arabidopsis thaliana roots, a short exposure to elevated glucose temporarily suppresses constitutive autophagosome formation. The autophagy-defective autophagy-related gene (atg) mutants have enhanced tolerance to glucose, established downstream of the glucose sensors, and accumulate less glucose-induced ROS in the root tips. Moreover, the enhanced root meristem activities in the atg mutants are associated with improved auxin gradients and auxin responses. By acting with AT4G39850/ABCD1 (ATP-binding cassette D1; Formerly PXA1/peroxisomal ABC transporter 1), autophagy plays an indispensable role in the glucose-promoted degradation of root peroxisomes, and the atg mutant phenotype is partially rescued by the overexpression of ABCD1. Together, our findings suggest that autophagy is an essential mechanism for glucose-mediated maintenance of the root meristem. Abbreviation: ABA: abscisic acid; ABCD1: ATP-binding cassette D1; ABO: ABA overly sensitive; AsA: ascorbic acid; ATG: autophagy related; CFP: cyan fluorescent protein; Co-IP: co-immunoprecipitation; DAB: 3’,3’-diaininobenzidine; DCFH-DA: 2’,7’-dichlorodihydrofluorescin diacetate; DR5: a synthetic auxin response element consists of tandem direct repeats of 11 bp that included the auxin-responsive TGTCTC element; DZ: differentiation zone; EZ, elongation zone; GFP, green fluorescent protein; GSH, glutathione; GUS: β-glucuronidase; HXK1: hexokinase 1; H2O2: hydrogen peroxide; IAA: indole-3-acetic acid; IBA: indole-3-butyric acid; KIN10/11: SNF1 kinase homolog 10/11; MDC: monodansylcadaverine; MS: Murashige and Skoog; MZ: meristem zone; NBT: nitroblue tetrazolium; NPA: 1-N-naphtylphthalamic acid; OxIAA: 2-oxindole-3-acetic acid; PIN: PIN-FORMED; PLT: PLETHORA; QC: quiescent center; RGS1: Regulator of G-protein signaling 1; ROS: reactive oxygen species; SCR: SCARECROW; SHR, SHORT-ROOT; SKL: Ser-Lys-Leu; SnRK1: SNF1-related kinase 1; TOR: target of rapamycin; UPB1: UPBEAT1; WOX5: WUSCHEL related homeobox 5; Y2H: yeast two-hybrid; YFP: yellow fluorescent protein
Collapse
Affiliation(s)
- Li Huang
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Lu-Jun Yu
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Xue Zhang
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Biao Fan
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Feng-Zhu Wang
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Yang-Shuo Dai
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Hua Qi
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Ying Zhou
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Li-Juan Xie
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Shi Xiao
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
38
|
Guo Y, Huang Y, Gao J, Pu Y, Wang N, Shen W, Wen J, Yi B, Ma C, Tu J, Fu T, Zou J, Shen J. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:124. [PMID: 29743952 PMCID: PMC5930439 DOI: 10.1186/s13068-018-1122-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/19/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Accumulation of storage compounds during seed development plays an important role in the life cycle of oilseed plants; these compounds provide carbon and energy resources to support the establishment of seedlings. RESULTS In this study, we show that BnCIPK9 has a broad expression pattern in Brassica napus L. tissues and that wounding stress strongly induces its expression. The overexpression of BnCIPK9 during seed development reduced oil synthesis in transgenic B. napus compared to that observed in wild-type (WT) plants. Functional analysis revealed that seed oil content (OC) of complementation lines was similar to that of WT plants, whereas OC in Arabidopsis thaliana (L.) Heynh. Atcipk9 knockout mutants (cipk9) was higher than that of WT plants. Seedling of cipk9 mutants failed to establish roots on a sugar-free medium, but root establishment could be rescued by supplementation of sucrose or glucose. The phenotype of complementation transgenic lines was similar to that of WT plants when grown on sugar-free medium. Mutants, cipk9, cbl2, and cbl3 presented similar phenotypes, suggesting that CIPK9, CBL2, and CBL3 might work together and play similar roles in root establishment under sugar-free condition. CONCLUSION This study showed that BnCIPK9 and AtCIPK9 encode a protein kinase that is involved in sugar-related response and plays important roles in the regulation of energy reserves. Our results suggest that AtCIPK9 negatively regulates lipid accumulation and has a significant effect on early seedling establishment in A. thaliana. The functional characterization of CIPK9 provides insights into the regulation of OC, and might be used for improving OC in B. napus. We believe that our study makes a significant contribution to the literature because it provides information on how CIPKs coordinate stress regulation and energy signaling.
Collapse
Affiliation(s)
- Yanli Guo
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
- Crop Research Institute of TIANJIN Academy of Agricultural Sciences, Tianjin, 300384 China
| | - Yi Huang
- National Research Council Canada, Saskatoon, SK S7N0 W9 Canada
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuanyuan Pu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Nan Wang
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wenyun Shen
- National Research Council Canada, Saskatoon, SK S7N0 W9 Canada
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jitao Zou
- National Research Council Canada, Saskatoon, SK S7N0 W9 Canada
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
39
|
Yu C, Song L, Song J, Ouyang B, Guo L, Shang L, Wang T, Li H, Zhang J, Ye Z. ShCIGT, a Trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:140-149. [PMID: 29576067 DOI: 10.1016/j.plantsci.2018.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/09/2017] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Abiotic stress, such as drought and cold stress, have a major impact on plant growth and development. The trihelix transcription factor family plays important roles in plant morphological development and adaptation to abiotic stresses. In this study, we isolated a cold-induced gene named ShCIGT from the wild tomato species Solanum habrochaites and found that it contributes to abiotic stress tolerance. ShCIGT belongs to the GT-1 subfamily of the trihelix transcription factors. It was constitutively expressed in various tissues. Its expression was induced by multiple abiotic stresses and abscisic acid (ABA). Overexpression of ShCIGT in cultivated tomato enhanced cold and drought stress tolerance. In addition, the transgenic plants displayed a reduced sensitivity to ABA during post-germination growth. We found that ShCIGT interacts with SnRK1, an energy sensor in the metabolic signaling network, which controls plant metabolism, growth and development, and stress tolerance. Based on these data, we conclude ShCIGT may improve abiotic-stress tolerance in tomato by interacting with SnRK1.
Collapse
Affiliation(s)
- Chuying Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lulu Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianwen Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lijie Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lele Shang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
40
|
Okeke UG, Akdemir D, Rabbi I, Kulakow P, Jannink JL. Regional Heritability Mapping Provides Insights into Dry Matter Content in African White and Yellow Cassava Populations. THE PLANT GENOME 2018; 11:10.3835/plantgenome2017.06.0050. [PMID: 29505634 PMCID: PMC7822058 DOI: 10.3835/plantgenome2017.06.0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 05/21/2023]
Abstract
The HarvestPlus program for cassava ( Crantz) fortifies cassava with β-carotene by breeding for carotene-rich tubers (yellow cassava). However, a negative correlation between yellowness and dry matter (DM) content has been identified. We investigated the genetic control of DM in white and yellow cassava. We used regional heritability mapping (RHM) to associate DM with genomic segments in both subpopulations. Significant segments were subjected to candidate gene analysis and candidates were validated with prediction accuracies. The RHM procedure was validated via a simulation approach and revealed significant hits for white cassava on chromosomes 1, 4, 5, 10, 17, and 18, whereas hits for the yellow were on chromosome 1. Candidate gene analysis revealed genes in the carbohydrate biosynthesis pathway including plant serine-threonine protein kinases (SnRKs), UDP (uridine diphosphate)-glycosyltransferases, UDP-sugar transporters, invertases, pectinases, and regulons. Validation using 1252 unique identifiers from the SnRK gene family genome-wide recovered 50% of the predictive accuracy of whole-genome single nucleotide polymorphisms for DM, whereas validation using 53 likely genes (extracted from the literature) from significant segments recovered 32%. Genes including an acid invertase, a neutral or alkaline invertase, and a glucose-6-phosphate isomerase were validated on the basis of an a priori list for the cassava starch pathway, and also a fructose-biphosphate aldolase from the Calvin cycle pathway. The power of the RHM procedure was estimated as 47% when the causal quantitative trait loci generated 10% of the phenotypic variance (sample size = 451). Cassava DM genetics are complex and RHM may be useful for complex traits.
Collapse
Affiliation(s)
- Uche Godfrey Okeke
- Section of Plant Breeding and Genetics, School of Integrative
Plant Sci., College of Agriculture and Life Sci., Cornell Univ., 14853, Ithaca,
NY
| | - Deniz Akdemir
- Section of Plant Breeding and Genetics, School of Integrative
Plant Sci., College of Agriculture and Life Sci., Cornell Univ., 14853, Ithaca,
NY
- current address, Statgen Consulting, Ithaca, NY 14850
| | | | | | - Jean-Luc Jannink
- Section of Plant Breeding and Genetics, School of Integrative
Plant Sci., College of Agriculture and Life Sci., Cornell Univ., 14853, Ithaca,
NY
- USDAARS, Robert W. Holley Centre for Agriculture and Health, Tower
Road, Ithaca, NY 14853
| |
Collapse
|
41
|
Abraham PE, Garcia BJ, Gunter LE, Jawdy SS, Engle N, Yang X, Jacobson DA, Hettich RL, Tuskan GA, Tschaplinski TJ. Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus deltoides) leaves. PLoS One 2018; 13:e0190019. [PMID: 29447168 PMCID: PMC5813909 DOI: 10.1371/journal.pone.0190019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understood in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood (Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Overall, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.
Collapse
Affiliation(s)
- Paul E. Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Benjamin J. Garcia
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Lee E. Gunter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Sara S. Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Nancy Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Daniel A. Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Robert L. Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| |
Collapse
|
42
|
Wagatsuma T, Maejima E, Watanabe T, Toyomasu T, Kuroda M, Muranaka T, Ohyama K, Ishikawa A, Usui M, Hossain Khan S, Maruyama H, Tawaraya K, Kobayashi Y, Koyama H. Dark conditions enhance aluminum tolerance in several rice cultivars via multiple modulations of membrane sterols. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:567-577. [PMID: 29294038 PMCID: PMC5853495 DOI: 10.1093/jxb/erx414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/30/2017] [Indexed: 05/22/2023]
Abstract
Aluminum-sensitive rice (Oryza sativa L.) cultivars showed increased Al tolerance under dark conditions, because less Al accumulated in the root tips (1 cm) under dark than under light conditions. Under dark conditions, the root tip concentration of total sterols, which generally reduce plasma membrane permeabilization, was higher in the most Al-sensitive japonica cultivar, Koshihikari (Ko), than in the most Al-tolerant cultivar, Rikuu-132 (R132), but the phospholipid content did not differ between the two. The Al treatment increased the proportion of stigmasterol (which has no ability to reduce membrane permeabilization) out of total sterols similarly in both cultivars under light conditions, but it decreased more in Ko under dark conditions. The carotenoid content in the root tip of Al-treated Ko was significantly lower under dark than under light conditions, indicating that isopentenyl diphosphate transport from the cytosol to plastids was decreased under dark conditions. HMG2 and HMG3 (encoding the key sterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase) transcript levels in the root tips were enhanced under dark conditions. We suggest that the following mechanisms contribute to the increase in Al tolerance under dark conditions: inhibition of stigmasterol formation to retain membrane integrity; greater partitioning of isopentenyl diphosphate for sterol biosynthesis; and enhanced expression of HMGs to increase sterol biosynthesis.
Collapse
Affiliation(s)
- Tadao Wagatsuma
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
- Correspondence:
| | - Eriko Maejima
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | - Toshiya Muranaka
- Plant Science Center, RIKEN, Yokohama, Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | | | | | - Masami Usui
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | | | - Hayato Maruyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
43
|
Kim JA, Kim HS, Choi SH, Jang JY, Jeong MJ, Lee SI. The Importance of the Circadian Clock in Regulating Plant Metabolism. Int J Mol Sci 2017; 18:E2680. [PMID: 29232921 PMCID: PMC5751282 DOI: 10.3390/ijms18122680] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022] Open
Abstract
Carbohydrates are the primary energy source for plant development. Plants synthesize sucrose in source organs and transport them to sink organs during plant growth. This metabolism is sensitive to environmental changes in light quantity, quality, and photoperiod. In the daytime, the synthesis of sucrose and starch accumulates, and starch is degraded at nighttime. The circadian clock genes provide plants with information on the daily environmental changes and directly control many developmental processes, which are related to the path of primary metabolites throughout the life cycle. The circadian clock mechanism and processes of metabolism controlled by the circadian rhythm were studied in the model plant Arabidopsis and in the crops potato and rice. However, the translation of molecular mechanisms obtained from studies of model plants to crop plants is still difficult. Crop plants have specific organs such as edible seed and tuber that increase the size or accumulate valuable metabolites by harvestable metabolic components. Human consumers are interested in the regulation and promotion of these agriculturally significant crops. Circadian clock manipulation may suggest various strategies for the increased productivity of food crops through using environmental signal or overcoming environmental stress.
Collapse
Affiliation(s)
- Jin A Kim
- National Academy of Agricultural Science, Rural Development Administration, 370, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Korea.
| | - Hyun-Soon Kim
- Plant System Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Seo-Hwa Choi
- National Academy of Agricultural Science, Rural Development Administration, 370, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Korea.
| | - Ji-Young Jang
- Plant System Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Mi-Jeong Jeong
- National Academy of Agricultural Science, Rural Development Administration, 370, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Korea.
| | - Soo In Lee
- National Academy of Agricultural Science, Rural Development Administration, 370, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-500, Korea.
| |
Collapse
|
44
|
Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc Natl Acad Sci U S A 2017; 114:E9999-E10008. [PMID: 29087343 PMCID: PMC5699086 DOI: 10.1073/pnas.1714380114] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Worldwide, potato is the third most important crop grown for direct human consumption, but breeders have struggled to produce new varieties that outperform those released over a century ago, as evidenced by the most widely grown North American cultivar (Russet Burbank) released in 1876. Despite its importance, potato genetic diversity at the whole-genome level remains largely unexplored. Analysis of cultivated potato and its wild relatives using modern genomics approaches can provide insight into the genomic diversity of extant germplasm, reveal historic introgressions and hybridization events, and identify genes targeted during domestication that control variance for agricultural traits, all critical information to address food security in 21st century agriculture. Cultivated potatoes (Solanum tuberosum L.), domesticated from wild Solanum species native to the Andes of southern Peru, possess a diverse gene pool representing more than 100 tuber-bearing relatives (Solanum section Petota). A diversity panel of wild species, landraces, and cultivars was sequenced to assess genetic variation within tuber-bearing Solanum and the impact of domestication on genome diversity and identify key loci selected for cultivation in North and South America. Sequence diversity of diploid and tetraploid S. tuberosum exceeded any crop resequencing study to date, in part due to expanded wild introgressions following polyploidy that captured alleles outside of their geographic origin. We identified 2,622 genes as under selection, with only 14–16% shared by North American and Andean cultivars, showing that a limited gene set drove early improvement of cultivated potato, while adaptation of upland (S. tuberosum group Andigena) and lowland (S. tuberosum groups Chilotanum and Tuberosum) populations targeted distinct loci. Signatures of selection were uncovered in genes controlling carbohydrate metabolism, glycoalkaloid biosynthesis, the shikimate pathway, the cell cycle, and circadian rhythm. Reduced sexual fertility that accompanied the shift to asexual reproduction in cultivars was reflected by signatures of selection in genes regulating pollen development/gametogenesis. Exploration of haplotype diversity at potato’s maturity locus (StCDF1) revealed introgression of truncated alleles from wild species, particularly S. microdontum in long-day–adapted cultivars. This study uncovers a historic role of wild Solanum species in the diversification of long-day–adapted tetraploid potatoes, showing that extant natural populations represent an essential source of untapped adaptive potential.
Collapse
|
45
|
Zhang JJ, Xu JY, Lu FF, Jin SF, Yang H. Detoxification of Atrazine by Low Molecular Weight Thiols in Alfalfa (Medicago sativa). Chem Res Toxicol 2017; 30:1835-1846. [DOI: 10.1021/acs.chemrestox.7b00166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Jing Zhang
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College
of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiang Yan Xu
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Fan Lu
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - She Feng Jin
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
46
|
Liu XJ, Liu X, An XH, Han PL, You CX, Hao YJ. An Apple Protein Kinase MdSnRK1.1 Interacts with MdCAIP1 to Regulate ABA Sensitivity. PLANT & CELL PHYSIOLOGY 2017; 58:1631-1641. [PMID: 29016962 DOI: 10.1093/pcp/pcx096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/04/2017] [Indexed: 05/09/2023]
Abstract
ABA is a crucial phytohormone for development and stress responses in plants. Snf1-related protein kinase 1.1 (SnRK1.1) is involved in the ABA response. However, the molecular mechanism underlying the SnRK1.1 response to ABA is largely unknown. Here, it was found that overexpression of the apple MdSnRK1.1 gene enhanced ABA sensitivity in both transgenic apple calli and Arabidopsis seedlings. Subsequently, a yeast two-hybrid screen demonstrated that MdCAIP1 (C2-domain ABA Insensitive Protein1) interacted with MdSnRK1.1. Their interaction was further confirmed by pull-down and co-immunoprecipitation assays. Expression of the MdCAIP1 gene was positively induced by ABA. Its overexpression enhanced ABA sensitivity in transgenic apple calli. Furthermore, it was found that MdSnRK1.1 phosphorylated the MdCAIP1 protein in vivo and promoted its degradation in vitro and in vivo. As a result, MdSnRK1.1 inhibited MdCAIP1-mediated ABA sensitivity, and MdCAIP1 partially reduced MdSnRK1.1-mediated ABA sensitivity. Our findings indicate that MdSnRK1.1 plays an important role in the ABA response, partially by controlling the stability of the MdCAIP1 protein.
Collapse
Affiliation(s)
- Xiao-Juan Liu
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xin Liu
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiu-Hong An
- China Research Institute of Pomology, CAAS, Xingcheng 125100, China
| | - Peng-Liang Han
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
47
|
Soto-Burgos J, Bassham DC. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PLoS One 2017; 12:e0182591. [PMID: 28783755 PMCID: PMC5544219 DOI: 10.1371/journal.pone.0182591] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022] Open
Abstract
Autophagy is a degradation process in which cells break down and recycle their cytoplasmic contents when subjected to environmental stress or during cellular remodeling. The Arabidopsis thaliana SnRK1 complex is a protein kinase that senses changes in energy levels and triggers downstream responses to enable survival. Its mammalian ortholog, AMPK, and yeast ortholog, Snf-1, activate autophagy in response to low energy conditions. We therefore hypothesized that SnRK1 may play a role in the regulation of autophagy in response to nutrient or energy deficiency in Arabidopsis. To test this hypothesis, we determined the effect of overexpression or knockout of the SnRK1 catalytic subunit KIN10 on autophagy activation by abiotic stresses, including nutrient deficiency, salt, osmotic, oxidative, and ER stress. While wild-type plants had low basal autophagy activity in control conditions, KIN10 overexpression lines had increased autophagy under these conditions, indicating activation of autophagy by SnRK1. A kin10 mutant had a basal level of autophagy under control conditions similar to wild-type plants, but activation of autophagy by most abiotic stresses was blocked, indicating that SnRK1 is required for autophagy induction by a wide variety of stress conditions. In mammals, TOR is a negative regulator of autophagy, and AMPK acts to activate autophagy both upstream of TOR, by inhibiting its activity, and in a parallel pathway. Inhibition of Arabidopsis TOR leads to activation of autophagy; inhibition of SnRK1 did not block this activation. Furthermore, an increase in SnRK1 activity was unable to induce autophagy when TOR was also activated. These results demonstrate that SnRK1 acts upstream of TOR in the activation of autophagy in Arabidopsis.
Collapse
Affiliation(s)
- Junmarie Soto-Burgos
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Plant Sciences Institute, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
48
|
Shin J, Sánchez-Villarreal A, Davis AM, Du SX, Berendzen KW, Koncz C, Ding Z, Li C, Davis SJ. The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner. PLANT, CELL & ENVIRONMENT 2017; 40:997-1008. [PMID: 28054361 DOI: 10.1111/pce.12903] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 05/06/2023]
Abstract
Plants generate rhythmic metabolism during the repetitive day/night cycle. The circadian clock produces internal biological rhythms to synchronize numerous metabolic processes such that they occur at the required time of day. Metabolism conversely influences clock function by controlling circadian period and phase and the expression of core-clock genes. Here, we show that AKIN10, a catalytic subunit of the evolutionarily conserved key energy sensor sucrose non-fermenting 1 (Snf1)-related kinase 1 (SnRK1) complex, plays an important role in the circadian clock. Elevated AKIN10 expression led to delayed peak expression of the circadian clock evening-element GIGANTEA (GI) under diurnal conditions. Moreover, it lengthened clock period specifically under light conditions. Genetic analysis showed that the clock regulator TIME FOR COFFEE (TIC) is required for this effect of AKIN10. Taken together, we propose that AKIN10 conditionally works in a circadian clock input pathway to the circadian oscillator.
Collapse
Affiliation(s)
- Jieun Shin
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Alfredo Sánchez-Villarreal
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Colegio de Postgraduados campus Campeche, Campeche, 24750, Mexico
| | - Amanda M Davis
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Shen-Xiu Du
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Kenneth W Berendzen
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Tübingen, 72076, Germany
| | - Csaba Koncz
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Zhaojun Ding
- College of Life Sciences, Shandong University, Jinan, 250100, China
| | - Cuiling Li
- College of Life Sciences, Shandong University, Jinan, 250100, China
| | - Seth J Davis
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
49
|
Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L.). PLoS One 2017; 12:e0174425. [PMID: 28355304 PMCID: PMC5371334 DOI: 10.1371/journal.pone.0174425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/08/2017] [Indexed: 12/30/2022] Open
Abstract
Sucrose non-fermenting 1-related protein kinases (SnRKs) comprise a major family of signaling genes in plants and are associated with metabolic regulation, nutrient utilization and stress responses. This gene family has been proposed to be involved in sucrose signaling. In the present study, we cloned three copies of the TaSnRK2.10 gene from bread wheat on chromosomes 4A, 4B and 4D. The coding sequence (CDS) is 1086 bp in length and encodes a protein of 361 amino acids that exhibits functional domains shared with SnRK2s. Based on the haplotypes of TaSnRK2.10-4A (Hap-4A-H and Hap-4A-L), a cleaved amplified polymorphic sequence (CAPS) marker designated TaSnRK2.10-4A-CAPS was developed and mapped between the markers D-1092101 and D-100014232 using a set of recombinant inbred lines (RILs). The TaSnRK2.10-4B alleles (Hap-4B-G and Hap-4B-A) were transformed into allele-specific PCR (AS-PCR) markers TaSnRK2.10-4B-AS1 and TaSnRK2.10-4B-AS2, which were located between the markers D-1281577 and S-1862758. No diversity was found for TaSnRK2.10-4D. An association analysis using a natural population consisting of 128 winter wheat varieties in multiple environments showed that the thousand grain weight (TGW) and spike length (SL) of Hap-4A-H were significantly higher than those of Hap-4A-L, but pant height (PH) was significantly lower.
Collapse
|
50
|
Miao L, Mao X, Wang J, Liu Z, Zhang B, Li W, Chang X, Reynolds M, Wang Z, Jing R. Elite Haplotypes of a Protein Kinase Gene TaSnRK2.3 Associated with Important Agronomic Traits in Common Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:368. [PMID: 28400774 PMCID: PMC5368224 DOI: 10.3389/fpls.2017.00368] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/01/2017] [Indexed: 05/19/2023]
Abstract
Plant-specific protein kinase SnRK2s play crucial roles in response to various environmental stimuli. TaSnRK2.3, a SnRK2 member, was involved in the response to multiple abiotic stresses in wheat. To facilitate the use of TaSnRK2.3 in wheat breeding, the three genomic sequences of TaSnRK2.3, originating from the A, B, and D genomes of hexaploid wheat, were obtained. Sequence polymorphism assays showing 4 and 10 variations were detected at TaSnRK2.3-1A and at TaSnRK2.3-1B, respectively, yet no variation was identified at TaSnRK2.3-1D. Three haplotypes for A genome, and two main haplotypes for B genome of TaSnRK2.3 were identified in 32 genotypes. Functional markers (2.3AM1, 2.3AM2, 2.3BM1, 2.3BM2) were successfully developed to distinguish different haplotypes. Association analysis was performed with the general linear model in TASSEL 2.1. The results showed that both TaSnRK2.3-1A and TaSnRK2.3-1B were significantly associated with plant height (PH), length of peduncle and penultimate node, as well as 1,000-grain weight (TGW) under different environments. Additionally, TaSnRK2.3-1B was significantly associated with stem water-soluble carbohydrates at flowering and mid-grain filling stages. Hap-1A-1 had higher TGW and lower PH; Hap-1B-1 had higher TGW and stem water-soluble carbohydrates, as well as lower PH, thus the two haplotypes were considered as elite haplotypes. Geographic distribution and allelic frequencies indicated that the two preferred haplotypes Hap-1A-1 and Hap-1B-1 were positively selected in the process of Chinese wheat breeding. These results could be valuable for genetic improvement and germplasm enhancement using molecular marker assisted selection in wheat breeding.
Collapse
Affiliation(s)
- Lili Miao
- College of Agronomy, Northeast Agricultural UniversityHarbin, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- College of Life Science and Technology, Gansu Agricultural UniversityLanzhou, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zicheng Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Bin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Weiyu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | | | - Zhenhua Wang
- College of Agronomy, Northeast Agricultural UniversityHarbin, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|