1
|
Guo ZH, Hu TH, Hamdan MF, Li M, Wang R, Xu J, Lung SC, Liang W, Shi J, Zhang D, Chye ML. A promoter polymorphism defines distinct roles in anther development for Col-0 and Ler-0 alleles of Arabidopsis ACYL-COA BINDING PROTEIN3. THE NEW PHYTOLOGIST 2024; 243:1424-1439. [PMID: 38922886 DOI: 10.1111/nph.19924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Acyl-CoA-Binding Proteins (ACBPs) bind acyl-CoA esters and function in lipid metabolism. Although acbp3-1, the ACBP3 mutant in Arabidopsis thaliana ecotype Col-0, displays normal floral development, the acbp3-2 mutant from ecotype Ler-0 characterized herein exhibits defective adaxial anther lobes and improper sporocyte formation. To understand these differences and identify the role of ERECTA in ACBP3 function, the acbp3 mutants and acbp3-erecta (er) lines were analyzed by microscopy for anther morphology and high-performance liquid chromatography for lipid composition. Defects in Landsberg anther development were related to the ERECTA-mediated pathway because the progenies of acbp3-2 × La-0 and acbp3-1 × er-1 in Col-0 showed normal anthers, contrasting to that of acbp3-2 in Ler-0. Polymorphism in the regulatory region of ACBP3 enabled its function in anther development in Ler-0 but not Col-0 which harbored an AT-repeat insertion. ACBP3 expression and anther development in acbp3-2 were restored using ACBP3pro (Ler)::ACBP3 not ACBP3pro (Col)::ACBP3. SPOROCYTELESS (SPL), a sporocyte formation regulator activated ACBP3 transcription in Ler-0 but not Col-0. For anther development, the ERECTA-related role of ACBP3 is required in Ler-0, but not Col-0. The disrupted promoter regulatory region for SPL binding in Col-0 eliminates the role of ACBP3 in anther development.
Collapse
Affiliation(s)
- Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Tai-Hua Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Minghui Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruifeng Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- The Core Facility and Service Center (CFSC), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
2
|
Zhu PK, Lin MX, Zeng MY, Tang Y, Li XR, He TY, Zheng YS, Chen LY. Expression of Iron Metabolism Genes Is Potentially Regulated by DOF Transcription Factors in Dendrocalamus latiflorus Leaves. Int J Mol Sci 2024; 25:8114. [PMID: 39125685 PMCID: PMC11311721 DOI: 10.3390/ijms25158114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Transcription factors (TFs) are crucial pre-transcriptional regulatory mechanisms that can modulate the expression of downstream genes by binding to their promoter regions. DOF (DNA binding with One Finger) proteins are a unique class of TFs with extensive roles in plant growth and development. Our previous research indicated that iron content varies among bamboo leaves of different colors. However, to our knowledge, genes related to iron metabolism pathways in bamboo species have not yet been studied. Therefore, in the current study, we identified iron metabolism related (IMR) genes in bamboo and determined the TFs that significantly influence them. Among these, DOFs were found to have widespread effects and potentially significant impacts on their expression. We identified specific DOF members in Dendrocalamus latiflorus with binding abilities through homology with Arabidopsis DOF proteins, and established connections between some of these members and IMR genes using RNA-seq data. Additionally, molecular docking confirmed the binding interactions between these DlDOFs and the DOF binding sites in the promoter regions of IMR genes. The co-expression relationship between the two gene sets was further validated using q-PCR experiments. This study paves the way for research into iron metabolism pathways in bamboo and lays the foundation for understanding the role of DOF TFs in D. latiflorus.
Collapse
Affiliation(s)
- Peng-Kai Zhu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mei-Xia Lin
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mei-Yin Zeng
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Tang
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin-Rui Li
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tian-You He
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Shan Zheng
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling-Yan Chen
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Du W, Huang H, Kong W, Jiang W, Pang Y. Over-expression of Medicago Acyl-CoA-binding 2 genes enhance salt and drought tolerance in Arabidopsis. Int J Biol Macromol 2024; 268:131631. [PMID: 38631584 DOI: 10.1016/j.ijbiomac.2024.131631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Acyl-CoA-binding proteins (ACBPs) are mainly involved in acyl-CoA ester binding and trafficking in eukaryotic cells, and they function in lipid metabolism, membrane biosynthesis, cellular signaling, stress response, disease resistance, and other biological activities in plants. However, the roles of ACBP family members in Medicago remain unclear. In this study, a total of eight ACBP genes were identified in the genome of Medicago truncatula and Medicago sativa, and they were clustered into four sub-families (Class I-IV). Many cis-acting elements related to abiotic response were identified in the promoter region of these ACBP genes, in particular light-responsive elements. These ACBP genes exhibited distinct expression pattern in various tissues, and the expression level of MtACBP1/MsACBP1 and MtACBP2/MsACBP2 gene pairs were significantly increased under NaCl treatment. Subcellular localization analysis showed that MtACBP1/MsACBP1 and MtACBP2/MsACBP2 were localized in the endoplasmic reticulum of tobacco epidermal cells. Arabidopsis seedlings over-expressing MtACBP2/MsACBP2 displayed increased root length than the wild type under short light, Cu2+, ABA, PEG, and NaCl treatments. Over-expression of MtACBP2/MsACBP2 also significantly enhanced Arabidopsis tolerance under NaCl and PEG treatments in mature plants. Collectively, our study identified salt and drought responsive ACBP genes in Medicago and verified their functions in increasing resistance against salt and drought stresses.
Collapse
Affiliation(s)
- Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haijun Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiye Kong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Chang H, Ma M, Gu M, Li S, Li M, Guo G, Xing G. Acyl-CoA-binding protein (ACBP) genes involvement in response to abiotic stress and exogenous hormone application in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2024; 24:236. [PMID: 38561660 PMCID: PMC10985865 DOI: 10.1186/s12870-024-04944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Acyl-CoA-Binding proteins (ACBPs) function as coenzyme A transporters and play important roles in regulating plant growth and development in response to abiotic stress and phytohormones, as well as in membrane repair. To date, the ACBP family has not been a comprehensively characterized in barley (Hordeum vulgare L.). RESULTS Eight ACBP genes were identified in the barley genome and named as HvACBP1-8. The analysis of the proteins structure and promoter elements of HvACBP suggested its potential functions in plant growth, development, and stress response. These HvACBPs are expressed in specific tissues and organs following induction by abiotic stressors such as drought, salinity, UV-B exposure, temperature extremes, and exposure to exogenous phytohormones. The HvACBP7 and HvACBP8 amino acid sequences were conserved during the domestication of Tibetan Qingke barley. CONCLUSIONS Acyl-CoA-binding proteins may play important roles in barley growth and environmental adaptation. This study provides foundation for further analyses of the biological functions of HvACBPs in the barley stress response.
Collapse
Grants
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 2023CYJSTX03-19 Modern Agro-Industry Technology Research System of Shanxi Province, China
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- 202204010910001-06 National Laboratory for Minor Crops Germplasm Innovation and Molecular Breeding, China (in preparation)
- CARS-05 China Agriculture Research System of MOF and MORA
- CARS-05 China Agriculture Research System of MOF and MORA
- CARS-05 China Agriculture Research System of MOF and MORA
- CARS-05 China Agriculture Research System of MOF and MORA
Collapse
Affiliation(s)
- Huayu Chang
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- Key laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Minhu Ma
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- Key laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Mingzhou Gu
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
| | - Shanshan Li
- Key laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Mengrun Li
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
| | - Ganggang Guo
- Key laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Guofang Xing
- Hou Ji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| |
Collapse
|
5
|
Montégut L, Abdellatif M, Motiño O, Madeo F, Martins I, Quesada V, López‐Otín C, Kroemer G. Acyl coenzyme A binding protein (ACBP): An aging- and disease-relevant "autophagy checkpoint". Aging Cell 2023; 22:e13910. [PMID: 37357988 PMCID: PMC10497816 DOI: 10.1111/acel.13910] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Acyl coenzyme A binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is a phylogenetically ancient protein present in some eubacteria and the entire eukaryotic radiation. In several eukaryotic phyla, ACBP/DBI transcends its intracellular function in fatty acid metabolism because it can be released into the extracellular space. This ACBP/DBI secretion usually occurs in response to nutrient scarcity through an autophagy-dependent pathway. ACBP/DBI and its peptide fragments then act on a range of distinct receptors that diverge among phyla, namely metabotropic G protein-coupled receptor in yeast (and likely in the mammalian central nervous system), a histidine receptor kinase in slime molds, and ionotropic gamma-aminobutyric acid (GABA)A receptors in mammals. Genetic or antibody-mediated inhibition of ACBP/DBI orthologs interferes with nutrient stress-induced adaptations such as sporulation or increased food intake in multiple species, as it enhances lifespan or healthspan in yeast, plant leaves, nematodes, and multiple mouse models. These lifespan and healthspan-extending effects of ACBP/DBI suppression are coupled to the induction of autophagy. Altogether, it appears that neutralization of extracellular ACBP/DBI results in "autophagy checkpoint inhibition" to unleash the anti-aging potential of autophagy. Of note, in humans, ACBP/DBI levels increase in various tissues, as well as in the plasma, in the context of aging, obesity, uncontrolled infection or cardiovascular, inflammatory, neurodegenerative, and malignant diseases.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Faculté de MédecineUniversité de Paris SaclayParisFrance
| | - Mahmoud Abdellatif
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Department of CardiologyMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Frank Madeo
- BioTechMed‐GrazGrazAustria
- Institute of Molecular Biosciences, NAWI GrazUniversity of GrazGrazAustria
- Field of Excellence BioHealthUniversity of GrazGrazAustria
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Victor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Carlos López‐Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Institut du Cancer Paris CARPEM, Department of BiologyHôpital Européen Georges Pompidou, AP‐HPParisFrance
| |
Collapse
|
6
|
Hu P, Ren Y, Xu J, Luo W, Wang M, Song P, Guan Y, Hu H, Li C. Identification of acyl-CoA-binding protein gene in Triticeae species reveals that TaACBP4A-1 and TaACBP4A-2 positively regulate powdery mildew resistance in wheat. Int J Biol Macromol 2023; 246:125526. [PMID: 37379955 DOI: 10.1016/j.ijbiomac.2023.125526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Plant acyl-CoA-binding proteins (ACBPs), which contain the conserved ACB domain, participate in multiple biological processes, however, there are few reports on wheat ACBPs. In this study, the ACBP genes from nine different species were identified comprehensively. The expression patterns of TaACBP genes in multiple tissues and under various biotic stresses were determined by qRT-PCR. The function of selected TaACBP genes was studied by virus-induced gene silencing. A total of 67 ACBPs were identified from five monocotyledonous and four dicotyledonous species and divided into four classes. Tandem duplication analysis of the ACBPs suggested that tandem duplication events occurred in Triticum dicoccoides, but there was no tandem duplication event in wheat ACBP genes. Evolutionary analysis suggested that the TdACBPs may have experienced gene introgression during tetraploid evolution, while TaACBP gene loss events occurred during hexaploid wheat evolution. The expression pattern showed that all the TaACBP genes were expressed, and most of them were responsive to induction by Blumeria graminis f. sp. tritici or Fusarium graminearum. Silencing of TaACBP4A-1 and TaACBP4A-2 increased powdery mildew susceptibility in the common wheat BainongAK58. Furthermore, TaACBP4A-1, which belonged to class III, physically interacted with autophagy-related ubiquitin-like protein TaATG8g in yeast cells. This study provided a valuable reference for further investigations into the functional and molecular mechanisms of the ACBP gene family.
Collapse
Affiliation(s)
- Ping Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Yueming Ren
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Jun Xu
- College of Landscape Architecture and Horticulture, Henan Institute of Science and Technology, Xinxiang, China
| | - Wanglong Luo
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengfei Wang
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Puwen Song
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Yuanyuan Guan
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China.
| |
Collapse
|
7
|
Ling J, Li L, Lin L, Xie H, Zheng Y, Wan X. Genome-wide identification of acyl-CoA binding proteins and possible functional prediction in legumes. Front Genet 2023; 13:1057160. [PMID: 36704331 PMCID: PMC9871394 DOI: 10.3389/fgene.2022.1057160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Acyl-CoA-binding proteins (ACBPs), members of a vital housekeeping protein family, are present in various animal and plant species. They are divided into four classes: small ACBPs (class I), ankyrin-repeat ACBPs (class II), large ACBPs (class III), and kelch-ACBPs (class IV). Plant ACBPs play a pivotal role in intracellular transport, protection, and pool formation of acyl-CoA esters, promoting plant development and stress response. Even though legume crops are important for vegetable oils, proteins, vegetables and green manure, legume ACBPs are not well investigated. To comprehensively explore the functions of ACBPs in nine legumes (Lotus japonicus, Medicago truncatula, Glycine max, Vigna angularis, Vigna radiata, Phaseolus vulgaris, Arachis hypogaea, Arachis duranensis, and Arachis ipaensis), we conducted genome-wide identification of the ACBP gene family. Our evolutionary analyses included phylogenetics, gene structure, the conserved motif, chromosomal distribution and homology, subcellular localization, cis-elements, and interacting proteins. The results revealed that ACBP Orthologs of nine legumes had a high identity in gene structure and conserved motif. However, subcellular localization, cis-acting elements, and interaction protein analyses revealed potentially different functions from previously reported. The predicted results were also partially verified in Arachis hypogaea. We believe that our findings will help researchers understand the roles of ACBPs in legumes and encourage them to conduct additional research.
Collapse
|
8
|
Hamdan MF, Lung SC, Guo ZH, Chye ML. Roles of acyl-CoA-binding proteins in plant reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2918-2936. [PMID: 35560189 DOI: 10.1093/jxb/erab499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) constitute a well-conserved family of proteins in eukaryotes that are important in stress responses and development. Past studies have shown that ACBPs are involved in maintaining, transporting and protecting acyl-CoA esters during lipid biosynthesis in plants, mammals, and yeast. ACBPs show differential expression and various binding affinities for acyl-CoA esters. Hence, ACBPs can play a crucial part in maintaining lipid homeostasis. This review summarizes the functions of ACBPs during the stages of reproduction in plants and other organisms. A comprehensive understanding on the roles of ACBPs during plant reproduction may lead to opportunities in crop improvement in agriculture.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
9
|
Meng X, Yu Y, Song T, Yu Y, Cui N, Ma Z, Chen L, Fan H. Transcriptome Sequence Analysis of the Defense Responses of Resistant and Susceptible Cucumber Strains to Podosphaera xanthii. FRONTIERS IN PLANT SCIENCE 2022; 13:872218. [PMID: 35645993 PMCID: PMC9134894 DOI: 10.3389/fpls.2022.872218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Powdery mildew (PM) caused by Podosphaera xanthii poses a continuous threat to the performance and yield of the cucumber (Cucumis sativus L.). Control in the initial stages of infection is particularly important. Here, we studied the differential physiological and transcriptomic changes between PM-resistant strain B21-a-2-1-2 and PM-susceptible strain B21-a-2-2-2 at the early stage of P. xanthii attack. When challenged with P. xanthii, the tolerant line can postpone the formation of the pathogen primary germ. Comparative transcriptomic analysis suggested that DEGs related to the cell wall and to pathogen and hormone responses were similar enriched in both cucumber lines under P. xanthii infection. Notably, the number of DEGs triggered by P. xanthii in B21-a-2-1-2 was quintuple that in B21-a-2-2-2, revealing that the success of defense of resistant cucumber is due to rapidly mobilizing multiple responses. The unique responses detected were genes related to SA signaling, MAPK signaling, and Dof and WRKY transcription factors. Furthermore, 5 P. xanthii -inducible hub genes were identified, including GLPK, ILK1, EIN2, BCDHβ1, and RGGA, which are considered to be key candidate genes for disease control. This study combined multiple analytical approaches to capture potential molecular players and will provide key resources for developing cucumber cultivars resistant to pathogen stress.
Collapse
Affiliation(s)
- Xiangnan Meng
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Tiefeng Song
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhangtong Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Jiang X, Xu L, Gao Y, He M, Bu Q, Meng W. Phylogeny and subcellular localization analyses reveal distinctions in monocot and eudicot class IV acyl-CoA-binding proteins. PLANTA 2021; 254:71. [PMID: 34505938 DOI: 10.1007/s00425-021-03721-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Plant class IV ACBPs diverged with the split of monocots and eudicots. Difference in the subcellular localization supported the functional variation of plant class IV ACBP. Acyl-CoA-binding proteins (ACBPs) are divided into class I-IV in plants. Class IV ACBPs are kelch motif containing proteins that are specific to plants. The currently known subcellular localizations of plant class IV ACBPs are either in the cytosol (Arabidopsis) or in the peroxisomes (rice). However, it is not clear whether peroxisomal localization of class IV ACBP is a shared character that distinguishes eudicots and monocots. Here, the phylogeny of class IV ACBPs from 73 plant species and subcellular localization of class IV ACBPs from six monocots and eudicots were conducted. Phylogenetic analysis of 112 orthologues revealed that monocot class IV ACBPs were basal to the monophyletic clade formed by eudicots and basal angiosperm. Transient expression of GFP fusions in onion epidermal cells demonstrated that monocot maize (Zea mays), wheat (Triticum aestivum), and sorghum (Sorghum bicolor) and eudicot poplar (Populus trichocarpa) all contained at least one peroxisomal localized class IV ACBP, while orthologues from cucumber (Cucumis sativus L.) and soybean (Glycine max) were all cytosolic. Combining the location of Arabidopsis and rice class IV ACBPs, it indicates that maintaining at least one peroxisomal class IV ACBP could be a shared feature within the tested monocots, while cytosolic class IV ACBPs would be preferred in the tested eudicots. Furthermore, the interaction between OsACBP6 and peroxisomal ATP-binding cassette (ABC) transporter provided clues for the functional mechanism of OsACBP6.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lijian Xu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Ying Gao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Mingliang He
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Wei Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| |
Collapse
|
11
|
Hoffmann-Benning S. Collection and Analysis of Phloem Lipids. Methods Mol Biol 2021; 2295:351-361. [PMID: 34047986 DOI: 10.1007/978-1-0716-1362-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The plant phloem is a long-distance conduit for the transport of assimilates but also of mobile developmental and stress signals. These signals can be sugars, metabolites, amino acids, peptides, proteins, microRNA, or mRNA. Yet small lipophilic molecules such as oxylipins and, more recently, phospholipids have emerged as possible long-distance signals as well. Analysis of phloem (phospho)lipids, however, requires enrichment, purification, and sensitive analysis. This chapter describes the EDTA-facilitated approach of phloem exudate collection, phase partitioning against chloroform-methanol for lipid separation and enrichment, and analysis/identification of phloem lipids using LC-MS with multiplexed collision induced dissociation (CID).
Collapse
Affiliation(s)
- Susanne Hoffmann-Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
12
|
Plant Acyl-CoA-Binding Proteins-Their Lipid and Protein Interactors in Abiotic and Biotic Stresses. Cells 2021; 10:cells10051064. [PMID: 33946260 PMCID: PMC8146436 DOI: 10.3390/cells10051064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plants are constantly exposed to environmental stresses during their growth and development. Owing to their immobility, plants possess stress-sensing abilities and adaptive responses to cope with the abiotic and biotic stresses caused by extreme temperatures, drought, flooding, salinity, heavy metals and pathogens. Acyl-CoA-binding proteins (ACBPs), a family of conserved proteins among prokaryotes and eukaryotes, bind to a variety of acyl-CoA esters with different affinities and play a role in the transport and maintenance of subcellular acyl-CoA pools. In plants, studies have revealed ACBP functions in development and stress responses through their interactions with lipids and protein partners. This review summarises the roles of plant ACBPs and their lipid and protein interactors in abiotic and biotic stress responses.
Collapse
|
13
|
Plant Defence Mechanisms Are Modulated by the Circadian System. BIOLOGY 2020; 9:biology9120454. [PMID: 33317013 PMCID: PMC7763185 DOI: 10.3390/biology9120454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 11/29/2022]
Abstract
Simple Summary The circadian clock is an endogenous time keeping mechanism found in living organisms and their respective pathogens. Numerous studies demonstrate that rhythms generated by this internal biological oscillator regulate and modulate most of the physiological, developmental, and biochemical processes of plants. Importantly, plant defence responses have also been shown to be modulated by the host circadian clock and vice versa. In this review we discuss the current understanding of the interactions between plant immunity and the circadian system. We also describe the possibility of pathogens directly or indirectly influencing plants’ circadian rhythms and suggest that these interactions could help us devise better disease management strategies for plants. Our review raises further research questions and we conclude that experimentation should be completed to unravel the complex mechanisms underlying interactions between plant defence and the circadian system. Abstract Plant health is an important aspect of food security, with pathogens, pests, and herbivores all contributing to yield losses in crops. Plants’ defence against pathogens is complex and utilises several metabolic processes, including the circadian system, to coordinate their response. In this review, we examine how plants’ circadian rhythms contribute to defence mechanisms, particularly in response to bacterial pathogen attack. Circadian rhythms contribute to many aspects of the plant–pathogen interaction, although significant gaps in our understanding remain to be explored. We conclude that if these relationships are explored further, better disease management strategies could be revealed.
Collapse
|
14
|
Wang X, Xu Z, Cai Y, Zeng S, Peng B, Ren X, Yan Y, Gong Z. Rheostatic Balance of Circadian Rhythm and Autophagy in Metabolism and Disease. Front Cell Dev Biol 2020; 8:616434. [PMID: 33330516 PMCID: PMC7732583 DOI: 10.3389/fcell.2020.616434] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023] Open
Abstract
Circadian rhythms are physical, behavioral and environmental cycles that respond primarily to light and dark, with a period of time of approximately 24 h. The most essential physiological functions of mammals are manifested in circadian rhythm patterns, including the sleep-wake cycle and nutrient and energy metabolism. Autophagy is a conserved biological process contributing to nutrient and cellular homeostasis. The factors affecting autophagy are numerous, such as diet, drugs, and aging. Recent studies have indicated that autophagy is activated rhythmically in a clock-dependent manner whether the organism is healthy or has certain diseases. In addition, autophagy can affect circadian rhythm by degrading circadian proteins. This review discusses the interaction and mechanisms between autophagy and circadian rhythm. Moreover, we introduce the molecules influencing both autophagy and circadian rhythm. We then discuss the drugs affecting the circadian rhythm of autophagy. Finally, we present the role of rhythmic autophagy in nutrient and energy metabolism and its significance in physiology and metabolic disease.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Ren
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Jin J, Guo ZH, Hao Q, Chye ML. Crystal structure of the rice acyl-CoA-binding protein OsACBP2 in complex with C18:3-CoA reveals a novel pattern of binding to acyl-CoA esters. FEBS Lett 2020; 594:3568-3575. [PMID: 32888212 DOI: 10.1002/1873-3468.13923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022]
Abstract
Acyl-CoA-binding proteins (ACBPs) are a family of proteins that bind acyl-CoA esters at a conserved acyl-CoA-binding domain. ACBPs maintain intracellular acyl-CoA pools to regulate lipid metabolism. Here, we report on the structure of rice OsACBP2 in complex with C18:3-CoA ester. The residues Y33, K34 and K56 of OsACBP2 play a crucial role in binding the CoA group, while residues N23, L27, K52 and Y55 in one molecule of OsACBP2 cooperate with L27, L28, A59 and A62 from another anchoring the fatty acyl group. Multiangle light scattering assays indicate that OsACBP2 binds C18:3-CoA as a monomer. The first complex structure of a plant ACBP binding with C18:3-CoA is therefore presented, providing a novel model for the interaction between an acyl-CoA ester and the acyl-CoA-binding domain(s).
Collapse
Affiliation(s)
- Jing Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Quan Hao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, N.T, China
| |
Collapse
|
16
|
de Leone MJ, Hernando CE, Mora-García S, Yanovsky MJ. It's a matter of time: the role of transcriptional regulation in the circadian clock-pathogen crosstalk in plants. Transcription 2020; 11:100-116. [PMID: 32936724 DOI: 10.1080/21541264.2020.1820300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Most living organisms possess an internal timekeeping mechanism known as the circadian clock, which enhances fitness by synchronizing the internal timing of biological processes with diurnal and seasonal environmental changes. In plants, the pace of these biological rhythms relies on oscillations in the expression level of hundreds of genes tightly controlled by a group of core clock regulators and co-regulators that engage in transcriptional and translational feedback loops. In the last decade, the role of several core clock genes in the control of defense responses has been addressed, and a growing amount of evidence demonstrates that circadian regulation is relevant for plant immunity. A reciprocal connection between these pathways was also established following the observation that in Arabidopsis thaliana, as well as in crop species like tomato, plant-pathogen interactions trigger a reconfiguration of the circadian transcriptional network. In this review, we summarize the current knowledge regarding the interaction between the circadian clock and biotic stress responses at the transcriptional level, and discuss the relevance of this crosstalk in the plant-pathogen evolutionary arms race. A better understanding of these processes could aid in the development of genetic tools that improve traditional breeding practices, enhancing tolerance to plant diseases that threaten crop yield and food security all around the world.
Collapse
Affiliation(s)
- María José de Leone
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| | - C Esteban Hernando
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| | - Santiago Mora-García
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| |
Collapse
|
17
|
Amiruddin N, Chan PL, Azizi N, Morris PE, Chan KL, Ong PW, Rosli R, Masura SS, Murphy DJ, Sambanthamurthi R, Haslam RP, Chye ML, Harwood JL, Low ETL. Characterization of Oil Palm Acyl-CoA-Binding Proteins and Correlation of Their Gene Expression with Oil Synthesis. PLANT & CELL PHYSIOLOGY 2020; 61:735-747. [PMID: 31883014 DOI: 10.1093/pcp/pcz237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/22/2019] [Indexed: 05/18/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) are involved in binding and trafficking acyl-CoA esters in eukaryotic cells. ACBPs contain a well-conserved acyl-CoA-binding domain. Their various functions have been characterized in the model plant Arabidopsis and, to a lesser extent, in rice. In this study, genome-wide detection and expression analysis of ACBPs were performed on Elaeis guineensis (oil palm), the most important oil crop in the world. Seven E. guineensis ACBPs were identified and classified into four groups according to their deduced amino acid domain organization. Phylogenetic analysis showed conservation of this family with other higher plants. All seven EgACBPs were expressed in most tissues while their differential expression suggests various functions in specific tissues. For example, EgACBP3 had high expression in inflorescences and stalks while EgACBP1 showed strong expression in leaves. Because of the importance of E. guineensis as an oil crop, expression of EgACBPs was specifically examined during fruit development. EgACBP3 showed high expression throughout mesocarp development, while EgACBP1 had enhanced expression during rapid oil synthesis. In endosperm, both EgACBP1 and EgACBP3 exhibited increased expression during seed development. These results provide important information for further investigations on the biological functions of EgACBPs in various tissues and, in particular, their roles in oil synthesis.
Collapse
Affiliation(s)
- Nadzirah Amiruddin
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Pek-Lan Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Norazah Azizi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Priscilla Elizabeth Morris
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Kuang-Lim Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Pei Wen Ong
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Rozana Rosli
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Subhi Siti Masura
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd CF37 1DL, UK
| | - Ravigadevi Sambanthamurthi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Richard P Haslam
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - John L Harwood
- School of Biosciences, University of Cardiff, Cardiff CF10 3AX, UK
| | - Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| |
Collapse
|
18
|
Liao P, Leung KP, Lung SC, Panthapulakkal Narayanan S, Jiang L, Chye ML. Subcellular Localization of Rice Acyl-CoA-Binding Proteins ACBP4 and ACBP5 Supports Their Non-redundant Roles in Lipid Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 11:331. [PMID: 32265974 PMCID: PMC7105888 DOI: 10.3389/fpls.2020.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs), conserved at the acyl-CoA-binding domain, can bind acyl-CoA esters as well as transport them intracellularly. Six ACBPs co-exist in each model plant, dicot Arabidopsis thaliana (thale cress) and monocot Oryza sativa (rice). Although Arabidopsis ACBPs have been studied extensively, less is known about the rice ACBPs. OsACBP4 is highly induced by salt treatment, but down-regulated following pathogen infection, while OsACBP5 is up-regulated by both wounding and pathogen treatment. Their differential expression patterns under various stress treatments suggest that they may possess non-redundant functions. When expressed from the CaMV35S promoter, OsACBP4 and OsACBP5 were subcellularly localized to different endoplasmic reticulum (ER) domains in transgenic Arabidopsis. As these plants were not stress-treated, it remains to be determined if OsACBP subcellular localization would change following treatment. Given that the subcellular localization of proteins may not be reliable if not expressed in the native plant, this study addresses OsACBP4:GFP and OsACBP5:DsRED expression from their native promoters to verify their subcellular localization in transgenic rice. The results indicated that OsACBP4:GFP was targeted to the plasma membrane besides the ER, while OsACBP5:DsRED was localized at the apoplast, in contrast to their only localization at the ER in transgenic Arabidopsis. Differences in tagged-protein localization in transgenic Arabidopsis and rice imply that protein subcellular localization studies are best investigated in the native plant. Likely, initial targeting to the ER in a non-native plant could not be followed up properly to the final destination(s) unless it occurred in the native plant. Also, monocot (rice) protein targeting may not be optimally processed in a transgenic dicot (Arabidopsis), perhaps arising from the different processing systems for routing between them. Furthermore, changes in the subcellular localization of OsACBP4:GFP and OsACBP5:DsRED were not detectable following salt and pathogen treatment, respectively. These results suggest that OsACBP4 is likely involved in the intracellular shuttling of acyl-CoA esters and/or other lipids between the plasma membrane and the ER, while OsACBP5 appears to participate in the extracellular transport of acyl-CoA esters and/or other lipids, suggesting that they are non-redundant proteins in lipid trafficking.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- State Key Laboratory of Agrobiotechnology, CUHK, New Territories, China
| | - King Pong Leung
- Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | | | - Liwen Jiang
- Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- State Key Laboratory of Agrobiotechnology, CUHK, New Territories, China
- *Correspondence: Mee-Len Chye,
| |
Collapse
|
19
|
Huang L, Yu LJ, Zhang X, Fan B, Wang FZ, Dai YS, Qi H, Zhou Y, Xie LJ, Xiao S. Autophagy regulates glucose-mediated root meristem activity by modulating ROS production in Arabidopsis. Autophagy 2018; 15:407-422. [PMID: 30208757 PMCID: PMC6351127 DOI: 10.1080/15548627.2018.1520547] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glucose produced from photosynthesis is a key nutrient signal regulating root meristem activity in plants; however, the underlying mechanisms remain poorly understood. Here, we show that, by modulating reactive oxygen species (ROS) levels, the conserved macroautophagy/autophagy degradation pathway contributes to glucose-regulated root meristem maintenance. In Arabidopsis thaliana roots, a short exposure to elevated glucose temporarily suppresses constitutive autophagosome formation. The autophagy-defective autophagy-related gene (atg) mutants have enhanced tolerance to glucose, established downstream of the glucose sensors, and accumulate less glucose-induced ROS in the root tips. Moreover, the enhanced root meristem activities in the atg mutants are associated with improved auxin gradients and auxin responses. By acting with AT4G39850/ABCD1 (ATP-binding cassette D1; Formerly PXA1/peroxisomal ABC transporter 1), autophagy plays an indispensable role in the glucose-promoted degradation of root peroxisomes, and the atg mutant phenotype is partially rescued by the overexpression of ABCD1. Together, our findings suggest that autophagy is an essential mechanism for glucose-mediated maintenance of the root meristem. Abbreviation: ABA: abscisic acid; ABCD1: ATP-binding cassette D1; ABO: ABA overly sensitive; AsA: ascorbic acid; ATG: autophagy related; CFP: cyan fluorescent protein; Co-IP: co-immunoprecipitation; DAB: 3’,3’-diaininobenzidine; DCFH-DA: 2’,7’-dichlorodihydrofluorescin diacetate; DR5: a synthetic auxin response element consists of tandem direct repeats of 11 bp that included the auxin-responsive TGTCTC element; DZ: differentiation zone; EZ, elongation zone; GFP, green fluorescent protein; GSH, glutathione; GUS: β-glucuronidase; HXK1: hexokinase 1; H2O2: hydrogen peroxide; IAA: indole-3-acetic acid; IBA: indole-3-butyric acid; KIN10/11: SNF1 kinase homolog 10/11; MDC: monodansylcadaverine; MS: Murashige and Skoog; MZ: meristem zone; NBT: nitroblue tetrazolium; NPA: 1-N-naphtylphthalamic acid; OxIAA: 2-oxindole-3-acetic acid; PIN: PIN-FORMED; PLT: PLETHORA; QC: quiescent center; RGS1: Regulator of G-protein signaling 1; ROS: reactive oxygen species; SCR: SCARECROW; SHR, SHORT-ROOT; SKL: Ser-Lys-Leu; SnRK1: SNF1-related kinase 1; TOR: target of rapamycin; UPB1: UPBEAT1; WOX5: WUSCHEL related homeobox 5; Y2H: yeast two-hybrid; YFP: yellow fluorescent protein
Collapse
Affiliation(s)
- Li Huang
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Lu-Jun Yu
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Xue Zhang
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Biao Fan
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Feng-Zhu Wang
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Yang-Shuo Dai
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Hua Qi
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Ying Zhou
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Li-Juan Xie
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Shi Xiao
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
20
|
Raboanatahiry N, Wang B, Yu L, Li M. Functional and Structural Diversity of Acyl-coA Binding Proteins in Oil Crops. Front Genet 2018; 9:182. [PMID: 29872448 PMCID: PMC5972291 DOI: 10.3389/fgene.2018.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
Diversities in structure and function of ACBP were discussed in this review. ACBP are important proteins that could transport newly synthesized fatty acid, activated into -coA, from plastid to endoplasmic reticulum, where oil in the form of triacylglycerol occurs. ACBP were detected in various animal and plants species, which indicated their importance in biological function. In fact, involvement of ACBP in important process such as lipid metabolism, regulation of enzyme and gene expression, and in response to plant stresses has been proven in several studies. In this review, findings on ACBP of 11 well-known oil crops were reviewed to comprehend diversity, comparative analyses on ACBP structure were made, and link between structure and function, tissue expression and subcellular location of ACBP were also observed. Incomplete reports in some species were mentioned, which might be encouraging to start or to perform deeper studies. Similar characteristics were found in paralogs ACBP, and orthologs ACBP had different functions, despite the high identity in amino acid sequence. At the end, it is confirmed that ortholog proteins could not necessarily display the same function, even from closely related species.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, China
| | - Longjiang Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
21
|
Hu TH, Lung SC, Ye ZW, Chye ML. Depletion of Arabidopsis ACYL-COA-BINDING PROTEIN3 Affects Fatty Acid Composition in the Phloem. FRONTIERS IN PLANT SCIENCE 2018; 9:2. [PMID: 29422909 PMCID: PMC5789640 DOI: 10.3389/fpls.2018.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 01/03/2018] [Indexed: 05/05/2023]
Abstract
Oxylipins are crucial components in plant wound responses that are mobilised via the plant vasculature. Previous studies have shown that the overexpression of an Arabidopsis acyl-CoA-binding protein, AtACBP3, led to an accumulation of oxylipin-containing galactolipids, and AtACBP3pro::BETA-GLUCURONIDASE (GUS) was expressed in the phloem of transgenic Arabidopsis. To investigate the role of AtACBP3 in the phloem, reverse transcription-polymerase chain reaction and western blot analysis of phloem exudates from the acbp3 mutant and wild type revealed that the AtACBP3 protein, but not its mRNA, was detected in the phloem sap. Furthermore, micrografting demonstrated that AtACBP3 expressed from the 35S promoter was translocated from shoot to root. Subsequently, AtACBP3 was localised to the companion cells, sieve elements and the apoplastic space of phloem tissue by immunogold electron microscopy using anti-AtACBP3 antibodies. AtACBP3pro::GUS was induced locally in Arabidopsis leaves upon wounding, and the expression of wound-responsive jasmonic acid marker genes (JASMONATE ZIM-DOMAIN10, VEGETATIVE STORAGE PROTEIN2, and LIPOXYGENASE2) increased more significantly in both locally wounded and systemic leaves of the wild type in comparison to acbp3 and AtACBP3-RNAi. Oxylipin-related fatty acid (FA) (C18:2-FA, C18:3-FA and methyl jasmonate) content was observed to be lower in acbp3 and AtACBP3-RNAi than wild-type phloem exudates using gas chromatography-mass spectrometry. Experiments using recombinant AtACBP3 in isothermal titration calorimetry analysis showed that medium- and long-chain acyl-CoA esters bind (His)6-AtACBP3 with KD values in the micromolar range. Taken together, these results suggest that AtACBP3 is likely to be a phloem-mobile protein that affects the FA pool and jasmonate content in the phloem, possibly by its binding to acyl-CoA esters.
Collapse
|
22
|
Ye ZW, Chen QF, Chye ML. Arabidopsis thaliana Acyl-CoA-binding protein ACBP6 interacts with plasmodesmata-located protein PDLP8. PLANT SIGNALING & BEHAVIOR 2017; 12:e1359365. [PMID: 28786767 PMCID: PMC5616145 DOI: 10.1080/15592324.2017.1359365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 05/22/2023]
Abstract
In Arabidopsis thaliana, six acyl-CoA-binding proteins (ACBPs), designated as AtACBP1 to AtACBP6, have been identified to function in various events related to plant stress and development. The 10-kDa AtACBP6 is the smallest in this protein family, and recombinant AtACBP6 interacts with lipids in vitro by binding to acyl-CoA esters and phosphatidylcholine. Using anti-AtACBP6 antibodies in immunoelectron microscopy, we have localized AtACBP6 in the Arabidopsis phloem. The detection of immunogold grains in the plasmodesmata suggested that AtACBP6 could move from the companion cells to the sieve elements via the plasmodesmata. As AtACBP6 has been identified in a membrane-based interactome analysis to be a potential protein partner of Plasmodesmata-Localized Protein, PDLP8, AtACBP6-PDLP8 interaction was investigated herein utilizing isothermal titration calorimetry, as well as pull-down and bimolecular fluorescence complementation assays (BiFC). Notably, BiFC data revealed that AtACBP6-PDLP8 interaction occurred at the plasma membrane, which was unexpected as AtACBP6 has been previously identified in the cytosol. AtACBP6 expression was generally higher than PDLP8 in β-glucuronidase (GUS) assays on transgenic Arabidopsis transformed with AtACBP6 or PDLP8 promoter-driven GUS, consistent with qRT-PCR and microarray results. Furthermore, western blot analysis using anti-AtACBP6 antibodies showed a reduction in AtACBP6 expression in the pdlp8 T-DNA insertional mutant, suggesting that PDLP8 may possibly influence AtACBP6 accumulation in the sieve elements, probably in the plasmodesmata, where PDLP8 is confined and to where AtACBP6 has been immunodetected.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Qin-Fang Chen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Ye ZW, Xu J, Shi J, Zhang D, Chye ML. Kelch-motif containing acyl-CoA binding proteins AtACBP4 and AtACBP5 are differentially expressed and function in floral lipid metabolism. PLANT MOLECULAR BIOLOGY 2017; 93:209-225. [PMID: 27826761 DOI: 10.1007/s11103-016-0557-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 10/30/2016] [Indexed: 05/14/2023]
Abstract
We herein demonstrated two of the Arabidopsis acyl-CoA-binding proteins (ACBPs), AtACBP4 and AtACBP5, both function in floral lipid metabolism and they may possibly play complementary roles in Arabidopsis microspore-to-pollen development. Histological analysis on transgenic Arabidopsis expressing β-glucuronidase driven from the AtACBP4 and AtACBP5 promoters, as well as, qRTPCR analysis revealed that AtACBP4 was expressed at stages 11-14 in the mature pollen, while AtACBP5 was expressed at stages 7-10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm. Chemical analysis of bud wax and cutin using gas chromatographyflame ionization detector and GC-mass spectrometry analyses revealed the accumulation of cuticular waxes and cutin monomers in acbp4, acbp5 and acbp4acbp5 buds in comparison to the wild type (Col-0). Fatty acid profiling demonstrated a decline in stearic acid and an increase in linolenic acid in acbp4 and acbp4acbp5 buds, respectively, over Col-0. Analysis of inflorescences from acbp4 and acbp5 revealed that there was an increase of AtACBP5 expression in acbp4, and an increase of AtACBP4 expression in acbp5. Deletion analysis of the AtACBP4 and AtACBP5 5'-flanking regions indicated the minimal promoter activity for AtACBP4 (-145/+103) and AtACBP5 (-181/+81). Electrophoretic mobility shift assays identified a pollen-specific cis-acting element POLLEN1 (AGAAA) mapped at AtACBP4 (-157/-153) which interacted with nuclear proteins from flower and this was substantiated by DNase I footprinting. In Arabidopsis thaliana, six acyl-CoA-binding proteins (ACBPs), designated as AtACBP1 to AtACBP6, have been identified to function in plant stress and development. AtACBP4 and AtACBP5 represent the two largest proteins in the AtACBP family. Despite having kelch-motifs and sharing a common cytosolic subcellular localization, AtACBP4 and AtACBP5 differ in spatial and temporal expression. Histological analysis on transgenic Arabidopsis expressing β-glucuronidase driven from the respective AtACBP4 and AtACBP5 promoters, as well as, qRT-PCR analysis revealed that AtACBP4 was expressed at stages 11-14 in mature pollen, while AtACBP5 was expressed at stages 7-10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm. Chemical analysis of bud wax and cutin using gas chromatography-flame ionization detector and GC-mass spectrometry analyses revealed the accumulation of cuticular waxes and cutin monomers in acbp4, acbp5 and acbp4acbp5 buds, in comparison to the wild type. Analysis of inflorescences from acbp4 and acbp5 revealed that there was an increase of AtACBP5 expression in acbp4, and an increase of AtACBP4 expression in acbp5. Deletion analysis of the AtACBP4 and AtACBP5 5'-flanking regions indicated the minimal promoter region for AtACBP4 (-145/+103) and AtACBP5 (-181/+81). Electrophoretic mobility shift assays identified a pollen-specific cis-acting element POLLEN1 (AGAAA) within AtACBP4 (-157/-153) which interacted with nuclear proteins from flower and this was substantiated by DNase I footprinting. These results suggest that AtACBP4 and AtACBP5 both function in floral lipidic metabolism and they may play complementary roles in Arabidopsis microspore-to-pollen development.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jie Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
24
|
Wang FZ, Chen MX, Yu LJ, Xie LJ, Yuan LB, Qi H, Xiao M, Guo W, Chen Z, Yi K, Zhang J, Qiu R, Shu W, Xiao S, Chen QF. OsARM1, an R2R3 MYB Transcription Factor, Is Involved in Regulation of the Response to Arsenic Stress in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1868. [PMID: 29163593 PMCID: PMC5670359 DOI: 10.3389/fpls.2017.01868] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/13/2017] [Indexed: 05/18/2023]
Abstract
Bioaccumulation of arsenic (As) in rice (Oryza sativa) increases human exposure to this toxic, carcinogenic element. Recent studies identified several As transporters, but the regulation of these transporters remains unclear. Here, we show that the rice R2R3 MYB transcription factor OsARM1 (ARSENITE-RESPONSIVE MYB1) regulates As-associated transporters genes. Treatment with As(III) induced OsARM1 transcript accumulation and an OsARM1-GFP fusion localized to the nucleus. Histochemical analysis of OsARM1pro::GUS lines indicated that OsARM1 was expressed in the phloem of vascular bundles in basal and upper nodes. Knockout of OsARM1 (OsARM1-KO CRISPR/Cas9-generated mutants) improved tolerance to As(III) and overexpression of OsARM1 (OsARM1-OE lines) increased sensitivity to As(III). Measurement of As in As(III)-treated plants showed that under low As(III) conditions (2 μM), more As was transported from the roots to the shoots in OsARM1-KOs. By contrast, more As accumulated in the roots in OsARM1-OEs in response to high As(III) exposure (25 μM). In particular, the As(III) levels in node I were significantly higher in OsARM1-KOs, but significantly lower in OsARM1-OEs, compared to wild-type plants, implying that OsARM1 is important for the regulation of root-to-shoot translocation of As. Moreover, OsLsi1, OsLsi2, and OsLsi6, which encode key As transporters, were significantly downregulated in OsARM1-OEs and upregulated in OsARM1-KOs compared to wild type. Chromatin immunoprecipitation-quantitative PCR of OsARM1-OEs indicated that OsARM1 binds to the conserved MYB-binding sites in the promoters or genomic regions of OsLsi1, OsLsi2, and OsLsi6 in rice. Our findings suggest that the OsARM1 transcription factor has essential functions in regulating As uptake and root-to-shoot translocation in rice.
Collapse
Affiliation(s)
- Feng-Zhu Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mo-Xian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Bing Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Xiao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wuxiu Guo
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhe Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Wensheng Shu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qin-Fang Chen
| |
Collapse
|
25
|
Ye ZW, Lung SC, Hu TH, Chen QF, Suen YL, Wang M, Hoffmann-Benning S, Yeung E, Chye ML. Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition. PLANT MOLECULAR BIOLOGY 2016; 92:717-730. [PMID: 27645136 DOI: 10.1007/s11103-016-0541-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/07/2016] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana ACYL-COA-BINDING PROTEIN6 (AtACBP6) encodes a cytosolic 10-kDa AtACBP. It confers freezing tolerance in transgenic Arabidopsis, possibly by its interaction with lipids as indicated by the binding of acyl-CoA esters and phosphatidylcholine to recombinant AtACBP6. Herein, transgenic Arabidopsis transformed with an AtACBP6 promoter-driven β-glucuronidase (GUS) construct exhibited strong GUS activity in the vascular tissues. Immunoelectron microscopy using anti-AtACBP6 antibodies showed AtACBP6 localization in the phloem especially in the companion cells and sieve elements. Also, the presence of gold grains in the plasmodesmata indicated its potential role in systemic trafficking. The AtACBP6 protein, but not its mRNA, was found in phloem exudate of wild-type Arabidopsis. Fatty acid profiling using gas chromatography-mass spectrometry revealed an increase in the jasmonic acid (JA) precursor, 12-oxo-cis,cis-10,15-phytodienoic acid (cis-OPDA), and a reduction in JA and/or its derivatives in acbp6 phloem exudates in comparison to the wild type. Quantitative real-time PCR showed down-regulation of COMATOSE (CTS) in acbp6 rosettes suggesting that AtACBP6 affects CTS function. AtACBP6 appeared to affect the content of JA and/or its derivatives in the sieve tubes, which is consistent with its role in pathogen-defense and in its wound-inducibility of AtACBP6pro::GUS. Taken together, our results suggest the involvement of AtACBP6 in JA-biosynthesis in Arabidopsis phloem tissues.
Collapse
Affiliation(s)
- Zi-Wei Ye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tai-Hua Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Qin-Fang Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yung-Lee Suen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Susanne Hoffmann-Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Edward Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
26
|
Kang WH, Kim S, Lee HA, Choi D, Yeom SI. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper. Sci Rep 2016; 6:33332. [PMID: 27653666 PMCID: PMC5032028 DOI: 10.1038/srep33332] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/25/2016] [Indexed: 11/10/2022] Open
Abstract
The DNA-binding with one zinc finger proteins (Dofs) are a plant-specific family of transcription factors. The Dofs are involved in a variety of biological processes such as phytohormone production, seed development, and environmental adaptation. Dofs have been previously identified in several plants, but not in pepper. We identified 33 putative Dof genes in pepper (CaDofs). To gain an overview of the CaDofs, we analyzed phylogenetic relationships, protein motifs, and evolutionary history. We divided the 33 CaDofs, containing 25 motifs, into four major groups distributed on eight chromosomes. We discovered an expansion of the CaDofs dated to a recent duplication event. Segmental duplication that occurred before the speciation of the Solanaceae lineages was predominant among the CaDofs. The global gene-expression profiling of the CaDofs by RNA-seq analysis showed distinct temporal and pathogen-specific variation during development and response to biotic stresses (two TMV strains, PepMoV, and Phytophthora capsici), suggesting functional diversity among the CaDofs. These results will provide the useful clues into the responses of Dofs in biotic stresses and promote a better understanding of their multiple function in pepper and other species.
Collapse
Affiliation(s)
- Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture &Life Science, Gyeongsang National University, 660-701, South Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture &Life Science, Gyeongsang National University, 660-701, South Korea
| |
Collapse
|
27
|
Lung SC, Chye ML. Deciphering the roles of acyl-CoA-binding proteins in plant cells. PROTOPLASMA 2016; 253:1177-95. [PMID: 26340904 DOI: 10.1007/s00709-015-0882-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/21/2015] [Indexed: 05/18/2023]
Abstract
Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
28
|
Plant acyl-CoA-binding proteins: An emerging family involved in plant development and stress responses. Prog Lipid Res 2016; 63:165-81. [DOI: 10.1016/j.plipres.2016.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/25/2016] [Accepted: 06/26/2016] [Indexed: 01/22/2023]
|
29
|
Wen CL, Cheng Q, Zhao L, Mao A, Yang J, Yu S, Weng Y, Xu Y. Identification and characterisation of Dof transcription factors in the cucumber genome. Sci Rep 2016; 6:23072. [PMID: 26979661 PMCID: PMC4793291 DOI: 10.1038/srep23072] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022] Open
Abstract
Cucumber is vulnerable to many foliage diseases. Recent studies reported cloning of candidate genes for several diseases in cucumber; however, the exact defence mechanisms remain unclear. Dof genes have been shown to play significant roles in plant growth, development, and responses to biotic and abiotic stresses. Dof genes coding for plant-specific transcription factors can promote large-scale expression of defence-related genes at whole genome level. The genes in the family have been identified and characterized in several plant species, but not in cucumber. In the present study, we identified 36 CsDof members from the cucumber draft genomes which could be classified into eight groups. The proportions of the CsDof family genes, duplication events, chromosomal locations, cis-elements and miRNA target sites were comprehensively investigated. Consequently, we analysed the expression patterns of CsDof genes in specific tissues and their response to two biotic stresses (watermelon mosaic virus and downy mildew). These results indicated that CsDof may be involved in resistance to biotic stresses in cucumber.
Collapse
Affiliation(s)
- Chang-long Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Qing Cheng
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Liqun Zhao
- Beijing Agricultural extension station, Beijing 100029, China
| | - Aijun Mao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Jingjing Yang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI 53706, USA
| | - Yong Xu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| |
Collapse
|
30
|
Li N, Xu C, Li-Beisson Y, Philippar K. Fatty Acid and Lipid Transport in Plant Cells. TRENDS IN PLANT SCIENCE 2016; 21:145-158. [PMID: 26616197 DOI: 10.1016/j.tplants.2015.10.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation (RCBB), College of Resources and Environment, Southwest University, Beibei District, Chongqing, 400715, P.R. China
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973-5000, USA
| | - Yonghua Li-Beisson
- Institute of Environmental Biology and Biotechnology, The French Atomic and Alternative Energy Commission, Unité Mixte de Recherche 7265, Commissariat à l'Energie Atomique (CEA) Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Katrin Philippar
- Department of Biology I, Ludwig-Maximilians-University München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
31
|
Abstract
Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
32
|
Abstract
Lipids are important signaling compounds in plants. They can range from small lipophilic molecules like the dicarboxylic acid Azelaic acid to complex phosphoglycerolipids and regulate plant development as well as the response to biotic and abiotic stress. While their intracellular function is well described, several lipophilic signals are known to be found in the plant phloem and can, thus, also play a role in long-distance signaling. Mostly, they play a role in the pathogen response and systemic acquired resistance. This is particularly true for oxylipins, dehydroabietinal, and azelaic acid. However, several phospholipids have now been described in phloem exudates. Their intracellular function as well as implications and a model for long-distance signaling are discussed in this chapter.
Collapse
|
33
|
Lung SC, Chye ML. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:1409-1421. [PMID: 26747650 DOI: 10.1016/j.bbalip.2015.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022]
Abstract
Acyl-CoA esters are the activated form of fatty acids and play important roles in lipid metabolism and the regulation of cell functions. They are bound and transported by nonenzymic proteins such as the acyl-CoA-binding proteins (ACBPs). Although plant ACBPs were so named by virtue of amino acid homology to existing yeast and mammalian counterparts, recent studies revealed that ligand specificities of plant ACBPs are not restricted to acyl-CoA esters. Arabidopsis and rice ACBPs also interact with phospholipids, and their affinities to different acyl-CoA species and phospholipid classes vary amongst isoforms. Their ligands also include heavy metals. Interactors of plant ACBPs are further diversified due to the evolution of protein-protein interacting domains. This review summarizes our current understanding of plant ACBPs with a focus on their binding versatility. Their broad ligand range is of paramount significance in serving a multitude of functions during development and stress responses as discussed herein. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
34
|
Abstract
A gene family encoding six members of acyl-CoA-binding proteins (ACBP) exists in Arabidopsis and they are designated as AtACBP1-AtACBP6. They have been observed to play pivotal roles in plant lipid metabolism, consistent to the abilities of recombinant AtACBP in binding different medium- and long-chain acyl-CoA esters in vitro. While AtACBP1 and AtACBP2 are membrane-associated proteins with ankyrin repeats and AtACBP3 contains a signaling peptide for targeting to the apoplast, AtACBP4, AtACBP5 and AtACBP6 represent the cytosolic forms in the AtACBP family. They were verified to be subcellularly localized in the cytosol using diverse experimental methods, including cell fractionation followed by western blot analysis, immunoelectron microscopy and confocal laser-scanning microscopy using autofluorescence-tagged fusions. AtACBP4 (73.2 kDa) and AtACBP5 (70.1 kDa) are the largest, while AtACBP6 (10.4 kDa) is the smallest. Their binding affinities to oleoyl-CoA esters suggested that they can potentially transfer oleoyl-CoA esters from the plastids to the endoplasmic reticulum, facilitating the subsequent biosynthesis of non-plastidial membrane lipids in Arabidopsis. Recent studies on ACBP, extended from a dicot (Arabidopsis) to a monocot, revealed that six ACBP are also encoded in rice (Oryza sativa). Interestingly, three small rice ACBP (OsACBP1, OsACBP2 and OsACBP3) are present in the cytosol in comparison to one (AtACBP6) in Arabidopsis. In this review, the combinatory and distinct roles of the cytosolic AtACBP are discussed, including their functions in pollen and seed development, light-dependent regulation and substrate affinities to acyl-CoA esters.
Collapse
|
35
|
Raboanatahiry NH, Lu G, Li M. Computational Prediction of acyl-coA Binding Proteins Structure in Brassica napus. PLoS One 2015; 10:e0129650. [PMID: 26065422 PMCID: PMC4465970 DOI: 10.1371/journal.pone.0129650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/11/2015] [Indexed: 11/18/2022] Open
Abstract
Acyl-coA binding proteins could transport acyl-coA esters from plastid to endoplasmic reticulum, prior to fatty acid biosynthesis, leading to the formation of triacylglycerol. The structure and the subcellular localization of acyl-coA binding proteins (ACBP) in Brassica napus were computationally predicted in this study. Earlier, the structure analysis of ACBPs was limited to the small ACBPs, the current study focused on all four classes of ACBPs. Physicochemical parameters including the size and the length, the intron-exon structure, the isoelectric point, the hydrophobicity, and the amino acid composition were studied. Furthermore, identification of conserved residues and conserved domains were carried out. Secondary structure and tertiary structure of ACBPs were also studied. Finally, subcellular localization of ACBPs was predicted. The findings indicated that the physicochemical parameters and subcellular localizations of ACBPs in Brassica napus were identical to Arabidopsis thaliana. Conserved domain analysis indicated that ACBPs contain two or three kelch domains that belong to different families. Identical residues in acyl-coA binding domains corresponded to eight amino acid residues in all ACBPs of B. napus. However, conserved residues of common ACBPs in all species of animal, plant, bacteria and fungi were only inclusive in small ACBPs. Alpha-helixes were displayed and conserved in all the acyl-coA binding domains, representing almost the half of the protein structure. The findings confirm high similarities in ACBPs between A. thaliana and B. napus, they might share the same functions but loss or gain might be possible.
Collapse
Affiliation(s)
- Nadia Haingotiana Raboanatahiry
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang, 435599, China
| | - Guangyuan Lu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
- * E-mail: (GL); (ML)
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang, 435599, China
- * E-mail: (GL); (ML)
| |
Collapse
|
36
|
DU ZY, Chen MX, Chen QF, Gu JD, Chye ML. Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots. PLANT, CELL & ENVIRONMENT 2015; 38:101-17. [PMID: 24906022 DOI: 10.1111/pce.12382] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 05/20/2023]
Abstract
In Arabidopsis thaliana, the expression of two genes encoding acyl-CoA-binding proteins (ACBPs) AtACBP1 and AtACBP4, were observed to be induced by lead [Pb(II)] in shoots and roots in qRT-PCR analyses. Quantitative GUS (β-glucuronidase) activity assays confirmed induction of AtACBP1pro::GUS by Pb(II). Electrophoretic mobility shift assays (EMSAs) revealed that Pas elements in the 5'-flanking region of AtACBP1 were responsive to Pb(II) treatment. AtACBP1 and AtACBP4 were further compared in Pb(II) uptake using Brassica juncea, a potential candidate for phytoremediation given its rapid growth, large roots, high biomass and good capacity to accumulate heavy metals. Results from atomic absorption analyses on transgenic B. juncea expressing AtACBP1 or AtACBP4 indicated Pb(II) accumulation in roots. Subsequent Pb(II)-tracing assays demonstrated Pb(II) accumulation in the cytosol of root tips and vascular tissues of transgenic B. juncea AtACBP1-overexpressors (OXs) and AtACBP4-OXs and transgenic Arabidopsis AtACBP1-OXs. Transgenic Arabidopsis AtACBP1-OXs sequestered Pb(II) in the trichomes and displayed tolerance to hydrogen peroxide (H2 O2 ) treatment. In addition, AtACBP1 and AtACBP4 were H2 O2 -induced in the roots of wild-type Arabidopsis, while lipid hydroperoxide (LOOH) measurements of B. juncea AtACBP1-OX and AtACBP4-OX roots suggested that AtACBP1 and AtACBP4 can protect lipids against Pb(II)-induced lipid peroxidation.
Collapse
Affiliation(s)
- Zhi-Yan DU
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
37
|
Xie LJ, Yu LJ, Chen QF, Wang FZ, Huang L, Xia FN, Zhu TR, Wu JX, Yin J, Liao B, Yao N, Shu W, Xiao S. Arabidopsis acyl-CoA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:53-67. [PMID: 25284079 PMCID: PMC4309432 DOI: 10.1111/tpj.12692] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/21/2014] [Accepted: 09/29/2014] [Indexed: 05/02/2023]
Abstract
In Arabidopsis thaliana, acyl-CoA-binding proteins (ACBPs) are encoded by a family of six genes (ACBP1 to ACBP6), and are essential for diverse cellular activities. Recent investigations suggest that the membrane-anchored ACBPs are involved in oxygen sensing by sequestration of group VII ethylene-responsive factors under normoxia. Here, we demonstrate the involvement of Arabidopsis ACBP3 in hypoxic tolerance. ACBP3 transcription was remarkably induced following submergence under both dark (DS) and light (LS) conditions. ACBP3-overexpressors (ACBP3-OEs) showed hypersensitivity to DS, LS and ethanolic stresses, with reduced transcription of hypoxia-responsive genes as well as accumulation of hydrogen peroxide in the rosettes. In contrast, suppression of ACBP3 in ACBP3-KOs enhanced plant tolerance to DS, LS and ethanol treatments. By analyses of double combinations of OE-1 with npr1-5, coi1-2, ein3-1 as well as ctr1-1 mutants, we observed that the attenuated hypoxic tolerance in ACBP3-OEs was dependent on NPR1- and CTR1-mediated signaling pathways. Lipid profiling revealed that both the total amounts and very-long-chain species of phosphatidylserine (C42:2- and C42:3-PS) and glucosylinositolphosphorylceramides (C22:0-, C22:1-, C24:0-, C24:1-, and C26:1-GIPC) were significantly lower in ACBP3-OEs but increased in ACBP3-KOs upon LS exposure. By microscale thermophoresis analysis, the recombinant ACBP3 protein bound VLC acyl-CoA esters with high affinities in vitro. Further, a knockout mutant of MYB30, a master regulator of very-long-chain fatty acid (VLCFA) biosynthesis, exhibited enhanced sensitivities to LS and ethanolic stresses, phenotypes that were ameliorated by ACBP3-RNAi. Taken together, these findings suggest that Arabidopsis ACBP3 participates in plant response to hypoxia by modulating VLCFA metabolism.
Collapse
Affiliation(s)
| | | | | | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Li Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Tian-Ren Zhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Jian Yin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Bin Liao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Wensheng Shu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, 510275, China
| |
Collapse
|
38
|
Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development. Biosci Rep 2014; 34:e00165. [PMID: 25423293 PMCID: PMC4274664 DOI: 10.1042/bsr20140139] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Eukaryotic cytosolic ACBPs (acyl-CoA-binding proteins) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein–lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis, whereas AtACBP5 is expressed later. ITC (isothermal titration calorimetry) in combination with transgenic Arabidopsis lines were used to investigate the roles of these three ACBPs from Arabidopsis thaliana. The dissociation constants, stoichiometry and enthalpy change of AtACBP interactions with various acyl-CoA esters were determined using ITC. Strong binding of recombinant (r) AtACBP6 with long-chain acyl-CoA (C16- to C18-CoA) esters was observed with dissociation constants in the nanomolar range. However, the affinity of rAtACBP4 and rAtACBP5 to these acyl-CoA esters was much weaker (dissociation constants in the micromolar range), suggesting that they interact with acyl-CoA esters differently from rAtACBP6. When transgenic Arabidopsis expressing AtACBP6pro::GUS was generated, strong GUS (β-glucuronidase) expression in cotyledonary-staged embryos and seedlings prompted us to measure the acyl-CoA contents of the acbp6 mutant. This mutant accumulated higher levels of C18:1-CoA and C18:1- and C18:2-CoAs in cotyledonary-staged embryos and seedlings, respectively, in comparison with the wild type. The acbp4acbp5acbp6 mutant showed the lightest seed weight and highest sensitivity to abscisic acid during germination, suggesting their physiological functions in seeds. The binding affinities of the three Arabidopsis cytosolic ACBPs (AtACBP4, AtACBP5 and AtACBP6) with acyl-CoA esters were investigated by ITC. When the biological significance of these AtACBPs was analysed using mutants, results indicated their overlapping functions in seed acyl-lipid metabolism.
Collapse
|
39
|
Xue Y, Xiao S, Kim J, Lung SC, Chen L, Tanner JA, Suh MC, Chye ML. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5473-83. [PMID: 25053648 PMCID: PMC4157719 DOI: 10.1093/jxb/eru304] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The membrane-anchored Arabidopsis thaliana ACYL-COA-BINDING PROTEIN1 (AtACBP1) plays important roles in embryogenesis and abiotic stress responses, and interacts with long-chain (LC) acyl-CoA esters. Here, AtACBP1 function in stem cuticle formation was investigated. Transgenic Arabidopsis transformed with an AtACBP1pro::GUS construct revealed β-glucuronidase (GUS) expression on the stem (but not leaf) surface, suggesting a specific role in stem cuticle formation. Isothermal titration calorimetry results revealed that (His)6-tagged recombinant AtACBP1 interacts with LC acyl-CoA esters (18:1-, 18:2-, and 18:3-CoAs) and very-long-chain (VLC) acyl-CoA esters (24:0-, 25:0-, and 26:0-CoAs). VLC fatty acids have been previously demonstrated to act as precursors in wax biosynthesis. Gas chromatography (GC)-flame ionization detector (FID) and GC-mass spectrometry (MS) analyses revealed that an acbp1 mutant showed a reduction in stem and leaf cuticular wax and stem cutin monomer composition in comparison with the wild type (Col-0). Consequently, the acbp1 mutant showed fewer wax crystals on the stem surface in scanning electron microscopy and an irregular stem cuticle layer in transmission electron microscopy in comparison with the wild type. Also, the mutant stems consistently showed a decline in expression of cuticular wax and cutin biosynthetic genes in comparison with the wild type, and the mutant leaves were more susceptible to infection by the necrotrophic pathogen Botrytis cinerea. Taken together, these findings suggest that AtACBP1 participates in Arabidopsis stem cuticle formation by trafficking VLC acyl-CoAs.
Collapse
Affiliation(s)
- Yan Xue
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shi Xiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Juyoung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liang Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Julian A Tanner
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
40
|
Hsiao AS, Haslam RP, Michaelson LV, Liao P, Napier JA, Chye ML. Gene expression in plant lipid metabolism in Arabidopsis seedlings. PLoS One 2014; 9:e107372. [PMID: 25264899 PMCID: PMC4180049 DOI: 10.1371/journal.pone.0107372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022] Open
Abstract
Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG) synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3), DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS) was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6) in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX) lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis.
Collapse
Affiliation(s)
- An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Richard P. Haslam
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Louise V. Michaelson
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Johnathan A. Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- * E-mail:
| |
Collapse
|
41
|
Chen MX, Zheng SX, Yang YN, Xu C, Liu JS, Yang WD, Chye ML, Li HY. Strong seed-specific protein expression from the Vigna radiata storage protein 8SGα promoter in transgenic Arabidopsis seeds. J Biotechnol 2014; 174:49-56. [PMID: 24503210 DOI: 10.1016/j.jbiotec.2014.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 11/16/2022]
Abstract
Vigna radiata (mung bean) is an important crop plant and is a major protein source in developing countries. Mung bean 8S globulins constitute nearly 90% of total seed storage protein and consist of three subunits designated as 8SGα, 8SGα' and 8SGβ. The 5'-flanking sequences of 8SGα' has been reported to confer high expression in transgenic Arabidopsis seeds. In this study, a 472-bp 5'-flanking sequence of 8SGα was identified by genome walking. Computational analysis subsequently revealed the presence of numerous putative seed-specific cis-elements within. The 8SGα promoter was then fused to the gene encoding β-glucuronidase (GUS) to create a reporter construct for Arabidopsis thaliana transformation. The spatial and temporal expression of 8SGα∷GUS, as investigated using GUS histochemical assays, showed GUS expression exclusively in transgenic Arabidopsis seeds. Quantitative GUS assays revealed that the 8SGα promoter showed 2- to 4-fold higher activity than the Cauliflower Mosaic Virus (CaMV) 35S promoter. This study has identified a seed-specific promoter of high promoter strength, which is potentially useful for directing foreign protein expression in seed bioreactors.
Collapse
Affiliation(s)
- Mo-Xian Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shu-Xiao Zheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yue-Ning Yang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chao Xu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Hong-Ye Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
42
|
|
43
|
Noguero M, Atif RM, Ochatt S, Thompson RD. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 209:32-45. [PMID: 23759101 DOI: 10.1016/j.plantsci.2013.03.016] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 05/18/2023]
Abstract
The DOF (DNA-binding One Zinc Finger) family of transcription factors is involved in many fundamental processes in higher plants, including responses to light and phytohormones as well as roles in seed maturation and germination. DOF transcription factor genes are restricted in their distribution to plants, where they are in many copies in both gymnosperms and angiosperms and also present in lower plants such as the moss Physcomitrella patens and in the alga Chlamydomonas reinhardtii which possesses a single DOF gene. DOF transcription factors bind to their promoter targets at the consensus sequence AAAG. This binding depends upon the presence of the highly conserved DOF domain in the protein. Depending on the target gene, DOF factor binding may activate or repress transcription. DOF factors are expressed in most if not all tissues of higher plants, but frequently appear to be functionally redundant. Recent next-generation sequencing data provide a more comprehensive survey of the distribution of DOF sequence classes among plant species and within tissue types, and clues as to the evolution of functions assumed by this transcription factor family. DOFs do not appear to be implicated in the initial differentiation of the plant body plan into organs via the resolution of meristematic zones, in contrast to MADS-box and homeobox transcription factors, which are found in other non-plant eukaryotes, and this may reflect a more recent evolutionary origin.
Collapse
|
44
|
Pastor S, Sethumadhavan K, Ullah AHJ, Gidda S, Cao H, Mason C, Chapital D, Scheffler B, Mullen R, Dyer J, Shockey J. Molecular properties of the class III subfamily of acyl-coenyzme A binding proteins from tung tree (Vernicia fordii). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 203-204:79-88. [PMID: 23415331 DOI: 10.1016/j.plantsci.2012.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 06/01/2023]
Abstract
Acyl-CoA binding proteins (ACBPs) have been identified in most branches of life, and play various roles in lipid metabolism, among other functions. Plants contain multiple classes of ACBP genes. The most diverse group is the class III proteins. Tung tree (Vernicia fordii) contains two such genes, designated VfACBP3A and VfACBP3B. The two proteins are significantly different in length and sequence. Analysis of tung ACBP3 genes revealed significant evolution, suggesting relatively ancient divergence of the two genes from a common ancestor. Phylogenetic comparisons of multiple plant class III proteins suggest that this group is the most evolutionarily dynamic class of ACBP. Both tung ACBP3 genes are expressed at similar levels in most tissues tested, but ACBP3A is stronger in leaves. Three-dimensional modeling predictions confirmed the presence of the conserved four α-helix bundle acyl-CoA binding (ACB); however, other regions of these proteins likely fold much differently. Acyl-CoA binding assays revealed different affinities for different acyl-CoAs, possibly contradicting the redundancy of function suggested by the gene expression studies. Subcellular targeting of transiently-expressed plant ACBP3 proteins contradicted earlier studies, and suggested that at least some class III ACBPs may be predominantly targeted to endoplasmic reticulum membranes, with little or no targeting to the apoplast.
Collapse
Affiliation(s)
- Steven Pastor
- Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|