1
|
Kareem HA, Li Y, Saleem S, Mustafa A, Azeem M, Wang Q, Li S, Chen Y, Shen X. Eco-safe potential of FITC-tagged nFeO in enhancing alfalfa-rhizobia symbiosis and salt stress tolerance via physicochemical and ultrastructural modifications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118158. [PMID: 40199092 DOI: 10.1016/j.ecoenv.2025.118158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
Salt stress severely limits global crop productivity by disrupting ionic balance, physiological processes, and cellular ultrastructure, particularly in salt-sensitive forages like alfalfa (Medicago sativa L). Addressing this issue requires environmentally feasible and innovative strategies. This study investigated the comparative potential of Nano-FeO and FeSO4 (30 mg kg-1) soil supplements with rhizobium on alfalfa salt tolerance employing morphological, physicochemical, and cellular approaches. The results demonstrated that FITC-nFeO and rhizobium significantly reduced Na+ uptake, enhanced K+ accumulation, and improved the Na+/K+ ratio in alfalfa roots and shoots relative to FeSO4. Scanning electron microscopy illustrated that FITC-nFeO ameliorated root ultracellular structure and leaf stomatal functionality, facilitating improved gaseous exchange characteristics and photosynthetic performance. Confocal laser scanning microscopy confirmed FITC-tagged nFeO adhesion to roots, supported by transmission electron microscopy findings of preserved chloroplast ultrastructure under FITC-nFeO and rhizobium application. FITC-nFeO also mitigated oxidative damage of ROS, as evidenced by reduced hydrogen peroxide, electrolyte leakage, and thiobarbituric acid reactive substances (TBARS) content, through enhanced antioxidant enzyme activities. Overall, in comparison to FeSO4, FITC-nFeO with rhizobium retrieved the salt-induced damages in alfalfa by promoting morpho-physiological and ultracellular integrity. This study highlights the role of nanotechnology in enhancing the resilience of forages on salt-contaminated soils, paving the way for eco-friendly remediation strategies.
Collapse
Affiliation(s)
- Hafiz Abdul Kareem
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo Key Laboratory of Virus Research, Ningbo 315010, PR China
| | - Sana Saleem
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, PR China
| | - Adnan Mustafa
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Muhammad Azeem
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Song Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yi Chen
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo Key Laboratory of Virus Research, Ningbo 315010, PR China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Kaur R, Gupta S, Tripathi V, Bharadwaj A. Unravelling the secrets of soil microbiome and climate change for sustainable agroecosystems. Folia Microbiol (Praha) 2025; 70:19-40. [PMID: 39249146 DOI: 10.1007/s12223-024-01194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
The soil microbiota exhibits an important function in the ecosystem, and its response to climate change is of paramount importance for sustainable agroecosystems. The macronutrients, micronutrients, and additional constituents vital for the growth of plants are cycled biogeochemically under the regulation of the soil microbiome. Identifying and forecasting the effect of climate change on soil microbiomes and ecosystem services is the need of the hour to address one of the biggest global challenges of the present time. The impact of climate change on the structure and function of the soil microbiota is a major concern, explained by one or more sustainability factors around resilience, reluctance, and rework. However, the past research has revealed that microbial interventions have the potential to regenerate soils and improve crop resilience to climate change factors. The methods used therein include using soil microbes' innate capacity for carbon sequestration, rhizomediation, bio-fertilization, enzyme-mediated breakdown, phyto-stimulation, biocontrol of plant pathogens, antibiosis, inducing the antioxidative defense pathways, induced systemic resistance response (ISR), and releasing volatile organic compounds (VOCs) in the host plant. Microbial phytohormones have a major role in altering root shape in response to exposure to drought, salt, severe temperatures, and heavy metal toxicity and also have an impact on the metabolism of endogenous growth regulators in plant tissue. However, shelf life due to the short lifespan and storage time of microbial formulations is still a major challenge, and efforts should be made to evaluate their effectiveness in crop growth based on climate change. This review focuses on the influence of climate change on soil physico-chemical status, climate change adaptation by the soil microbiome, and its future implications.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, IAH, GLA University, Mathura, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Saurabh Gupta
- Department of Biotechnology, IAH, GLA University, Mathura, India.
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002, Uttarakhand, India.
| | - Alok Bharadwaj
- Department of Biotechnology, IAH, GLA University, Mathura, India
| |
Collapse
|
3
|
Zhang Y, Ku YS, Cheung TY, Cheng SS, Xin D, Gombeau K, Cai Y, Lam HM, Chan TF. Challenges to rhizobial adaptability in a changing climate: Genetic engineering solutions for stress tolerance. Microbiol Res 2024; 288:127886. [PMID: 39232483 DOI: 10.1016/j.micres.2024.127886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Rhizobia interact with leguminous plants in the soil to form nitrogen fixing nodules in which rhizobia and plant cells coexist. Although there are emerging studies on rhizobium-associated nitrogen fixation in cereals, the legume-rhizobium interaction is more well-studied and usually serves as the model to study rhizobium-mediated nitrogen fixation in plants. Rhizobia play a crucial role in the nitrogen cycle in many ecosystems. However, rhizobia are highly sensitive to variations in soil conditions and physicochemical properties (i.e. moisture, temperature, salinity, pH, and oxygen availability). Such variations directly caused by global climate change are challenging the adaptive capabilities of rhizobia in both natural and agricultural environments. Although a few studies have identified rhizobial genes that confer adaptation to different environmental conditions, the genetic basis of rhizobial stress tolerance remains poorly understood. In this review, we highlight the importance of improving the survival of rhizobia in soil to enhance their symbiosis with plants, which can increase crop yields and facilitate the establishment of sustainable agricultural systems. To achieve this goal, we summarize the key challenges imposed by global climate change on rhizobium-plant symbiosis and collate current knowledge of stress tolerance-related genes and pathways in rhizobia. And finally, we present the latest genetic engineering approaches, such as synthetic biology, implemented to improve the adaptability of rhizobia to changing environmental conditions.
Collapse
Affiliation(s)
- Yunjia Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yee-Shan Ku
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz-Yan Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sau-Shan Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Kewin Gombeau
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
4
|
Timofeeva AM, Galyamova MR, Sedykh SE. How Do Plant Growth-Promoting Bacteria Use Plant Hormones to Regulate Stress Reactions? PLANTS (BASEL, SWITZERLAND) 2024; 13:2371. [PMID: 39273855 PMCID: PMC11397614 DOI: 10.3390/plants13172371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Phytohormones play a crucial role in regulating growth, productivity, and development while also aiding in the response to diverse environmental changes, encompassing both biotic and abiotic factors. Phytohormone levels in soil and plant tissues are influenced by specific soil bacteria, leading to direct effects on plant growth, development, and stress tolerance. Specific plant growth-promoting bacteria can either synthesize or degrade specific plant phytohormones. Moreover, a wide range of volatile organic compounds synthesized by plant growth-promoting bacteria have been found to influence the expression of phytohormones. Bacteria-plant interactions become more significant under conditions of abiotic stress such as saline soils, drought, and heavy metal pollution. Phytohormones function in a synergistic or antagonistic manner rather than in isolation. The study of plant growth-promoting bacteria involves a range of approaches, such as identifying singular substances or hormones, comparing mutant and non-mutant bacterial strains, screening for individual gene presence, and utilizing omics approaches for analysis. Each approach uncovers the concealed aspects concerning the effects of plant growth-promoting bacteria on plants. Publications that prioritize the comprehensive examination of the private aspects of PGPB and cultivated plant interactions are of utmost significance and crucial for advancing the practical application of microbial biofertilizers. This review explores the potential of PGPB-plant interactions in promoting sustainable agriculture. We summarize the interactions, focusing on the mechanisms through which plant growth-promoting bacteria have a beneficial effect on plant growth and development via phytohormones, with particular emphasis on detecting the synthesis of phytohormones by plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Anna M Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maria R Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Tuong HM, Méndez SG, Vandecasteele M, Willems A, Iancheva A, Ngoc PB, Phat DT, Ha CH, Goormachtig S. A novel Microbacterium strain SRS2 promotes the growth of Arabidopsis and MicroTom (S. lycopersicum) under normal and salt stress conditions. PLANTA 2024; 260:79. [PMID: 39182196 DOI: 10.1007/s00425-024-04510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
MAIN CONCLUSION Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.
Collapse
Affiliation(s)
- Ho Manh Tuong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Sonia García Méndez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Michiel Vandecasteele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Anne Willems
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Anelia Iancheva
- AgroBioInstitute, Agricultural Academy, 1164, Sofia, Bulgaria
| | - Pham Bich Ngoc
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Do Tien Phat
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Chu Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
6
|
Acharya BR, Gill SP, Kaundal A, Sandhu D. Strategies for combating plant salinity stress: the potential of plant growth-promoting microorganisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1406913. [PMID: 39077513 PMCID: PMC11284086 DOI: 10.3389/fpls.2024.1406913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024]
Abstract
Global climate change and the decreasing availability of high-quality water lead to an increase in the salinization of agricultural lands. This rising salinity represents a significant abiotic stressor that detrimentally influences plant physiology and gene expression. Consequently, critical processes such as seed germination, growth, development, and yield are adversely affected. Salinity severely impacts crop yields, given that many crop plants are sensitive to salt stress. Plant growth-promoting microorganisms (PGPMs) in the rhizosphere or the rhizoplane of plants are considered the "second genome" of plants as they contribute significantly to improving the plant growth and fitness of plants under normal conditions and when plants are under stress such as salinity. PGPMs are crucial in assisting plants to navigate the harsh conditions imposed by salt stress. By enhancing water and nutrient absorption, which is often hampered by high salinity, these microorganisms significantly improve plant resilience. They bolster the plant's defenses by increasing the production of osmoprotectants and antioxidants, mitigating salt-induced damage. Furthermore, PGPMs supply growth-promoting hormones like auxins and gibberellins and reduce levels of the stress hormone ethylene, fostering healthier plant growth. Importantly, they activate genes responsible for maintaining ion balance, a vital aspect of plant survival in saline environments. This review underscores the multifaceted roles of PGPMs in supporting plant life under salt stress, highlighting their value for agriculture in salt-affected areas and their potential impact on global food security.
Collapse
Affiliation(s)
- Biswa R. Acharya
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, United States
| | - Satwinder Pal Gill
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Amita Kaundal
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Devinder Sandhu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
| |
Collapse
|
7
|
Ma Y, Zheng C, Bo Y, Song C, Zhu F. Improving crop salt tolerance through soil legacy effects. FRONTIERS IN PLANT SCIENCE 2024; 15:1396754. [PMID: 38799102 PMCID: PMC11116649 DOI: 10.3389/fpls.2024.1396754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Soil salinization poses a critical problem, adversely affecting plant development and sustainable agriculture. Plants can produce soil legacy effects through interactions with the soil environments. Salt tolerance of plants in saline soils is not only determined by their own stress tolerance but is also closely related to soil legacy effects. Creating positive soil legacy effects for crops, thereby alleviating crop salt stress, presents a new perspective for improving soil conditions and increasing productivity in saline farmlands. Firstly, the formation and role of soil legacy effects in natural ecosystems are summarized. Then, the processes by which plants and soil microbial assistance respond to salt stress are outlined, as well as the potential soil legacy effects they may produce. Using this as a foundation, proposed the application of salt tolerance mechanisms related to soil legacy effects in natural ecosystems to saline farmlands production. One aspect involves leveraging the soil legacy effects created by plants to cope with salt stress, including the direct use of halophytes and salt-tolerant crops and the design of cropping patterns with the specific crop functional groups. Another aspect focuses on the utilization of soil legacy effects created synergistically by soil microorganisms. This includes the inoculation of specific strains, functional microbiota, entire soil which legacy with beneficial microorganisms and tolerant substances, as well as the application of novel technologies such as direct use of rhizosphere secretions or microbial transmission mechanisms. These approaches capitalize on the characteristics of beneficial microorganisms to help crops against salinity. Consequently, we concluded that by the screening suitable salt-tolerant crops, the development rational cropping patterns, and the inoculation of safe functional soils, positive soil legacy effects could be created to enhance crop salt tolerance. It could also improve the practical significance of soil legacy effects in the application of saline farmlands.
Collapse
Affiliation(s)
- Yue Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Zheng
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yukun Bo
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Chunxu Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- National Observation and Research Station of Agriculture Green Development, Quzhou, China
| | - Feng Zhu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
8
|
Fan W, Xiao Y, Dong J, Xing J, Tang F, Shi F. Variety-driven rhizosphere microbiome bestows differential salt tolerance to alfalfa for coping with salinity stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1324333. [PMID: 38179479 PMCID: PMC10766110 DOI: 10.3389/fpls.2023.1324333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Soil salinization is a global environmental issue and a significant abiotic stress that threatens crop production. Root-associated rhizosphere microbiota play a pivotal role in enhancing plant tolerance to abiotic stresses. However, limited information is available concerning the specific variations in rhizosphere microbiota driven by different plant genotypes (varieties) in response to varying levels of salinity stress. In this study, we compared the growth performance of three alfalfa varieties with varying salt tolerance levels in soils with different degrees of salinization. High-throughput 16S rRNA and ITS sequencing were employed to analyze the rhizosphere microbial communities. Undoubtedly, the increasing salinity significantly inhibited alfalfa growth and reduced rhizosphere microbial diversity. However, intriguingly, salt-tolerant varieties exhibited relatively lower susceptibility to salinity, maintaining more stable rhizosphere bacterial community structure, whereas the reverse was observed for salt-sensitive varieties. Bacillus emerged as the dominant species in alfalfa's adaptation to salinity stress, constituting 21.20% of the shared bacterial genera among the three varieties. The higher abundance of Bacillus, Ensifer, and Pseudomonas in the rhizosphere of salt-tolerant alfalfa varieties is crucial in determining their elevated salt tolerance. As salinity levels increased, salt-sensitive varieties gradually accumulated a substantial population of pathogenic fungi, such as Fusarium and Rhizoctonia. Furthermore, rhizosphere bacteria of salt-tolerant varieties exhibited increased activity in various metabolic pathways, including biosynthesis of secondary metabolites, carbon metabolism, and biosynthesis of amino acids. It is suggested that salt-tolerant alfalfa varieties can provide more carbon sources to the rhizosphere, enriching more effective plant growth-promoting bacteria (PGPB) such as Pseudomonas to mitigate salinity stress. In conclusion, our results highlight the variety-mediated enrichment of rhizosphere microbiota in response to salinity stress, confirming that the high-abundance enrichment of specific dominant rhizosphere microbes and their vital roles play a significant role in conferring high salt adaptability to these varieties.
Collapse
Affiliation(s)
- Wenqiang Fan
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanzi Xiao
- College of Agriculture and Forestry, Hulunbuir University, Hulunber, China
| | - Jiaqi Dong
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
9
|
Tang J, Li Y, Zhang L, Mu J, Jiang Y, Fu H, Zhang Y, Cui H, Yu X, Ye Z. Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms 2023; 11:2077. [PMID: 37630637 PMCID: PMC10459833 DOI: 10.3390/microorganisms11082077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Indole-3-acetic acid (IAA) belongs to the family of auxin indole derivatives. IAA regulates almost all aspects of plant growth and development, and is one of the most important plant hormones. In microorganisms too, IAA plays an important role in growth, development, and even plant interaction. Therefore, mechanism studies on the biosynthesis and functions of IAA in microorganisms can promote the production and utilization of IAA in agriculture. This mini-review mainly summarizes the biosynthesis pathways that have been reported in microorganisms, including the indole-3-acetamide pathway, indole-3-pyruvate pathway, tryptamine pathway, indole-3-acetonitrile pathway, tryptophan side chain oxidase pathway, and non-tryptophan dependent pathway. Some pathways interact with each other through common key genes to constitute a network of IAA biosynthesis. In addition, functional studies of IAA in microorganisms, divided into three categories, have also been summarized: the effects on microorganisms, the virulence on plants, and the beneficial impacts on plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.); (L.Z.)
| |
Collapse
|
10
|
Aizaz M, Khan I, Lubna, Asaf S, Bilal S, Jan R, Khan AL, Kim KM, AL-Harrasi A. Enhanced Physiological and Biochemical Performance of Mung Bean and Maize under Saline and Heavy Metal Stress through Application of Endophytic Fungal Strain SL3 and Exogenous IAA. Cells 2023; 12:1960. [PMID: 37566039 PMCID: PMC10417269 DOI: 10.3390/cells12151960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Modern irrigation practices and industrial pollution can contribute to the simultaneous occurrence of salinity and heavy metal contamination in large areas of the world, resulting in significant negative effects on crop productivity and sustainability. This study aimed to investigate the growth-promoting potentials of an important endophytic fungal strain SL3 and to compare its potential with exogenous IAA (indole-3-acetic acid) in the context of salt and heavy metal stress. The strain was assessed for plant growth-promoting traits such as the production of indole-3-acetic acid, gibberellins (GA), and siderophore. We selected two important crops, mung bean and maize, and examined various physiological and biochemical characteristics under 300 mM NaCl and 2.5 mM Pb stress conditions, with and without the application of IAA and SL3. This study's results demonstrated that both IAA and SL3 positively impacted the growth and development of plants under normal and stressed conditions. In NaCl and Pb-induced stress conditions, the growth of mung bean and maize plants was significantly reduced. However, the application of IAA and SL3 helped to alleviate stress, leading to a significant increase in shoot/root length and weight compared to IAA and SL3 non-treated plants. The results revealed that photosynthetic pigments, accumulation of catalase (CAT), phenolic contents, polyphenol oxidase, and flavanols are higher in the IAA and SL3-treated plants than in the non-inoculated plants. This study's findings revealed that applying the SL3 fungal strain positively influenced various physiological and biochemical processes in tested plant species under normal and stress conditions of NaCl and Pb. These findings also suggested that SL3 could be a potential replacement for widely used IAA to promote plant growth by improving photosynthetic efficiency, reducing oxidative stress, and enhancing metabolic activities in plants, including mung and maize. Moreover, this study highlights that SL3 has synergistic effects with IAA in enhancing resilience to salt and heavy stress and offers a promising avenue for future agricultural applications in salt and heavy metal-affected regions.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Ibrahim Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA;
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Ahmed AL-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| |
Collapse
|
11
|
Pallavi, Mishra RK, Sahu PK, Mishra V, Jamal H, Varma A, Tripathi S. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from mangrove region of Sundarbans, India for enhanced crop productivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1122347. [PMID: 37152133 PMCID: PMC10158646 DOI: 10.3389/fpls.2023.1122347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/24/2023] [Indexed: 12/07/2023]
Abstract
Halotolerant plant growth promoting rhizobacteria (PGPR) are beneficial microorganisms utilized to mitigate the biotic and abiotic stresses in plants. The areas of Sundarban mangroves of West Bengal, India have been reported to be rich in halotolerant microflora, yet major area remains unexplored. The present study, therefore, aims to map down the region-specific native microbial community potent of salt tolerance, plant growth promoting (PGP) activity and antagonistic activity against fungal pathogens. Bacterial samples were isolated from the saline soil of the Sundarban mangroves. A total of 156 bacterial samples were isolated and 20 were screened for their salt tolerance potential. These isolates were characterised using morphological, biochemical, and molecular approaches. Based on 16s rRNA sequencing, they were classified into 4 different genera, including Arthrobacter sp. (01 isolate), Pseudomonas plecoglossicida (01 isolate), Kocuria rosea (01 isolate), and Bacillus (17 isolates). The halotolerant isolates which possessed plant growth promoting traits including phosphate, and zinc solubilization, indole acetic acid production, siderophore, and ammonia generation were selected. Further, the effect of two halotolerant isolates GN-5 and JR-12 which showed most prominent PGP activities was evaluated in pea plant under high salinity conditions. The isolates improved survival by promoting germination (36 to 43%) and root-shoot growth and weight of pea plant in comparison to non-inoculated control plants. In a subsequent dual culture confrontation experiment, both these halo-tolerant isolates showed antagonistic activities against the aggressive root rot disease-causing Macrophomina phaseolina (Tassi) Goid NAIMCC-F-02902. The identified isolates could be used as potential bioagents for saline soils, with potential antagonistic effect on root rot disease. However, further studies at the physiological and molecular level would help to delineate a detail mechanistic understanding of broad-spectrum defence against salinity and potential biotic pathogen.
Collapse
Affiliation(s)
- Pallavi
- Amity Institute of Microbial Technology, Amity University, Noida, India
- Department of Microbiology, Indian Council of Agricultural Research – National Bureau of Agriculturally Important Microorganism, Kushmaur, Mau, Uttar Pradesh, India
| | - Rohit Kumar Mishra
- Centre of Science and Society, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Pramod Kumar Sahu
- Department of Microbiology, Indian Council of Agricultural Research – National Bureau of Agriculturally Important Microorganism, Kushmaur, Mau, Uttar Pradesh, India
| | - Vani Mishra
- Nanotechnology Application Centre, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Hafiza Jamal
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Swati Tripathi
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
12
|
Bhat MA, Mishra AK, Jan S, Bhat MA, Kamal MA, Rahman S, Shah AA, Jan AT. Plant Growth Promoting Rhizobacteria in Plant Health: A Perspective Study of the Underground Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:629. [PMID: 36771713 PMCID: PMC9919780 DOI: 10.3390/plants12030629] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Plants are affected by various environmental stresses such as high or low temperatures, drought, and high salt levels, which can disrupt their normal cellular functioning and impact their growth and productivity. These stressors offer a major constraint to the morphological, physiological, and biochemical parameters; thereby attributing serious complications in the growth of crops such as rice, wheat, and corn. Considering the strategic and intricate association of soil microbiota, known as plant growth-promoting rhizobacteria (PGPR), with the plant roots, PGPR helps plants to adapt and survive under changing environmental conditions and become more resilient to stress. They aid in nutrient acquisition and regulation of water content in the soil and also play a role in regulating osmotic balance and ion homeostasis. Boosting key physiological processes, they contribute significantly to the alleviation of stress and promoting the growth and development of plants. This review examines the use of PGPR in increasing plant tolerance to different stresses, focusing on their impact on water uptake, nutrient acquisition, ion homeostasis, and osmotic balance, as well as their effects on crop yield and food security.
Collapse
Affiliation(s)
- Mudasir Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Saima Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mujtaba Aamir Bhat
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, India
| | - Ali Asghar Shah
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Arif Tasleem Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| |
Collapse
|
13
|
Shah K, Wang M, Li X, Shang W, Wang S, Han M, Ren X, Tian J, An N, Xing L. Transcriptome analysis reveals dual action of salicylic acid application in the induction of flowering in Malus domestica. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111433. [PMID: 36029897 DOI: 10.1016/j.plantsci.2022.111433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In the apple tree, insufficient flower bud production is an intractable challenge, and very little information is available in this field due to the fact that research done in this sector is very rare owing to its extended life cycles and low rate of genetic transformation. Here we display novel changes and events in spur buds of Malus × domestica trees after they were exposed to salicylic acid (SA) treatment during the flower induction period. We found a significant increase in morphological indexes, followed by a wider and well-defined shoot apical meristem in SA-treated spur buds. Additionally, we observed increased oxidative stress markers and enzymatic antioxidants in control-treated buds during the flower induction period, while non-enzymatic antioxidants were recorded higher in SA-treated buds. Maximum flowering was observed in SA-treated trees in the next year. Furthermore, ultra-high-performance liquid chromatography (u-HPLC) analysis displays that SA treatment enhances SA and indole acetic acid (IAA), while having an antagonistic effect on gibberellin (GA). At different time points, transcriptome analysis was conducted to analyze the transcriptional response of CK and SA treated buds. Pathway enrichment was detected in differentially expressed genes (DEGs). Agamous (AGL) and SQUAMOSA-promoter binding protein-like (SPL) family related flowering genes display a positive signal for the increased flowering in SA-treated trees, which confirms our findings. As far as we know, there is no report available on the response of spur buds to SA treatment during the flower induction period. This data provides a new theoretical reference for the management of apple tree flowering and also provides an essential basis for future analysis of the regulation and control of flowering in M. domestica.
Collapse
Affiliation(s)
- Kamran Shah
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Mengxue Wang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Xiaolong Li
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, PR China
| | - Wei Shang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Shujin Wang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China
| | - Jianwen Tian
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, PR China.
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China.
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
14
|
Zhang X, Sun Y, Qiu X, Lu H, Hwang I, Wang T. Tolerant mechanism of model legume plant Medicago truncatula to drought, salt, and cold stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:847166. [PMID: 36160994 PMCID: PMC9490062 DOI: 10.3389/fpls.2022.847166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Legume plants produce one-third of the total yield of primary crops and are important food sources for both humans and animals worldwide. Frequent exposure to abiotic stresses, such as drought, salt, and cold, greatly limits the production of legume crops. Several morphological, physiological, and molecular studies have been conducted to characterize the response and adaptation mechanism to abiotic stresses. The tolerant mechanisms of the model legume plant Medicago truncatula to abiotic stresses have been extensively studied. Although many potential genes and integrated networks underlying the M. truncatula in responding to abiotic stresses have been identified and described, a comprehensive summary of the tolerant mechanism is lacking. In this review, we provide a comprehensive summary of the adaptive mechanism by which M. truncatula responds to drought, salt, and cold stress. We also discuss future research that need to be explored to improve the abiotic tolerance of legume plants.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciencess, Beijing, China
| | - Yu Sun
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciencess, Changchun, China
| | - Xiao Qiu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciencess, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Silambarasan S, Logeswari P, Vangnai AS, Kamaraj B, Cornejo P. Plant growth-promoting actinobacterial inoculant assisted phytoremediation increases cadmium uptake in Sorghum bicolor under drought and heat stresses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119489. [PMID: 35594999 DOI: 10.1016/j.envpol.2022.119489] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/24/2022] [Accepted: 05/14/2022] [Indexed: 05/22/2023]
Abstract
In this study, two proficient Cadmium (Cd) resistant and plant growth-promoting actinobacterial strains were isolated from metal-polluted soils and identified as Streptomyces sp. strain RA04 and Nocardiopsis sp. strain RA07. Multiple abiotic stress tolerances were found in these two actinobacterial strains, including Cd stress (CdS), drought stress (DS) and high-temperature stress (HTS). Both actinobacterial strains exhibited multifarious plant growth-promoting (PGP) traits such as phosphate solubilization, and production of indole-3-acetic acid, siderophores and 1-aminocyclopropane-1-carboxylate deaminase under CdS, DS and HTS conditions. The inoculation of strains RA04 and RA07 significantly increased Sorghum bicolor growth and photosynthetic pigments under CdS, DS, HTS, CdS + DS and CdS + HTS conditions as compared to their respective uninoculated plants. The actinobacterial inoculants reduced malondialdehyde concentration and enhanced antioxidant enzymes in plants cultivated under various abiotic stress conditions, indicating that actinobacterial inoculants reduced oxidative damage. Furthermore, strains RA04 and RA07 enhanced the accumulation of Cd in plant tissues and the translocation of Cd from root to shoot under CdS, CdS + DS and CdS + HTS treatments as compared to their respective uninoculated plants. These findings suggest that RA04 and RA07 strains could be effective bio-inoculants to accelerate phytoremediation of Cd polluted soil even in DS and HTS conditions.
Collapse
Affiliation(s)
- Sivagnanam Silambarasan
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| | - Peter Logeswari
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Alisa S Vangnai
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10300, Thailand.
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
16
|
Koyro HW, Huchzermeyer B. From Soil Amendments to Controlling Autophagy: Supporting Plant Metabolism under Conditions of Water Shortage and Salinity. PLANTS 2022; 11:plants11131654. [PMID: 35807605 PMCID: PMC9269222 DOI: 10.3390/plants11131654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Crop resistance to environmental stress is a major issue. The globally increasing land degradation and desertification enhance the demand on management practices to balance both food and environmental objectives, including strategies that tighten nutrient cycles and maintain yields. Agriculture needs to provide, among other things, future additional ecosystem services, such as water quantity and quality, runoff control, soil fertility maintenance, carbon storage, climate regulation, and biodiversity. Numerous research projects have focused on the food–soil–climate nexus, and results were summarized in several reviews during the last decades. Based on this impressive piece of information, we have selected only a few aspects with the intention of studying plant–soil interactions and methods for optimization. In the short term, the use of soil amendments is currently attracting great interest to cover the current demand in agriculture. We will discuss the impact of biochar at water shortage, and plant growth promoting bacteria (PGPB) at improving nutrient supply to plants. In this review, our focus is on the interplay of both soil amendments on primary reactions of photosynthesis, plant growth conditions, and signaling during adaptation to environmental stress. Moreover, we aim at providing a general overview of how dehydration and salinity affect signaling in cells. With the use of the example of abscisic acid (ABA) and ethylene, we discuss the effects that can be observed when biochar and PGPB are used in the presence of stress. The stress response of plants is a multifactorial trait. Nevertheless, we will show that plants follow a general concept to adapt to unfavorable environmental conditions in the short and long term. However, plant species differ in the upper and lower regulatory limits of gene expression. Therefore, the presented data may help in the identification of traits for future breeding of stress-resistant crops. One target for breeding could be the removal and efficient recycling of damaged as well as needless compounds and structures. Furthermore, in this context, we will show that autophagy can be a useful goal of breeding measures, since the recycling of building blocks helps the cells to overcome a period of imbalanced substrate supply during stress adjustment.
Collapse
Affiliation(s)
- Hans-Werner Koyro
- Institute of Plantecology, Justus-Liebig-University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Correspondence:
| | - Bernhard Huchzermeyer
- Institute of Botany, Leibniz Universitaet Hannover, Herrenhaeuser Str. 2, 30416 Hannover, Germany; or
- AK Biotechnology, VDI-BV-Hannover, Hanomagstr. 12, 30449 Hannover, Germany
| |
Collapse
|
17
|
Kareem HA, Hassan MU, Zain M, Irshad A, Shakoor N, Saleem S, Niu J, Skalicky M, Chen Z, Guo Z, Wang Q. Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119069. [PMID: 35276246 DOI: 10.1016/j.envpol.2022.119069] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
Global efforts are in rapid progress to tackle the emerging conundrum of climate change-induced heat stress in grassland ecosystems. Zinc oxide nanoparticles (n-ZnO) are known to play a crucial role in plants' abiotic stress regulation, but its response in alfalfa against heat stress has not been explored. This study aimed at assessing the effects of n-ZnO on alfalfa under heat stress by various morpho-physiological and cellular approaches. Five-week-old alfalfa seedlings were subjected to foliar application of n-ZnO as a pretreatment before the onset of heat stress (BHS) to evaluate its effect on heat tolerance, and as a post-treatment after heat stress (AHS) to evaluate recovery efficiency. In vitro studies on Zn release from n-ZnO by Inductively coupled plasma mass spectroscopy (ICPMS) disclosed that the particle uptake and Zn release were concentration dependent. The uptake and translocation of n-ZnO examined by transmission electron microscope (TEM) reveling showed that n-ZnO was primarily localized in the vacuoles and chloroplasts. TEM images showed that ultrastructural modifications to chloroplast, mitochondria, and cell wall were reversible by highest dose of n-ZnO applied before heat stress, and damages to these organelles were not recoverable when n-ZnO was applied after heat stress. The results further enlightened that 90 mg L-1 n-ZnO better prevented the heat stress-mediated membrane damage, lipid peroxidation and oxidative stress by stimulating antioxidant systems and enhancing osmolyte contents in both BHS and AHS. Although, application of 90 mg L-1 n-ZnO in BHS was more effective in averting heat-induced damages and maintaining better plant growth and morpho-physiological attributes compared to AHS. Conclusively, foliar application of n-ZnO can be encouraged as an effective strategy to protect alfalfa from heat stress damages while minimizing the risk of nanoparticle transmission to environmental compartments, which could happen with soil application.
Collapse
Affiliation(s)
- Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mahmood Ul Hassan
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Zain
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs/Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Annie Irshad
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Sana Saleem
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Czech Republic
| | - Zhao Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
18
|
Gritli T, Boubakri H, Essahibi A, Hsouna J, Ilahi H, Didier R, Mnasri B. Salt stress mitigation in Lathyrus cicera by combining different microbial inocula. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1191-1206. [PMID: 35910445 PMCID: PMC9334493 DOI: 10.1007/s12298-022-01205-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Arid and semi-arid areas are considered vulnerable to various environmental constraints which are further fortified by climate change. Salinity is one of the most serious abiotic factors affecting crop yield and soil fertility. Till now, no information is available on the effect of salinity on development and symbiotic nitrogen (N2) fixation in the legume species Lathyrus cicera. Here, we evaluated the effect of different microbial inocula including nitrogen-fixing Rhizobium laguerreae, arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, a complex mixed inoculum of AMF isolated from rhizospheric soil in "Al Aitha", and various plant growth-promoting bacteria (PGPB) including Bacillus subtilus, Bacillus simplex and Bacillus megaterium combined with Rhizobium, the AMF consortium, or R. irregularis on alleviating salt stress in this legume. A pot trial was conducted to evaluate the ability of different microbial inocula to mitigate adverse effects of salinity on L. cicera plants. The results showed that salinity (100 mM NaCl) significantly reduced L. cicera plant growth. However, inoculation with different inocula enhanced plant growth and markedly promoted various biochemical traits. Moreover, the combined use of PGPB and AMF was found to be the most effective treatment in mitigating deleterious effects of salinity stress on L. cicera. In addition, this co-inoculation upregulated the expression of two marker genes (LcHKT1 and LcNHX7) related to salinity tolerance. Our findings suggest that the AMF/PGPB formulation has a great potential to be used as a biofertilizer to improve L. cicera plant growth and productivity under saline conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01205-4.
Collapse
Affiliation(s)
- Takwa Gritli
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Hatem Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | | | - Jihed Hsouna
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Houda Ilahi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Reinhardt Didier
- Department of Biology, Rte. Albert-Gockel 3, CH- 1700 Fribourg, Switzerland
| | - Bacem Mnasri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
19
|
Ren CG, Kong CC, Liu ZY, Zhong ZH, Yang JC, Wang XL, Qin S. A Perspective on Developing a Plant ‘Holobiont’ for Future Saline Agriculture. Front Microbiol 2022; 13:763014. [PMID: 35602056 PMCID: PMC9120776 DOI: 10.3389/fmicb.2022.763014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Soil salinity adversely affects plant growth and has become a major limiting factor for agricultural development worldwide. There is a continuing demand for sustainable technology innovation in saline agriculture. Among various bio-techniques being used to reduce the salinity hazard, symbiotic microorganisms such as rhizobia and arbuscular mycorrhizal (AM) fungi have proved to be efficient. These symbiotic associations each deploy an array of well-tuned mechanisms to provide salinity tolerance for the plant. In this review, we first comprehensively cover major research advances in symbiont-induced salinity tolerance in plants. Second, we describe the common signaling process used by legumes to control symbiosis establishment with rhizobia and AM fungi. Multi-omics technologies have enabled us to identify and characterize more genes involved in symbiosis, and eventually, map out the key signaling pathways. These developments have laid the foundation for technological innovations that use symbiotic microorganisms to improve crop salt tolerance on a larger scale. Thus, with the aim of better utilizing symbiotic microorganisms in saline agriculture, we propose the possibility of developing non-legume ‘holobionts’ by taking advantage of newly developed genome editing technology. This will open a new avenue for capitalizing on symbiotic microorganisms to enhance plant saline tolerance for increased sustainability and yields in saline agriculture.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | - Cun-Cui Kong
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zheng-Yi Liu
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhi-Hai Zhong
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | | | - Xiao-Li Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Song Qin
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Song Qin,
| |
Collapse
|
20
|
Massa F, Defez R, Bianco C. Exploitation of Plant Growth Promoting Bacteria for Sustainable Agriculture: Hierarchical Approach to Link Laboratory and Field Experiments. Microorganisms 2022; 10:865. [PMID: 35630310 PMCID: PMC9144938 DOI: 10.3390/microorganisms10050865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
To feed a world population, which will reach 9.7 billion in 2050, agricultural production will have to increase by 35-56%. Therefore, more food is urgently needed. Yield improvements for any given crop would require adequate fertilizer, water, and plant protection from pests and disease, but their further abuse will be economically disadvantageous and will have a negative impact on the environment. Using even more agricultural inputs is simply not possible, and the availability of arable land will be increasingly reduced due to climate changes. To improve agricultural production without further consumption of natural resources, farmers have a powerful ally: the beneficial microorganisms inhabiting the rhizosphere. However, to fully exploit the benefits of these microorganisms and therefore to widely market microbial-based products, there are still gaps that need to be filled, and here we will describe some critical issues that should be better addressed.
Collapse
Affiliation(s)
| | | | - Carmen Bianco
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (F.M.); (R.D.)
| |
Collapse
|
21
|
Exogenous silicon improves salt tolerance of Fenugreek (Trigonella foenum-graecum L.) during seed germination and early seedling stages. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01035-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Neshat M, Abbasi A, Hosseinzadeh A, Sarikhani MR, Dadashi Chavan D, Rasoulnia A. Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:347-361. [PMID: 35400886 PMCID: PMC8943118 DOI: 10.1007/s12298-022-01128-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 01/07/2022] [Indexed: 05/13/2023]
Abstract
Salinity is one of the most severe abiotic stress in the world. Also, the irrigated lands have been treated with second salinity. Canola is one of the most important industrial crops for oil production all over the world which is affected by salinity. Salt stress causes imbalanced ion hemostasis (Na+ and K+) and interrupted mineral absorption in canola. Also, salinity stress leads to oxidative stress (production and accumulation of reactive oxygen species (ROS). Accumulation of ROS is extremely dangerous and lethal for plants. As a consequence, canola production is reduced under salinity stress. So, a suitable approach should be found to deal with salinity stress and prevent the loss of production oilseed. Plant growth-promoting rhizobacteria (PGPR) can colonize on the plant root surface and alleviate the salt stress effect by providing minerals like nitrogen, phosphate, and potassium. Also, they alleviate salt stress by phytohormones like auxin (IAA), cytokinin (CK), and abscisic acid (ABA). This study focus on physiological parameters like leaf area (LA), root length (RL), shoot length (SL), chlorophyll fluorescence indexes (Fv/Fm and Fv/F0), relative water content (RWC), electrolyte leakage index (ELI), photosynthesis pigments (chlorophyll a, b, and carotenoids), Na+, and K+; and biochemical parameters like malondialdehyde (MDA) content, hydrogen peroxide content (H2O2), total protein content, proline, antioxidant capacity, and antioxidant enzyme activities in canola through the inoculation with Enterobacter sp. S16-3 and Pseudomonas sp. C16-2O. This study showed that LA, RL, SL, chlorophyll fluorescence indexes, RWC were significantly increased and ELI was significantly decreased in bacteria inoculated treatments. Also, MDA, H2O2 were decreased, and antioxidant capacity, proline, and antioxidant enzymes were increased due to inoculation with these bacteria. Besides, the amount of K+ as an index of salinity tolerance significantly increased, and leaf Na+ content was significantly decreased.
Collapse
Affiliation(s)
- Mohammadreza Neshat
- Agronomy and Plant Breeding Department, College of Agriculture and Natural Resources, University of Tehran, P.O. Box: 31587-11167, Karaj, Iran
| | - Alireza Abbasi
- Agronomy and Plant Breeding Department, College of Agriculture and Natural Resources, University of Tehran, P.O. Box: 31587-11167, Karaj, Iran
| | - Abdulhadi Hosseinzadeh
- Agronomy and Plant Breeding Department, College of Agriculture and Natural Resources, University of Tehran, P.O. Box: 31587-11167, Karaj, Iran
| | - Mohammad Reza Sarikhani
- Soil Science Department, Faculty of Agriculture, University of Tabriz, 29 Bahman Blvd, P.O. Box 51666-16471, Tabriz, Iran
| | - Davood Dadashi Chavan
- Plant Biotechnology and Breeding Department, Faculty of Agriculture, University of Tabriz, 29 Bahman Blvd, P.O. Box 51666-16471, Tabriz, Iran
| | - Abdolrahman Rasoulnia
- Agronomy and Plant Breeding Department, College of Agriculture and Natural Resources, University of Tehran, P.O. Box: 31587-11167, Karaj, Iran
| |
Collapse
|
23
|
Kareem HA, Saleem MF, Saleem S, Rather SA, Wani SH, Siddiqui MH, Alamri S, Kumar R, Gaikwad NB, Guo Z, Niu J, Wang Q. Zinc Oxide Nanoparticles Interplay With Physiological and Biochemical Attributes in Terminal Heat Stress Alleviation in Mungbean ( Vigna radiata L.). FRONTIERS IN PLANT SCIENCE 2022; 13:842349. [PMID: 35251111 PMCID: PMC8895266 DOI: 10.3389/fpls.2022.842349] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 05/03/2023]
Abstract
Gradually rising atmospheric temperature is the vital component of the environment, which is anticipated as the riskiest abiotic stress for crop growth. Nanotechnology revolutionizing the agricultural sectors, notably, zinc oxide nanoparticles (nano-ZnO) has captured intensive research interests due to their distinctive properties and numerous applications against abiotic stresses. Mungbean (Vigna radiata L.), being a summer crop, is grown all over the world at an optimum temperature of 28-30°C. A rise in temperature above this range, particularly during the flowering stage, can jeopardize the potential performance of the plant. Hence, an outdoor study was performed to evaluate the effect of multiple suspensions of nano-ZnO (0, 15, 30, 45, and 60 mg l-1) on physicochemical attributes and yield of mungbean crop under heat stress. Heat stress was induced by fine-tuning of sowing time as: S1 is the optimal sowing time having day/night temperatures <40/25°C and S2 and S3 are late sown that were above >40/25°C during the flowering stage. In vitro studies on Zn release from nano-ZnO by inductively coupled plasma mass spectroscopy (ICPMS) disclosed that the Zn release and particles uptake from nano-ZnO were concentration-dependent. Exogenous foliar application of nano-ZnO significantly upstreamed the production of antioxidants and osmolytes to attenuate the shocks of heat stress in S2 and S3. Likewise, nano-ZnO substantially rebated the production of reactive oxygen species in both S2 and S3 that was associated with curtailment in lipid peroxidation. Adding to that, foliar-applied nano-ZnO inflates not only the chlorophyll contents and gas exchange attributes, but also the seeds per pod (SPP) and pods per plant (PPP), which results in the better grain yield under heat stress. Thus, among all the sowing dates, S1 statistically performed better than S2 and S3, although foliar exposure of nano-ZnO boosted up mungbean performance under both the no heat and heat-induced environments. Hence, foliar application of nano-ZnO can be suggested as an efficient way to protect the crop from heat stress-mediated damages with the most negligible chances of nanoparticles delivery to environmental compartments that could be possible in case of soil application.
Collapse
Affiliation(s)
- Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Sana Saleem
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Shabir A. Rather
- Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | | | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
- *Correspondence: Quanzhen Wang, ;
| |
Collapse
|
24
|
Naamala J, Smith DL. Microbial Derived Compounds Are a Promising Approach to Mitigating Salinity Stress in Agricultural Crops. Front Microbiol 2021; 12:765320. [PMID: 34867895 PMCID: PMC8640360 DOI: 10.3389/fmicb.2021.765320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
The use of microbial derived compounds is a technological approach currently gaining popularity among researchers, with hopes of complementing, supplementing and addressing key issues associated with use of microbial cells for enhancing plant growth. The new technology is a promising approach to mitigating effects of salinity stress in agricultural crops, given that these compounds could be less prone to effects of salt stress, are required in small quantities and are easier to store and handle than microbial cells. Microorganism derived compounds such as thuricin17, lipochitooligosaccharides, phytohormones and volatile organic compounds have been reported to mitigate the effects of salt stress in agricultural crops such as soybean and wheat. This mini-review compiles current knowledge regarding the use of microbe derived compounds in mitigating salinity stress in crops, the mechanisms they employ as well as future prospects.
Collapse
Affiliation(s)
- Judith Naamala
- Smith Laboratory, Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Donald L Smith
- Smith Laboratory, Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Roy S, Chakraborty AP, Chakraborty R. Understanding the potential of root microbiome influencing salt-tolerance in plants and mechanisms involved at the transcriptional and translational level. PHYSIOLOGIA PLANTARUM 2021; 173:1657-1681. [PMID: 34549441 DOI: 10.1111/ppl.13570] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Soil salinity severely affects plant growth and development and imparts inevitable losses to crop productivity. Increasing the concentration of salts in the vicinity of plant roots has severe consequences at the morphological, biochemical, and molecular levels. These include loss of chlorophyll, decrease in photosynthetic rate, reduction in cell division, ROS generation, inactivation of antioxidative enzymes, alterations in phytohormone biosynthesis and signaling, and so forth. The association of microorganisms, viz. plant growth-promoting rhizobacteria, endophytes, and mycorrhiza, with plant roots constituting the root microbiome can confer a greater degree of salinity tolerance in addition to their inherent ability to promote growth and induce defense mechanisms. The mechanisms involved in induced stress tolerance bestowed by these microorganisms involve the modulation of phytohormone biosynthesis and signaling pathways (including indole acetic acid, gibberellic acid, brassinosteroids, abscisic acid, and jasmonic acid), accumulation of osmoprotectants (proline, glycine betaine, and sugar alcohols), and regulation of ion transporters (SOS1, NHX, HKT1). Apart from this, salt-tolerant microorganisms are known to induce the expression of salt-responsive genes via the action of several transcription factors, as well as by posttranscriptional and posttranslational modifications. Moreover, the potential of these salt-tolerant microflora can be employed for sustainably improving crop performance in saline environments. Therefore, this review will briefly focus on the key responses of plants under salinity stress and elucidate the mechanisms employed by the salt-tolerant microorganisms in improving plant tolerance under saline environments.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Darjeeling, West Bengal, India
| | | | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Darjeeling, West Bengal, India
| |
Collapse
|
26
|
Checchio MV, de Cássia Alves R, de Oliveira KR, Moro GV, Santos DMMD, Gratão PL. Enhancement of salt tolerance in corn using Azospirillum brasilense: an approach on antioxidant systems. JOURNAL OF PLANT RESEARCH 2021; 134:1279-1289. [PMID: 34302571 DOI: 10.1007/s10265-021-01332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/15/2021] [Indexed: 05/24/2023]
Abstract
Salinity has become one of the major factors limiting agricultural production. In this regard, different cost-effective management strategies such as the use of plant growth-promoting bacteria (PGPB) as inoculants to alleviate salt-stress conditions and minimize plant productivity losses have been used in agricultural systems. The aim of this study was to characterize induced antioxidant responses in corn through inoculation with Azospirillum brasilense and examine the relationship between these responses and the acquired salt-stress tolerance. Treatments were performed by combining sodium chloride (0 and 100 mM NaCl) through irrigation water with absence and presence of A. brasilense inoculation. The experiment was performed in a completely randomized design with four replications. Lipid peroxidation (malondialdehyde [MDA]), and nitrogen (N), sodium (Na+) and potassium (K+) contents, as well as dry biomass, glycine betaine, and antioxidant enzymes activities such as of superoxide dismutase (SOD, EC 1. 15. 1. 1), glutathione reductase (GR, EC 1. 6. 4. 2), guaiacol peroxidase (GPOX, EC 1. 11. 1. 7), and glutathione peroxidase (GSH-PX, EC 1. 11. 1. 9) were determined. Overall results indicated that plants treated with 100 mM NaCl showed the most pronounced salt-stress damages with consequent increase in MDA content. However, inoculated plants showed an enhanced capacity to withstand or avoid salt-stress damages. These results could be attributed, at least in part, to the increased activity of antioxidant enzymes. Our results suggest that A. brasilense may confer tolerance to salt stress in corn plants enhancing antioxidant responses, primarily by the enzymes GSH-PX and GPOX, and the osmolyte glycine betaine.
Collapse
Affiliation(s)
- Mirela Vantini Checchio
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil
| | - Rita de Cássia Alves
- Núcleo de Produção Vegetal, Instituto Nacional do Semiárido (INSA), Campina Grande, PB, 58434-700, Brazil
| | - Kevein Ruas de Oliveira
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil
| | - Gustavo Vitti Moro
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Produção Vegetal, Jaboticabal, SP, 14884-900, Brazil
| | - Durvalina Maria Mathias Dos Santos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil
| | - Priscila Lupino Gratão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Depto. de Biologia Aplicada à Agropecuária, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
27
|
Patterns in the Microbial Community of Salt-Tolerant Plants and the Functional Genes Associated with Salt Stress Alleviation. Microbiol Spectr 2021; 9:e0076721. [PMID: 34704793 PMCID: PMC8549722 DOI: 10.1128/spectrum.00767-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salinity is an important abiotic stress affecting plant growth. We have known that plants can recruit beneficial microbes from the surrounding soil. However, the ecological functions of the core microbiome in salt-tolerant plants, together with their driving factors, remain largely unexplored. Here, we employed both amplicon and shotgun metagenomic sequencing to investigate the microbiome and function signatures of bulk soil and rhizocompartment samples from three salt-tolerant plants (legumes Glycine soja and Sesbania cannabina and nonlegume Sorghum bicolor). Strong filtration effects for microbes and functional genes were found in the rhizocompartments following a spatial gradient. The dominant bacteria belonged to Ensifer for legumes and Bacillus for S. bicolor. Although different salt-tolerant plants harbored distinct bacterial communities, they all enriched genes involved in cell motility, Na+ transport, and plant growth-promoting function (e.g., nitrogen fixation and phosphate solubilization) in rhizoplane soils, implying that the microbiome assembly of salt-tolerant plants might depend on the ecological functions of microbes rather than microbial taxa. Moreover, three metagenome-assembled genomes affiliated to Ensifer were obtained, and their genetic basis for salt stress alleviation were predicted. Soil pH, electrical conductivity, and total nitrogen were the most important driving factors for explaining the above microbial and functional gene selection. Correspondingly, the growth of an endophyte, Ensifer meliloti CL09, was enhanced by providing root exudates, suggesting that root exudates might be one of factors in the selection of rhizosphere and endosphere microbiota. Overall, this study reveals the ecological functions of the populations inhabiting the root of salt-tolerant plants. IMPORTANCE Salinity is an important but little-studied abiotic stressor affecting plant growth. Although several previous reports have examined salt-tolerant plant microbial communities, we still lack a comprehensive understanding about the functional characteristics and genomic information of this population. The results of this study revealed the root-enriched and -depleted bacterial groups, and found three salt-tolerant plants harbored different bacterial populations. The prediction of three metagenome-assembled genomes confirmed the critical role of root dominant species in helping plants tolerate salt stress. Further analysis indicated that plants enriched microbiome from soil according to their ecological functions but not microbial taxa. This highlights the importance of microbial function in enhancing plant adaptability to saline soil and implies that we should pay more attention to microbial function and not only to taxonomic information. Ultimately, these results provide insight for future agriculture using the various functions of microorganisms on the saline soil.
Collapse
|
28
|
Bianco C, Andreozzi A, Romano S, Fagorzi C, Cangioli L, Prieto P, Cisse F, Niangado O, Sidibé A, Pianezze S, Perini M, Mengoni A, Defez R. Endophytes from African Rice ( Oryza glaberrima L.) Efficiently Colonize Asian Rice ( Oryza sativa L.) Stimulating the Activity of Its Antioxidant Enzymes and Increasing the Content of Nitrogen, Carbon, and Chlorophyll. Microorganisms 2021; 9:microorganisms9081714. [PMID: 34442793 PMCID: PMC8398951 DOI: 10.3390/microorganisms9081714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Bacterial endophytes support the adaptation of host plants to harsh environments. In this study, culturable bacterial endophytes were isolated from the African rice Oryza glaberrima L., which is well-adapted to grow with poor external inputs in the tropical region of Mali. Among these, six N-fixer strains were used to inoculate O. glaberrima RAM133 and the Asian rice O. sativa L. cv. Baldo, selected for growth in temperate climates. The colonization efficiency and the N-fixing activity were evaluated and compared for the two rice varieties. Oryza sativa-inoculated plants showed a fairly good colonization efficiency and nitrogenase activity. The inoculation of Oryza sativa with the strains Klebsiella pasteurii BDA134-6 and Phytobacter diazotrophicus BDA59-3 led to the highest nitrogenase activity. In addition, the inoculation of ‘Baldo’ plants with the strain P. diazotrophicus BDA59-3 led to a significant increase in nitrogen, carbon and chlorophyll content. Finally, ‘Baldo’ plants inoculated with Kl. pasteurii BDA134-6 showed the induction of antioxidant enzymes activity and the maintenance of nitrogen-fixation under salt stress as compared to the unstressed controls. As these endophytes efficiently colonize high-yielding crop varieties grown in cold temperate climates, they become good candidates to promote their growth under unfavorable conditions.
Collapse
Affiliation(s)
- Carmen Bianco
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.R.); (R.D.)
- Correspondence: ; Tel.: +39-081-613-2610
| | - Anna Andreozzi
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.R.); (R.D.)
| | - Silvia Romano
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.R.); (R.D.)
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (C.F.); (L.C.); (A.M.)
| | - Lisa Cangioli
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (C.F.); (L.C.); (A.M.)
| | - Pilar Prieto
- Departamento de Mejora Genética, Campus ‘Alamedadel Obispo’, Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Fousseyni Cisse
- Institut d’Economie Rurale, Rue Mohamed V Bamako, Bamako B.P. 258, Mali; (F.C.); (A.S.)
| | - Oumar Niangado
- Syngenta Foundation for Sustainable Agriculture, Bamako B.P.E. 1449, Mali;
| | - Amadou Sidibé
- Institut d’Economie Rurale, Rue Mohamed V Bamako, Bamako B.P. 258, Mali; (F.C.); (A.S.)
| | - Silvia Pianezze
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele All’Adige, Italy; (S.P.); (M.P.)
- Environmental and Animal Sciences DI4A, Università degli Studi di Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Matteo Perini
- Fondazione Edmund Mach, Via Mach 1, 38098 San Michele All’Adige, Italy; (S.P.); (M.P.)
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (C.F.); (L.C.); (A.M.)
| | - Roberto Defez
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.R.); (R.D.)
| |
Collapse
|
29
|
Contribution of Rhizobium–Legume Symbiosis in Salt Stress Tolerance in Medicago truncatula Evaluated through Photosynthesis, Antioxidant Enzymes, and Compatible Solutes Accumulation. SUSTAINABILITY 2021. [DOI: 10.3390/su13063369] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effects of salt stress on the growth, nodulation, and nitrogen (N) fixation of legumes are well known, but the relationship between symbiotic nitrogen fixation (SNF) driven by rhizobium–legume symbiosis and salt tolerance in Medicago truncatula is not well studied. The effects of the active nodulation process on salt stress tolerance of Medicago truncatula were evaluated by quantifying the compatible solutes, soluble sugars, and antioxidants enzymes, as well as growth and survival rate of plants. Eight weeks old plants, divided in three groups: (i) no nodules (NN), (ii) inactive nodules (IN), and (iii) active nodules (AN), were exposed to 150 mM of NaCl salt stress for 0, 8, 16, 24, 32, 40, and 48 h in hydroponic system. AN plants showed a higher survival rate (30.83% and 38.35%), chlorophyll contents (37.18% and 44.51%), and photosynthesis compared to IN and NN plants, respectively. Improved salt tolerance in AN plants was linked with higher activities of enzymatic and nonenzymatic antioxidants and higher K+ (20.45% and 39.21%) and lower Na+ accumulations (17.54% and 24.51%) when compared with IN and NN plants, respectively. Additionally, higher generation of reactive oxygen species (ROS) was indicative of salt stress, causing membrane damage as revealed by higher electrolyte leakage and lipid peroxidation. All such effects were significantly ameliorated in AN plants, showing higher compatible solutes (proline, free amino acids, glycine betaine, soluble sugars, and proteins) and maintaining higher relative water contents (61.34%). This study advocates positive role of Rhizobium meliloti inoculation against salt stress through upregulation of antioxidant system and a higher concentration of compatible solutes.
Collapse
|
30
|
Arias Padró MD, Caboni E, Salazar Morin KA, Meraz Mercado MA, Olalde-Portugal V. Effect of Bacillus subtilis on antioxidant enzyme activities in tomato grafting. PeerJ 2021; 9:e10984. [PMID: 33763301 PMCID: PMC7958894 DOI: 10.7717/peerj.10984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/31/2021] [Indexed: 11/20/2022] Open
Abstract
Grafting generally means stress to a plant and this triggers antioxidant defense systems. An imbalance in reactive oxygen species may negatively affect the grafting success. Several research projects have studied the association with plant growth-promoting rhizobacteria (PGPR) and it has been documented that they enhance nutrient acquisition, regulate hormone levels, and influence the antioxidant response in crops. However, little is known about the strategy of inoculating grafted herbaceous plants with PGPR and its effect on the antioxidant response. The effects of inoculating a strain of Bacillus subtilis on the antioxidant metabolism of grafted tomato were evaluated. In this study, two different rootstocks were used for tomato (Solanum lycopersicum L. var. Rio Grande (RG)): [S. lycopersicum L. var. cerasiforme (Ch)] and eggplant [(Solanum melanogena L. (Ber)] to establish a compatible graft (RGCh) and a semicompatible graft (RGBer). Enzyme activities involved in the antioxidant defense system: superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), and total phenols were measured during 4 weeks after grafting. The results show that for RGCh, during the first two weeks after grafting, the tendency was a decrease of the enzyme activity for SOD, CAT, PAL when inoculated with B. subtilis; while in the semicompatible graft RGBer, PPO and PAL decreased their activity after inoculation. For both combinations, the quantity of total phenols varied depending on the day. In both graft combinations, applications of B. subtilis resulted in 86 and 80% callusing compared with the uninoculated control where the percentages were 74 and 70% for RGCh and RGBer, respectively. The highest significant graft success (95%) was recorded 28 days after grafting for inoculated RGBer. These findings imply that B. subtilis induced antioxidant mechanisms in grafted plants and suggest that inoculation with this growth-promoting bacterium can represent a biotechnological approach to improve success in tomato grafting.
Collapse
Affiliation(s)
- Maria D. Arias Padró
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Emilia Caboni
- Consiglio per la Ricerca in Agricoltura e l ’Analisi dell’Economia Agraria (CREA), Olivicoltura, Frutticoltura e Agrumicoltura (OFA), Rome, Italy
| | - Karla Azucena Salazar Morin
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Marco Antonio Meraz Mercado
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Víctor Olalde-Portugal
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| |
Collapse
|
31
|
Goyal RK, Schmidt MA, Hynes MF. Molecular Biology in the Improvement of Biological Nitrogen Fixation by Rhizobia and Extending the Scope to Cereals. Microorganisms 2021; 9:microorganisms9010125. [PMID: 33430332 PMCID: PMC7825764 DOI: 10.3390/microorganisms9010125] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
The contribution of biological nitrogen fixation to the total N requirement of food and feed crops diminished in importance with the advent of synthetic N fertilizers, which fueled the “green revolution”. Despite being environmentally unfriendly, the synthetic versions gained prominence primarily due to their low cost, and the fact that most important staple crops never evolved symbiotic associations with bacteria. In the recent past, advances in our knowledge of symbiosis and nitrogen fixation and the development and application of recombinant DNA technology have created opportunities that could help increase the share of symbiotically-driven nitrogen in global consumption. With the availability of molecular biology tools, rapid improvements in symbiotic characteristics of rhizobial strains became possible. Further, the technology allowed probing the possibility of establishing a symbiotic dialogue between rhizobia and cereals. Because the evolutionary process did not forge a symbiotic relationship with the latter, the potential of molecular manipulations has been tested to incorporate a functional mechanism of nitrogen reduction independent of microbes. In this review, we discuss various strategies applied to improve rhizobial strains for higher nitrogen fixation efficiency, more competitiveness and enhanced fitness under unfavorable environments. The challenges and progress made towards nitrogen self-sufficiency of cereals are also reviewed. An approach to integrate the genetically modified elite rhizobia strains in crop production systems is highlighted.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Correspondence:
| | - Maria Augusta Schmidt
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
32
|
Pathma J, Kennedy RK, Bhushan LS, Shankar BK, Thakur K. Microbial Biofertilizers and Biopesticides: Nature’s Assets Fostering Sustainable Agriculture. RECENT DEVELOPMENTS IN MICROBIAL TECHNOLOGIES 2021. [DOI: 10.1007/978-981-15-4439-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
33
|
Rice SST Variation Shapes the Rhizosphere Bacterial Community, Conferring Tolerance to Salt Stress through Regulating Soil Metabolites. mSystems 2020; 5:5/6/e00721-20. [PMID: 33234605 PMCID: PMC7687028 DOI: 10.1128/msystems.00721-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Soil salinization is one of the major environmental stresses limiting crop productivity. Crops in agricultural ecosystems have developed various strategies to adapt to salt stress. We used rice mutant and CRISPR-edited lines to investigate the relationships among the Squamosa promoter Binding Protein box (SBP box) family gene (SST/OsSPL10), soil metabolites, and the rhizosphere bacterial community. We found that during salt stress, there are significant differences in the rhizosphere bacterial community and soil metabolites between the plants with the SST gene and those without it. Our findings provide a useful paradigm for revealing the roles of key genes of plants in shaping rhizosphere microbiomes and their relationships with soil metabolites and offer new insights into strategies to enhance rice tolerance to high salt levels from microbial and ecological perspectives. Some plant-specific resistance genes could affect rhizosphere microorganisms by regulating the release of root exudates. In a previous study, the SST (seedling salt tolerant) gene in rice (Oryza sativa) was identified, and loss of SST function resulted in better plant adaptation to salt stress. However, whether the rice SST variation could alleviate salt stress via regulating soil metabolites and microbiota in the rhizosphere is still unknown. Here, we used transgenic plants with SST edited in the Huanghuazhan (HHZ) and Zhonghua 11 (ZH11) cultivars by the CRISPR/Cas9 system and found that loss of SST function increased the accumulation of potassium and reduced the accumulation of sodium ions in rice plants. Using 16S rRNA gene amplicon high-throughput sequencing, we found that the mutant material shifted the rhizobacterial assembly under salt-free stress. Importantly, under salt stress, the sst, HHZcas, and ZH11cas plants significantly changed the assembly of the rhizobacteria. Furthermore, the rice SST gene also affected the soil metabolites, which were closely related to the dynamics of rhizosphere microbial communities, and we further determined the relationship between the rhizosphere microbiota and soil metabolites. Overall, our results show the effects of the rice SST gene on the response to salt stress associated with the soil microbiota and metabolites in the rhizosphere. This study reveals a helpful linkage among the rice SST gene, soil metabolites, and rhizobacterial community assembly and also provides a theoretical basis for improving crop adaptation through soil microbial management practices. IMPORTANCE Soil salinization is one of the major environmental stresses limiting crop productivity. Crops in agricultural ecosystems have developed various strategies to adapt to salt stress. We used rice mutant and CRISPR-edited lines to investigate the relationships among the Squamosa promoter Binding Protein box (SBP box) family gene (SST/OsSPL10), soil metabolites, and the rhizosphere bacterial community. We found that during salt stress, there are significant differences in the rhizosphere bacterial community and soil metabolites between the plants with the SST gene and those without it. Our findings provide a useful paradigm for revealing the roles of key genes of plants in shaping rhizosphere microbiomes and their relationships with soil metabolites and offer new insights into strategies to enhance rice tolerance to high salt levels from microbial and ecological perspectives.
Collapse
|
34
|
The Importance of Microbial Inoculants in a Climate-Changing Agriculture in Eastern Mediterranean Region. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Climate change has gained importance due to its severe consequences for many aspects of life. Increasing temperature, drought and greenhouse gases affect directly or indirectly the productivity of agricultural and natural ecosystems as well as human health. The nutrient supply capacity of the soil is diminishing, while food requirements for the growing population are increasing. The ongoing application of agrochemicals results in adverse effects on ecosystem functioning and food chain. Now, more than ever, there is a need to mitigate the effects of agricultural activities on climate change using environmentally friendly techniques. The role of plant beneficial microorganisms on this global challenge is increasingly being explored, and there is strong evidence that could be important. The use of functional microbial guilds forms an alternative or even a supplementary approach to common agricultural practices, due to their ability to act as biofertilizers and promote plant growth. Application of microbial inocula has a significantly lower impact on the environment compared to chemical inputs, while the agricultural sector will financially benefit, and consumers will have access to quality products. Microbial inoculants could play an important role in agricultural stress management and ameliorate the negative impacts of climate change. This short review highlights the role of microbes in benefiting agricultural practices against climate-changing conditions. In particular, the main microbial plant growth-promoting functional traits that are related to climate change are presented and discussed. The importance of microbial inoculants’ multifunctionality is debated, while future needs and challenges are also highlighted.
Collapse
|
35
|
Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, Tripathi YN, Zehra A, Marwal A, Upadhyay RS. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J Basic Microbiol 2020; 60:828-861. [PMID: 32815221 DOI: 10.1002/jobm.202000370] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are diverse groups of plant-associated microorganisms, which can reduce the severity or incidence of disease during antagonism among bacteria and soil-borne pathogens, as well as by influencing a systemic resistance to elicit defense response in host plants. An amalgamation of various strains of PGPR has improved the efficacy by enhancing the systemic resistance opposed to various pathogens affecting the crop. Many PGPR used with seed treatment causes structural improvement of the cell wall and physiological/biochemical changes leading to the synthesis of proteins, peptides, and chemicals occupied in plant defense mechanisms. The major determinants of PGPR-mediated induced systemic resistance (ISR) are lipopolysaccharides, lipopeptides, siderophores, pyocyanin, antibiotics 2,4-diacetylphoroglucinol, the volatile 2,3-butanediol, N-alkylated benzylamine, and iron-regulated compounds. Many PGPR inoculants have been commercialized and these inoculants consequently aid in the improvement of crop growth yield and provide effective reinforcement to the crop from disease, whereas other inoculants are used as biofertilizers for native as well as crops growing at diverse extreme habitat and exhibit multifunctional plant growth-promoting attributes. A number of applications of PGPR formulation are needed to maintain the resistance levels in crop plants. Several microarray-based studies have been done to identify the genes, which are associated with PGPR-induced systemic resistance. Identification of these genes associated with ISR-mediating disease suppression and biochemical changes in the crop plant is one of the essential steps in understanding the disease resistance mechanisms in crops. Therefore, in this review, we discuss the PGPR-mediated innovative methods, focusing on the mode of action of compounds authorized that may be significant in the development contributing to enhance plant growth, disease resistance, and serve as an efficient bioinoculants for sustainable agriculture. The review also highlights current research progress in this field with a special emphasis on challenges, limitations, and their environmental and economic advantages.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Kumari Divyanshu
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Yashoda Nandan Tripathi
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan-Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Ram Sanmukh Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
36
|
Duca DR, Glick BR. Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl Microbiol Biotechnol 2020; 104:8607-8619. [PMID: 32875364 DOI: 10.1007/s00253-020-10869-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 11/28/2022]
Abstract
Numerous studies have reported the stimulation of plant growth following inoculation with an IAA-producing PGPB. However, the specific mode of IAA production by the PGPB is rarely elucidated. In part, this is due to the overwhelming complexity of IAA biosynthesis and regulation. The promiscuity of the enzymes implicated in IAA biosynthesis adds another element of complexity when attempting to decipher their role in IAA biosynthesis. To date, the majority of research on IAA biosynthesis describes three separate pathways classified in terms of their intermediates-indole acetonitrile (IAN), indole acetamide (IAM), and indole pyruvic acid (IPA). Each of these pathways is mediated by a set of enzymes, many of which are traditionally assumed to exist for that specific catalytic role. This lends the possibility of missing other, novel, enzymes that may also incidentally serve that function. Some of these pathways are constitutively expressed, while others are inducible. Some enzymes involved in IAA biosynthesis are known to be regulated by IAA or by IAA precursors, as well as by a multitude of environmental cues. This review aims to provide an update to our current understanding of the biosynthesis and regulation of IAA in bacteria. KEY POINTS: • IAA produced by PGPB improves bacterial stress tolerance and promotes plant growth. • Bacterial IAA biosynthesis is convoluted; multiple interdependent pathways. • Biosynthesis of IAA is regulated by IAA, IAA-precursors, and environmental factors.
Collapse
Affiliation(s)
- Daiana R Duca
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
37
|
Chlorophyll Fluorescence Parameters and Antioxidant Defense System Can Display Salt Tolerance of Salt Acclimated Sweet Pepper Plants Treated with Chitosan and Plant Growth Promoting Rhizobacteria. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081180] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Salinity stress deleteriously affects the growth and yield of many plants. Plant growth promoting rhizobacteria (PGPR) and chitosan both play an important role in combating salinity stress and improving plant growth under adverse environmental conditions. The present study aimed to evaluate the impacts of PGPR and chitosan on the growth of sweet pepper plant grown under different salinity regimes. For this purpose, two pot experiments were conducted in 2019 and 2020 to evaluate the role of PGPR (Bacillus thuringiensis MH161336 106–8 CFU/cm3) applied as seed treatment and foliar application of chitosan (30 mg dm−3) on sweet pepper plants (cv. Yolo Wonder) under two salinity concentrations (34 and 68 mM). Our findings revealed that, the chlorophyll fluorescence parameter (Fv/Fm ratio), chlorophyll a and b concentrations, relative water content (RWC), and fruit yield characters were negatively affected and significantly reduced under salinity conditions. The higher concentration was more harmful. Nevertheless, electrolyte leakage, lipid peroxidation, hydrogen peroxide (H2O2), and superoxide (O2−) significantly increased in stressed plants. However, the application of B. thuringiensis and chitosan led to improved plant growth and resulted in a significant increase in RWC, chlorophyll content, chlorophyll fluorescence parameter (Fv/Fm ratio), and fruit yield. Conversely, lipid peroxidation, electrolyte leakage, O2−, and H2O2 were significantly reduced in stressed plants. Also, B. thuringiensis and chitosan application regulated the proline accumulation and enzyme activity, as well as increased the number of fruit plant−1, fruit fresh weight plant−1, and total fruit yield of sweet pepper grown under saline conditions.
Collapse
|
38
|
Alemneh AA, Zhou Y, Ryder MH, Denton MD. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J Appl Microbiol 2020; 129:1133-1156. [PMID: 32592603 DOI: 10.1111/jam.14754] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/07/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022]
Abstract
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume-rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume-rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume-rhizobia symbiosis. The means by which these processes enhance the legume-rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume-rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.
Collapse
Affiliation(s)
- A A Alemneh
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - Y Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
39
|
Saline and Arid Soils: Impact on Bacteria, Plants, and their Interaction. BIOLOGY 2020; 9:biology9060116. [PMID: 32498442 PMCID: PMC7344409 DOI: 10.3390/biology9060116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
Salinity and drought are the most important abiotic stresses hampering crop growth and yield. It has been estimated that arid areas cover between 41% and 45% of the total Earth area worldwide. At the same time, the world’s population is going to soon reach 9 billion and the survival of this huge amount of people is dependent on agricultural products. Plants growing in saline/arid soil shows low germination rate, short roots, reduced shoot biomass, and serious impairment of photosynthetic efficiency, thus leading to a substantial loss of crop productivity, resulting in significant economic damage. However, plants should not be considered as single entities, but as a superorganism, or a holobiont, resulting from the intimate interactions occurring between the plant and the associated microbiota. Consequently, it is very complex to define how the plant responds to stress on the basis of the interaction with its associated plant growth-promoting bacteria (PGPB). This review provides an overview of the physiological mechanisms involved in plant survival in arid and saline soils and aims at describing the interactions occurring between plants and its bacteriome in such perturbed environments. The potential of PGPB in supporting plant survival and fitness in these environmental conditions has been discussed.
Collapse
|
40
|
Guo J, Muhammad H, Lv X, Wei T, Ren X, Jia H, Atif S, Hua L. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. CHEMOSPHERE 2020; 246:125823. [PMID: 31927380 DOI: 10.1016/j.chemosphere.2020.125823] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The rapid increase in world population has generated the issues of hunger, poverty, food insecurity and malnutrition. To meet the challenge of increased food production of better quality, the farmers were compelled to use more chemical fertilizers, especially in developing countries. The higher use of chemical fertilizers interrupts the food chain through eutrophication, the polluting air and soil by incorporating metals. Trace metals have a deleterious effect on soil microbial and plant growth. To minimize metal toxicity and maximize the production of food, there are different approaches that can lead to lessen the use of chemical fertilizers. Plant growth promoting rhizobacteria (PGPR) are capable to enhance the plant growth and can remediate metal contaminated soils. PGPR has the ability to improve food production with diverse attributes e.g. producing siderophores that promote rhizosphere trace metal sequestration and production of organic and inorganic acids thus affecting trace metal bioavailability and plant induced systemic tolerance (IST) to limit the crop metal accumulation. In this review paper, we have discussed the biological approach which is environmentally friendly and cost-effective mean for metal polluted soils and gives some new insights for safety use of PGPR in trace metal contaminated fields.
Collapse
Affiliation(s)
- JunKang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Haris Muhammad
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xin Lv
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - XinHao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - HongLei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Saleem Atif
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Li Hua
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
41
|
Ji C, Wang X, Tian H, Hao L, Wang C, Zhou Y, Xu R, Song X, Liu Y, Du J, Liu X. Effects of
Bacillus methylotrophicus
M4‐1 on physiological and biochemical traits of wheat under salinity stress. J Appl Microbiol 2020; 129:695-711. [DOI: 10.1111/jam.14644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/11/2023]
Affiliation(s)
- C. Ji
- College of Forestry Shandong Agriculture University Taian Shandong China
| | - X. Wang
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers Qingdao Brightmoon Seaweed Group Co. Ltd Tsingtao Shandong China
| | - H. Tian
- College of Forestry Shandong Agriculture University Taian Shandong China
| | - L. Hao
- College of Plant Conservation Shandong Agriculture University Taian Shandong China
| | - C. Wang
- College of Forestry Shandong Agriculture University Taian Shandong China
| | - Y. Zhou
- College of Forestry Shandong Agriculture University Taian Shandong China
| | - R. Xu
- College of Forestry Shandong Agriculture University Taian Shandong China
| | - X. Song
- College of Forestry Shandong Agriculture University Taian Shandong China
| | - Y. Liu
- College of Forestry Shandong Agriculture University Taian Shandong China
| | - J. Du
- College of Forestry Shandong Agriculture University Taian Shandong China
| | - X. Liu
- College of Forestry Shandong Agriculture University Taian Shandong China
| |
Collapse
|
42
|
Khuong NQ, Kantachote D, Nookongbut P, Onthong J, Thanh Xuan LN, Sukhoom A. Mechanisms of acid-resistant Rhodopseudomonas palustris strains to ameliorate acidic stress and promote plant growth. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
GOSWAMI M, DEKA S. Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. PEDOSPHERE 2020; 30:40-61. [PMID: 0 DOI: 10.1016/s1002-0160(19)60839-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
44
|
Yu J, Sun H, Zhang J, Hou Y, Zhang T, Kang J, Wang Z, Yang Q, Long R. Analysis of Aldo-Keto Reductase Gene Family and Their Responses to Salt, Drought, and Abscisic Acid Stresses in Medicago truncatula. Int J Mol Sci 2020; 21:ijms21030754. [PMID: 31979344 PMCID: PMC7037683 DOI: 10.3390/ijms21030754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Salt and drought stresses are two primary abiotic stresses that inhibit growth and reduce the activity of photosynthetic apparatus in plants. Abscisic acid (ABA) plays a key role in abiotic stress regulation in plants. Some aldo-keto reductases (AKRs) can enhance various abiotic stresses resistance by scavenging cytotoxic aldehydes in some plants. However, there are few comprehensive reports of plant AKR genes and their expression patterns in response to abiotic stresses. In this study, we identified 30 putative AKR genes from Medicago truncatula. The gene characteristics, coding protein motifs, and expression patterns of these MtAKRs were analyzed to explore and identify candidate genes in regulation of salt, drought, and ABA stresses. The phylogenetic analysis result indicated that the 52 AKRs in Medicago truncatula and Arabidopsis thaliana can be divided into three groups and six subgroups. Fifteen AKR genes in M. truncatula were randomly selected from each group or subgroup, to investigate their response to salt (200 mM of NaCl), drought (50 g·L-1 of PEG 6000), and ABA (100 µM) stresses in both leaves and roots. The results suggest that MtAKR1, MtAKR5, MtAKR11, MtAKR14, MtAKR20, and MtAKR29 may play important roles in response to these stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ruicai Long
- Correspondence: (Q.Y.); (R.L.); Tel.: +86-10-62816357
| |
Collapse
|
45
|
El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A. How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development? FRONTIERS IN PLANT SCIENCE 2020; 11:1127. [PMID: 32793273 PMCID: PMC7390974 DOI: 10.3389/fpls.2020.01127] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/08/2020] [Indexed: 05/20/2023]
Abstract
Soil salinity is one of the major abiotic stresses restricting the use of land for agriculture because it limits the growth and development of most crop plants. Improving productivity under these physiologically stressful conditions is a major scientific challenge because salinity has different effects at different developmental stages in different crops. When supplied exogenously, proline has improved salt stress tolerance in various plant species. Under high-salt conditions, proline application enhances plant growth with increases in seed germination, biomass, photosynthesis, gas exchange, and grain yield. These positive effects are mainly driven by better nutrient acquisition, water uptake, and biological nitrogen fixation. Exogenous proline also alleviates salt stress by improving antioxidant activities and reducing Na+ and Cl- uptake and translocation while enhancing K+ assimilation by plants. However, which of these mechanisms operate at any one time varies according to the proline concentration, how it is applied, the plant species, and the specific stress conditions as well as the developmental stage. To position salt stress tolerance studies in the context of a crop plant growing in the field, here we discuss the beneficial effects of exogenous proline on plants exposed to salt stress through well-known and more recently described examples in more than twenty crop species in order to appreciate both the diversity and commonality of the responses. Proposed mechanisms by which exogenous proline mitigates the detrimental effects of salt stress during crop plant growth are thus highlighted and critically assessed.
Collapse
Affiliation(s)
- Ahmed El Moukhtari
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Ecologie et Sciences de l’Environnement de Paris, IEES, Paris, France
- Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Ecologie et Sciences de l’Environnement de Paris, IEES, Paris, France
| | - Mohamed Farissi
- Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Ecologie et Sciences de l’Environnement de Paris, IEES, Paris, France
- *Correspondence: Arnould Savouré,
| |
Collapse
|
46
|
Ud Din B, Sarfraz S, Xia Y, Kamran MA, Javed MT, Sultan T, Hussain Munis MF, Chaudhary HJ. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC- deaminase producing Bacillus strains under induced salinity stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109466. [PMID: 31408821 DOI: 10.1016/j.ecoenv.2019.109466] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 05/20/2023]
Abstract
The potential of plant growth regulating microorganisms present in the soil can be explored towards the purpose of identifying salt tolerant strategies and crop cultivars. Current study was designed to elucidate the capabilities of salt stress tolerant plant growth promoting rhizobacteria (PGPR) Bacillus siamensis (PM13), Bacillus sp. (PM15) and Bacillus methylotrophicus (PM19) in undermining the effects of salt stress on wheat seedling. Strains were characterized for their IAA (81-113 μM/ml), ACC-deaminase (0.68-0.95 μM/mg protein/h) and exopolysaccharide (EPS) (0.62-0.97 mg/ml) producing activity both under normal and NaCl stressed conditions. Effects of bacterial inoculation on germination and seedling growth of wheat variety Pakistan-13 was observed under induced salinity stress levels (0, 4, 8, 16 dS/m). All the morpho-physiological characteristics of wheat seedlings were affected drastically by the NaCl stress and the growth parameters expressed a negative relationship with increased NaCl levels. PGPR application had a very positive influence on germination rate of wheat seedlings, root and shoot length, photosynthetic pigments etc. Elongated roots and enhanced vegetative shoot growth as well as seedling's fresh and dry weights were highest in plants treated with B. methylotrophicus PM19. Sequestration of Na+ ion by EPS production and degradation of exuded ACC into a-ketobutyrate and ammonia by ACCD bacteria efficiently reduced the impact of salinity stress on wheat growth. Current findings suggested that the used PGPR strains are potential candidates for improving crop growth in salt stressed agricultural systems. However further research validation would be necessary before large scale/field application.
Collapse
Affiliation(s)
- Bashir Ud Din
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sidra Sarfraz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ye Xia
- Department of Plant Pathology, The Ohio State University, USA
| | - Muhammad Aqeel Kamran
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | | | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | | | | |
Collapse
|
47
|
Silambarasan S, Logeswari P, Valentine A, Cornejo P. Role of Curtobacterium herbarum strain CAH5 on aluminum bioaccumulation and enhancement of Lactuca sativa growth under aluminum and drought stresses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109573. [PMID: 31442809 DOI: 10.1016/j.ecoenv.2019.109573] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Aluminum (Al) bioaccumulation by a novel Al and drought tolerant Curtobacterium herbarum strain CAH5 isolated from rhizosphere soil of Beta vulgaris grown in acidic Andisols were examined. The rhizobacterial strain also presented important plant growth promoting traits even with Al and drought stresses under in-vitro conditions in broth. In experiments with a 2-6 mM as initial Al concentrations, the percentages of Al removal by bacteria were 89-93% and 78-91% within 72 h incubation under the normal and drought conditions, respectively. Cytogenotoxicity assay revealed that the toxicity of Al was reduced after bioaccumulation process. In the greenhouse study, formulated bio-inoculant CAH5 significantly improves the Lactuca sativa growth under Al and drought stress by reducing oxidative stress, lipid peroxidation and Al accumulation in plant parts. Our results highlighted that strain CAH5 could be used as a promising bioresource for restoration of agricultural soil with presence of phytotoxic Al improving crop production even under drought conditions.
Collapse
Affiliation(s)
- Sivagnanam Silambarasan
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile
| | - Peter Logeswari
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile
| | - Alexander Valentine
- Botany and Zoology Department, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
48
|
Pi E, Xu J, Li H, Fan W, Zhu C, Zhang T, Jiang J, He L, Lu H, Wang H, Poovaiah BW, Du L. Enhanced Salt Tolerance of Rhizobia-inoculated Soybean Correlates with Decreased Phosphorylation of the Transcription Factor GmMYB183 and Altered Flavonoid Biosynthesis. Mol Cell Proteomics 2019; 18:2225-2243. [PMID: 31467032 PMCID: PMC6823849 DOI: 10.1074/mcp.ra119.001704] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Indexed: 01/15/2023] Open
Abstract
Soybean (Glycine max (L.) Merrill) is an important component of the human diet and animal feed, but soybean production is limited by abiotic stresses especially salinity. We recently found that rhizobia inoculation enhances soybean tolerance to salt stress, but the underlying mechanisms are unaddressed. Here, we used quantitative phosphoproteomic and metabonomic approaches to identify changes in phosphoproteins and metabolites in soybean roots treated with rhizobia inoculation and salt. Results revealed differential regulation of 800 phosphopeptides, at least 32 of these phosphoproteins or their homologous were reported be involved in flavonoid synthesis or trafficking, and 27 out of 32 are transcription factors. We surveyed the functional impacts of all these 27 transcription factors by expressing their phospho-mimetic/ablative mutants in the roots of composite soybean plants and found that phosphorylation of GmMYB183 could affect the salt tolerance of the transgenic roots. Using data mining, ChIP and EMSA, we found that GmMYB183 binds to the promoter of the soybean GmCYP81E11 gene encoding for a Cytochrome P450 monooxygenase which contributes to the accumulation of ononin, a monohydroxy B-ring flavonoid that negatively regulates soybean tolerance to salinity. Phosphorylation of GmMYB183 was inhibited by rhizobia inoculation; overexpression of GmMYB183 enhanced the expression of GmCYP81E11 and rendered salt sensitivity to the transgenic roots; plants deficient in GmMYB183 function are more tolerant to salt stress as compared with wild-type soybean plants, these results correlate with the transcriptional induction of GmCYP81E11 by GmMYB183 and the subsequent accumulation of ononin. Our findings provide molecular insights into how rhizobia enhance salt tolerance of soybean plants.
Collapse
Affiliation(s)
- Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants.
| | - Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Huihui Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Wei Fan
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, PR China
| | - Chengmin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Tongyao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Jiachen Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Litao He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Hongfei Lu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - B W Poovaiah
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants.
| |
Collapse
|
49
|
He W, Megharaj M, Wu CY, Subashchandrabose SR, Dai CC. Endophyte-assisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants. Crit Rev Biotechnol 2019; 40:31-45. [PMID: 31656090 DOI: 10.1080/07388551.2019.1675582] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phytoremediation uses plants and associated microbes to remove pollutants from the environment and is considered a promising bioremediation method. Compared with well-described single contaminant treatments, the number of studies reporting phytoremediation of soil mixed pollutants has increased recently. Endophytes, including bacteria and fungi, exhibit beneficial traits for the promotion of plant growth, stress alleviation, and biodegradation. Moreover, endophytes either directly or indirectly assist host plants to survive high concentrations of organic and inorganic pollutants in the soil. Endophytic microorganisms can also regulate the plant metabolism in different ways, exhibiting a variety of physiological characteristics. This review summarizes the taxa and physiological properties of endophytic microorganisms that may participate in the detoxification of contaminant mixtures. Furthermore, potential biomolecules that may enhance endophyte mediated phytoremediation are discussed. The practical applications of pollutant-degrading endophytes and current strategies for applying this valuable bio-resource to soil phytoremediation are summarized.
Collapse
Affiliation(s)
- Wei He
- College of Life Sciences, Nanjing Normal University, Nanjing, China.,Global Centre for Environmental Remediation (GCER), The University of Newcastle (UoN), Callaghan, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UoN), Callaghan, Australia
| | - Chun-Ya Wu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UoN), Callaghan, Australia
| | - Chuan-Chao Dai
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
50
|
Khan MA, Asaf S, Khan AL, Adhikari A, Jan R, Ali S, Imran M, Kim KM, Lee IJ. Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9530963. [PMID: 31886270 PMCID: PMC6925695 DOI: 10.1155/2019/9530963] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Salinity is one of the major abiotic constraints that hinder health and quality of crops. Conversely, halotolerant plant growth-promoting rhizospheric (PGPR) bacteria are considered biologically safe for alleviating salinity stress. RESULTS We isolated halotolerant PGPR strains from the rhizospheric soil of Artemisia princeps, Chenopodium ficifolium, Echinochloa crus-galli, and Oenothera biennis plants; overall, 126 strains were isolated. The plant growth-promoting traits of these isolates were studied by inoculating them with the soil used to grow soybean plants under normal and salt stress (NaCl; 200 mM) conditions. The isolates identified as positive for growth-promoting activities were subjected to molecular identification. Out of 126 isolates, five strains-Arthrobacter woluwensis (AK1), Microbacterium oxydans (AK2), Arthrobacter aurescens (AK3), Bacillus megaterium (AK4), and Bacillus aryabhattai (AK5)-were identified to be highly tolerant to salt stress and demonstrated several plant growth-promoting traits like increased production of indole-3-acetic acid (IAA), gibberellin (GA), and siderophores and increased phosphate solubilization. These strains were inoculated in the soil of soybean plants grown under salt stress (NaCl; 200 mM) and various physiological and morphological parameters of plants were studied. The results showed that the microbial inoculation elevated the antioxidant (SOD and GSH) level and K+ uptake and reduced the Na+ ion concentration. Moreover, inoculation of these microbes significantly lowered the ABA level and increased plant growth attributes and chlorophyll content in soybean plants under 200 mM NaCl stress. The salt-tolerant gene GmST1 was highly expressed with the highest expression of 42.85% in AK1-treated plants, whereas the lowest expression observed was 13.46% in AK5-treated plants. Similarly, expression of the IAA regulating gene GmLAX3 was highly depleted in salt-stressed plants by 38.92%, which was upregulated from 11.26% to 43.13% upon inoculation with the microorganism. CONCLUSION Our results showed that the salt stress-resistant microorganism used in these experiments could be a potential biofertilizer to mitigate the detrimental effects of salt stress in plants via regulation of phytohormones and gene expression.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Arjun Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Rahmatullah Jan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajid Ali
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|