1
|
Wang J, Zhou Y, Zhang T, Zhang Y, Lian Q. Pre-treatment of excess sludge with sulfide-containing wastewater for composite electron donor formation to enhance denitrification. BIORESOURCE TECHNOLOGY 2025; 432:132673. [PMID: 40374064 DOI: 10.1016/j.biortech.2025.132673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/27/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
Utilizing the fermentation liquor of excess sludge (ES) for the denitrification process represents an effective strategy for the valorization of ES and achieving environmentally friendly denitrification. However, ES fermentation technologies require significant energy or chemical product inputs. The present study proposes a novel method utilizing sulfide-containing wastewater to pretreat ES for generating dissolved organic matter (DOM), with sulfides and DOM collectively forming a composite electron donor (S-ES-DOM). The introduction of S-ES-DOM enables the establishment of integrated autotrophic and heterotrophic denitrification (IAHD) process, achieving 100 % denitrification efficiency. Molecular analysis identified an increase in biodegradable components within S-ES-DOM, which were effectively utilized during the IAHD process. The functional genes associated with nitrate-sulfide-organic carbon metabolism and electron transfer exhibited upregulation. The mixotrophic microbial community enables flexible adoption of multiple metabolic pathways. This strategy simultaneously achieves low-cost ES valorization and low-carbon nitrate/sulfide removal through integrated nitrogen-sulfur-carbon metabolism.
Collapse
Affiliation(s)
- Junjie Wang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Yongchao Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| | - Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Yan Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qiyu Lian
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| |
Collapse
|
2
|
Klimek D, Herold M, Vitorino IR, Dedova Z, Lemaigre S, Roussel J, Goux X, Lage OM, Calusinska M. Insights into the phylogenetic and metabolic diversity of Planctomycetota in anaerobic digesters and the isolation of novel Thermoguttaceae species. FEMS Microbiol Ecol 2025; 101:fiaf025. [PMID: 40097306 PMCID: PMC11929135 DOI: 10.1093/femsec/fiaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/27/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025] Open
Abstract
Studying bacteria in anaerobic digestion (AD) is crucial for optimizing microbial processes. While abundant taxa are often studied, less abundant groups may harbour novel metabolic potential. This study fills the gap by focusing on the Planctomycetota phylum, known to encode diverse carbohydrate-active enzymes (CAZymes). Despite their common presence in diverse aerobic and anaerobic environments, their role in AD is relatively unexplored. We utilized both culture-dependent and culture-independent techniques to investigate the phylogenetic and metabolic diversity of Planctomycetota within AD reactors. Our findings revealed that among the diverse planctomycetotal operational taxonomic units present, only a few are prevalent and abundant community members. Planctomycetota share functional traits with e.g. Verrucomicrobiota exhibiting distinct CAZyme gene repertoires that indicates specialization in degrading algal polysaccharides and glycoproteins. To explore the planctomycetotal metabolic capabilities, we monitored their presence in algal-fed digesters. Additionally, we isolated a strain from mucin-based medium, revealing its genetic potential for a mixotrophic lifestyle. Based on the genomic analysis, we propose to introduce the Candidatus Luxemburgiella decessa gen. nov. sp. nov., belonging to the Thermoguttaceae family within the Pirellulales order of the Planctomycetia class. This study enhances our understanding of Planctomycetota in AD by highlighting their phylogenetic diversity and metabolic capabilities.
Collapse
Affiliation(s)
- Dominika Klimek
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg
| | - Malte Herold
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
| | - Inês Rosado Vitorino
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Zuzana Dedova
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
| | - Sebastien Lemaigre
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
| | - Jimmy Roussel
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
| | - Xavier Goux
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
| | - Olga Maria Lage
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), 4450-208 Matosinhos, Portugal
| | - Magdalena Calusinska
- Environmental and Industrial Biotechnology, Luxembourg Institute of Science and Technology (LIST), L-4970 Hautcharage, Luxembourg
| |
Collapse
|
3
|
Zhu T, Ning P, Liu Y, Liu M, Yang J, Wang Z, Li M. Knowledge of microalgal Rubiscos helps to improve photosynthetic efficiency of crops. PLANTA 2025; 261:78. [PMID: 40042639 DOI: 10.1007/s00425-025-04645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/16/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION A comprehensive understanding of microalgal Rubiscos offers opportunities to enhance photosynthetic efficiency of crops. As food production fails to meet the needs of the expanding population, there is increasing concern about Ribulose-1, 5-diphosphate (RuBP) carboxylase/oxygenase (Rubisco), the enzyme that catalyzes CO2 fixation in photosynthesis. There have been many attempts to optimize Rubisco in crops, but the complex multicellular structure of higher plants makes optimization more difficult. Microalgae have the characteristics of rapid growth, simple structure and easy molecular modification, and the function and properties of their Rubiscos are basically the same as those of higher plants. Research on microalgal Rubiscos helps to broaden the understanding of Rubiscos of higher plants. Also, transferring all or part of better microalgal Rubiscos into crop cells or giving crop Rubiscos the advantages of microalgal Rubiscos can help improve the photosynthesis of crops. In this review, the distribution, origin, evolution, molecular structure, folding, assembly, activation and kinetic properties of microalgal Rubiscos are summarized. Moreover, the development of some effective methods to improve the properties and application of Rubiscos in microalgae are also described.
Collapse
Affiliation(s)
- Tongtong Zhu
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Peng Ning
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Yiguo Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 250100, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Zhaobao Wang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China.
| | - Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
4
|
Correa SS, Schultz J, Zahodnik-Huntington B, Naschberger A, Rosado AS. Carboxysomes: The next frontier in biotechnology and sustainable solutions. Biotechnol Adv 2025; 79:108511. [PMID: 39732444 DOI: 10.1016/j.biotechadv.2024.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Some bacteria possess microcompartments that function as protein-based organelles. Bacterial microcompartments (BMCs) sequester enzymes to optimize metabolic reactions. Several BMCs have been characterized to date, including carboxysomes and metabolosomes. Genomic analysis has identified novel BMCs and their loci, often including genes for signature enzymes critical to their function, but further characterization is needed to confirm their roles. Among the various BMCs, carboxysomes, which are found in cyanobacteria and some chemoautotrophic bacteria, and are most extensively investigated. These self-assembling polyhedral proteinaceous BMCs are essential for carbon fixation. Carboxysomes encapsulate the enzymes RuBisCo and carbonic anhydrase, which increase the carbon fixation rate in the cell and decrease the oxygenation rate by RuBisCo. The ability of carboxysomes to concentrate carbon dioxide in crops and industrially relevant microorganisms renders them attractive targets for carbon assimilation bioengineering. Thus, carboxysome characterization is the first step toward developing carboxysome-based applications. Therefore, this review comprehensively explores carboxysome morphology, physiology, and biochemistry. It also discusses recent advances in microscopy and complementary techniques for isolating and characterizing this versatile class of prokaryotic organelles.
Collapse
Affiliation(s)
- Sulamita Santos Correa
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia; Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Júnia Schultz
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia
| | - Brandon Zahodnik-Huntington
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia
| | - Andreas Naschberger
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia
| | - Alexandre Soares Rosado
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia.
| |
Collapse
|
5
|
Hoover RL, Küsel K, Chan CS. An organotrophic Sideroxydans reveals potential iron oxidation marker genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.639646. [PMID: 40060589 PMCID: PMC11888383 DOI: 10.1101/2025.02.27.639646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
To understand the ecophysiology and the role of iron-oxidizing bacteria (FeOB) in various ecosystems, we need to identify marker genes of the iron oxidation pathway to track activity in situ. The Gallionellaceae Sideroxydans sp. CL21, an autotrophic iron-oxidizing bacteria isolated from a peatland, is unusual amongst FeOB isolates in its genomic potential to utilize organic compounds as energy sources. Thus, it offers the unique opportunity to elucidate which genes are expressed under litho- versus organotrophic conditions. We demonstrated the growth of Sideroxydans sp. CL21 on organic substrates (lactate and pyruvate) and inorganic substrates (Fe(II), magnetite, thiosulfate, and S(0)). Thus, cells were capable of lithoautotrophic, organotrophic, and potentially organoheterotrophic growth. Surprisingly, when lactate-grown cells were given Fe(II), mid-log phase cells were unable to oxidize iron, while late-log phase cells oxidized iron. To elucidate iron oxidation pathways, we compared gene expression between mid-log (non-iron-oxidizing) and late-log (iron-oxidizing) lactate-grown cells. Genes for iron oxidases (cyc2, mtoA) were highly expressed at both time points, so did not correspond to iron oxidation capability, making them unsuitable marker genes of iron oxidation activity by themselves. However, genes encoding periplasmic and inner membrane cytochromes were significantly upregulated in cells capable of iron oxidation. These genes include mtoD, cymA/imoA, and a cluster of Fe(II)-responsive genes (ircABCD). These findings suggest Gallionellaceae regulate their iron oxidation pathways in multiple stages, with iron oxidase-encoding genes proactively expressed. Other genes encoding electron carriers are upregulated only when iron oxidation is needed, which makes these genes (i.e. ircABCD) good prospective indicators of iron oxidation ability.
Collapse
Affiliation(s)
- Rene L Hoover
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Clara S Chan
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Choi Y, Ganzorig M, Lee K. Analysis of the Genomes and Adaptive Traits of Skermanella cutis sp. nov., a Human Skin Isolate, and the Type Strains Skermanella rosea and Skermanella mucosa. Microorganisms 2025; 13:94. [PMID: 39858862 PMCID: PMC11767975 DOI: 10.3390/microorganisms13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The genus Skermanella comprises important soil bacteria that are often associated with the crop rhizospheres, but its physiological traits remain poorly understood. This study characterizes Skermanella sp. TT6T, isolated from human skin, with a focus on its metabolic and environmental adaptations. Genome sequencing and phylogenomic analyses revealed that the strain TT6T is most closely related to S. rosea M1T, with average nucleotide identity and digital DNA-DNA hybridization values of 94.14% (±0.5%) and 64.7%, respectively. Comparative genomic analysis showed that the strains TT6T, S. rosea M1T and S. mucosa 8-14-6T share the Calvin cycle, and possess photosynthetic genes associated with the purple bacteria-type photosystem II. The strains TT6T and S. rosea M1T exhibited growth in a nitrogen-free medium under microaerobic conditions, which were generated in test tubes containing 0.1% soft agar. Under these conditions, with nitrate as a nitrogen source, S. rosea M1T formed gases, indicating denitrification. Strain TT6T also contains gene clusters involved in trehalose and carotenoid biosynthesis, along with salt-dependent colony morphology changes, highlighting its adaptive versatility. Genomic analyses further identified pathways related to hydrogenase and sulfur oxidation. Phenotypic and chemotaxonomic traits of strain TT6T were also compared with closely related type strains, confirming its genotypic and phenotypic distinctiveness. The new species, Skermanella cutis sp. nov., is proposed, with TT6T (=KCTC 82306T = JCM 34945T) as the type strain. This study underscores the agricultural and ecological significance of the genus Skermanella.
Collapse
Affiliation(s)
| | | | - Kyoung Lee
- Department of Bio Health Science, Changwon National University, Changwon 51140, Gyeongnam, Republic of Korea; (Y.C.); (M.G.)
| |
Collapse
|
7
|
Wang J, Cheng Z, Su Y, Wang J, Chen D, Chen J, Wu X, Chen A, Gu Z. Metagenomics and metatranscriptomics insights into microbial enhancement of H 2S removal and CO 2 assimilation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123714. [PMID: 39675328 DOI: 10.1016/j.jenvman.2024.123714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
This study focuses on the coupled process of bio-enhanced absorption and biodesulfurization for the toxic gas H2S and the greenhouse gas CO2. The results show that on the basis of stabilized absorption of H2S and CO2 by alkaline solution (Stage I), the addition of air-lift bioreactor process solution in the absorption column enhanced their absorption (Stage II). Specifically, at constant inlet concentrations of H₂S and CO₂ of 3% (30,000 ppmv) and 30% (300,000 ppmv), respectively, the outlet gases were primarily H₂S, CO₂, and N₂. And the outlet H2S and CO2 concentrations decreased from 10,038 ± 1166 ppmv and 49,897 ± 2545 ppmv in Stage I to 940 ± 163 ppmv and 21,000 ± 2165 ppmv in Stage II. S0-producing performance (348 ± 20-503 ± 23 mg S/L) and biomass concentration (467 ± 13-677 ± 55 mg/L) in the subsequent bioreactor also increased in response to the enhanced absorption of H2S and CO2. Biologically enhanced H2S and CO2 absorption differs from physicochemical factors in that it depends on several physiological parameters such as microbial community composition and gene expression levels. In this study, the sulfur autotrophic denitrifying bacteria Thioalkalivibrio and Arenimonas had high abundance and activity (abundance: 69.5% and 21.1%, expression: 82.4% and 13.9%), and they were the main contributors to the bio-enhanced absorption of H2S and CO2 in this system. In addition, the main factor for enhanced H2S absorption could be the high expression of sulfide:quinone oxidoreductase (SQR, encoding gene sqr) (45 ± 9 to 821 ± 102 transcripts per million). Enhanced CO2 absorption could have been achieved by the oxidation of more H2S generating more energy to increase the carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, encoding genes rbcLS). Enhanced H2S absorption enhances CO2 absorption and facilitates microbial growth, which in turn benefits the metabolism of H2S, creating a complementary biologically enhanced absorption. This study provides a novel strategy, demonstrating the potential of autotrophic sulfide-oxidizing microorganisms in the simultaneous removal of H₂S and assimilation of CO₂, and offers a deeper understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Junjie Wang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China.
| | - Yunfei Su
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Dongzhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; School of Environment & Natural Resources, Zhejiang University of Science & Technology, HangZhou, 310023, China
| | - Xiaoming Wu
- Ruze Environment Engineerng Ltd., Nantong, Jiangsu, 226001, China
| | - Aobo Chen
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Zhenyu Gu
- Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China
| |
Collapse
|
8
|
Chen Z, Xia B, Yang Y, Hu S, Cheng K, Cheng P, Wang S, Chen G, Wang Q, Dong H, Guo C, Chen Y, Liu T. Evaluating the influence of alternating flooding and drainage on antimony speciation and translocation in a soil-rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177721. [PMID: 39581447 DOI: 10.1016/j.scitotenv.2024.177721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The quantitative evaluation of antimony (Sb) accumulation in rice has garnered significant attention due to the potential risks to human health. A pot experiment was conducted to investigate the essential nodes of Sb transfer in soil-rice system. Seven step extract results showed that during the flooding period, organic matter releasing was the primary factor contributing 14.1 % to the increase in Sb availability, while weakly crystallized Fe-Mn oxides and sulfides respectively accounted for 6.9 % and 1.42 %. During the drainage period, a notable increase in active Sb was observed, coinciding with decrease in Fe-Mn oxides and sulfides bond Sb. The migration rate constant of Sb from the root to the above-ground parts increased dramatically during the early flooding stage, being 2000 times higher than that in the mid-to-late stage. The shoot-to-grain migration rate constant remained low, at 1.07 × 10-2 d-1 and 3.52 × 10-3 d-1 during the flooding and drainage periods, respectively. Consequently, Sb accumulation amount in the grain (11.5 μg) was 2.2 times and 6.24 times lower than that in the roots and shoots, respectively. This study quantitatively evaluates the key processes controlling Sb transformation, uptake and translocation throughout different growth stages of the rice plant.
Collapse
Affiliation(s)
- Zhao Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bingqing Xia
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kuan Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pengfei Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shan Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haibo Dong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chao Guo
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Yating Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu 610207, China.
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
9
|
Feng X, Xing P, Tao Y, Wang X, Wu QL, Liu Y, Luo H. Functional traits and adaptation of lake microbiomes on the Tibetan Plateau. MICROBIOME 2024; 12:264. [PMID: 39707567 DOI: 10.1186/s40168-024-01979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Tibetan Plateau is credited as the "Third Pole" after the Arctic and the Antarctic, and lakes there represent a pristine habitat ideal for studying microbial processes under climate change. RESULTS Here, we collected 169 samples from 54 lakes including those from the central Tibetan region that was underrepresented previously, grouped them to freshwater, brackish, and saline lakes, and generated a genome atlas of the Tibetan Plateau Lake Microbiome. This genomic atlas comprises 8271 metagenome-assembled genomes featured by having significant phylogenetic and functional novelty. The microbiomes of freshwater lakes are enriched with genes involved in recalcitrant carbon degradation, carbon fixation, and energy transformation, whereas those of saline lakes possess more genes that encode osmolyte transport and synthesis and enable anaerobic metabolism. These distinct metabolic features match well with the geochemical properties including dissolved organic carbon, dissolved oxygen, and salinity that distinguish between these lakes. Population genomic analysis suggests that microbial populations in saline lakes are under stronger functional constraints than those in freshwater lakes. Although microbiomes in the Tibet lakes, particularly the saline lakes, may be subject to changing selective regimes due to ongoing warming, they may also benefit from the drainage reorganization and metapopulation reconnection. CONCLUSIONS Altogether, the Tibetan Plateau Lake Microbiome atlas serves as a valuable microbial genetic resource for biodiversity conservation and climate research. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyuan Feng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peng Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Ye Tao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaojun Wang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Yongqin Liu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
10
|
Li T, Lu L, Kang Z, Li H, Wu J, Du W. Contrasting responses of soil bacterial and fungal networks to photovoltaic power station. Front Microbiol 2024; 15:1494681. [PMID: 39723145 PMCID: PMC11669257 DOI: 10.3389/fmicb.2024.1494681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
The rapid expansion of solar photovoltaic (PV) power generation raises concerns regarding its impact on terrestrial ecosystems. Although the influence of PV panels on soil conditions and plant biomass is acknowledged, their effects on the assembly processes and co-occurrence networks of soil microbial communities remain understudied. Clarifying this influence is crucial for understanding the effects of photovoltaic panels on soil ecosystem functions. In this study, we first explored the effects of PV panels on soil properties. Then, using amplicon sequencing, we analyzed the impact of PV panels on soil microbial diversity and function, focusing specifically on the assembly processes and co-occurrence networks of bacterial and fungal communities. Our results indicate that the installation of PV panels improved soil conditions, leading to concurrent effects on microbial community structure and function. This process appears to be deterministic, driven primarily by homogeneous selection. Notably, PV panels increased the complexity of bacterial networks while decreasing their stability. In contrast, PV panels did not affect the complexity of fungal networks despite their stability increased. These findings provide new evidence that soil bacterial networks are more sensitive to PV panels installation than fungal networks, deepening our understanding of land-use change effects on soil ecosystem functions. Moreover, our study demonstrates that higher complexity does not necessarily mean higher stability at least in soil microbial systems, challenging the notion that ecological complexity favors their stability.
Collapse
Affiliation(s)
- Teng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Leilei Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ziqing Kang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huijun Li
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jihua Wu
- College of Ecology, Lanzhou University, Lanzhou, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Jaffe AL, Harrison K, Wang RZ, Taylor-Kearney LJ, Jain N, Prywes N, Shih PM, Young J, Rocap G, Dekas AE. Cyanobacteria from marine oxygen-deficient zones encode both form I and form II Rubiscos. Proc Natl Acad Sci U S A 2024; 121:e2418345121. [PMID: 39585972 PMCID: PMC11626144 DOI: 10.1073/pnas.2418345121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Cyanobacteria are highly abundant in the marine photic zone and primary drivers of the conversion of inorganic carbon into biomass. To date, all studied cyanobacterial lineages encode carbon fixation machinery relying upon form I Rubiscos within a CO2-concentrating carboxysome. Here, we report that the uncultivated anoxic marine zone (AMZ) IB lineage of Prochlorococcus from pelagic oxygen-deficient zones (ODZs) harbors both form I and form II Rubiscos, the latter of which are typically noncarboxysomal and possess biochemical properties tuned toward low-oxygen environments. We demonstrate that these cyanobacterial form II enzymes are functional in vitro and were likely acquired from proteobacteria. Metagenomic analysis reveals that AMZ IB are essentially restricted to ODZs in the Eastern Pacific, suggesting that form II acquisition may confer an advantage under low-O2 conditions. AMZ IB populations express both forms of Rubisco in situ, with the highest form II expression at depths where oxygen and light are low, possibly as a mechanism to increase the efficiency of photoautotrophy under energy limitation. Our findings expand the diversity of carbon fixation configurations in the microbial world and may have implications for carbon sequestration in natural and engineered systems.
Collapse
Affiliation(s)
- Alexander L. Jaffe
- Department of Earth System Science, Stanford University, Stanford, CA94305
| | - Kaitlin Harrison
- School of Oceanography, University of Washington, Seattle, WA98195
| | - Renée Z. Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
| | | | - Navami Jain
- Biomedical Data Science Graduate Program, Stanford University, Stanford, CA94305
| | - Noam Prywes
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
| | - Patrick M. Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA94608
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Jodi Young
- School of Oceanography, University of Washington, Seattle, WA98195
| | - Gabrielle Rocap
- School of Oceanography, University of Washington, Seattle, WA98195
| | - Anne E. Dekas
- Department of Earth System Science, Stanford University, Stanford, CA94305
| |
Collapse
|
12
|
Long C, Liu Z, Liu R, Yin L, Tan F, Wang Y, He G. Soil microbial CO 2 fixation rate disparities with different vegetation at a representative acidic red soil experimental station in China. Front Microbiol 2024; 15:1480484. [PMID: 39640861 PMCID: PMC11619433 DOI: 10.3389/fmicb.2024.1480484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Soil acidification poses a significant environmental challenge in China's southern red soil regions, impacting the abundance of soil microbes and their capacity for carbon fixation. The effect of vegetation types on soil's biological and abiotic components under acidification, and their regulatory role on the CO2 fixation mechanisms of soil autotrophic microorganisms, is difficult to examine. This gap in understanding constrains the assessment of the carbon fixation potential of red soils. To address this, indoor cultivation coupled with 13C stable isotope labeling was employed to evaluate the disparate abilities of autotrophic microorganisms to assimilate and store CO2 across five vegetation soils from the Qianyanzhou acidic red soil experimental station in China. Findings indicate that carbon fixation rates in these soils spanned from 4.25 to 18.15 mg C kg-1 soil d-1, with paddy field soils demonstrating superior carbon fixation capabilities compared to orchard, coniferous forest, broad-leaved forest, and wasteland soils. The 13C fixation rate in the 0-10 cm soil stratum surpassed that of the 10-30 cm layer across all vegetation types. High-throughput sequencing of 16S rRNA, following cbbL gene purification and amplification, identified Bradyrhizobium, Azospirillum, Burkholderia, Paraburkholderia, and Thermomonospora as the predominant autotrophic carbon-fixing microbial genera in the soil. PERMANOVA analysis attributed 65.72% of the variance in microbial community composition to vegetation type, while soil depth accounted for a mere 8.58%. Network analysis of microbial co-occurrence suggested the soil microbial interactions and network complexity changed with the change of vegetation types. Additionally, multiple linear regression analysis pinpointed the Shannon index and soil organic carbon (SOC) content as primary influencers of carbon fixation rates. Structural equation modeling suggested that iron enrichment and acidification indirectly modulated carbon fixation rates by altering SOC and autotrophic bacterial diversity. This investigation shows the spatial dynamics and mechanisms underpinning microbial carbon fixation across varying vegetation types in southern China's red soil regions.
Collapse
Affiliation(s)
- Chao Long
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji’an, Jiangxi, China
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
| | - Zuwen Liu
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji’an, Jiangxi, China
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
- School of Hydraulic & Ecological Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi, China
| | - Renlu Liu
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji’an, Jiangxi, China
| | - Li Yin
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji’an, Jiangxi, China
| | - Fuxing Tan
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji’an, Jiangxi, China
| | - Yian Wang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji’an, Jiangxi, China
| | - Genhe He
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji’an, Jiangxi, China
| |
Collapse
|
13
|
Ning Z, Sheng Y, Gan S, Guo C, Wang S, Cai P, Zhang M. Metagenomic and isotopic insights into carbon fixation by autotrophic microorganisms in a petroleum hydrocarbon impacted red clay aquifer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124824. [PMID: 39197642 DOI: 10.1016/j.envpol.2024.124824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Autotrophic microorganisms, the pivotal carbon fixers, exhibit a broad distribution across diverse environments, playing critical roles in the process of carbon sequestration. However, insights into their distribution characteristics in aquifers, particularly in those petroleum-hydrocarbon-contaminated (PHC) aquifers that were known for rich in heterotrophs, have been limited. In the study, groundwater samples were collected from red clay aquifers in the storage tank leakage area of a PHC site, a prevalent aquifer type in southern China and other regions. Metagenomics combined with hydrochemical and inorganic carbon isotope analyses were employed to elucidate the presence of microbial carbon fixation and its driving forces. Results showed that there were hundreds of autotrophic microorganisms participating in distinct carbon fixation processes in the red clay PHC aquifers. Reductive tricarboxylic acid (rTCA) and dicarboxylate/4-hydroxybutyrate (DC/4HB), as well as 3-hydroxypropionate (3HP or/and 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB)) were the predominant carbon fixation pathways. The abundances of carbon fixation genes and autotrophic microorganisms were significantly and positively correlated with hydrocarbon concentrations and δ13C of dissolved inorganic carbon (δ13C-DIC) values. This finding indicated that the petroleum hydrocarbon significantly promoted the proliferation of carbon fixation microorganisms, leading to a substantial uptake of inorganic carbon. Therefore, we deduce that this process holds considerable potential for carbon sequestration in PHC-contaminated aquifers.
Collapse
Affiliation(s)
- Zhuo Ning
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, 050083, China
| | - Yizhi Sheng
- Frontiers Science Center for Deep-Time Digital Earth, Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Shuang Gan
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, 050083, China; Hefei University of Technology, Hefei, 230009, China
| | - Caijuan Guo
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
| | - Shuaiwei Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
| | - Pingping Cai
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050061, China
| | - Min Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Zhengding, 050083, China.
| |
Collapse
|
14
|
Cheng J, Li CY, Meng M, Li JX, Liu SJ, Cao HY, Wang N, Zhang YZ, Liu LN. Molecular interactions of the chaperone CcmS and carboxysome shell protein CcmK1 that mediate β-carboxysome assembly. PLANT PHYSIOLOGY 2024; 196:1778-1787. [PMID: 39172695 PMCID: PMC11635287 DOI: 10.1093/plphys/kiae438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/24/2024]
Abstract
The carboxysome is a natural proteinaceous organelle for carbon fixation in cyanobacteria and chemoautotrophs. It comprises hundreds of protein homologs that self-assemble to form a polyhedral shell structure to sequester cargo enzymes, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), and carbonic anhydrases. How these protein components assemble to construct a functional carboxysome is a central question in not only understanding carboxysome structure and function but also synthetic engineering of carboxysomes for biotechnological applications. Here, we determined the structure of the chaperone protein CcmS, which has recently been identified to be involved in β-carboxysome assembly, and its interactions with β-carboxysome proteins. The crystal structure at 1.99 Å resolution reveals CcmS from Nostoc sp. PCC 7120 forms a homodimer, and each CcmS monomer consists of five α-helices and four β-sheets. Biochemical assays indicate that CcmS specifically interacts with the C-terminal extension of the carboxysome shell protein CcmK1, but not the shell protein homolog CcmK2 or the carboxysome scaffolding protein CcmM. Moreover, we solved the structure of a stable complex of CcmS and the C-terminus of CcmK1 at 1.67 Å resolution and unveiled how the CcmS dimer interacts with the C-terminus of CcmK1. These findings allowed us to propose a model to illustrate CcmS-mediated β-carboxysome assembly by interacting with CcmK1 at the outer shell surface. Collectively, our study provides detailed insights into the accessory factors that drive and regulate carboxysome assembly, thereby improving our knowledge of carboxysome structure, function, and bioengineering.
Collapse
Affiliation(s)
- Jin Cheng
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
| | - Meng Meng
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
| | - Jian-Xun Li
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shu-Jun Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
| | - Hai-Yan Cao
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
| | - Ning Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266071, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
15
|
Wieschollek J, Fuller D, Gahramanova A, Millen T, Mislay AJ, Payne RR, Walsh DP, Zhao Y, Carney M, Cross J, Kashem J, Korde R, Lacy C, Lyons N, Mason T, Torres-Betancourt K, Trapnell T, Dennison CL, Chaput D, Scott KM. A new type of carboxysomal carbonic anhydrase in sulfur chemolithoautotrophs from alkaline environments. Appl Environ Microbiol 2024; 90:e0107524. [PMID: 39177330 PMCID: PMC11409652 DOI: 10.1128/aem.01075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
Autotrophic bacteria are able to fix CO2 in a great diversity of habitats, even though this dissolved gas is relatively scarce at neutral pH and above. As many of these bacteria rely on CO2 fixation by ribulose 1,5-bisphospate carboxylase/oxygenase (RubisCO) for biomass generation, they must compensate for the catalytical constraints of this enzyme with CO2-concentrating mechanisms (CCMs). CCMs consist of CO2 and HCO3- transporters and carboxysomes. Carboxysomes encapsulate RubisCO and carbonic anhydrase (CA) within a protein shell and are essential for the operation of a CCM in autotrophic Bacteria that use the Calvin-Benson-Basham cycle. Members of the genus Thiomicrospira lack genes homologous to those encoding previously described CA, and prior to this work, the mechanism of function for their carboxysomes was unclear. In this paper, we provide evidence that a member of the recently discovered iota family of carbonic anhydrase enzymes (ιCA) plays a role in CO2 fixation by carboxysomes from members of Thiomicrospira and potentially other Bacteria. Carboxysome enrichments from Thiomicrospira pelophila and Thiomicrospira aerophila were found to have CA activity and contain ιCA, which is encoded in their carboxysome loci. When the gene encoding ιCA was interrupted in T. pelophila, cells could no longer grow under low-CO2 conditions, and CA activity was no longer detectable in their carboxysomes. When T. pelophila ιCA was expressed in a strain of Escherichia coli lacking native CA activity, this strain recovered an ability to grow under low CO2 conditions, and CA activity was present in crude cell extracts prepared from this strain. IMPORTANCE Here, we provide evidence that iota carbonic anhydrase (ιCA) plays a role in CO2 fixation by some organisms with CO2-concentrating mechanisms; this is the first time that ιCA has been detected in carboxysomes. While ιCA genes have been previously described in other members of bacteria, this is the first description of a physiological role for this type of carbonic anhydrase in this domain. Given its distribution in alkaliphilic autotrophic bacteria, ιCA may provide an advantage to organisms growing at high pH values and could be helpful for engineering autotrophic organisms to synthesize compounds of industrial interest under alkaline conditions.
Collapse
Affiliation(s)
- Jana Wieschollek
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Daniella Fuller
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Arin Gahramanova
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Terrence Millen
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Ashianna J. Mislay
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Ren R. Payne
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Daniel P. Walsh
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - YuXuan Zhao
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Madilyn Carney
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Jaden Cross
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - John Kashem
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Ruchi Korde
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Christine Lacy
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Noah Lyons
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Tori Mason
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | | | - Tyler Trapnell
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Clare L. Dennison
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Kathleen M. Scott
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
16
|
Aguiló-Nicolau P, Iñiguez C, Capó-Bauçà S, Galmés J. Rubisco kinetic adaptations to extreme environments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2599-2608. [PMID: 39080917 DOI: 10.1111/tpj.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 11/15/2024]
Abstract
Photosynthetic and chemosynthetic extremophiles have evolved adaptations to thrive in challenging environments by finely adjusting their metabolic pathways through evolutionary processes. A prime adaptation target to allow autotrophy in extreme conditions is the enzyme Rubisco, which plays a central role in the conversion of inorganic to organic carbon. Here, we present an extensive compilation of Rubisco kinetic traits from a wide range of species of bacteria, archaea, algae, and plants, sorted by phylogenetic group, Rubisco type, and extremophile type. Our results show that Rubisco kinetics for the few extremophile organisms reported up to date are placed at the margins of the enzyme's natural variability. Form ID Rubisco from thermoacidophile rhodophytes and form IB Rubisco from halophile terrestrial plants exhibit higher specificity and affinity for CO2 than their non-extremophilic counterparts, as well as higher carboxylation efficiency, whereas form ID Rubisco from psychrophile organisms possess lower affinity for O2. Additionally, form IB Rubisco from thermophile cyanobacteria shows enhanced CO2 specificity when compared to form IB non-extremophilic cyanobacteria. Overall, these findings highlight the unique characteristics of extremophile Rubisco enzymes and provide useful clues to guide next explorations aimed at finding more efficient Rubiscos.
Collapse
Affiliation(s)
- Pere Aguiló-Nicolau
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
17
|
Balda RS, Cogo C, Falduti O, Bongiorno FM, Brignoli D, Sandobal TJ, Althabegoiti MJ, Lodeiro AR. Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase Is Required in Bradyrhizobium diazoefficiens for Efficient Soybean Root Colonization and Competition for Nodulation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2362. [PMID: 39273846 PMCID: PMC11397080 DOI: 10.3390/plants13172362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
The Hyphomicrobiales (Rhizobiales) order contains soil bacteria with an irregular distribution of the Calvin-Benson-Bassham cycle (CBB). Key enzymes in the CBB cycle are ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), whose large and small subunits are encoded in cbbL and cbbS, and phosphoribulokinase (PRK), encoded by cbbP. These genes are often found in cbb operons, regulated by the LysR-type regulator CbbR. In Bradyrhizobium, pertaining to this order and bearing photosynthetic and non-photosynthetic species, the number of cbbL and cbbS copies varies, for example: zero in B. manausense, one in B. diazoefficiens, two in B. japonicum, and three in Bradyrhizobium sp. BTAi. Few studies addressed the role of CBB in Bradyrhizobium spp. symbiosis with leguminous plants. To investigate the horizontal transfer of the cbb operon among Hyphomicrobiales, we compared phylogenetic trees for concatenated cbbL-cbbP-cbbR and housekeeping genes (atpD-gyrB-recA-rpoB-rpoD). The distribution was consistent, indicating no horizontal transfer of the cbb operon in Hyphomicrobiales. We constructed a ΔcbbLS mutant in B. diazoefficiens, which lost most of the coding sequence of cbbL and has a frameshift creating a stop codon at the N-terminus of cbbS. This mutant nodulated normally but had reduced competitiveness for nodulation and long-term adhesion to soybean (Glycine max (L.) Merr.) roots, indicating a CBB requirement for colonizing soybean rhizosphere.
Collapse
Affiliation(s)
- Rocío S Balda
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| | - Carolina Cogo
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
- Departamento de Ciencias Básicas, Facultad de Ingeniería, UNLP, La Plata 1900, Argentina
| | - Ornella Falduti
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| | - Florencia M Bongiorno
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata 1900, Argentina
| | - Damián Brignoli
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata 1900, Argentina
| | - Tamara J Sandobal
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata 1900, Argentina
| | - María Julia Althabegoiti
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| | - Aníbal R Lodeiro
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata 1900, Argentina
| |
Collapse
|
18
|
Xing W, Zhou G, Gao D, Zhang Z, Li L, Zheng W, Yao H. Carbon dioxide and weak magnetic field enhance iron-carbon micro-electrolysis combined autotrophic denitrification. BIORESOURCE TECHNOLOGY 2024; 406:131015. [PMID: 38906196 DOI: 10.1016/j.biortech.2024.131015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Combining iron-carbon micro-electrolysis and autotrophic denitrification is promising for nitrate removal from wastewater. In this study, four continuous reactors were constructed using CO2 and weak magnetic field (WMF) to address challenges like iron passivation and pH stability. In the reactors with CO2 + WMF (10 and 35 mT), the increase in total nitrogen removal efficiency was significantly higher (96.2 ± 1.6 % and 94.1 ± 2.7 %, respectively) than that of the control (51.6 ± 2.7 %), and Fe3O4 converted to low-density FeO(OH) and FeCO3, preventing passivation film formation. The WMF application decreased the N2O emissions flux by 8.7 % and 20.5 %, respectively. With CO2 + WMF, the relative enzyme activity and abundance of denitrifying bacteria, especially unclassified_Rhodocyclaceae and Denitratisoma, increased. Thus, this study demonstrates that CO2 and WMF optimize the nitrate removal process, significantly enhancing removal efficiency, reducing greenhouse gas emissions, and improving process stability.
Collapse
Affiliation(s)
- Wei Xing
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China; Tangshan Research Institute of Beijing Jiaotong University, Hebei 063000, PR China.
| | - Guangxin Zhou
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Daoqing Gao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China; China Institute of Marine Technology and Economy, Beijing 100081, PR China
| | - Zexi Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Longsheng Li
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Weijia Zheng
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China; Tangshan Research Institute of Beijing Jiaotong University, Hebei 063000, PR China.
| |
Collapse
|
19
|
Alarcon HV, Mohl JE, Chong GW, Betancourt A, Wang Y, Leng W, White JC, Xu J. Evidence for autotrophic growth of purple sulfur bacteria using pyrite as electron and sulfur source. Appl Environ Microbiol 2024; 90:e0086324. [PMID: 38899885 PMCID: PMC11267869 DOI: 10.1128/aem.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Purple sulfur bacteria (PSB) are capable of anoxygenic photosynthesis via oxidizing reduced sulfur compounds and are considered key drivers of the sulfur cycle in a range of anoxic environments. In this study, we show that Allochromatium vinosum (a PSB species) is capable of autotrophic growth using pyrite as the electron and sulfur source. Comparative growth profile, substrate characterization, and transcriptomic sequencing data provided valuable insight into the molecular mechanisms underlying the bacterial utilization of pyrite and autotrophic growth. Specifically, the pyrite-supported cell cultures ("py"') demonstrated robust but much slower growth rates and distinct patterns from their sodium sulfide-amended positive controls. Up to ~200-fold upregulation of genes encoding various c- and b-type cytochromes was observed in "py," pointing to the high relevance of these molecules in scavenging and relaying electrons from pyrite to cytoplasmic metabolisms. Conversely, extensive downregulation of genes related to LH and RC complex components indicates that the electron source may have direct control over the bacterial cells' photosynthetic activity. In terms of sulfur metabolism, genes encoding periplasmic or membrane-bound proteins (e.g., FccAB and SoxYZ) were largely upregulated, whereas those encoding cytoplasmic proteins (e.g., Dsr and Apr groups) are extensively suppressed. Other notable differentially expressed genes are related to flagella/fimbriae/pilin(+), metal efflux(+), ferrienterochelin(-), and [NiFe] hydrogenases(+). Characterization of the biologically reacted pyrite indicates the presence of polymeric sulfur. These results have, for the first time, put the interplay of PSB and transition metal sulfide chemistry under the spotlight, with the potential to advance multiple fields, including metal and sulfur biogeochemistry, bacterial extracellular electron transfer, and artificial photosynthesis. IMPORTANCE Microbial utilization of solid-phase substrates constitutes a critical area of focus in environmental microbiology, offering valuable insights into microbial metabolic processes and adaptability. Recent advancements in this field have profoundly deepened our knowledge of microbial physiology pertinent to these scenarios and spurred innovations in biosynthesis and energy production. Furthermore, research into interactions between microbes and solid-phase substrates has directly linked microbial activities to the surrounding mineralogical environments, thereby enhancing our understanding of the relevant biogeochemical cycles. Our study represents a significant step forward in this field by demonstrating, for the first time, the autotrophic growth of purple sulfur bacteria using insoluble pyrite (FeS2) as both the electron and sulfur source. The presented comparative growth profiles, substrate characterizations, and transcriptomic sequencing data shed light on the relationships between electron donor types, photosynthetic reaction center activities, and potential extracellular electron transfer in these organisms capable of anoxygenic photosynthesis. Furthermore, the findings of our study may provide new insights into early-Earth biogeochemical evolutions, offering valuable constraints for understanding the environmental conditions and microbial processes that shaped our planet's history.
Collapse
Affiliation(s)
- Hugo V. Alarcon
- Environmental Science and Engineering Program, the University of Texas at El Paso, El Paso, Texas, USA
| | - Jonathon E. Mohl
- Department of Mathematical Sciences, the University of Texas at El Paso, El Paso, Texas, USA
- Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, USA
| | - Grace W. Chong
- Department of Earth, Environmental and Resource Sciences, the University of Texas at El Paso, El Paso, Texas, USA
| | - Ana Betancourt
- Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, USA
| | - Yi Wang
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Weinan Leng
- The National Center for Earth and Environmental Nanotechnology Infrastructure, Blacksburg, Virginia, USA
| | - Jason C. White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Jie Xu
- Environmental Science and Engineering Program, the University of Texas at El Paso, El Paso, Texas, USA
- Department of Earth, Environmental and Resource Sciences, the University of Texas at El Paso, El Paso, Texas, USA
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
20
|
de Pins B, Greenspoon L, Bar-On YM, Shamshoum M, Ben-Nissan R, Milshtein E, Davidi D, Sharon I, Mueller-Cajar O, Noor E, Milo R. A systematic exploration of bacterial form I rubisco maximal carboxylation rates. EMBO J 2024; 43:3072-3083. [PMID: 38806660 PMCID: PMC11251275 DOI: 10.1038/s44318-024-00119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Autotrophy is the basis for complex life on Earth. Central to this process is rubisco-the enzyme that catalyzes almost all carbon fixation on the planet. Yet, with only a small fraction of rubisco diversity kinetically characterized so far, the underlying biological factors driving the evolution of fast rubiscos in nature remain unclear. We conducted a high-throughput kinetic characterization of over 100 bacterial form I rubiscos, the most ubiquitous group of rubisco sequences in nature, to uncover the determinants of rubisco's carboxylation velocity. We show that the presence of a carboxysome CO2 concentrating mechanism correlates with faster rubiscos with a median fivefold higher rate. In contrast to prior studies, we find that rubiscos originating from α-cyanobacteria exhibit the highest carboxylation rates among form I enzymes (≈10 s-1 median versus <7 s-1 in other groups). Our study systematically reveals biological and environmental properties associated with kinetic variation across rubiscos from nature.
Collapse
Affiliation(s)
- Benoit de Pins
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lior Greenspoon
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yinon M Bar-On
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Melina Shamshoum
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Roee Ben-Nissan
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Eliya Milshtein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dan Davidi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Aleph, Tel Aviv-Yafo, 6688210, Israel
| | - Itai Sharon
- Migal Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
21
|
Barco RA, Merino N, Lam B, Budnik B, Kaplan M, Wu F, Amend JP, Nealson KH, Emerson D. Comparative proteomics of a versatile, marine, iron-oxidizing chemolithoautotroph. Environ Microbiol 2024; 26:e16632. [PMID: 38861374 DOI: 10.1111/1462-2920.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/20/2024] [Indexed: 06/13/2024]
Abstract
This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium Ghiorsea bivora. To date, this is the only characterized species in the class Zetaproteobacteria that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments. Notably, a gene cluster upregulated during iron oxidation was identified. This cluster contains genes encoding for cytochromes that share sequence similarity with the known iron-oxidase, Cyc2. Interestingly, these cytochromes, conserved in both Bacteria and Archaea, do not exhibit the typical β-barrel structure of Cyc2. This cluster potentially encodes a biological nanowire-like transmembrane complex containing multiple redox proteins spanning the inner membrane, periplasm, outer membrane, and extracellular space. The upregulation of key genes associated with this complex during iron-oxidizing conditions was confirmed by quantitative reverse transcription-PCR. These findings were further supported by electromicrobiological methods, which demonstrated negative current production by G. bivora in a three-electrode system poised at a cathodic potential. This research provides significant insights into the biological function of chemolithoautotrophic iron oxidation.
Collapse
Affiliation(s)
- Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - N Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Lawrence Livermore National Lab, Biosciences and Biotechnology Division, Livermore, California, USA
| | - B Lam
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - B Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts, USA
| | - M Kaplan
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - F Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China
| | - J P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - K H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - D Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| |
Collapse
|
22
|
Ning Z, Cai P, Zhang M. Metagenomic analysis revealed highly diverse carbon fixation microorganisms in a petroleum-hydrocarbon-contaminated aquifer. ENVIRONMENTAL RESEARCH 2024; 247:118289. [PMID: 38266905 DOI: 10.1016/j.envres.2024.118289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
As one of the ultimate products of hydrocarbon biodegradation, inorganic carbon always be used to evaluate hydrocarbon biodegradation rates in petroleum-hydrocarbon-contaminated (PHC) aquifers. The evaluation method was challenged because of the existence of carbon fixation microorganisms, which may uptake inorganic carbons and consequently cause the biodegradation rates to be underestimated. We wonder if there are carbon fixation microorganisms in PHC aquifers. Although an extremely limited number of carbon fixation microorganisms in PHC sites have been studied in previous studies, the vast majority of microorganisms that participate in carbon fixation have not been systematically identified. To systematically reveal carbon fixation microorganisms and their survival environmental conditions, high-throughput metagenomic sequencing technologies, which are characterized by culture-independent, unbiased, and comprehensive methods for the detection and taxonomic characterization of microorganisms, were introduced to analyze the groundwater samples collected from a PHC aquifer. Results showed that 1041 genera were annotated as carbon fixation microorganisms, which accounted for 49% of the total number of genera in the PHC aquifer. Carbon fixation genes involved in Calvin-Benson-Bassham (CBB), 3-hydroxy propionate (3HP), reductive tricarboxylic acid (rTCA), and Wood-Ljungdahl (WL) cycles accounted for 2%, 41%, 34%, and 23% of the total carbon fixation genes, respectively, and 3HP, rTCA, and WL can be deemed as the dominant carbon fixation pathways. Most of the identified carbon fixation microorganisms are potential hydrocarbon biodegraders, and the most abundant carbon fixation microorganisms, such as Microbacterium, Novosphingobium, and Reyranella, were just the most abundant microorganisms in the aquifer system. It's deduced that most of the microorganisms in the aquifer were facultative autotrophic, and undertaking the dual responsibilities of degrading hydrocarbons to inorganic carbon and uptaking inorganic carbon to biomass.
Collapse
Affiliation(s)
- Zhuo Ning
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, China.
| | - Pingping Cai
- School of Water Resources and Environment, Hebei GEO University, China.
| | - Min Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, China.
| |
Collapse
|
23
|
Li Y, Su W, Wang X, Lu J, Zhang W, Wei S. In situ topotactic formation of an inorganic intergrowth bulk NiS/FeS@MgFe-LDH heterojunction to simulate CODH for the photocatalytic reduction of CO 2. NANOSCALE 2024. [PMID: 38415719 DOI: 10.1039/d3nr06581b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Enzyme-mimetic photocatalysis has been attracting much attention in bionic research, in which carbon monoxide dehydrogenase (CODH) is a suitable prototype for simulation to meet environmental and energy needs. In this study, we utilized the structural memory effect of layered double hydroxides (LDHs) to build inorganic intergrowth bulk heterojunctions (IIBHs) NiS/FeS@MgFe-LDHs via a pyrolytic topological vulcanization (PTV) method that imitated active C-clusters [Ni-4Fe-4S] in CODH. Enzyme mimicry was evaluated in terms of the microstructure and catalytic reaction site. The similarity between the microstructure of NiS/FeS@MgFe-LDHs and the CODH active group was demonstrated through XRD, XAFS and other characterisations. Subsequently, the obtained in situ irradiated X-ray photoelectron spectra and transient absorption spectra indicated the photogenerated electron transfer of the IIBH, wherein electrons finally accumulated in the conduction band of the NiS domain for the photocatalytic CO2 reduction reaction, which was similar to that of C-clusters [Ni-4Fe-4S] in which the Ni2+ ion was the reactive site. As a result, NiS/FeS@MgFe-LDHs achieved a high yield of CO at a rate of 2151.974 μmol g-1 h-1, which was 39.8 and 9.7 times more than that of NiMgFe-LDHs and NiMgFe-MMO, respectively. The study offers an innovative design route for developing IIBHs, providing novel opportunities for enzyme-mimetic photocatalysis.
Collapse
Affiliation(s)
- Yuexian Li
- State Key Laboratory of Chemical Resource Engineering and College of Chemistry, Beijing University of Chemical Technology, P. Box 98, Beisanhuan East Road 15, Beijing 100029, P. R. China.
| | - Wenli Su
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Xinjiekou Outside Street 19, Beijing 100875, China.
| | - Xiaoyan Wang
- State Key Laboratory of Chemical Resource Engineering and College of Chemistry, Beijing University of Chemical Technology, P. Box 98, Beisanhuan East Road 15, Beijing 100029, P. R. China.
| | - Jun Lu
- State Key Laboratory of Chemical Resource Engineering and College of Chemistry, Beijing University of Chemical Technology, P. Box 98, Beisanhuan East Road 15, Beijing 100029, P. R. China.
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P. Box 98, Beisanhuan East Road 15, Beijing 100029, P. R. China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Xinjiekou Outside Street 19, Beijing 100875, China.
| | - Shuo Wei
- College of Chemistry, Beijing Normal University, Xinjiekou Outside Street 19, Beijing 100875, P. R. China.
| |
Collapse
|
24
|
Wei W, Shi X, Wang M, Zhou Z. Manure application maintained the CO 2 fixation activity of soil autotrophic bacteria but changed its ecological characteristics in an entisol of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169630. [PMID: 38154636 DOI: 10.1016/j.scitotenv.2023.169630] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
The response of soil autotrophs to anthropogenic activities has attracted increasing attention against the background of global change. Here, three entisol plots under different fertilizing regimes, including no fertilization (CK), manure (M), and a combined application of chemical fertilizer and manure (NPKM) were selected, and then the soil RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) activity and cbbl (gene encoding the large subunit of RubisCO) composition were measured to indicate the activity and community of autotrophic bacteria, respectively. The results revealed that the RubisCO activity of CK showed no difference from that of M but was significantly higher than that of NPKM. The CK and M had the lowest and highest soil cbbl abundance, respectively. The α-diversity of soil cbbl-carrying bacteria showed no significant difference among these treatments, whereas they showed significantly different community structures of cbbl-carrying bacteria. Meanwhile, compared with CK, M had significantly lower abundances of bacterial species with the functions of nitrogen fixation (Azoarcus sp.KH32C) or detoxification (Methylibium petroleiphilum), indicating that manure application might have an inhibiting potential to some beneficial autotrophic bacterial species in this entisol.
Collapse
Affiliation(s)
- Wanling Wei
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400715, China; The National Monitoring Base for Purple Soil Fertility and Fertilizer Efficiency, Southwest University, Chongqing 400715, China
| | - Mingxia Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhifeng Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
25
|
Sun H, Su X, Jin L, Li C, Kou J, Zhang J, Li X. Response of Carbon-Fixing Bacteria to Patchy Degradation of the Alpine Meadow in the Source Zone of the Yellow River, West China. PLANTS (BASEL, SWITZERLAND) 2024; 13:579. [PMID: 38475426 DOI: 10.3390/plants13050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
This study aims to enlighten our understanding of the distribution of soil carbon-fixing bacteria (cbbL-harboring bacteria) and their community diversity in differently degraded patches at three altitudes. MiSeq high-throughput sequencing technology was used to analyze the soil carbon-fixing bacteria community diversity of degraded patches and healthy meadow at three altitudes. Redundancy analysis (RDA) and structural equation model (SEM) were used to analyze the correlation and influence path between environmental factors and carbon-fixing bacteria. The results showed that degradation reduced the relative abundance of Proteobacteria from 99.67% to 95.57%. Sulfurifustis, Cupriavidus, and Alkalispirillum were the dominant genera at the three altitudes. Hydrogenophaga and Ectothiorhodospira changed significantly with altitude. RDA results confirmed that available phosphorus (AP) was strongly and positively correlated with Proteobacteria. AP and total nitrogen (TN) were strongly and positively correlated with Hydrogenophaga. Grass coverage and sedge aboveground biomass were strongly and positively correlated with Sulfurifustis and Ectothiorhodospira, respectively. Elevation adversely affected the relative abundance of dominant carbon-fixing bacteria and diversity index by reducing the coverage of grass and soil volumetric moisture content (SVMC) indirectly, and also had a direct positive impact on the Chao1 index (path coefficient = 0.800). Therefore, increasing the content of nitrogen, phosphorus and SVMC and vegetation coverage, especially sedge and grass, will be conducive to the recovery of the diversity of soil carbon-fixing bacteria and improve the soil autotrophic microbial carbon sequestration potential in degraded meadows, especially in high-altitude areas.
Collapse
Affiliation(s)
- Huafang Sun
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
- College of Eco-Environment and Resources, Qinghai University for Nationalities, Xining 810007, China
| | - Xiaoxue Su
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Liqun Jin
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Chengyi Li
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Jiancun Kou
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jing Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Xilai Li
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
26
|
Dong L, Wang X, Tong H, Lv Y, Chen M, Li J, Liu C. Distribution and correlation of iron oxidizers and carbon-fixing microbial communities in natural wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168719. [PMID: 38040374 DOI: 10.1016/j.scitotenv.2023.168719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Most microaerophilic Fe(II)-oxidizing bacteria (mFeOB) belonging to the family Gallionellaceae are autotrophic microorganisms that can use inorganic carbon to drive carbon sequestration in wetlands. However, the relationship between microorganisms involved in Fe and C cycling is not well understood. Here, soil samples were collected from different wetlands to explore the distribution and correlation of Gallionella-related mFeOB and carbon-fixing microorganisms containing cbbL and cbbM genes. A significant positive correlation was found between the abundances of mFeOB and the cbbL gene, as well as a highly significant positive correlation between the abundances of mFeOB and the cbbM gene, indicating the distribution of mFeOB in co-occurrence with carbon-fixing microorganisms in wetlands. The mFeOB were mainly dominated by Sideroxydans lithotrophicus ES-1 and Gallionella capsiferriformans ES-2 in all wetland soils. The structures of the carbon-fixing microbial communities were similar in these wetlands, mainly consisting of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. The extractable Fe(II) concentrations affected the community composition of mFeOB, resulting in a significant difference in the relative abundances of the dominant FeOB. The main factors affecting cbbL-related microbial communities were dissolved inorganic carbon and oxygen, soil redox potential, and sodium acetate-extracted Fe(II). The composition of cbbM-related microbial communities was mainly affected by acetate-extracted Fe(II) and soil redox potential. In addition, the positive correlation between these functional microorganisms suggests that they play a synergistic role in Fe(II) oxidation and carbon fixation in wetland soil ecosystems. Our results suggest a cryptic relationship between mFeOB and carbon-fixing microorganisms in wetlands and that the microbial community structure can be effectively altered by regulating their physicochemical properties, thus affecting the capacity of carbon sequestration.
Collapse
Affiliation(s)
- Leheng Dong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xugang Wang
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Yahui Lv
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jiahui Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
27
|
Petushkova E, Khasimov M, Mayorova E, Delegan Y, Frantsuzova E, Bogun A, Galkina E, Tsygankov A. The Complete Genome of a Novel Typical Species Thiocapsa bogorovii and Analysis of Its Central Metabolic Pathways. Microorganisms 2024; 12:391. [PMID: 38399794 PMCID: PMC10892978 DOI: 10.3390/microorganisms12020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The purple sulfur bacterium Thiocapsa roseopersicina BBS is interesting from both fundamental and practical points of view. It possesses a thermostable HydSL hydrogenase, which is involved in the reaction of reversible hydrogen activation and a unique reaction of sulfur reduction to hydrogen sulfide. It is a very promising enzyme for enzymatic hydrogenase electrodes. There are speculations that HydSL hydrogenase of purple bacteria is closely related to sulfur metabolism, but confirmation is required. For that, the full genome sequence is necessary. Here, we sequenced and assembled the complete genome of this bacterium. The analysis of the obtained whole genome, through an integrative approach that comprised estimating the Average Nucleotide Identity (ANI) and digital DNA-DNA hybridization (DDH) parameters, allowed for validation of the systematic position of T. roseopersicina as T. bogorovii BBS. For the first time, we have assembled the whole genome of this typical strain of a new bacterial species and carried out its functional description against another purple sulfur bacterium: Allochromatium vinosum DSM 180T. We refined the automatic annotation of the whole genome of the bacteria T. bogorovii BBS and localized the genomic positions of several studied genes, including those involved in sulfur metabolism and genes encoding the enzymes required for the TCA and glyoxylate cycles and other central metabolic pathways. Eleven additional genes coding proteins involved in pigment biosynthesis was found.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| | - Makhmadyusuf Khasimov
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| | - Ekaterina Mayorova
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.); (A.B.)
| | - Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.); (A.B.)
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (Y.D.); (E.F.); (A.B.)
| | - Elena Galkina
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia;
| | - Anatoly Tsygankov
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (M.K.); (E.M.); (A.T.)
| |
Collapse
|
28
|
Masuda N, Kato S, Ohkuma M, Endo K. Metagenomic Insights into Ecophysiology of Zetaproteobacteria and Gammaproteobacteria in Shallow Zones within Deep-sea Massive Sulfide Deposits. Microbes Environ 2024; 39:ME23104. [PMID: 39343535 PMCID: PMC11427306 DOI: 10.1264/jsme2.me23104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
Deep-sea massive sulfide deposits serve as energy sources for chemosynthetic ecosystems in dark, cold environments even after hydrothermal activity ceases. However, the vertical distribution of microbial communities within sulfide deposits along their depth from the seafloor as well as their ecological roles remain unclear. We herein conducted a culture-independent metagenomic ana-lysis of a core sample of massive sulfide deposits collected in a hydrothermally inactive field of the Southern Mariana Trough, Western Pacific, by drilling (sample depth: 0.52 m below the seafloor). Based on the gene context of the metagenome-assembled genomes (MAGs) obtained, we showed the metabolic potential of as-yet-uncultivated microorganisms, particularly those unique to the shallow zone rich in iron hydroxides. Some members of Gammaproteobacteria have potential for the oxidation of reduced sulfur species (such as sulfide and thiosulfate) to sulfate coupled to nitrate reduction to ammonia and carbon fixation via the Calvin-Benson-Bassham (CBB) cycle, as the primary producers. The Zetaproteobacteria member has potential for iron oxidation coupled with microaerobic respiration. A comparative ana-lysis with previously reported metagenomes from deeper zones (~2 m below the seafloor) of massive sulfide deposits revealed a difference in the relative abundance of each putative primary producer between the shallow and deep zones. Our results expand knowledge on the ecological potential of uncultivated microorganisms in deep-sea massive sulfide deposits and provide insights into the vertical distribution patterns of chemosynthetic ecosystems.
Collapse
Affiliation(s)
- Nao Masuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074, Japan
- Submarine Resources Research Center (SRRC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074, Japan
| | - Kazuyoshi Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| |
Collapse
|
29
|
Espada‐Hinojosa S, Karthäuser C, Srivastava A, Schuster L, Winter T, de Oliveira AL, Schulz F, Horn M, Sievert S, Bright M. Comparative genomics of a vertically transmitted thiotrophic bacterial ectosymbiont and its close free-living relative. Mol Ecol Resour 2024; 24:e13889. [PMID: 38010882 PMCID: PMC10952691 DOI: 10.1111/1755-0998.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/31/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Thiotrophic symbioses between sulphur-oxidizing bacteria and various unicellular and metazoan eukaryotes are widespread in reducing marine environments. The giant colonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic symbionts that has been cultivated along with its symbiont, the vertically transmitted ectosymbiont Candidatus Thiobius zoothamnicola (short Thiobius). Because theoretical predictions posit a smaller genome in vertically transmitted endosymbionts compared to free-living relatives, we investigated whether this is true also for an ectosymbiont. We used metagenomics to recover the high-quality draft genome of this bacterial symbiont. For comparison we have also sequenced a closely related free-living cultured but not formally described strain Milos ODIII6 (short ODIII6). We then performed comparative genomics to assess the functional capabilities at gene, metabolic pathway and trait level. 16S rRNA gene trees and average amino acid identity confirmed the close phylogenetic relationship of both bacteria. Indeed, Thiobius has about a third smaller genome than its free-living relative ODIII6, with reduced metabolic capabilities and fewer functional traits. The functional capabilities of Thiobius were a subset of those of the more versatile ODIII6, which possessed additional genes for oxygen, sulphur and hydrogen utilization and for the acquisition of phosphorus illustrating features that may be adaptive for the unstable environmental conditions at hydrothermal vents. In contrast, Thiobius possesses genes potentially enabling it to utilize lactate and acetate heterotrophically, compounds that may be provided as byproducts by the host. The present study illustrates the effect of strict host-dependence of a bacterial ectosymbiont on genome evolution and host adaptation.
Collapse
Affiliation(s)
| | - Clarissa Karthäuser
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Abhishek Srivastava
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Lukas Schuster
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Deakin UniversityBurwoodAustralia
| | - Teresa Winter
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - André Luiz de Oliveira
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Frederik Schulz
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Present address:
DOE Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Matthias Horn
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Stefan Sievert
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Monika Bright
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| |
Collapse
|
30
|
Hribovšek P, Olesin Denny E, Dahle H, Mall A, Øfstegaard Viflot T, Boonnawa C, Reeves EP, Steen IH, Stokke R. Putative novel hydrogen- and iron-oxidizing sheath-producing Zetaproteobacteria thrive at the Fåvne deep-sea hydrothermal vent field. mSystems 2023; 8:e0054323. [PMID: 37921472 PMCID: PMC10734525 DOI: 10.1128/msystems.00543-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.
Collapse
Affiliation(s)
- Petra Hribovšek
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Emily Olesin Denny
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Håkon Dahle
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Achim Mall
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas Øfstegaard Viflot
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Chanakan Boonnawa
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Eoghan P. Reeves
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Ida Helene Steen
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Runar Stokke
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
31
|
Hoover RL, Keffer JL, Polson SW, Chan CS. Gallionellaceae pangenomic analysis reveals insight into phylogeny, metabolic flexibility, and iron oxidation mechanisms. mSystems 2023; 8:e0003823. [PMID: 37882557 PMCID: PMC10734462 DOI: 10.1128/msystems.00038-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Neutrophilic iron-oxidizing bacteria (FeOB) produce copious iron (oxyhydr)oxides that can profoundly influence biogeochemical cycles, notably the fate of carbon and many metals. To fully understand environmental microbial iron oxidation, we need a thorough accounting of iron oxidation mechanisms. In this study, we show the Gallionellaceae FeOB genomes encode both characterized iron oxidases as well as uncharacterized multiheme cytochromes (MHCs). MHCs are predicted to transfer electrons from extracellular substrates and likely confer metabolic capabilities that help Gallionellaceae occupy a range of different iron- and mineral-rich niches. Gallionellaceae appear to specialize in iron oxidation, so it would be advantageous for them to have multiple mechanisms to oxidize various forms of iron, given the many iron minerals on Earth, as well as the physiological and kinetic challenges faced by FeOB. The multiple iron/mineral oxidation mechanisms may help drive the widespread ecological success of Gallionellaceae.
Collapse
Affiliation(s)
- Rene L. Hoover
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Jessica L. Keffer
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Clara S. Chan
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
32
|
Wang Y, Huang Y, Zeng Q, Liu D, An S. Biogeographic distribution of autotrophic bacteria was more affected by precipitation than by soil properties in an arid area. Front Microbiol 2023; 14:1303469. [PMID: 38173682 PMCID: PMC10761425 DOI: 10.3389/fmicb.2023.1303469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Autotrophic bacteria play an important role in carbon dioxide fixation and are widespread in terrestrial ecosystems. However, the biogeographic patterns of autotrophic bacteria and the driving factors still remain poorly understood. Methods Herein, we conducted a 391-km north to south transect (mean annual precipitation <600 mm) survey in the Loess Plateau of China, to investigate the biogeographic distributions of autotrophic bacteria (RubisCO cbbL and cbbM genes) and the environmental drivers across different latitude sites with clear vegetational and climatic gradients. Results and discussion The soils in northern region with lower precipitation are dominated by grassland/forest, which is typically separated from the soils in southern region with higher precipitation. The community structure of autotrophic bacterial cbbL and cbbM genes generally differed between the soils in the southern and northern Loess Plateau, suggesting that precipitation and its related land use practices/ecosystem types, rather than local soil properties, are more important in shaping the soil autotrophic microorganisms. The cbbL-containing generalist OTUs were almost equally abundant across the northern and southern Loess Plateau, while the cbbM-containing bacterial taxa were more prevalent in the low precipitation northern region. Such differences indicate differentiate distribution patterns of cbbM- and cbbL-containing bacteria across the north to south transect. Our results suggest that the community composition and the differentiate distributions of soil cbbL- and cbbM-containing bacterial communities depend on precipitation and the related ecosystem types in the north to south transect in the Loess Plateau of China.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Yimei Huang
- College of Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Quanchao Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi Province, China
| |
Collapse
|
33
|
Liu AK, Kaeser B, Chen L, West-Roberts J, Taylor-Kearney LJ, Lavy A, Günzing D, Li WJ, Hammel M, Nogales E, Banfield JF, Shih PM. Deep-branching evolutionary intermediates reveal structural origins of form I rubisco. Curr Biol 2023; 33:5316-5325.e3. [PMID: 37979578 PMCID: PMC11309020 DOI: 10.1016/j.cub.2023.10.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 11/20/2023]
Abstract
The enzyme rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyzes the majority of biological carbon fixation on Earth. Although the vast majority of rubiscos across the tree of life assemble as homo-oligomers, the globally predominant form I enzyme-found in plants, algae, and cyanobacteria-forms a unique hetero-oligomeric complex. The recent discovery of a homo-oligomeric sister group to form I rubisco (named form I') has filled a key gap in our understanding of the enigmatic origins of the form I clade. However, to elucidate the series of molecular events leading to the evolution of form I rubisco, we must examine more distantly related sibling clades to contextualize the molecular features distinguishing form I and form I' rubiscos. Here, we present a comparative structural study retracing the evolutionary history of rubisco that reveals a complex structural trajectory leading to the ultimate hetero-oligomerization of the form I clade. We structurally characterize the oligomeric states of deep-branching form Iα and I'' rubiscos recently discovered from metagenomes, which represent key evolutionary intermediates preceding the form I clade. We further solve the structure of form I'' rubisco, revealing the molecular determinants that likely primed the enzyme core for the transition from a homo-oligomer to a hetero-oligomer. Our findings yield new insight into the evolutionary trajectory underpinning the adoption and entrenchment of the prevalent assembly of form I rubisco, providing additional context when viewing the enzyme family through the broader lens of protein evolution.
Collapse
Affiliation(s)
- Albert K Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA; Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Benjamin Kaeser
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - LinXing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob West-Roberts
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Leah J Taylor-Kearney
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Adi Lavy
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Damian Günzing
- Department of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA; School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, VIC 3053, Australia; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
34
|
Wang J, Cheng Z, Wang J, Chen D, Chen J, Yu J, Qiu S, Dionysiou DD. Enhancement of bio-S 0 recovery and revealing the inhibitory effect on microorganisms under high sulfide loading. ENVIRONMENTAL RESEARCH 2023; 238:117214. [PMID: 37783332 DOI: 10.1016/j.envres.2023.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Biodesulfurization is a mature technology, but obtaining biosulfur (S0) that can be easily settled naturally is still a challenge. Increasing the sulfide load is one of the known methods to obtain better settling of S0. However, the inhibitory effect of high levels of sulfide on microbes has also not been well studied. We constructed a high loading sulfide (1.55-10.86 kg S/m3/d) biological removal system. 100% sulfide removal and 0.56-2.53 kg S/m3/d S0 (7.0 ± 0.09-16.4 ± 0.25 μm) recovery were achieved at loads of 1.55-7.75 kg S/m3/d. Under the same load, S0 in the reflux sedimentation tank, which produced larger S0 particles (24.2 ± 0.73-53.8 ± 0.70 μm), increased the natural settling capacity and 45% recovery. For high level sulfide inhibitory effect, we used metagenomics and metatranscriptomics analyses. The increased sulfide load significantly inhibited the expression of flavin cytochrome c sulfide dehydrogenase subunit B (fccB) (Decreased from 615 ± 75 to 30 ± 5 TPM). At this time sulfide quinone reductase (SQR) (324 ± 185-1197 ± 51 TPM) was mainly responsible for sulfide oxidation and S0 production. When the sulfide load reached 2800 mg S/L, the SQR (730 ± 100 TPM) was also suppressed. This resulted in the accumulation of sulfide, causing suppression of carbon sequestration genes (Decreased from 3437 ± 842 to 665 ± 175 TPM). Other inhibitory effects included inhibition of microbial respiration, production of reactive oxygen species, and DNA damage. More sulfide-oxidizing bacteria (SOB) and newly identified potential SOB (99.1%) showed some activity (77.6%) upon sulfide accumulation. The main microorganisms in the sulfide accumulation environment were Thiomicrospiracea and Burkholderiaceae, whose sulfide oxidation capacity and respiration were not significantly inhibited. This study provides a new approach to enhance the natural sedimentation of S0 and describes new microbial mechanisms for the inhibitory effects of sulfide.
Collapse
Affiliation(s)
- Junjie Wang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, China.
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Dongzhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316004, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Jianming Yu
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China
| | - Songkai Qiu
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou, 310014, China; Haina-Water Engineering Research Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314000, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
35
|
Tang R, Yuan X, Yang J. Problems and corresponding strategies for converting CO 2 into value-added products in Cupriavidus necator H16 cell factories. Biotechnol Adv 2023; 67:108183. [PMID: 37286176 DOI: 10.1016/j.biotechadv.2023.108183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Elevated CO2 emissions have substantially altered the worldwide climate, while the excessive reliance on fossil fuels has exacerbated the energy crisis. Therefore, the conversion of CO2 into fuel, petroleum-based derivatives, drug precursors, and other value-added products is expected. Cupriavidus necator H16 is the model organism of the "Knallgas" bacterium and is considered to be a microbial cell factory as it can convert CO2 into various value-added products. However, the development and application of C. necator H16 cell factories has several limitations, including low efficiency, high cost, and safety concerns arising from the autotrophic metabolic characteristics of the strains. In this review, we first considered the autotrophic metabolic characteristics of C. necator H16, and then categorized and summarized the resulting problems. We also provided a detailed discussion of some corresponding strategies concerning metabolic engineering, trophic models, and cultivation mode. Finally, we provided several suggestions for improving and combining them. This review might help in the research and application of the conversion of CO2 into value-added products in C. necator H16 cell factories.
Collapse
Affiliation(s)
- Ruohao Tang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
36
|
Kikuchi S, Fujitani H, Ishii K, Isshiki R, Sekiguchi Y, Tsuneda S. Characterisation of bacteria representing a novel Nitrosomonas clade: Physiology, genomics and distribution of missing ammonia oxidizer. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:404-416. [PMID: 37078228 PMCID: PMC10472526 DOI: 10.1111/1758-2229.13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Members of the genus Nitrosomonas are major ammonia oxidizers that catalyse the first step of nitrification in various ecosystems. To date, six subgenus-level clades have been identified. We have previously isolated novel ammonia oxidizers from an additional clade (unclassified cluster 1) of the genus Nitrosomonas. In this study, we report unique physiological and genomic properties of the strain PY1, compared with representative ammonia-oxidising bacteria (AOB). The apparent half-saturation constant for total ammonia nitrogen and maximum velocity of strain PY1 were 57.9 ± 4.8 μM NH3 + NH4 + and 18.5 ± 1.8 μmol N (mg protein)-1 h-1 , respectively. Phylogenetic analysis based on genomic information revealed that strain PY1 belongs to a novel clade of the Nitrosomonas genus. Although PY1 contained genes to withstand oxidative stress, cell growth of PY1 required catalase to scavenge hydrogen peroxide. Environmental distribution analysis revealed that the novel clade containing PY1-like sequences is predominant in oligotrophic freshwater. Taken together, the strain PY1 had a longer generation time, higher yield and required reactive oxygen species (ROS) scavengers to oxidize ammonia, compared with known AOB. These findings expand our knowledge of the ecophysiology and genomic diversity of ammonia-oxidising Nitrosomonas.
Collapse
Affiliation(s)
- Shuta Kikuchi
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Hirotsugu Fujitani
- Department of Biological SciencesChuo UniversityTokyoJapan
- Research Organization for Nano & Life InnovationWaseda UniversityTokyoJapan
| | - Kento Ishii
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
- Research Organization for Nano & Life InnovationWaseda UniversityTokyoJapan
| | - Rino Isshiki
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Yuji Sekiguchi
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan
| | - Satoshi Tsuneda
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
- Research Organization for Nano & Life InnovationWaseda UniversityTokyoJapan
| |
Collapse
|
37
|
Zhang X, Paoletti MM, Izon G, Fournier GP, Summons RE. Late acquisition of the rTCA carbon fixation pathway by Chlorobi. Nat Ecol Evol 2023; 7:1398-1407. [PMID: 37537385 DOI: 10.1038/s41559-023-02147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
The reverse tricarboxylic acid (rTCA) cycle is touted as a primordial mode of carbon fixation due to its autocatalytic propensity and oxygen intolerance. Despite this inferred antiquity, however, the earliest rock record affords scant supporting evidence. In fact, based on the chimeric inheritance of rTCA cycle steps within the Chlorobiaceae, even the use of the chemical fossil record of this group is now subject to question. While the 1.64-billion-year-old Barney Creek Formation contains chemical fossils of the earliest known putative Chlorobiaceae-derived carotenoids, interferences from the accompanying hydrocarbon matrix have hitherto precluded the carbon isotope measurements necessary to establish the physiology of the organisms that produced them. Overcoming this obstacle, here we report a suite of compound-specific carbon isotope measurements identifying a cyanobacterially dominated ecosystem featuring heterotrophic bacteria. We demonstrate chlorobactane is 13C-depleted when compared to contemporary equivalents, showing only slight 13C-enrichment over co-existing cyanobacterial carotenoids. The absence of this diagnostic isotopic fingerprint, in turn, confirms phylogenomic hypotheses that call for the late assembly of the rTCA cycle and, thus, the delayed acquisition of autotrophy within the Chlorobiaceae. We suggest that progressive oxygenation of the Earth System caused an increase in the marine sulfate inventory thereby providing the selective pressure to fuel the Neoproterozoic shift towards energy-efficient photoautotrophy within the Chlorobiaceae.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.
| | - Madeline M Paoletti
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gareth Izon
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
38
|
Ghaly TM, Focardi A, Elbourne LDH, Sutcliffe B, Humphreys W, Paulsen IT, Tetu SG. Stratified microbial communities in Australia's only anchialine cave are taxonomically novel and drive chemotrophic energy production via coupled nitrogen-sulphur cycling. MICROBIOME 2023; 11:190. [PMID: 37626351 PMCID: PMC10463829 DOI: 10.1186/s40168-023-01633-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Anchialine environments, in which oceanic water mixes with freshwater in coastal aquifers, are characterised by stratified water columns with complex physicochemical profiles. These environments, also known as subterranean estuaries, support an abundance of endemic macro and microorganisms. There is now growing interest in characterising the metabolisms of anchialine microbial communities, which is essential for understanding how complex ecosystems are supported in extreme environments, and assessing their vulnerability to environmental change. However, the diversity of metabolic strategies that are utilised in anchialine ecosystems remains poorly understood. RESULTS Here, we employ shotgun metagenomics to elucidate the key microorganisms and their dominant metabolisms along a physicochemical profile in Bundera Sinkhole, the only known continental subterranean estuary in the Southern Hemisphere. Genome-resolved metagenomics suggests that the communities are largely represented by novel taxonomic lineages, with 75% of metagenome-assembled genomes assigned to entirely new or uncharacterised families. These diverse and novel taxa displayed depth-dependent metabolisms, reflecting distinct phases along dissolved oxygen and salinity gradients. In particular, the communities appear to drive nutrient feedback loops involving nitrification, nitrate ammonification, and sulphate cycling. Genomic analysis of the most highly abundant members in this system suggests that an important source of chemotrophic energy is generated via the metabolic coupling of nitrogen and sulphur cycling. CONCLUSION These findings substantially contribute to our understanding of the novel and specialised microbial communities in anchialine ecosystems, and highlight key chemosynthetic pathways that appear to be important in these energy-limited environments. Such knowledge is essential for the conservation of anchialine ecosystems, and sheds light on adaptive processes in extreme environments. Video Abstract.
Collapse
Affiliation(s)
- Timothy M Ghaly
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Amaranta Focardi
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Liam D H Elbourne
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | | | - William Humphreys
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
39
|
Ni G, Leung PM, Daebeler A, Guo J, Hu S, Cook P, Nicol GW, Daims H, Greening C. Nitrification in acidic and alkaline environments. Essays Biochem 2023; 67:753-768. [PMID: 37449414 PMCID: PMC10427799 DOI: 10.1042/ebc20220194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Aerobic nitrification is a key process in the global nitrogen cycle mediated by microorganisms. While nitrification has primarily been studied in near-neutral environments, this process occurs at a wide range of pH values, spanning ecosystems from acidic soils to soda lakes. Aerobic nitrification primarily occurs through the activities of ammonia-oxidising bacteria and archaea, nitrite-oxidising bacteria, and complete ammonia-oxidising (comammox) bacteria adapted to these environments. Here, we review the literature and identify knowledge gaps on the metabolic diversity, ecological distribution, and physiological adaptations of nitrifying microorganisms in acidic and alkaline environments. We emphasise that nitrifying microorganisms depend on a suite of physiological adaptations to maintain pH homeostasis, acquire energy and carbon sources, detoxify reactive nitrogen species, and generate a membrane potential at pH extremes. We also recognize the broader implications of their activities primarily in acidic environments, with a focus on agricultural productivity and nitrous oxide emissions, as well as promising applications in treating municipal wastewater.
Collapse
Affiliation(s)
- Gaofeng Ni
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Pok Man Leung
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Anne Daebeler
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, Brisbane, Queensland, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, Brisbane, Queensland, Australia
| | - Perran Cook
- School of Chemistry, Monash University, Melbourne, Victoria, Australia
| | - Graeme W Nicol
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Vienna, Austria
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Securing Antarctica's Environmental Future, Monash University, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Srivastava A, Verma D. Urbanization led to the abundance of Gram-negative, chemo-organo-heterotrophs, and antibiotic resistance genes in the downstream regions of the Ganga River water of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27552-7. [PMID: 37217817 DOI: 10.1007/s11356-023-27552-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
The present investigation assesses the bacterial microbiome and antibiotic resistance genes (ARGs) of the river Ganga from Uttarakhand (upstream region; US group) and Uttar Pradesh (downstream region; DS group) regions using a 16S rRNA amplicon-based metagenomic approach. Gram-negative, aerobic, and chemo-organotrophic bacteria made up the majority of the bacterial genera during the overall analysis. Physicochemical analysis revealed a higher concentration of nitrate and phosphate in the downstream sites of the Ganga River. The prevalence of Gemmatimonas, Flavobacterium, Arenimonas, and Verrucomicrobia in the water of the DS region indicates a high organic load. Pseudomonas and Flavobacterium emerged as the most prevalent genera among the 35 significantly different shared genera (p-value < 0.05) in the US and DS regions, respectively. Overall antibiotic resistance analysis of the samples showed the dominance of β-lactam resistance (33.92%) followed by CAMP (cationic antimicrobial peptide) resistance (27.75%), and multidrug resistance (19.17%), vancomycin resistance (17.84%), and tetracycline resistance (0.77%). While comparing, the DS group exhibited a higher abundance of ARGs over the US group, where the CAMP resistance and β-lactam ARGs were dominant in the respective regions. The correlation (p-value < 0.05) analysis showed that most bacteria exhibit a significant correlation with tetracycline resistance followed by the phenicol antibiotic. The present findings draw attention to the need for regulated disposal of multiform human-derived wastes into the Ganga River to reduce the irrepressible ARGs dissemination.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
41
|
Nguyen ND, Pulsford SB, Hee WY, Rae BD, Rourke LM, Price GD, Long BM. Towards engineering a hybrid carboxysome. PHOTOSYNTHESIS RESEARCH 2023; 156:265-277. [PMID: 36892800 PMCID: PMC10154267 DOI: 10.1007/s11120-023-01009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
Carboxysomes are bacterial microcompartments, whose structural features enable the encapsulated Rubisco holoenzyme to operate in a high-CO2 environment. Consequently, Rubiscos housed within these compartments possess higher catalytic turnover rates relative to their plant counterparts. This particular enzymatic property has made the carboxysome, along with associated transporters, an attractive prospect to incorporate into plant chloroplasts to increase future crop yields. To date, two carboxysome types have been characterized, the α-type that has fewer shell components and the β-type that houses a faster Rubisco. While research is underway to construct a native carboxysome in planta, work investigating the internal arrangement of carboxysomes has identified conserved Rubisco amino acid residues between the two carboxysome types which could be engineered to produce a new, hybrid carboxysome. In theory, this hybrid carboxysome would benefit from the simpler α-carboxysome shell architecture while simultaneously exploiting the higher Rubisco turnover rates in β-carboxysomes. Here, we demonstrate in an Escherichia coli expression system, that the Thermosynechococcus elongatus Form IB Rubisco can be imperfectly incorporated into simplified Cyanobium α-carboxysome-like structures. While encapsulation of non-native cargo can be achieved, T. elongatus Form IB Rubisco does not interact with the Cyanobium carbonic anhydrase, a core requirement for proper carboxysome functionality. Together, these results suggest a way forward to hybrid carboxysome formation.
Collapse
Affiliation(s)
- Nghiem Dinh Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia
| | - Sacha B Pulsford
- Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, The Australian National University, Building 46, Sullivan's Creek Road, Acton, ACT, 2601, Australia
| | - Wei Yi Hee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia
| | - Loraine M Rourke
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia
| | - G Dean Price
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia.
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia.
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Canberra, ACT, 2601, Australia.
| | - Benedict M Long
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| |
Collapse
|
42
|
Zhou J, Zheng Y, Hou L, An Z, Chen F, Liu B, Wu L, Qi L, Dong H, Han P, Yin G, Liang X, Yang Y, Li X, Gao D, Li Y, Liu Z, Bellerby R, Liu M. Effects of acidification on nitrification and associated nitrous oxide emission in estuarine and coastal waters. Nat Commun 2023; 14:1380. [PMID: 36914644 PMCID: PMC10011576 DOI: 10.1038/s41467-023-37104-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
In the context of an increasing atmospheric carbon dioxide (CO2) level, acidification of estuarine and coastal waters is greatly exacerbated by land-derived nutrient inputs, coastal upwelling, and complex biogeochemical processes. A deeper understanding of how nitrifiers respond to intensifying acidification is thus crucial to predict the response of estuarine and coastal ecosystems and their contribution to global climate change. Here, we show that acidification can significantly decrease nitrification rate but stimulate generation of byproduct nitrous oxide (N2O) in estuarine and coastal waters. By varying CO2 concentration and pH independently, an expected beneficial effect of elevated CO2 on activity of nitrifiers ("CO2-fertilization" effect) is excluded under acidification. Metatranscriptome data further demonstrate that nitrifiers could significantly up-regulate gene expressions associated with intracellular pH homeostasis to cope with acidification stress. This study highlights the molecular underpinnings of acidification effects on nitrification and associated greenhouse gas N2O emission, and helps predict the response and evolution of estuarine and coastal ecosystems under climate change and human activities.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China. .,School of Geographic Sciences, East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China.
| | - Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Yi Yang
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, 200241, China
| | - Ye Li
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Zhanfei Liu
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX, 78373, USA
| | - Richard Bellerby
- Norwegian Institute for Water Research, Thormøhlensgt 53D, 5006, Bergen, Norway
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| |
Collapse
|
43
|
Bi YH, Feng B, Xie WY, Ouyang LL, Ye RX, Zhou ZG. Nuclear-encoded CbbX located in chloroplast is essential for the activity of red-type Rubisco in Saccharina japonica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:236-245. [PMID: 36731285 DOI: 10.1016/j.plaphy.2023.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Saccharina japonica (Laminariales, Phaeophyta) is a brown alga and the major component of algae beds on the northwest coast of the Pacific Ocean. Rubisco, the key enzyme of CO2 fixation in photosynthesis, is inhibited by nonproductive binding of its substrate RuBP and other sugar phosphates. The inhibited Rubisco in eukaryotic phytoplankton of the red plastid lineage was reactivated by CbbXs, the red-type Rubisco activases, through the process of ATP-hydrolysis-powered remodeling. As well documented, CbbXs had two types of subunits encoded by the plastid or nuclear genome respectively. In this study, both proteins of S. japonica (SjCbbX-n and SjCbbX-p) were localized in the chloroplast illustrated by immuno-electron microscopy technique. GST pull-down detection verified SjCbbX-n could interact with SjCbbX-p. Two-dimensional electrophoresis-based Western blot analysis illustrated that the endogenous SjCbbXs could form heterohexamer in the ratio of 1:1. Activase activity assays showed that although both the recombinant proteins of SjCbbXs were functional, SjCbbX-n illustrated the significantly higher activase activity than SjCbbX-p. Notably, when the two proteins were mixed, the highest specific efficiencies of Rubisco were obtained. These results implied SjCbbX-n may be essential for Rubisco activation. Molecular evolutionary analysis of cbbx genes revealed that cbbx-n originated from the duplication of cbbx-p and then evolved independently under the positive selection pressure. This is the first report about the functional relationship between the two types of CbbXs in macroalge with the red-type Rubisco and provides useful information for revealing the mechanism of high photosynthetic efficiency of this important kelp.
Collapse
Affiliation(s)
- Yan-Hui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Bing Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Wei-Yi Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Long-Ling Ouyang
- Chinese Academy of Fishery Science East China Sea Fisheries Research Institute, No. 300 Jungong Road, Shanghai, 200090, China
| | - Rong-Xue Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- International Research Center for Marine Biosciences Conferred By Ministry of Science and Technology, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China.
| |
Collapse
|
44
|
Chen Y, Lyu Y, Zhang J, Li Q, Lyu L, Zhou Y, Kong J, Zeng X, Zhang S, Li J. Riddles of Lost City: Chemotrophic Prokaryotes Drives Carbon, Sulfur, and Nitrogen Cycling at an Extinct Cold Seep, South China Sea. Microbiol Spectr 2023; 11:e0333822. [PMID: 36511717 PMCID: PMC9927161 DOI: 10.1128/spectrum.03338-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Deep-sea cold seeps are one of the most productive ecosystems that sustained by hydrocarbons carried by the fluid. Once the seep fluid ceases, the thriving autotrophic communities die out, terming as the extinct seep. But heterotrophic fauna can still survive even for thousands of years. The critical role of prokaryotes in active seeps are well defined, but their functions in extinct seeps are poorly understood to date. Here, we clarified the diversity, taxonomic specificity, interspecies correlation, and metabolic profiles of sediment prokaryotes at an extinct seep site of Haima cold seep, South China Sea. Alpha diversity of archaea significantly increased, while that of bacteria remained unchanged in extinct seep compared to active seep. However, archaea composition did not differ significantly at extinct seep from active or nonseep sites based on weighted-unifrac dissimilarity, while bacteria composition exhibited significant difference. Distribution of archaea and bacteria showed clear specificity to extinct seeps, indicating the unique life strategies here. Prokaryotes might live chemolithoautotrophically on cycling of inorganic carbon, sulfur, and nitrogen, or chemoorganotrophically on recycling of hydrocarbons. Notably, many of the extinct seep specific species and networked keystone lineages are classified as Proteobacteria. Regarding the functional diversity and metabolic flexibility of this clade, Proteobacteria is supposed to integrate the geochemical cycles and play a critical role in energy and resource supplement for microbiome in extinct seep. Collectively, our findings shed lights on the microbial ecology and functional diversity in extinct seeps, providing new understanding of biogeochemical cycling after fluid cessation. IMPORTANCE This research paper uncovered the potential mechanisms for microbiota mediated geochemical cycling in extinct cold seep, advancing our understanding in deep sea microbiology ecology.
Collapse
Affiliation(s)
- Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
| | - Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Yingli Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
| | - Jie Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
| | - Xinyang Zeng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
| | - Si Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| | - Jie Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, People’s Republic of China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
45
|
Hoover RL, Keffer JL, Polson SW, Chan CS. Gallionellaceae pangenomic analysis reveals insight into phylogeny, metabolic flexibility, and iron oxidation mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525709. [PMID: 36747706 PMCID: PMC9900912 DOI: 10.1101/2023.01.26.525709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The iron-oxidizing Gallionellaceae drive a wide variety of biogeochemical cycles through their metabolisms and biominerals. To better understand the environmental impacts of Gallionellaceae, we need to improve our knowledge of their diversity and metabolisms, especially any novel iron oxidation mechanisms. Here, we used a pangenomic analysis of 103 genomes to resolve Gallionellaceae phylogeny and explore the range of genomic potential. Using a concatenated ribosomal protein tree and key gene patterns, we determined Gallionellaceae has four genera, divided into two groups-iron-oxidizing bacteria (FeOB) Gallionella, Sideroxydans, and Ferriphaselus with known iron oxidases (Cyc2, MtoA) and nitrite-oxidizing bacteria (NOB) Candidatus Nitrotoga with nitrite oxidase (Nxr). The FeOB and NOB have similar electron transport chains, including genes for reverse electron transport and carbon fixation. Auxiliary energy metabolisms including S oxidation, denitrification, and organotrophy were scattered throughout the Gallionellaceae FeOB. Within FeOB, we found genes that may represent adaptations for iron oxidation, including a variety of extracellular electron uptake (EEU) mechanisms. FeOB genomes encoded more predicted c-type cytochromes overall, notably more multiheme c-type cytochromes (MHCs) with >10 CXXCH motifs. These include homologs of several predicted outer membrane porin-MHC complexes, including MtoAB and Uet. MHCs are known to efficiently conduct electrons across longer distances and function across a wide range of redox potentials that overlap with mineral redox potentials, which can help expand the range of usable iron substrates. Overall, the results of pangenome analyses suggest that the Gallionellaceae genera Gallionella, Sideroxydans, and Ferriphaselus are primarily iron oxidizers, capable of oxidizing dissolved Fe2+ as well as a range of solid iron or other mineral substrates.
Collapse
Affiliation(s)
- Rene L Hoover
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Jessica L Keffer
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Clara S Chan
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
46
|
Continuous-flow membrane bioreactor enhances enrichment and culture of autotrophic nitrifying bacteria by removing extracellular free organic carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42378-42389. [PMID: 36648712 DOI: 10.1007/s11356-023-25253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/07/2023] [Indexed: 01/18/2023]
Abstract
An activated sludge system can be inoculated with enriched nitrifying bacteria to enhance NH4+-N removal, or enriched nitrifying bacteria can be added directly to a river to remove NH4+-N. However, the enrichment culture is still generally inefficient and the technical bottleneck has not been clarified. Previous studies have shown that extracellular free organic carbon (EFOC) inhibits the growth of some autotrophic bacteria, and separating EFOC during culture with a membrane bioreactor (MBR) promotes the continuous growth of autotrophic bacteria and CO2 fixation. However, whether a membrane bioreactor can also be used to enrich and culture autotrophic nitrifying bacteria by separating EFOC has not been verified. In this study, an MBR was constructed to separate EFOC during the culture of nitrifying bacteria in activated sludge to confirm that the MBR better enriches and cultures nitrifying bacteria than a sequencing batch reactor (SBR). Our results showed that after culture for 34 days, the rate of NH4+-N removal and the nitrification rate by nitrifying bacteria in the MBR were 2.20-fold and 1.42-fold higher than in the SBR, respectively. The abundance of Nitrospira in the MBR was also 7.23-fold greater than in the SBR at the end of the experimental period. After 34 days, the average concentration of EFOC and the average EFOC/bacterial organic carbon ratio in the MBR were only 53% and 37% of those in the SBR, respectively. A correlation analysis suggested that the timely removal by the MBR of the EFOC generated during the culture process may be an important factor in promoting the growth of autotrophic nitrifying bacteria. The possible mechanism by which the MBR separates EFOC to the growth of promote autotrophic nitrifying bacteria is discussed from the perspective of the inhibitory effect of EFOC on cbb gene transcription. Our experimental results suggest a new approach to enhancing the enrichment of autotrophic nitrifying bacteria and extending the application of MBRs.
Collapse
|
47
|
Oh ZG, Askey B, Gunn LH. Red Rubiscos and opportunities for engineering green plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:520-542. [PMID: 36055563 PMCID: PMC9833100 DOI: 10.1093/jxb/erac349] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Nature's vital, but notoriously inefficient, CO2-fixing enzyme Rubisco often limits the growth of photosynthetic organisms including crop species. Form I Rubiscos comprise eight catalytic large subunits and eight auxiliary small subunits and can be classified into two distinct lineages-'red' and 'green'. While red-type Rubiscos (Form IC and ID) are found in rhodophytes, their secondary symbionts, and certain proteobacteria, green-type Rubiscos (Form IA and IB) exist in terrestrial plants, chlorophytes, cyanobacteria, and other proteobacteria. Eukaryotic red-type Rubiscos exhibit desirable kinetic properties, namely high specificity and high catalytic efficiency, with certain isoforms outperforming green-type Rubiscos. However, it is not yet possible to functionally express a high-performing red-type Rubisco in chloroplasts to boost photosynthetic carbon assimilation in green plants. Understanding the molecular and evolutionary basis for divergence between red- and green-type Rubiscos could help us to harness the superior CO2-fixing power of red-type Rubiscos. Here we review our current understanding about red-type Rubisco distribution, biogenesis, and sequence-structure, and present opportunities and challenges for utilizing red-type Rubisco kinetics towards crop improvements.
Collapse
Affiliation(s)
- Zhen Guo Oh
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Bryce Askey
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
48
|
Ang WSL, How JA, How JB, Mueller-Cajar O. The stickers and spacers of Rubiscondensation: assembling the centrepiece of biophysical CO2-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:612-626. [PMID: 35903998 DOI: 10.1093/jxb/erac321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aquatic autotrophs that fix carbon using ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) frequently expend metabolic energy to pump inorganic carbon towards the enzyme's active site. A central requirement of this strategy is the formation of highly concentrated Rubisco condensates (or Rubiscondensates) known as carboxysomes and pyrenoids, which have convergently evolved multiple times in prokaryotes and eukaryotes, respectively. Recent data indicate that these condensates form by the mechanism of liquid-liquid phase separation. This mechanism requires networks of weak multivalent interactions typically mediated by intrinsically disordered scaffold proteins. Here we comparatively review recent rapid developments that detail the determinants and precise interactions that underlie diverse Rubisco condensates. The burgeoning field of biomolecular condensates has few examples where liquid-liquid phase separation can be linked to clear phenotypic outcomes. When present, Rubisco condensates are essential for photosynthesis and growth, and they are thus emerging as powerful and tractable models to investigate the structure-function relationship of phase separation in biology.
Collapse
Affiliation(s)
- Warren Shou Leong Ang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jian Ann How
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jian Boon How
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
49
|
Mao Y, Catherall E, Díaz-Ramos A, Greiff GRL, Azinas S, Gunn L, McCormick AJ. The small subunit of Rubisco and its potential as an engineering target. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:543-561. [PMID: 35849331 PMCID: PMC9833052 DOI: 10.1093/jxb/erac309] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 05/06/2023]
Abstract
Rubisco catalyses the first rate-limiting step in CO2 fixation and is responsible for the vast majority of organic carbon present in the biosphere. The function and regulation of Rubisco remain an important research topic and a longstanding engineering target to enhance the efficiency of photosynthesis for agriculture and green biotechnology. The most abundant form of Rubisco (Form I) consists of eight large and eight small subunits, and is found in all plants, algae, cyanobacteria, and most phototrophic and chemolithoautotrophic proteobacteria. Although the active sites of Rubisco are located on the large subunits, expression of the small subunit regulates the size of the Rubisco pool in plants and can influence the overall catalytic efficiency of the Rubisco complex. The small subunit is now receiving increasing attention as a potential engineering target to improve the performance of Rubisco. Here we review our current understanding of the role of the small subunit and our growing capacity to explore its potential to modulate Rubisco catalysis using engineering biology approaches.
Collapse
Affiliation(s)
- Yuwei Mao
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - Ella Catherall
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - Aranzazú Díaz-Ramos
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - George R L Greiff
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stavros Azinas
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Laura Gunn
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| |
Collapse
|
50
|
Badger MR, Sharwood RE. Rubisco, the imperfect winner: it's all about the base. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:562-580. [PMID: 36412307 DOI: 10.1093/jxb/erac458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Rubisco catalysis is complex and includes an activation step through the formation of a carbamate at the conserved active site lysine residue and the formation of a highly reactive enediol that is the key to its catalytic reaction. The formation of this enediol is both the basis of its success and its Achilles' heel, creating imperfections to its catalytic efficiency. While Rubisco originally evolved in an atmosphere of high CO2, the earth's multiple oxidation events provided challenges to Rubisco through the fixation of O2 that competes with CO2 at the active site. Numerous catalytic screens across the Rubisco superfamily have identified significant variation in catalytic properties that have been linked to large and small subunit sequences. Despite this, we still have a rudimentary understanding of Rubisco's catalytic mechanism and how the evolution of kinetic properties has occurred. This review identifies the lysine base that functions both as an activator and a proton abstractor to create the enediol as a key to understanding how Rubisco may optimize its kinetic properties. The ways in which Rubisco and its partners have overcome catalytic and activation imperfections and thrived in a world of high O2, low CO2, and variable climatic regimes is remarkable.
Collapse
Affiliation(s)
- Murray R Badger
- Research School of Biology, Building 134 Linnaeus Way, Canberra ACT, 2601, Australia
| | - Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Bourke St, Richmond, NSW, 2753, Australia
| |
Collapse
|