1
|
Manna M, Rengasamy B, Sinha AK. Nutrient and Water Availability Influence Rice Physiology, Root Architecture and Ionomic Balance via Auxin Signalling. PLANT, CELL & ENVIRONMENT 2025; 48:2691-2705. [PMID: 39315660 DOI: 10.1111/pce.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Water and soil nutrients are the vital ingredients of crop production, and their efficient uptake is essentially dependent on root development, majorly regulated by auxin. For a water-loving crop like rice, how water availability regulates nutrient acquisition, additionally, how ambient nutrient level modulates water uptake, and the role of auxin therein is not well studied. While investigating the cross-talks among these components, we found water to be essential for auxin re-distribution in roots and shaping the root architecture. We also found that supplementing rice seedlings with moderate concentrations of mineral nutrients facilitated faster water uptake and greater nutrient enrichment in leaves compared to adequate nutrient supplementation. Additionally, moderate nutrient availability favoured greater stomatal density, stomatal conductance, photosynthesis, transpiration rate and water use efficiency when water was not limiting. Further, auxin supplementation enhanced root formation in rice, while affecting their water uptake ability, photosynthesis and transpiration causing differential mineral-specific uptake trends. The present study uncovers the existence of an intricate crosstalk among water, nutrients and auxin signalling the knowledge of which will enable optimizing the growth conditions for speed breeding of rice and harnessing the components of auxin signalling to improve water and nutrient use efficiency of rice.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | | | | |
Collapse
|
2
|
Škyvarová D, Brunoni F, Žukauskaitė A, Pěnčík A. Glycosylation pathways in auxin homeostasis. PHYSIOLOGIA PLANTARUM 2025; 177:e70170. [PMID: 40133767 PMCID: PMC11936858 DOI: 10.1111/ppl.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/27/2025]
Abstract
Auxin glycosylation plays a fundamental role in the regulation of auxin homeostasis, activity, and transport, contributing to the dynamic control of plant growth and development. Glycosylation enhances auxin stability, solubility, and storage capacity, serving as a key mechanism for both temporary inactivation and long-term storage of auxin molecules. Specific glycosyltransferases are critical for this process, catalyzing glycosylation at either the carboxyl group or the nitrogen atom of the indole ring. The storage roles of glycosylated auxins, such as IAA-N-Glc, have been shown to be essential during embryogenesis and seed germination, while irreversible conjugation into catabolic products helps to maintain auxin homeostasis in vegetative tissues. This review highlights the diversity, enzymatic specificity, and physiological relevance of auxin glycosylation pathways, including a frequently overlooked N-glycosylation, underscoring its importance in the complex network of auxin metabolism.
Collapse
Affiliation(s)
- Daniela Škyvarová
- Department of Chemical Biology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Laboratory of Growth Regulators, Faculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Federica Brunoni
- Laboratory of Growth Regulators, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Laboratory of Growth RegulatorsInstitute of Experimental Botany, The Czech Academy of SciencesOlomoucCzech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Laboratory of Growth RegulatorsInstitute of Experimental Botany, The Czech Academy of SciencesOlomoucCzech Republic
| |
Collapse
|
3
|
Kuźma N, Klimek-Chodacka M, Budzyński R, Barański R, Jędrzejuk A. The response of Petunia × atkinsiana 'Pegasus Special Burgundy Bicolor' to mechanical stress encompassing morphological changes as well as physiological and molecular factors. Sci Rep 2025; 15:1583. [PMID: 39794334 PMCID: PMC11724034 DOI: 10.1038/s41598-024-82364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
In 1973, Jaffe identified and characterized the phenomenon of thigmomorphogenesis, also referred to as mechanical stress (MS) or mechanical stimulation in plants. Previous studies on petunia plants demonstrated that MS significantly affects growth dynamics. As a response to MS, petunias exhibit increased levels of indole-3-acetic acid (IAA) oxidase and peroxidase, although the active transport of endogenous IAA remains unaffected. Furthermore, earlier research has shown that MS inhibits the synthesis of IAA and gibberellin (GA3), with noticeable effects on the 14th day of mechanical stimulation. The current experiment made on Petunia × atkinsiana 'Pegasus Special Burgundy Bicolor' focused on evaluating the morphological and physiological responses to MS, along with the expression of specific touch-responsive genes such as GH3.1, which is involved in auxin metabolism, and calmodulins (CaMs), playing an important role in stress responses. GH3.1 expression was found to be negatively correlated with IAA synthesis while positively correlated with GAs synthesis and IAA oxidase activity. Variable expression patterns were observed in the calmodulins: CAM53 and CAM81 expression positively correlated with IAA synthesis and plant height, whereas CAM72 expression was positively associated with GAs levels and IAA oxidase activity in plants touched 80× per day, but all of them were negatively related to IAA content and shoot increment, while positively related to GAs synthesis and IAA oxidase activity.
Collapse
Affiliation(s)
- Natalia Kuźma
- Department of Environmental Protection and Dendrology, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Magdalena Klimek-Chodacka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Kraków, Poland
| | - Robert Budzyński
- Department of Artificial Intelligence, Warsaw, Institute of Information Technology, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Rafał Barański
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Kraków, Poland
| | - Agata Jędrzejuk
- Department of Environmental Protection and Dendrology, Institute of Horticultural Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
4
|
Pankaj R, Lima RB, Figueiredo DD. Hormonal regulation and crosstalk during early endosperm and seed coat development. PLANT REPRODUCTION 2024; 38:5. [PMID: 39724433 PMCID: PMC11671439 DOI: 10.1007/s00497-024-00516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
KEY MESSAGE This review covers the latest developments on the regulation of early seed development by phytohormones. The development of seeds in flowering plants starts with the fertilization of the maternal gametes by two paternal sperm cells. This leads to the formation of two products, embryo and endosperm, which are surrounded by a tissue of maternal sporophytic origin, called the seed coat. The development of each of these structures is under tight genetic control. Moreover, several phytohormones have been shown to modulate the development of all three seed compartments and have been implicated in the communication between them. This is particularly relevant, as embryo, endosperm, and seed coat have to coordinate their development for successful seed formation. Here, we review the latest advances on the hormonal regulation of early seed development in the model plant species Arabidopsis thaliana, with a focus on the endosperm and the seed coat. Moreover, we highlight how phytohormones serve as mechanisms of non-cell autonomous communication between these two compartments and how they are determinant in shaping seed formation.
Collapse
Affiliation(s)
- R Pankaj
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - R B Lima
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - D D Figueiredo
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
5
|
Garban Z, Ilia G. Structure-Activity of Plant Growth Bioregulators and Their Effects on Mammals. Molecules 2024; 29:5671. [PMID: 39683830 DOI: 10.3390/molecules29235671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In this review, we emphasize structure-activity and the effects on mammals of plant growth bioregulators. plant growth bioregulators can be referred to as "biochemical effectors" since they are substances having biological activity. It is possible to distinguish between "bioregulators" and "regulators" due to the significance of the compounds mentioned above in biochemistry and agrobiology. Thus, "plant growth bioregulators" (PGBRs) are the names given to naturally occurring chemical substances produced by biosynthetic processes. PGBRs affect both plant reign and animal reign. A plethora of plant growth bioregulators were described in the literature, so the structure, activity in plants, and their effects on mammals are presented.
Collapse
Affiliation(s)
- Zeno Garban
- Biochemistry and Molecular Biology, University of Life Sciences "King Michael I", 119 Aradului Ave., 300645 Timisoara, Romania
- Working Group for Xenobiochemistry, Romanian Academy-Timisoara Branch, 24 M. Viteazu Ave., 300223 Timisoara, Romania
| | - Gheorghe Ilia
- Department of Biology-Chemistry, West University Timisoara, 16 Pestalozzi Str., 300223 Timisoara, Romania
| |
Collapse
|
6
|
Gao J, Zhuang S, Zhang W. Advances in Plant Auxin Biology: Synthesis, Metabolism, Signaling, Interaction with Other Hormones, and Roles under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2523. [PMID: 39274009 PMCID: PMC11397301 DOI: 10.3390/plants13172523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Auxin is a key hormone that regulates plant growth and development, including plant shape and sensitivity to environmental changes. Auxin is biosynthesized and metabolized via many parallel pathways, and it is sensed and transduced by both normal and atypical pathways. The production, catabolism, and signal transduction pathways of auxin primarily govern its role in plant growth and development, and in the response to stress. Recent research has discovered that auxin not only responds to intrinsic developmental signals, but also mediates various environmental signals (e.g., drought, heavy metals, and temperature stresses) and interacts with hormones such as cytokinin, abscisic acid, gibberellin, and ethylene, all of which are involved in the regulation of plant growth and development, as well as the maintenance of homeostatic equilibrium in plant cells. In this review, we discuss the latest research on auxin types, biosynthesis and metabolism, polar transport, signaling pathways, and interactions with other hormones. We also summarize the important role of auxin in plants under abiotic stresses. These discussions provide new perspectives to understand the molecular mechanisms of auxin's functions in plant development.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- School of Economic Geography, Hunan University of Finance and Economics, Changsha 410205, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weiwei Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
7
|
Li H, Jiang X, Mashiguchi K, Yamaguchi S, Lu S. Biosynthesis and signal transduction of plant growth regulators and their effects on bioactive compound production in Salvia miltiorrhiza (Danshen). Chin Med 2024; 19:102. [PMID: 39049014 PMCID: PMC11267865 DOI: 10.1186/s13020-024-00971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Plant growth regulators (PGRs) are involved in multiple aspects of plant life, including plant growth, development, and response to environmental stimuli. They are also vital for the formation of secondary metabolites in various plants. Salvia miltiorrhiza is a famous herbal medicine and has been used commonly for > 2000 years in China, as well as widely used in many other countries. S. miltiorrhiza is extensively used to treat cardiovascular and cerebrovascular diseases in clinical practices and has specific merit against various diseases. Owing to its outstanding medicinal and commercial potential, S. miltiorrhiza has been extensively investigated as an ideal model system for medicinal plant biology. Tanshinones and phenolic acids are primary pharmacological constituents of S. miltiorrhiza. As the growing market for S. miltiorrhiza, the enhancement of its bioactive compounds has become a research hotspot. S. miltiorrhiza exhibits a significant response to various PGRs in the production of phenolic acids and tanshinones. Here, we briefly review the biosynthesis and signal transduction of PGRs in plants. The effects and mechanisms of PGRs on bioactive compound production in S. miltiorrhiza are systematically summarized and future research is discussed. This article provides a scientific basis for further research, cultivation, and metabolic engineering in S. miltiorrhiza.
Collapse
Affiliation(s)
- Heqin Li
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Shandong Bairuijia Food Co., Ltd, No. 8008, Yi Road, Laizhou, Yantai, 261400, Shandong, People's Republic of China
| | - Kiyoshi Mashiguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
8
|
Temme AA, Kerr KL, Nolting KM, Dittmar EL, Masalia RR, Bucksch AK, Burke JM, Donovan LA. The genomic basis of nitrogen utilization efficiency and trait plasticity to improve nutrient stress tolerance in cultivated sunflower. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2527-2544. [PMID: 38270266 DOI: 10.1093/jxb/erae025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Maintaining crop productivity is challenging as population growth, climate change, and increasing fertilizer costs necessitate expanding crop production to poorer lands whilst reducing inputs. Enhancing crops' nutrient use efficiency is thus an important goal, but requires a better understanding of related traits and their genetic basis. We investigated variation in low nutrient stress tolerance in a diverse panel of cultivated sunflower genotypes grown under high and low nutrient conditions, assessing relative growth rate (RGR) as performance. We assessed variation in traits related to nitrogen utilization efficiency (NUtE), mass allocation, and leaf elemental content. Across genotypes, nutrient limitation generally reduced RGR. Moreover, there was a negative correlation between vigor (RGR in control) and decline in RGR in response to stress. Given this trade-off, we focused on nutrient stress tolerance independent of vigor. This tolerance metric correlated with the change in NUtE, plasticity for a suite of morphological traits, and leaf element content. Genome-wide associations revealed regions associated with variation and plasticity in multiple traits, including two regions with seemingly additive effects on NUtE change. Our results demonstrate potential avenues for improving sunflower nutrient stress tolerance independent of vigor, and highlight specific traits and genomic regions that could play a role in enhancing tolerance.
Collapse
Affiliation(s)
- Andries A Temme
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Plant Breeding, Wageningen University & Research, 6700 HB Wageningen, The Netherlands
| | - Kelly L Kerr
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristen M Nolting
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily L Dittmar
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Rishi R Masalia
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Nemanich A, Keenan M. ACMT Clinicopathological Conference: The Intoxicated, Poisoned Groundskeeper. J Med Toxicol 2024; 20:226-232. [PMID: 38376790 PMCID: PMC10959886 DOI: 10.1007/s13181-024-00994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Affiliation(s)
- Antonia Nemanich
- Department of Emergency Medicine, Rush University, 1653 W. Congress Pkwy, Tower 1, Chicago, IL, 60612, USA
| | - Michael Keenan
- Department of Emergency Medicine, SUNY Upstate Medical University, 750 East Adams St, Syracuse, NY, 13210, USA.
| |
Collapse
|
10
|
Kubalová M, Müller K, Dobrev PI, Rizza A, Jones AM, Fendrych M. Auxin co-receptor IAA17/AXR3 controls cell elongation in Arabidopsis thaliana root solely by modulation of nuclear auxin pathway. THE NEW PHYTOLOGIST 2024; 241:2448-2463. [PMID: 38308183 DOI: 10.1111/nph.19557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/06/2024] [Indexed: 02/04/2024]
Abstract
The nuclear TIR1/AFB-Aux/IAA auxin pathway plays a crucial role in regulating plant growth and development. Specifically, the IAA17/AXR3 protein participates in Arabidopsis thaliana root development, response to auxin and gravitropism. However, the mechanism by which AXR3 regulates cell elongation is not fully understood. We combined genetical and cell biological tools with transcriptomics and determination of auxin levels and employed live cell imaging and image analysis to address how the auxin response pathways influence the dynamics of root growth. We revealed that manipulations of the TIR1/AFB-Aux/IAA pathway rapidly modulate root cell elongation. While inducible overexpression of the AXR3-1 transcriptional inhibitor accelerated growth, overexpression of the dominant activator form of ARF5/MONOPTEROS inhibited growth. In parallel, AXR3-1 expression caused loss of auxin sensitivity, leading to transcriptional reprogramming, phytohormone signaling imbalance and increased levels of auxin. Furthermore, we demonstrated that AXR3-1 specifically perturbs nuclear auxin signaling, while the rapid auxin response remains functional. Our results shed light on the interplay between the nuclear and cytoplasmic auxin pathways in roots, revealing their partial independence but also the dominant role of the nuclear auxin pathway during the gravitropic response of Arabidopsis thaliana roots.
Collapse
Affiliation(s)
- Monika Kubalová
- Department of Experimental Plant Biology, Charles University, Prague, 12844, Czech Republic
| | - Karel Müller
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Petre Ivanov Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Annalisa Rizza
- Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | | | - Matyáš Fendrych
- Department of Experimental Plant Biology, Charles University, Prague, 12844, Czech Republic
| |
Collapse
|
11
|
Rathor P, Upadhyay P, Ullah A, Gorim LY, Thilakarathna MS. Humic acid improves wheat growth by modulating auxin and cytokinin biosynthesis pathways. AOB PLANTS 2024; 16:plae018. [PMID: 38601216 PMCID: PMC11005776 DOI: 10.1093/aobpla/plae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Humic acids have been widely used for centuries to enhance plant growth and productivity. The beneficial effects of humic acids have been attributed to different functional groups and phytohormone-like compounds enclosed in macrostructure. However, the mechanisms underlying the plant growth-promoting effects of humic acids are only partially understood. We hypothesize that the bio-stimulatory effect of humic acids is mainly due to the modulation of innate pathways of auxin and cytokinin biosynthesis in treated plants. A physiological investigation along with molecular characterization was carried out to understand the mechanism of bio-stimulatory effects of humic acid. A gene expression analysis was performed for the genes involved in auxin and cytokinin biosynthesis pathways in wheat seedlings. Furthermore, Arabidopsis thaliana transgenic lines generated by fusing the auxin-responsive DR5 and cytokinin-responsive ARR5 promoter to ß-glucuronidase (GUS) reporter were used to study the GUS expression analysis in humic acid treated seedlings. This study demonstrates that humic acid treatment improved the shoot and root growth of wheat seedlings. The expression of several genes involved in auxin (Tryptophan Aminotransferase of Arabidopsis and Gretchen Hagen 3.2) and cytokinin (Lonely Guy3) biosynthesis pathways were up-regulated in humic acid-treated seedlings compared to the control. Furthermore, GUS expression analysis showed that bioactive compounds of humic acid stimulate endogenous auxin and cytokinin-like activities. This study is the first report in which using ARR5:GUS lines we demonstrate the biostimulants activity of humic acid.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Punita Upadhyay
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Linda Yuya Gorim
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Malinda S Thilakarathna
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
12
|
Joubert M, van den Berg N, Theron J, Swart V. Global transcriptomic analysis in avocado nursery trees reveals differential gene expression during asymptomatic infection by avocado sunblotch viroid (ASBVd). Virus Res 2024; 339:199263. [PMID: 37940077 PMCID: PMC10682261 DOI: 10.1016/j.virusres.2023.199263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
Avocado sunblotch viroid (ASBVd) is the type species of the family Avsunviroidae and the causal agent of avocado sunblotch disease. The disease is characterised by the presence of chlorotic lesions on avocado fruit, leaves and/or stems. Infected trees may remain without chlorosis for extended periods of time, though distorted growth and reduced yield has been observed in these cases. The molecular effects of ASBVd on avocado, and members of the Avsunviroidae on their respective hosts in general, remain poorly understood. Host global transcriptomic studies within the family Pospiviroidae have identified several host pathways that are affected during these plant-pathogen interactions. In this study, we used RNA sequencing to investigate host gene expression in asymptomatic avocado nursery trees infected with ASBVd. Transcriptome data showed that 631 genes were differentially expressed, 63 % of which were upregulated during infection. Plant defence responses, phytohormone networks, gene expression pathways, secondary metabolism, cellular transport as well as protein modification and degradation were all significantly affected by ASBVd infection. This work represents the first global gene expression study of ASBVd-infected avocado, and the transcriptional reprogramming observed during this asymptomatic infection improves our understanding of the molecular interactions underlying broader avsunviroid-host interactions.
Collapse
Affiliation(s)
- M Joubert
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa; Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - N van den Berg
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa; Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa
| | - J Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - V Swart
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa; Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
13
|
Patriarcheas D, Momtareen T, Gallagher JEG. Yeast of Eden: microbial resistance to glyphosate from a yeast perspective. Curr Genet 2023; 69:203-212. [PMID: 37269314 PMCID: PMC10716058 DOI: 10.1007/s00294-023-01272-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
First marketed as RoundUp, glyphosate is history's most popular herbicide because of its low acute toxicity to metazoans and broad-spectrum effectiveness across plant species. The development of glyphosate-resistant crops has led to increased glyphosate use and consequences from the use of glyphosate-based herbicides (GBH). Glyphosate has entered the food supply, spurred glyphosate-resistant weeds, and exposed non-target organisms to glyphosate. Glyphosate targets EPSPS/AroA/Aro1 (orthologs across plants, bacteria, and fungi), the rate-limiting step in the production of aromatic amino acids from the shikimate pathway. Metazoans lacking this pathway are spared from acute toxicity and acquire their aromatic amino acids from their diet. However, glyphosate resistance is increasing in non-target organisms. Mutations and natural genetic variation discovered in Saccharomyces cerevisiae illustrate similar types of glyphosate resistance mechanisms in fungi, plants, and bacteria, in addition to known resistance mechanisms such as mutations in Aro1 that block glyphosate binding (target-site resistance (TSR)) and mutations in efflux drug transporters non-target-site resistance (NTSR). Recently, genetic variation and mutations in an amino transporter affecting glyphosate resistance have uncovered potential off-target effects of glyphosate in fungi and bacteria. While glyphosate is a glycine analog, it is transported into cells using an aspartic/glutamic acid (D/E) transporter. The size, shape, and charge distribution of glyphosate closely resembles D/E, and, therefore, glyphosate is a D/E amino acid mimic. The mitochondria use D/E in several pathways and mRNA-encoding mitochondrial proteins are differentially expressed during glyphosate exposure. Mutants downstream of Aro1 are not only sensitive to glyphosate but also a broad range of other chemicals that cannot be rescued by exogenous supplementation of aromatic amino acids. Glyphosate also decreases the pH when unbuffered and many studies do not consider the differences in pH that affect toxicity and resistance mechanisms.
Collapse
Affiliation(s)
- Dionysios Patriarcheas
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506, USA
| | - Taizina Momtareen
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506, USA
| | - Jennifer E G Gallagher
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
14
|
Li HL, Liu ZY, Wang XN, Han Y, You CX, An JP. E3 ubiquitin ligases SINA4 and SINA11 regulate anthocyanin biosynthesis by targeting the IAA29-ARF5-1-ERF3 module in apple. PLANT, CELL & ENVIRONMENT 2023; 46:3902-3918. [PMID: 37658649 DOI: 10.1111/pce.14709] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Auxin/indole-3-acetic acid (AUX/IAA) and auxin response factor (ARF) proteins are important components of the auxin signalling pathway, but their ubiquitination modification and the mechanism of auxin-mediated anthocyanin biosynthesis remain elusive. Here, the ARF MdARF5-1 was identified as a negative regulator of anthocyanin biosynthesis in apple, and it integrates auxin and ethylene signals by inhibiting the expression of the ethylene response factor MdERF3. The auxin repressor MdIAA29 decreased the inhibitory effect of MdARF5-1 on anthocyanin biosynthesis by attenuating the transcriptional inhibition of MdERF3 by MdARF5-1. In addition, the E3 ubiquitin ligases MdSINA4 and MdSINA11 played negative and positive regulatory roles in anthocyanin biosynthesis by targeting MdIAA29 and MdARF5-1 for ubiquitination degradation, respectively. MdSINA4 destabilized MdSINA11 to regulate anthocyanin accumulation in response to auxin signalling. In sum, our data revealed the crosstalk between auxin and ethylene signals mediated by the IAA29-ARF5-1-ERF3 module and provide new insights into the ubiquitination modification of the auxin signalling pathway.
Collapse
Affiliation(s)
- Hong-Liang Li
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zhi-Ying Liu
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Na Wang
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Jian-Ping An
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
15
|
Gu K, Yang LE, Ren K, Luo X, Qin X, Op de Beeck M, He C, Jian L, Chen Y. Effects of topping and non-topping on growth-regulating hormones of flue-cured tobacco ( Nicotiana tabacum L.)-a proteomic analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1255252. [PMID: 38023860 PMCID: PMC10643189 DOI: 10.3389/fpls.2023.1255252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Introduction Until now, the mechanism underlying the impact of topping on hormone regulation in tobacco plants remains unclear, and most studies investigating the hormone signaling pathways in plants rely on genes or transcriptional pathways. Methods This study examines the regulatory mechanisms of hormones in the roots and leaves of tobacco plants with and without topping at the protein level. Results The results demonstrate that, compared with non-topped plants, topping leads to a decrease in the levels of IAA (auxin), ABA (abscisic acid), and GA (gibberellin) hormones in the leaves, whereas the content of the JA (jasmonic acid) hormone increases. Furthermore, in the roots, topping results in an increase in the levels of IAA, ABA, and JA hormones, along with a decrease in GA content. In the leaves, a total of 258 significantly different proteins were identified before and after topping, with 128 proteins upregulated and 130 proteins downregulated. In the roots, there were 439 proteins with significantly different quantities before and after topping, consisting of 211 upregulated proteins and 228 downregulated proteins. Notably, these proteins were closely associated with the metabolic and biosynthetic pathways of secondary metabolites, as indicated by functional categorization. Conclusions When integrating the hormone changes and the proteomics results, it is evident that topping leads to increased metabolic activity and enhanced hormone synthesis in the root system. This research provides a theoretical foundation for further investigations into the regulation and signaling mechanisms of hormones at the protein level before and after topping in plants.
Collapse
Affiliation(s)
- Kaiyuan Gu
- Agronomic Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Li-E. Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Ke Ren
- Agronomic Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Xianxue Luo
- Raw material center, Hunan Zhangjiajie Municipal Tobacco Co., Zhangjiajie, Hunan, China
| | - Xiao Qin
- Raw material center, Hunan Zhangjiajie Municipal Tobacco Co., Zhangjiajie, Hunan, China
| | - Michiel Op de Beeck
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | - Conglian He
- Agronomic Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Li Jian
- Key Laboratory of Urban Environment and Health, Instituteo of Urban Enviroment, Chinense Academy of Sciences, Xiamen, Fujian, China
| | - Yi Chen
- Agronomic Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
16
|
Shaffique S, Hussain S, Kang SM, Imran M, Injamum-Ul-Hoque M, Khan MA, Lee IJ. Phytohormonal modulation of the drought stress in soybean: outlook, research progress, and cross-talk. FRONTIERS IN PLANT SCIENCE 2023; 14:1237295. [PMID: 37929163 PMCID: PMC10623132 DOI: 10.3389/fpls.2023.1237295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Phytohormones play vital roles in stress modulation and enhancing the growth of plants. They interact with one another to produce programmed signaling responses by regulating gene expression. Environmental stress, including drought stress, hampers food and energy security. Drought is abiotic stress that negatively affects the productivity of the crops. Abscisic acid (ABA) acts as a prime controller during an acute transient response that leads to stomatal closure. Under long-term stress conditions, ABA interacts with other hormones, such as jasmonic acid (JA), gibberellins (GAs), salicylic acid (SA), and brassinosteroids (BRs), to promote stomatal closure by regulating genetic expression. Regarding antagonistic approaches, cytokinins (CK) and auxins (IAA) regulate stomatal opening. Exogenous application of phytohormone enhances drought stress tolerance in soybean. Thus, phytohormone-producing microbes have received considerable attention from researchers owing to their ability to enhance drought-stress tolerance and regulate biological processes in plants. The present study was conducted to summarize the role of phytohormones (exogenous and endogenous) and their corresponding microbes in drought stress tolerance in model plant soybean. A total of n=137 relevant studies were collected and reviewed using different research databases.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhamad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Republic of Korea
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Science, Qurtaba University of Science and Information Technology, Peshawar, Pakistan
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
17
|
Solanki M, Shukla LI. Recent advances in auxin biosynthesis and homeostasis. 3 Biotech 2023; 13:290. [PMID: 37547917 PMCID: PMC10400529 DOI: 10.1007/s13205-023-03709-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
UNLABELLED The plant proliferation is linked with auxins which in turn play a pivotal role in the rate of growth. Also, auxin concentrations could provide insights into the age, stress, and events leading to flowering and fruiting in the sessile plant kingdom. The role in rejuvenation and plasticity is now evidenced. Interest in plant auxins spans many decades, information from different plant families for auxin concentrations, transcriptional, and epigenetic evidences for gene regulation is evaluated here, for getting an insight into pattern of auxin biosynthesis. This biosynthesis takes place via an tryptophan-independent and tryptophan-dependent pathway. The independent pathway initiated before the tryptophan (trp) production involves indole as the primary substrate. On the other hand, the trp-dependent IAA pathway passes through the indole pyruvic acid (IPyA), indole-3-acetaldoxime (IAOx), and indole acetamide (IAM) pathways. Investigations on trp-dependent pathways involved mutants, namely yucca (1-11), taa1, nit1, cyp79b and cyp79b2, vt2 and crd, and independent mutants of tryptophan, ins are compiled here. The auxin conjugates of the IAA amide and ester-linked mutant gh3, iar, ilr, ill, iamt1, ugt, and dao are remarkable and could facilitate the assimilation of auxins. Efforts are made herein to provide an up-to-date detailed information about biosynthesis leading to plant sustenance. The vast information about auxin biosynthesis and homeostasis is consolidated in this review with a simplified model of auxin biosynthesis with keys and clues for important missing links since auxins can enable the plants to proliferate and override the environmental influence and needs to be probed for applications in sustainable agriculture. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-023-03709-6.
Collapse
Affiliation(s)
- Manish Solanki
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
- Puducherry, India
| | - Lata Israni Shukla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
| |
Collapse
|
18
|
Zhuge XL, Du X, Xiu ZJ, He CC, Wang YM, Yang HL, Han XM. Discovery of specific catalytic activity toward IAA/FA by LaSABATHs based on genome-wide phylogenetic and enzymatic analysis of SABATH gene family from Larix kaempferi. Int J Biol Macromol 2023; 225:1562-1574. [PMID: 36442561 DOI: 10.1016/j.ijbiomac.2022.11.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The SABATH methyltransferases catalyze methylation of small-molecule metabolites, which participate in plant growth, development and defense response. Given lack of genome-wide studies on gymnosperms SABATH family, the formation and functional differentiation mechanism of the Larix kaempferi SABATH gene family was systematically and exhaustively explored by analyzing gene sequence characteristics, phylogenetic relationship, expression pattern, and enzyme activities. Phylogenetic analysis showed that 247 SABATH genes from 14 land plants were divided into 4 clades, and lineage-specific gene duplication events were important factors that contributed to the evolution of the SABATH gene family in gymnosperms and angiosperms. Substrate specificity analysis of 18 Larix SABATH proteins showed that LaSABATHs could catalyze O-methylation of indole-3-acetic acid (IAA) and farnesic acid (FA), N-methylation of theobromine, and S-methylation of thiobenzoic acid. Furthermore, only LaSABATH2 and LaSABATH29 could catalyze O-methylation of FA, and only LaSABATH30 could catalyze O-methylation of IAA. Homology modeling and molecular docking studies showed the hydrogen bond formed between the His188 of LaSABATH30 and IAA and the noticeable hydrophobic IAA-binding pocket may be helpful for IAA methylation. In this study, identification of proteins with significant specific catalytic activity toward FA and IAA provided high-quality candidate genes for forest genetics and breeding.
Collapse
Affiliation(s)
- Xiang-Lin Zhuge
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xin Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zhi-Jing Xiu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Cheng-Cheng He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yi-Ming Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai-Ling Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xue-Min Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
19
|
Luo WG, Liang QW, Su Y, Huang C, Mo BX, Yu Y, Xiao LT. Auxin inhibits chlorophyll accumulation through ARF7-IAA14-mediated repression of chlorophyll biosynthesis genes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1172059. [PMID: 37152161 PMCID: PMC10157223 DOI: 10.3389/fpls.2023.1172059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Auxin is a well-known important phytohormone in plant that plays vital roles in almost every development process throughout plant lifecycle. However, the effect of auxin on the metabolism of chlorophyll, one of the most important pigments involved in the photosynthesis, was intertwined and the underlying mechanism remained to be explored. Here, we found the auxin-defective yuc2 yuc6 double mutant displayed dark-green leaf color with higher chlorophyll content than wildtype, suggesting a negative regulatory role of auxin in chlorophyll biosynthesis. The chloroplast number and structure in mesophyll cells were altered and the photosynthetic efficiency was improved in yuc2 yuc6. In addition, the chlorophyll level was significantly improved during seedling de-etiolation in yuc2 yuc6 mutant, and decreased dramatically under IAA treatment, confirming the inhibitory role of auxin in chlorophyll biosynthesis. The analyses of gene expression in mature leaves and de-etiolation seedlings suggested that auxin suppressed the expression of many chlorophyll biosynthesis genes, especially PROTOCHLOROPHYLLIDE OXIDOREDUCTASE A (PORA) and GENOMES UNCOUPLED 5 (GUN5). Yeast-one-hybrid and luciferase assays demonstrated that the AUXIN RESPONSE FACTOR 2 (ARF2) and ARF7 bind to the promoter of PORA and GUN5 to suppress their expression with the help of INDOLE-3-ACETIC ACID14 (IAA14). Collectively, our research explicitly unraveled the direct inhibitory role of auxin in chlorophyll biosynthesis, and provided new insight into the interplay between auxin signaling and chlorophyll metabolism.
Collapse
Affiliation(s)
- Wei-Gui Luo
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Qi-Wen Liang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yi Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Bei-Xin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Lang-Tao Xiao, ; Yu Yu,
| | - Lang-Tao Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- *Correspondence: Lang-Tao Xiao, ; Yu Yu,
| |
Collapse
|
20
|
Suzuki R, Kanno Y, Abril-Urias P, Seo M, Escobar C, Tsai AYL, Sawa S. Local auxin synthesis mediated by YUCCA4 induced during root-knot nematode infection positively regulates gall growth and nematode development. FRONTIERS IN PLANT SCIENCE 2022; 13:1019427. [PMID: 36466293 PMCID: PMC9709418 DOI: 10.3389/fpls.2022.1019427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Parasites and pathogens are known to manipulate the host's endogenous signaling pathways to facilitate the infection process. In particular, plant-parasitic root-knot nematodes (RKN) are known to elicit auxin response at the infection sites, to aid the development of root galls as feeding sites for the parasites. Here we describe the role of local auxin synthesis induced during RKN infection. Exogenous application of auxin synthesis inhibitors decreased RKN gall formation rates, gall size and auxin response in galls, while auxin and auxin analogues produced the opposite effects, re-enforcing the notion that auxin positively regulates RKN gall formation. Among the auxin biosynthesis enzymes, YUCCA4 (YUC4) was found to be dramatically up-regulated during RKN infection, suggesting it may be a major contributor to the auxin accumulation during gall formation. However, yuc4-1 showed only very transient decrease in gall auxin levels and did not show significant changes in RKN infection rates, implying the loss of YUC4 is likely compensated by other auxin sources. Nevertheless, yuc4-1 plants produced significantly smaller galls with fewer mature females and egg masses, confirming that auxin synthesized by YUC4 is required for proper gall formation and RKN development within. Interestingly, YUC4 promoter was also activated during cyst nematode infection. These lines of evidence imply auxin biosynthesis from multiple sources, one of them being YUC4, is induced upon plant endoparasitic nematode invasion and likely contribute to their infections. The coordination of these different auxins adds another layer of complexity of hormonal regulations during plant parasitic nematode interaction.
Collapse
Affiliation(s)
- Reira Suzuki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Patricia Abril-Urias
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Carolina Escobar
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Allen Yi-Lun Tsai
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- International Research Center for Agricultural & Environmental Biology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
21
|
Rolón-Cárdenas GA, Arvizu-Gómez JL, Soria-Guerra RE, Pacheco-Aguilar JR, Alatorre-Cobos F, Hernández-Morales A. The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3743-3764. [PMID: 35022877 DOI: 10.1007/s10653-021-01179-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/05/2021] [Indexed: 05/16/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals for plant physiology and development. This review discusses Cd effects on auxin biosynthesis and homeostasis, and the strategies for restoring plant growth based on exogenous auxin application. First, the two well-characterized auxin biosynthesis pathways in plants are described, as well as the effect of exogenous auxin application on plant growth. Then, review describes the impacts of Cd on the content, biosynthesis, conjugation, and oxidation of endogenous auxins, which are related to a decrease in root development, photosynthesis, and biomass production. Finally, compelling evidence of the beneficial effects of auxin-producing rhizobacteria in plants exposed to Cd is showed, focusing on photosynthesis, oxidative stress, and production of antioxidant compounds and osmolytes that counteract Cd toxicity, favoring plant growth and improve phytoremediation efficiency. Expanding our understanding of the positive effects of exogenous auxins application and the interactions between bacteria and plants growing in Cd-polluted environments will allow us to propose phytoremediation strategies for restoring environments contaminated with this metal.
Collapse
Affiliation(s)
- Gisela Adelina Rolón-Cárdenas
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Ruth Elena Soria-Guerra
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
| | | | | | - Alejandro Hernández-Morales
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México.
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México.
| |
Collapse
|
22
|
Zhang Y, Xia G, Sheng L, Chen M, Hu C, Ye Y, Yue X, Chen S, OuYang W, Xia Z. Regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses. PLANT CELL REPORTS 2022; 41:2125-2138. [PMID: 35922498 DOI: 10.1007/s00299-022-02910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Selective autophagy functions as a regulatory mechanism by targeting native and functional proteins to ensure their proper levels and activities in plant adaptive responses. Autophagy is a cellular degradation and recycling pathway with a key role in cellular homeostasis and metabolism. Autophagy is initiated with the biogenesis of autophagosomes, which fuse with the lysosomes or vacuoles to release their contents for degradation. Under nutrient starvation or other adverse environmental conditions, autophagy usually targets unwanted or damaged proteins, organelles and other cellular components for degradation and recycling to promote cell survival. Over the past decade, however, a substantial number of studies have reported that autophagy in plants also functions as a regulatory mechanism by targeting enzymes, structural and regulatory proteins that are not necessarily damaged or dysfunctional to ensure their proper abundance and function to facilitate cellular changes required for response to endogenous and environmental conditions. During plant-pathogen interactions in particular, selective autophagy targets specific pathogen components as a defense mechanism and pathogens also utilize autophagy to target functional host factors to suppress defense mechanisms. Autophagy also targets native and functional protein regulators of plant heat stress memory, hormone signaling, and vesicle trafficking associated with plant responses to abiotic and other conditions. In this review, we discuss advances in the regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses, what questions remain and how further progress in the analysis of these special regulatory roles of autophagy can help understand biological processes important to plants.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China.
| | - Gengshou Xia
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Li Sheng
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Mingjue Chen
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Chenyang Hu
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Yule Ye
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Xiaoyan Yue
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Shaocong Chen
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Wenwu OuYang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Zhenkai Xia
- China Medical University -The Queen's University of Belfast Joint College, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
23
|
Luo W, Xiao N, Wu F, Mo B, Kong W, Yu Y. Genome-Wide Identification and Characterization of YUCCA Gene Family in Mikania micrantha. Int J Mol Sci 2022; 23:13037. [PMID: 36361840 PMCID: PMC9655643 DOI: 10.3390/ijms232113037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 09/28/2023] Open
Abstract
Auxin is a general coordinator for growth and development throughout plant lifespan, acting in a concentration-dependent manner. Tryptophan aminotransferases (YUCCA) family catalyze the oxidative decarboxylation of indole-3-pyruvic acid (IPA) to form indole-3-acetic acid (IAA) and plays a critical role in auxin homeostasis. Here, 18 YUCCA family genes divided into four categories were identified from Mikania micrantha (M. micrantha), one of the world's most invasive plants. Five highly conserved motifs were characterized in these YUCCA genes (MmYUCs). Transcriptome analysis revealed that MmYUCs exhibited distinct expression patterns in different organs and five MmYUCs showed high expression levels throughout all the five tissues, implying that they may play dominant roles in auxin biosynthesis and plant development. In addition, MmYUC6_1 was overexpressed in DR5::GUS Arabidopsis line to explore its function, which resulted in remarkably increased auxin level and typical elevated auxin-related phenotypes including shortened roots and elongated hypocotyls in the transgenic plants, suggesting that MmYUC6_1 promoted IAA biosynthesis in Arabidopsis. Collectively, these findings provided comprehensive insight into the phylogenetic relationships, chromosomal distributions, expression patterns and functions of the MmYUC genes in M. micrantha, which would facilitate the study of molecular mechanisms underlying the fast growth of M. micrantha and preventing its invasion.
Collapse
Affiliation(s)
- Weigui Luo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nian Xiao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Feiyan Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wenwen Kong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
24
|
Gazola T, Costa RN, Carbonari CA, Velini ED. Dynamics of 2,4-D and Dicamba Applied to Corn Straw and Their Residual Action in Weeds. PLANTS (BASEL, SWITZERLAND) 2022; 11:2800. [PMID: 36297822 PMCID: PMC9610222 DOI: 10.3390/plants11202800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
2,4-D and dicamba are used in the postemergence management of eudicotyledonous weeds in different crops, most of which are grown under no-tillage systems. Due to the application methods for these products, their dynamics in straw and their residual action in soil have rarely been explored. Thus, the objective of this study was to evaluate the dynamics of 2,4-D and dicamba that have been applied to corn straw and to verify their relationship with residual control action in weeds. In the dynamics experiments, the herbicides were applied to 5 t ha-1 of straw, and rainfall simulations were performed with variable amounts and at different periods after application to evaluate herbicide movement in the straw. In the residual action experiments, the species Digitaria insularis, Conyza spp., Bidens pilosa, Amaranthus hybridus, Euphorbia heterophylla, and Eleusine indica were sown in trays, and 2,4-D and dicamba were applied directly to the soil, to the soil with the subsequent addition of the straw, and to the straw; all of these applications were followed by a simulation of 10 mm of rain. The physical effect of the straw and the efficacy of the herbicides in terms of pre-emergence control of the weed species were evaluated. The leaching of 2,4-D and dicamba from the corn straw increased with a higher volume of rainfall, and the longer the drought period was, the lower the final amount of herbicide that leached. The presence of the corn straw on the soil exerted a physical control effect on Conyza spp.; significantly reduced the infestation of D. insularis, B. pilosa, A. hybridus, and E. indica; and broadened the control spectrum of 2,4-D and dicamba, assisting in its residual action and ensuring high levels of control of the evaluated weeds. In the absence of the straw, 2,4-D effectively controlled the pre-emergence of D. insularis, Conyza spp., and A. hybridus, and dicamba effectively controlled D. insularis, Conyza spp., B. pilosa, A. hybridus, E. heterophylla, and E. indica.
Collapse
|
25
|
Danova K, Motyka V, Trendafilova A, Dobrev PI, Ivanova V, Aneva I. Evolutionary Aspects of Hypericin Productivity and Endogenous Phytohormone Pools Evidenced in Hypericum Species In Vitro Culture Model. PLANTS (BASEL, SWITZERLAND) 2022; 11:2753. [PMID: 36297777 PMCID: PMC9609395 DOI: 10.3390/plants11202753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Shoot cultures of hypericin non-producing H. calycinum L. (primitive Ascyreia section), hypericin-producing H. perforatum L., H. tetrapterum Fries (section Hypericum) and H. richeri Vill. (the evolutionarily most advanced section Drosocarpium in our study) were developed and investigated for their growth, development, hypericin content and endogenous phytohormone levels. Hypericins in wild-growing H. richeri significantly exceeded those in H. perforatum and H. tetrapterum. H. richeri also had the highest hypericin productivity in vitro in medium supplemented with 0.2 mg/L N6-benzyladenine and 0.1 mg/L indole-3-butyric acid and H. tetrapterum-the lowest one in all media modifications. In shoot culture conditions, the evolutionarily oldest H. calycinum had the highest content of salicylic acid and total jasmonates in some of its treatments, as well as dominance of the storage form of abscisic acid (ABA-glucose ester) and lowest cytokinin ribosides and cytokinin O-glucosides as compared with the other three species. In addition, the evolutionarily youngest H. richeri was characterized by the highest total amount of cytokinin ribosides. Thus, both evolutionary development and the hypericin production capacity seemed to interact closely with the physiological parameters of the plant organism, such as endogenous phytohormones, leading to the possible hypothesis that hypericin productivity may have arisen in the evolution of Hypericum as a means to adapt to environmental changes.
Collapse
Affiliation(s)
- Kalina Danova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl.9, 1113 Sofia, Bulgaria
| | - Vaclav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic
| | - Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl.9, 1113 Sofia, Bulgaria
| | - Petre I. Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic
| | - Viktorya Ivanova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl.9, 1113 Sofia, Bulgaria
| | - Ina Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria
| |
Collapse
|
26
|
Cha JY, Jeong SY, Ahn G, Shin GI, Ji MG, Lee SC, Khakurel D, Macoy DM, Lee YB, Kim MG, Lee SY, Yun DJ, Kim WY. The thiol-reductase activity of YUCCA6 enhances nickel heavy metal stress tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1007542. [PMID: 36237515 PMCID: PMC9551240 DOI: 10.3389/fpls.2022.1007542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic activities cause the leaching of heavy metals into groundwater and their accumulation in soil. Excess levels of heavy metals cause toxicity in plants, inducing the production of reactive oxygen species (ROS) and possible death caused by the resulting oxidative stress. Heavy metal stresses repress auxin biosynthesis and transport, inhibiting plant growth. Here, we investigated whether nickel (Ni) heavy metal toxicity is reduced by exogenous auxin application and whether Ni stress tolerance in Arabidopsis thaliana is mediated by the bifunctional enzyme YUCCA6 (YUC6), which functions as an auxin biosynthetic enzyme and a thiol-reductase (TR). We found that an application of up to 1 µM exogenous indole-3-acetic acid (IAA) reduces Ni stress toxicity. yuc6-1D, a dominant mutant of YUC6 with high auxin levels, was more tolerant of Ni stress than wild-type (WT) plants, despite absorbing significantly more Ni. Treatments of WT plants with YUCASIN, a specific inhibitor of YUC-mediated auxin biosynthesis, increased Ni toxicity; however yuc6-1D was not affected by YUCASIN and remained tolerant of Ni stress. This suggests that rather than the elevated IAA levels in yuc6-1D, the TR activity of YUC6 might be critical for Ni stress tolerance. The loss of TR activity in YUC6 caused by the point-mutation of Cys85 abolished the YUC6-mediated Ni stress tolerance. We also found that the Ni stress-induced ROS accumulation was inhibited in yuc6-1D plants, which consequently also showed reduced oxidative damage. An enzymatic assay and transcriptional analysis revealed that the peroxidase activity and transcription of PEROXIREDOXIN Q were enhanced by Ni stress to a greater level in yuc6-1D than in the WT. These findings imply that despite the need to maintain endogenous IAA levels for basal Ni stress tolerance, the TR activity of YUC6, not the elevated IAA levels, plays the predominant role inNi stress tolerance by lowering Ni-induced oxidative stress.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Research Institute of Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Gyeongik Ahn
- Research Institute of Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Myung Geun Ji
- Research Institute of Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Sang Cheol Lee
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dhruba Khakurel
- Department of Biology, Graduate School of Gyeongsang National University, Jinju, South Korea
| | - Donah Mary Macoy
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, South Korea
| | - Yong Bok Lee
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Woe-Yeon Kim
- Research Institute of Life Sciences, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Applied Life Science (BK21four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
27
|
Taya K, Takeuchi S, Takahashi M, Hayashi KI, Mikami K. Auxin Regulates Apical Stem Cell Regeneration and Tip Growth in the Marine Red Alga Neopyropia yezoensis. Cells 2022; 11:cells11172652. [PMID: 36078060 PMCID: PMC9454478 DOI: 10.3390/cells11172652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The red alga Neopyropia yezoensis undergoes polarized elongation and asymmetrical cell division of the apical stem cell during tip growth in filamentous generations of its life cycle: the conchocelis and conchosporangium. Side branches are also produced via tip growth, a process involving the regeneration and asymmetrical division of the apical stem cell. Here, we demonstrate that auxin plays a crucial role in these processes by using the auxin antagonist 2-(1H-Indol-3-yl)-4-oxo-4-phenyl-butyric acid (PEO-IAA), which specifically blocks the activity of the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) in land plants. PEO-IAA repressed both the regeneration and polarized tip growth of the apical stem cell in single-celled conchocelis; this phenomenon was reversed by treatment with the auxin indole-3-acetic acid (IAA). In addition, tip growth of the conchosporangium was accelerated by IAA treatment but repressed by PEO-IAA treatment. These findings indicate that auxin regulates polarized tip cell growth and that an auxin receptor-like protein is present in N. yezoensis. The sensitivity to different 5-alkoxy-IAA analogs differs considerably between N. yezoensis and Arabidopsis thaliana. N. yezoensis lacks a gene encoding TIR1, indicating that its auxin receptor-like protein differs from the auxin receptor of terrestrial plants. These findings shed light on auxin-induced mechanisms and the regulation of tip growth in plants.
Collapse
Affiliation(s)
- Kensuke Taya
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Shunzei Takeuchi
- School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Megumu Takahashi
- Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Ken-ichiro Hayashi
- Department of Bioscience, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Koji Mikami
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai 982-0215, Japan
- Correspondence: ; Tel.: +81-22-245-1411
| |
Collapse
|
28
|
Joubert M, van den Berg N, Theron J, Swart V. Transcriptomics Advancement in the Complex Response of Plants to Viroid Infection. Int J Mol Sci 2022; 23:ijms23147677. [PMID: 35887025 PMCID: PMC9318114 DOI: 10.3390/ijms23147677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Viroids are the smallest plant pathogens, consisting of a single-stranded circular RNA of less than 500 ribonucleotides in length. Despite their noncoding nature, viroids elicit disease symptoms in many economically important plant hosts, and are, thus, a class of pathogens of great interest. How these viroids establish disease within host plants, however, is not yet fully understood. Recent transcriptomic studies have revealed that viroid infection influences the expression of genes in several pathways and processes in plants, including defence responses, phytohormone signalling, cell wall modification, photosynthesis, secondary metabolism, transport, gene expression and protein modification. There is much debate about whether affected pathways signify a plant response to viroid infection, or are associated with the appearance of disease symptoms in these interactions. In this review, we consolidate the findings of viroid–host transcriptome studies to provide an overview of trends observed in the data. When considered together, changes in the gene expression of different hosts upon viroid infection reveal commonalities and differences in diverse interactions. Here, we discuss whether trends in host gene expression can be correlated to plant defence or disease development during viroid infection, and highlight avenues for future research in this field.
Collapse
Affiliation(s)
- Melissa Joubert
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Velushka Swart
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Correspondence:
| |
Collapse
|
29
|
Ghimire BK, Kim SH, Yu CY, Chung IM. Biochemical and Physiological Changes during Early Adventitious Root Formation in Chrysanthemum indicum Linné Cuttings. PLANTS 2022; 11:plants11111440. [PMID: 35684213 PMCID: PMC9183066 DOI: 10.3390/plants11111440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
Chrysanthemum indicum is an important ornamental and medicinal plant that is often difficult to propagate commercially because of its poor germination and low seed viability. This plant is mostly propagated by cutting, but the rooting is slow and non-uniform. The present investigation evaluated the regeneration capacity of stem cutting by examining the influence of auxins, growth medium, temperature, and explant type on adventitious root formation in C. indicum. The auxin-treated cuttings were planted in different growth substrates under greenhouse conditions. Among the different auxins tested, indole-3-butyric acid (IBA) more effectively induced roots. The cutting position of stock plants influenced rooting capacity. Cutting the stock plants from the apical region enhanced root number and length in the explants. Among the different explant types, apical stem cuts with 2000 ppm IBA produced a significantly higher number of adventitious roots when grown in vermiculite and perlite (V + P) at a ratio of 1:1 at 25 °C. High-performance liquid chromatography (HPLC) analysis revealed that protocatechuic acid, gentisic acid, chlorogenic acid, biochanin A, salicylic acid, caffeic acid, glycitein, and luteolin were the most dominant phenolic compounds present in C. indicum. These results indicate that IBA treatment promoted the synthesis and accumulation of phenolic compounds in C. indicum stem cuttings at the time of root formation. The present results demonstrate that applying auxins is essential for early root initiation and higher rooting success and thus may be beneficial for vegetative C. indicum propagation.
Collapse
Affiliation(s)
- Bimal Kumar Ghimire
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (B.K.G.); (S.-H.K.)
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (B.K.G.); (S.-H.K.)
| | - Chang-Yeon Yu
- Bioherb Research Institute, Kangwon National University, Chuncheon 24341, Korea;
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (B.K.G.); (S.-H.K.)
- Correspondence: ; Tel.: +82-010-547-08301
| |
Collapse
|
30
|
Systemic Signaling: A Role in Propelling Crop Yield. PLANTS 2022; 11:plants11111400. [PMID: 35684173 PMCID: PMC9182853 DOI: 10.3390/plants11111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Food security has become a topic of great concern in many countries. Global food security depends heavily on agriculture that has access to proper resources and best practices to generate higher crop yields. Crops, as with other plants, have a variety of strategies to adapt their growth to external environments and internal needs. In plants, the distal organs are interconnected through the vascular system and intricate hierarchical signaling networks, to communicate and enhance survival within fluctuating environments. Photosynthesis and carbon allocation are fundamental to crop production and agricultural outputs. Despite tremendous progress achieved by analyzing local responses to environmental cues, and bioengineering of critical enzymatic processes, little is known about the regulatory mechanisms underlying carbon assimilation, allocation, and utilization. This review provides insights into vascular-based systemic regulation of photosynthesis and resource allocation, thereby opening the way for the engineering of source and sink activities to optimize the yield performance of major crops.
Collapse
|
31
|
Wojtaczka P, Ciarkowska A, Starzynska E, Ostrowski M. The GH3 amidosynthetases family and their role in metabolic crosstalk modulation of plant signaling compounds. PHYTOCHEMISTRY 2022; 194:113039. [PMID: 34861536 DOI: 10.1016/j.phytochem.2021.113039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 05/08/2023]
Abstract
The Gretchen Hagen 3 (GH3) genes encoding proteins belonging to the ANL superfamily are widespread in the plant kingdom. The ANL superfamily consists of three groups of adenylating enzymes: aryl- and acyl-CoA synthetases, firefly luciferase, and amino acid-activating adenylation domains of the nonribosomal peptide synthetases (NRPS). GH3s are cytosolic, acidic amidosynthetases of the firefly luciferase group that conjugate auxins, jasmonates, and benzoate derivatives to a wide group of amino acids. In contrast to auxins, which amide conjugates mainly serve as a storage pool of inactive phytohormone or are involved in the hormone degradation process, conjugation of jasmonic acid (JA) results in biologically active phytohormone jasmonyl-isoleucine (JA-Ile). Moreover, GH3s modulate salicylic acid (SA) concentration by conjugation of its precursor, isochorismate. GH3s, as regulators of the phytohormone level, are crucial for normal plant development as well as plant defense response to different abiotic and biotic stress factors. Surprisingly, recent studies indicate that FIN219/JAR1/GH3.11, one of the GH3 proteins, may act not only as an enzyme but is also able to interact with tau-class glutathione S-transferase (GSTU) and constitutive photomorphogenic 1 (COP1) proteins and regulate light and stress signaling pathways. The aim of this work is to summarize our current knowledge of the GH3 family.
Collapse
Affiliation(s)
- Patrycja Wojtaczka
- Department of Biochemistry, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Anna Ciarkowska
- Department of Biochemistry, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Ewelina Starzynska
- Department of Biochemistry, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Maciej Ostrowski
- Department of Biochemistry, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland.
| |
Collapse
|
32
|
Luo P, Di D, Wu L, Yang J, Lu Y, Shi W. MicroRNAs Are Involved in Regulating Plant Development and Stress Response through Fine-Tuning of TIR1/AFB-Dependent Auxin Signaling. Int J Mol Sci 2022; 23:ijms23010510. [PMID: 35008937 PMCID: PMC8745101 DOI: 10.3390/ijms23010510] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022] Open
Abstract
Auxin, primarily indole-3-acetic acid (IAA), is a versatile signal molecule that regulates many aspects of plant growth, development, and stress response. Recently, microRNAs (miRNAs), a type of short non-coding RNA, have emerged as master regulators of the auxin response pathways by affecting auxin homeostasis and perception in plants. The combination of these miRNAs and the autoregulation of the auxin signaling pathways, as well as the interaction with other hormones, creates a regulatory network that controls the level of auxin perception and signal transduction to maintain signaling homeostasis. In this review, we will detail the miRNAs involved in auxin signaling to illustrate its in planta complex regulation.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (P.L.); (D.D.)
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
- Correspondence: (P.L.); (D.D.)
| | - Lei Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (Y.L.); (W.S.)
| |
Collapse
|
33
|
Guo L, Ma M, Wu L, Zhou M, Li M, Wu B, Li L, Liu X, Jing R, Chen W, Zhao H. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:168-182. [PMID: 34510688 PMCID: PMC8710830 DOI: 10.1111/pbi.13704] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 05/20/2023]
Abstract
Increasing grain yield has always been the primary goal of crop breeding. KLUH/CYP78A5 has been shown to affect seed size in several plant species, but the relevant molecular mechanism is still unclear and there are no reports of this gene contributing to yield. Here, we demonstrate that modified expression of TaCYP78A5 can enhance wheat grain weight and grain yield per plant by accumulating auxin. TaCYP78A5 is highly expressed in maternal tissues, including ovary and seed coat during wheat development. The constitutive overexpression of TaCYP78A5 leads to significantly increased seed size and weight but not grain yield per plant due to the strengthening of apical dominance. However, localized overexpression of TaCYP78A5 in maternal integument enhances grain weight and grain yield per plant by 4.3%-18.8% and 9.6%-14.7%, respectively, in field trials. Transcriptome and hormone metabolome analyses reveal that TaCYP78A5 participates in auxin synthesis pathway and promotes auxin accumulation and cell wall remodelling in ovary. Phenotype investigation and cytological observation show that localized overexpression of TaCYP78A5 in ovary results in delayed flowering and prolonged proliferation of maternal integument cells, which promote grain enlargement. Moreover, naturally occurring variations in the promoter of TaCYP78A5-2A contribute to thousand-grain weight (TGW) and grain yield per plant of wheat;TaCYP78A5-2A haplotype Ap-HapII with higher activity is favourable for improving grain weight and grain yield per plant and has been positively selected in wheat breeding. Then, a functional marker of TaCYP78A5 haplotype Ap-HapII is developed for marker-assisted selection in wheat grain and yield improvement.
Collapse
Affiliation(s)
- Lijian Guo
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
| | - Meng Ma
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A & F UniversityYanglingShaanxiChina
| | - Linnan Wu
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
| | - Mengdie Zhou
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
| | - Mengyao Li
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
| | - Baowei Wu
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xiangli Liu
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A & F UniversityYanglingShaanxiChina
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Wei Chen
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Huixian Zhao
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A & F UniversityYanglingShaanxiChina
| |
Collapse
|
34
|
Zhang ZP, Song SX, Liu YC, Zhu XR, Jiang YF, Shi LT, Jiang JZ, Miao MM. Mixed Transcriptome Analysis Revealed the Possible Interaction Mechanisms between Zizania latifolia and Ustilago esculenta Inducing Jiaobai Stem-Gall Formation. Int J Mol Sci 2021; 22:ijms222212258. [PMID: 34830140 PMCID: PMC8618054 DOI: 10.3390/ijms222212258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
The smut fungus Ustilago esculenta infects Zizania latifolia and induces stem expansion to form a unique vegetable named Jiaobai. Although previous studies have demonstrated that hormonal control is essential for triggering stem swelling, the role of hormones synthesized by Z. latifolia and U. esculenta and the underlying molecular mechanism are not yet clear. To study the mechanism that triggers swollen stem formation, we analyzed the gene expression pattern of both interacting organisms during the initial trigger of culm gall formation, at which time the infective hyphae also propagated extensively and penetrated host stem cells. Transcriptional analysis indicated that abundant genes involving fungal pathogenicity and plant resistance were reprogrammed to maintain the subtle balance between the parasite and host. In addition, the expression of genes involved in auxin biosynthesis of U. esculenta obviously decreased during stem swelling, while a large number of genes related to the synthesis, metabolism and signal transduction of hormones of the host plant were stimulated and showed specific expression patterns, particularly, the expression of ZlYUCCA9 (a flavin monooxygenase, the key enzyme in indole-3-acetic acid (IAA) biosynthesis pathway) increased significantly. Simultaneously, the content of IAA increased significantly, while the contents of cytokinin and gibberellin showed the opposite trend. We speculated that auxin produced by the host plant, rather than the fungus, triggers stem swelling. Furthermore, from the differently expressed genes, two candidate Cys2-His2 (C2H2) zinc finger proteins, GME3058_g and GME5963_g, were identified from U. esculenta, which may conduct fungus growth and infection at the initial stage of stem-gall formation.
Collapse
Affiliation(s)
- Zhi-Ping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Si-Xiao Song
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Yan-Cheng Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Xin-Rui Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Yi-Feng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Ling-Tong Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Jie-Zeng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
| | - Min-Min Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-P.Z.); (S.-X.S.); (Y.-C.L.); (X.-R.Z.); (Y.-F.J.); (L.-T.S.); (J.-Z.J.)
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
35
|
Sriskanda D, Liew YX, Khor SP, Merican F, Subramaniam S, Chew BL. An efficient micropropagation protocol for Ficus carica cv. Golden Orphan suitable for mass propagation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Hu T, Yin S, Sun J, Linghu Y, Ma J, Pan J, Wang C. Clathrin light chains regulate hypocotyl elongation by affecting the polarization of the auxin transporter PIN3 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1922-1936. [PMID: 34478221 DOI: 10.1111/jipb.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2021] [Indexed: 05/26/2023]
Abstract
PIN-FORMED (PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion, how PIN3 becomes repolarized to the proper sites within hypocotyl cells is poorly understood. We previously generated the clathrin light chain clc2-1 clc3-1 double mutant in Arabidopsis thaliana and found that it has an elongated hypocotyl phenotype compared to the wild type. Here, we performed genetic, cell biology, and pharmacological analyses combined with live-cell imaging to elucidate the molecular mechanism underlying the role of clathrin light chains in hypocotyl elongation. Our analyses indicated that the defects of the double mutant enhanced auxin maxima in epidermal cells, thus, promoting hypocotyl elongation. PIN3 relocated to the lateral sides of hypocotyl endodermal cells in clc2-1 clc3-1 mutants to redirect auxin toward the epidermal cell layers. Moreover, the loss of function of PIN3 largely suppressed the long hypocotyl phenotype of the clc2-1 clc3-1 double mutant, as did treatment with auxin transport inhibitors. Based on these data, we propose that clathrin modulates PIN3 abundance and polarity to direct auxin flux and inhibit cell elongation in the hypocotyl, providing novel insights into the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Tianwei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shoupeng Yin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jingbo Sun
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuting Linghu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Life Sciences, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
37
|
Wei X, Wei X, Guan W, Mao L. Abscisic acid stimulates wound suberisation in kiwifruit (Actinidia chinensis) by regulating the production of jasmonic acid, cytokinin and auxin. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1100-1112. [PMID: 34551855 DOI: 10.1071/fp20360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Wounding induces a cascade of correlative physiological responses that lead to the repair of damaged tissue. In this study, the effect of wounding on suberin, endogenous hormones and their metabolic genes expression was observed during the wound healing of kiwifruit (Actinidia chinensis Planch.). In addition, the role of abscisic acid (ABA) in wound suberisation was investigated by analysing the coordinated regulation between ABA and other hormones. The wound healing process in kiwifruit could be divided into two stages including: (1) initial accumulation of suberin polyphenolic (SPP) and long carbon chain suberin polyaliphatic monomers (LSPA) before 24h; and (2) massive synthesis of SPP and very long carbon chain suberin polyaliphatic monomers (VLSPA) after 24h. ABA content rapidly increased and induced the jasmonic acid (JA) biosynthesis at the early stage of wound healing. ABA level gradually decreased with the expression of AchCYP707A genes, while the contents of trans-zeatin (t-ZT) and indole-3-acetic acid (IAA) steadily increased at the late stage of wound healing. Exogenous ABA stimulated JA and suberin monomers accumulation, but suppressed both t-ZT and IAA biosynthesis. The role of ABA in wound healing of kiwifruit might be involved in the coordination of both JA-mediated suberin monomers biosynthesis and t-ZT- and IAA-mediated formation of suberised cells via an interaction mechanism.
Collapse
Affiliation(s)
- Xiaobo Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang R&D Center of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaopeng Wei
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Weiliang Guan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang R&D Center of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; and Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang R&D Center of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; and Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
38
|
Piacentini D, Della Rovere F, Bertoldi I, Massimi L, Sofo A, Altamura MM, Falasca G. Peroxisomal PEX7 Receptor Affects Cadmium-Induced ROS and Auxin Homeostasis in Arabidopsis Root System. Antioxidants (Basel) 2021; 10:antiox10091494. [PMID: 34573126 PMCID: PMC8471170 DOI: 10.3390/antiox10091494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022] Open
Abstract
Peroxisomes are important in plant physiological functions and stress responses. Through the production of reactive oxygen and nitrogen species (ROS and RNS), and antioxidant defense enzymes, peroxisomes control cellular redox homeostasis. Peroxin (PEX) proteins, such as PEX7 and PEX5, recognize peroxisome targeting signals (PTS1/PTS2) important for transporting proteins from cytosol to peroxisomal matrix. pex7-1 mutant displays reduced PTS2 protein import and altered peroxisomal metabolism. In this research we analyzed the role of PEX7 in the Arabidopsis thaliana root system exposed to 30 or 60 μM CdSO4. Cd uptake and translocation, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) levels, and reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels and catalase activity were analyzed in pex7-1 mutant primary and lateral roots in comparison with the wild type (wt). The peroxisomal defect due to PEX7 mutation did not reduce Cd-uptake but reduced its translocation to the shoot and the root cell peroxisomal signal detected by 8-(4-Nitrophenyl) Bodipy (N-BODIPY) probe. The trend of nitric oxide (NO) and peroxynitrite in pex7-1 roots, exposed/not exposed to Cd, was as in wt, with the higher Cd-concentration inducing higher levels of these RNS. By contrast, PEX7 mutation caused changes in Cd-induced hydrogen peroxide (H2O2) and superoxide anion (O2●-) levels in the roots, delaying ROS-scavenging. Results show that PEX7 is involved in counteracting Cd toxicity in Arabidopsis root system by controlling ROS metabolism and affecting auxin levels. These results add further information to the important role of peroxisomes in plant responses to Cd.
Collapse
Affiliation(s)
- Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.P.); (F.D.R.); (I.B.); (L.M.); (M.M.A.)
| | - Federica Della Rovere
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.P.); (F.D.R.); (I.B.); (L.M.); (M.M.A.)
| | - Ilaria Bertoldi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.P.); (F.D.R.); (I.B.); (L.M.); (M.M.A.)
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.P.); (F.D.R.); (I.B.); (L.M.); (M.M.A.)
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment, and Cultural Heritage (DICEM), University of Basilicata, Via San Rocco 3, 75100 Matera, Italy;
| | - Maria Maddalena Altamura
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.P.); (F.D.R.); (I.B.); (L.M.); (M.M.A.)
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.P.); (F.D.R.); (I.B.); (L.M.); (M.M.A.)
- Correspondence: ; Tel.: +39-(0)6-4992-2839
| |
Collapse
|
39
|
Velasquez SM, Guo X, Gallemi M, Aryal B, Venhuizen P, Barbez E, Dünser KA, Darino M, Pĕnčík A, Novák O, Kalyna M, Mouille G, Benková E, P. Bhalerao R, Mravec J, Kleine-Vehn J. Xyloglucan Remodeling Defines Auxin-Dependent Differential Tissue Expansion in Plants. Int J Mol Sci 2021; 22:9222. [PMID: 34502129 PMCID: PMC8430841 DOI: 10.3390/ijms22179222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Size control is a fundamental question in biology, showing incremental complexity in plants, whose cells possess a rigid cell wall. The phytohormone auxin is a vital growth regulator with central importance for differential growth control. Our results indicate that auxin-reliant growth programs affect the molecular complexity of xyloglucans, the major type of cell wall hemicellulose in eudicots. Auxin-dependent induction and repression of growth coincide with reduced and enhanced molecular complexity of xyloglucans, respectively. In agreement with a proposed function in growth control, genetic interference with xyloglucan side decorations distinctly modulates auxin-dependent differential growth rates. Our work proposes that auxin-dependent growth programs have a spatially defined effect on xyloglucan's molecular structure, which in turn affects cell wall mechanics and specifies differential, gravitropic hypocotyl growth.
Collapse
Affiliation(s)
- Silvia Melina Velasquez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (X.G.); (J.M.)
| | - Marçal Gallemi
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; (M.G.); (E.B.)
| | - Bibek Aryal
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; (B.A.); (O.N.); (R.P.B.)
| | - Peter Venhuizen
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Elke Barbez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
- Faculty of Biology, Department of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany
| | - Kai Alexander Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Martin Darino
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Aleš Pĕnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
| | - Ondřej Novák
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; (B.A.); (O.N.); (R.P.B.)
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Gregory Mouille
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, RD10, CEDEX, 78026 Versailles, France;
| | - Eva Benková
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; (M.G.); (E.B.)
| | - Rishikesh P. Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; (B.A.); (O.N.); (R.P.B.)
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (X.G.); (J.M.)
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Department of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
40
|
Kaiser S, Eisele S, Scheuring D. Vacuolar occupancy is crucial for cell elongation and growth regardless of the underlying mechanism. PLANT SIGNALING & BEHAVIOR 2021; 16:1922796. [PMID: 33938395 PMCID: PMC8244776 DOI: 10.1080/15592324.2021.1922796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
In the physiological range, the phytohormone auxin inhibits the growth of underground tissues. In the roots of Arabidopsis thaliana, cell size inhibition has been shown to be accompanied by auxin-mediated reduction of vacuole size. A tonoplast-localized protein family (Networked 4) with actin-binding capacity was demonstrated to modulate the compactness of the vacuole. Overexpression of NET4A led to smaller, more spherical and compact vacuoles, which occupied less cellular space compared to wild type. This reduction of vacuolar occupancy is similar to the observed auxin-induced decrease in occupancy, albeit there are enormous morphological differences. Here, we show that a net4a net4b double mutant and a NET4A overexpressor line are still sensitive to auxin-induced vacuolar constrictions. However, the overexpressor showed a partial auxin resistance accompanied by more compact vacuoles, thereby indicating an additional regulatory mechanism. Furthermore, we show that other NET superfamily members do not compensate for the loss of NET4A and NET4B expression on the transcriptional level. This leads us to hypothesize that regulation of vacuole size is a general mechanism to regulate cell expansion and that other players besides NET4 must participate in regulating the vacuole-cytoskeleton interface.
Collapse
Affiliation(s)
- Sabrina Kaiser
- Plant Pathology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sophie Eisele
- Plant Pathology, University of Kaiserslautern, Kaiserslautern, Germany
| | - David Scheuring
- Plant Pathology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
41
|
Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Rizwan M, Ali S, Arif MS. A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1269-1290. [PMID: 33421147 DOI: 10.1111/ppl.13325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 05/28/2023]
Abstract
Among different abiotic stresses, drought stress is the leading cause of impaired plant growth and low productivity worldwide. It is therefore essential to understand the process of drought tolerance in plants and thus to enhance drought resistance. Accumulating evidence indicates that phytohormones are essential signaling molecules that regulate diverse processes of plant growth and development under drought stress. Plants can often respond to drought stress through a cascade of phytohormones signaling as a means of plant growth regulation. Understanding biosynthesis pathways and regulatory crosstalk involved in these vital compounds could pave the way for improving plant drought tolerance while maintaining overall plant health. In recent years, the identification of phytohormones related key regulatory genes and their manipulation through state-of-the-art genome engineering tools have helped to improve drought tolerance plants. To date, several genes linked to phytohormones signaling networks, biosynthesis, and metabolism have been described as a promising contender for engineering drought tolerance. Recent advances in functional genomics have shown that enhanced expression of positive regulators involved in hormone biosynthesis could better equip plants against drought stress. Similarly, knocking down negative regulators of phytohormone biosynthesis can also be very effective to negate the negative effects of drought on plants. This review explained how manipulating positive and negative regulators of phytohormone signaling could be improvised to develop future crop varieties exhibiting higher drought tolerance. In addition, we also discuss the role of a promising genome editing tool, CRISPR/Cas9, on phytohormone mediated plant growth regulation for tackling drought stress.
Collapse
Affiliation(s)
- Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | | | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
42
|
Yuan Z, Fan K, Wang Y, Tian L, Zhang C, Sun W, He H, Yu S. OsGRETCHENHAGEN3-2 modulates rice seed storability via accumulation of abscisic acid and protective substances. PLANT PHYSIOLOGY 2021; 186:469-482. [PMID: 33570603 PMCID: PMC8154041 DOI: 10.1093/plphys/kiab059] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/26/2021] [Indexed: 05/23/2023]
Abstract
Seed storability largely determines the vigor of seeds during storage and is significant in agriculture and ecology. However, the underlying genetic basis remains unclear. In the present study, we report the cloning and characterization of the rice (Oryza sativa) indole-3-acetic acid (IAA)-amido synthetase gene GRETCHEN HAGEN3-2 (OsGH3-2) associated with seed storability. OsGH3-2 was identified by performing a genome-wide association study in rice germplasms with linkage mapping in chromosome substitution segment lines, contributing to the wide variation of seed viability in the populations after long periods of storage and artificial ageing. OsGH3-2 was dominantly expressed in the developing seeds and catalyzed IAA conjugation to amino acids, forming inactive auxin. Transgenic overexpression, knockout, and knockdown experiments demonstrated that OsGH3-2 affected seed storability by regulating the accumulation level of abscisic acid (ABA). Overexpression of OsGH3-2 significantly decreased seed storability, while knockout or knockdown of the gene enhanced seed storability compared with the wild-type. OsGH3-2 acted as a negative regulator of seed storability by modulating many genes related to the ABA pathway and probably subsequently late embryogenesis-abundant proteins at the transcription level. These findings shed light on the molecular mechanisms underlying seed storability and will facilitate the improvement of seed vigor by genomic breeding and gene-editing approaches in rice.
Collapse
Affiliation(s)
- Zhiyang Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Fan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuntong Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Tian
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
43
|
Das S, Weijers D, Borst JW. Auxin Response by the Numbers. TRENDS IN PLANT SCIENCE 2021; 26:442-451. [PMID: 33500193 DOI: 10.1016/j.tplants.2020.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Auxin is fundamental to the growth and development of land plants, and acts in large part through the control of gene activity. Genetic and biochemical analysis of the nuclear auxin signaling pathway (NAP) has led to the establishment of a generic model for auxin-dependent gene regulation. To understand how this dynamic system operates in living cells, quantitative data are needed. For this, the liverwort Marchantia polymorpha provides a useful model system. Its limited number of NAP components, combined with experimental approaches to determine concentrations, binding affinities, and turnover rates, will enable a new, quantitative view on the mechanisms that allow auxin to control plant growth and development.
Collapse
Affiliation(s)
- Shubhajit Das
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| |
Collapse
|
44
|
Kondhare KR, Patil AB, Giri AP. Auxin: An emerging regulator of tuber and storage root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110854. [PMID: 33775360 DOI: 10.1016/j.plantsci.2021.110854] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Many tuber and storage root crops owing to their high nutritional values offer high potential to overcome food security issues. The lack of information regarding molecular mechanisms that govern belowground storage organ development (except a tuber crop, potato) has limited the application of biotechnological strategies for improving storage crop yield. Phytohormones like gibberellin and cytokinin are known to play a crucial role in governing potato tuber development. Another phytohormone, auxin has been shown to induce tuber initiation and growth, and its crosstalk with gibberellin and strigolactone in a belowground modified stem (stolon) contributes to the overall potato tuber yield. In this review, we describe the crucial role of auxin biology in development of potato tubers. Considering the emerging reports from commercially important storage root crops (sweet potato, cassava, carrot, sugar beet and radish), we propose the function of auxin and related gene regulatory network in storage root development. The pattern of auxin content of stolon during various stages of potato tuber formation appears to be consistent with its level in various developmental stages of storage roots. We have also put-forward the potential of three-way interaction between auxin, strigolactone and mycorrhizal fungi in tuber and storage root development. Overall, we propose that auxin gene regulatory network and its crosstalk with other phytohormones in stolons/roots could govern belowground tuber and storage root development.
Collapse
Affiliation(s)
- Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Aruna B Patil
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
45
|
Gene Expression Analysis of Microtubers of Potato Solanum tuberosum L. Induced in Cytokinin Containing Medium and Osmotic Stress. PLANTS 2021; 10:plants10050876. [PMID: 33925316 PMCID: PMC8146008 DOI: 10.3390/plants10050876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022]
Abstract
Potato microtuber productions through in vitro techniques are ideal propagules for producing high quality seed potatoes. Microtuber development is influenced by several factors, i.e., high content sucrose and cytokinins are among them. To understand a molecular mechanism of microtuberization using osmotic stress and cytokinin signaling will help us to elucidate this process. We demonstrate in this work a rapid and efficient protocol for microtuber development and gene expression analysis. Medium with high content of sucrose and gelrite supplemented with 2iP as cytokinin under darkness condition produced the higher quantity and quality of microtubers. Gene expression analysis of genes involved in the two-component signaling system (StHK1), cytokinin signaling, (StHK3, StHP4, StRR1) homeodomains (WUSCHEL, POTH1, BEL5), auxin signaling, ARF5, carbon metabolism (TPI, TIM), protein synthesis, NAC5 and a morphogenetic regulator of tuberization (POTH15) was performed by qPCR real time. Differential gene expression was observed during microtuber development. Gene regulation of two component and cytokinin signaling is taking place during this developmental process, yielding more microtubers. Further analysis of each component is required to elucidate it.
Collapse
|
46
|
Modulation of photosynthesis and other proteins during water-stress. Mol Biol Rep 2021; 48:3681-3693. [PMID: 33856605 DOI: 10.1007/s11033-021-06329-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 10/25/2022]
Abstract
Protein changes under drought or water stress conditions have been widely investigated. These investigations have given us enormous understanding of how drought is manifested in plants and how plants respond and adopt to such conditions. Chlorophyll fluoroescence, gas exchange, OMICS, biochemical and molecular analyses have shed light on regulation of physiology and photosynthesis of plants under drought. Use of proteomics has greatly increased the repertoire of drought-associated proteins which nevertheless, need to be investigated for their mechanistic and functional roles. Roles of such proteins have been succinctly discussed in various review articles, however more information on their functional role in countering drought is needed. In this review, recent developments in the field, alterations in the abundance of plant proteins in response to drought, monitored through numerous proteomic and immuno-blot analyses, and how these could affect plants growth and development, are discussed.
Collapse
|
47
|
Pařízková B, Žukauskaitė A, Vain T, Grones P, Raggi S, Kubeš MF, Kieffer M, Doyle SM, Strnad M, Kepinski S, Napier R, Doležal K, Robert S, Novák O. New fluorescent auxin probes visualise tissue-specific and subcellular distributions of auxin in Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:535-549. [PMID: 33438224 DOI: 10.1111/nph.17183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 05/09/2023]
Abstract
In a world that will rely increasingly on efficient plant growth for sufficient food, it is important to learn about natural mechanisms of phytohormone action. In this work, the introduction of a fluorophore to an auxin molecule represents a sensitive and non-invasive method to directly visualise auxin localisation with high spatiotemporal resolution. The state-of-the-art multidisciplinary approaches of genetic and chemical biology analysis together with live cell imaging, liquid chromatography-mass spectrometry (LC-MS) and surface plasmon resonance (SPR) methods were employed for the characterisation of auxin-related biological activity, distribution and stability of the presented compounds in Arabidopsis thaliana. Despite partial metabolisation in vivo, these fluorescent auxins display an uneven and dynamic distribution leading to the formation of fluorescence maxima in tissues known to concentrate natural auxin, such as the concave side of the apical hook. Importantly, their distribution is altered in response to different exogenous stimuli in both roots and shoots. Moreover, we characterised the subcellular localisation of the fluorescent auxin analogues as being present in the endoplasmic reticulum and endosomes. Our work provides powerful tools to visualise auxin distribution within different plant tissues at cellular or subcellular levels and in response to internal and environmental stimuli during plant development.
Collapse
Affiliation(s)
- Barbora Pařízková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Asta Žukauskaitė
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Thomas Vain
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Peter Grones
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Sara Raggi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Martin F Kubeš
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Martin Kieffer
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Siamsa M Doyle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Napier
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Karel Doležal
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Stéphanie Robert
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden
| |
Collapse
|
48
|
Sumalan RL, Halip L, Maffei ME, Croitor L, Siminel AV, Radulov I, Sumalan RM, Crisan ME. Bioprospecting Fluorescent Plant Growth Regulators from Arabidopsis to Vegetable Crops. Int J Mol Sci 2021; 22:ijms22062797. [PMID: 33802041 PMCID: PMC7999160 DOI: 10.3390/ijms22062797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 01/09/2023] Open
Abstract
The phytohormone auxin is involved in almost every process of a plant’s life, from germination to plant development. Nowadays, auxin research connects synthetic chemistry, plant biology and computational chemistry in order to develop innovative and safe compounds to be used in sustainable agricultural practice. In this framework, we developed new fluorescent compounds, ethanolammonium p-aminobenzoate (HEA-pABA) and p-nitrobenzoate (HEA-pNBA), and investigated their auxin-like behavior on two main commercial vegetables cultivated in Europe, cucumber (Cucumis sativus) and tomato (Solanumlycopersicum), in comparison to the model plant Arabidopsis (Arabidopsis thaliana). Moreover, the binding modes and affinities of two organic salts in relation to the natural auxin indole-3-acetic acid (IAA) into TIR1 auxin receptor were investigated by computational approaches (homology modeling and molecular docking). Both experimental and theoretical results highlight HEA-pABA as a fluorescent compound with auxin-like activity both in Arabidopsis and the commercial cucumber and tomato. Therefore, alkanolammonium benzoates have a great potential as promising sustainable plant growth stimulators to be efficiently used in vegetable crops.
Collapse
Affiliation(s)
- Radu L. Sumalan
- Faculty of Horticulture and Forestry, Banat’ s University of Agriculture Science and Veterinary Medicine “King Michael Ist of Romania” from Timisoara, Calea Aradului nr 119, 300645 Timisoara, Romania; (R.L.S.); (R.M.S.)
| | - Liliana Halip
- “Coriolan Drăgulescu” Institute of Chemistry, 24 Mihai Viteazul Blvd., 300223 Timisoara, Romania
- Correspondence: (L.H.); (M.E.C.)
| | - Massimo E. Maffei
- Department Life Sciences and Systems Biology, University of Turin, Via G. Quarello 15/a, 10135 Turin, Italy;
| | - Lilia Croitor
- Institute of Applied Physics, Academiei Street 5, MD2028 Chisinau, Moldova; (L.C.); (A.V.S.)
| | - Anatolii V. Siminel
- Institute of Applied Physics, Academiei Street 5, MD2028 Chisinau, Moldova; (L.C.); (A.V.S.)
| | - Izidora Radulov
- Faculty of Agriculture, Banat’s University of Agriculture Science and Veterinary Medicine “King Michael Ist of Romania” from Timisoara, Calea Aradului nr 119, 300645 Timisoara, Romania;
| | - Renata M. Sumalan
- Faculty of Horticulture and Forestry, Banat’ s University of Agriculture Science and Veterinary Medicine “King Michael Ist of Romania” from Timisoara, Calea Aradului nr 119, 300645 Timisoara, Romania; (R.L.S.); (R.M.S.)
| | - Manuela E. Crisan
- “Coriolan Drăgulescu” Institute of Chemistry, 24 Mihai Viteazul Blvd., 300223 Timisoara, Romania
- Correspondence: (L.H.); (M.E.C.)
| |
Collapse
|
49
|
Polak M, Karcz W. Some New Methodological and Conceptual Aspects of the "Acid Growth Theory" for the Auxin Action in Maize ( Zea mays L.) Coleoptile Segments: Do Acid- and Auxin-Induced Rapid Growth Differ in Their Mechanisms? Int J Mol Sci 2021; 22:2317. [PMID: 33652568 PMCID: PMC7956494 DOI: 10.3390/ijms22052317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Two arguments against the "acid growth theory" of auxin-induced growth were re-examined. First, the lack of a correlation between the IAA-induced growth and medium acidification, which is mainly due to the cuticle, which is a barrier for proton diffusion. Second, acid- and the IAA-induced growth are additive processes, which means that acid and the IAA act via different mechanisms. Here, growth, medium pH, and membrane potential (in some experiments) were simultaneously measured using non-abraded and non-peeled segments but with the incubation medium having access to their lumen. Using such an approach significantly enhances both the IAA-induced growth and proton extrusion (similar to that of abraded segments). Staining the cuticle on the outer and inner epidermis of the coleoptile segments showed that the cuticle architecture differs on both sides of the segments. The dose-response curves for the IAA-induced growth and proton extrusion were bell-shaped with the maximum at 10-4 M over 10 h. The kinetics of the IAA-induced hyperpolarisation was similar to that of the rapid phase of the IAA-induced growth. It is also proposed that the K+/H+ co-transporters are involved in acid-induced growth and that the combined effect of the K+ channels and K+/ H+ co-transporters is responsible for the IAA-induced growth. These findings support the "acid growth theory" of auxin action.
Collapse
Affiliation(s)
| | - Waldemar Karcz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, PL-40032 Katowice, Poland;
| |
Collapse
|
50
|
Zhang X, Liu L, Wang H, Gu Z, Liu Y, Wang M, Wang M, Xu Y, Shi Q, Li G, Tong J, Xiao L, Wang ZY, Mysore KS, Wen J, Zhou C. MtPIN1 and MtPIN3 Play Dual Roles in Regulation of Shade Avoidance Response under Different Environments in Medicago truncatula. Int J Mol Sci 2020; 21:ijms21228742. [PMID: 33228084 PMCID: PMC7699406 DOI: 10.3390/ijms21228742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
Polar auxin transport mediated by PIN-FORMED (PIN) proteins is critical for plant growth and development. As an environmental cue, shade stimulates hypocotyls, petiole, and stem elongation by inducing auxin synthesis and asymmetric distributions, which is modulated by PIN3,4,7 in Arabidopsis. Here, we characterize the MtPIN1 and MtPIN3, which are the orthologs of PIN3,4,7, in model legume species Medicago truncatula. Under the low Red:Far-Red (R:FR) ratio light, the expression of MtPIN1 and MtPIN3 is induced, and shadeavoidance response is disrupted in mtpin1 mtpin3 double mutant, indicating that MtPIN1 and MtPIN3 have a conserved function in shade response. Surprisingly, under the normal growth condition, mtpin1 mtpin3 displayed the constitutive shade avoidance responses, such as the elongated petiole, smaller leaf, and increased auxin and chlorophyll content. Therefore, MtPIN1 and MtPIN3 play dual roles in regulation of shadeavoidance response under different environments. Furthermore, these data suggest that PIN3,4,7 and its orthologs have evolved conserved and specific functions among species.
Collapse
Affiliation(s)
- Xue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Lu Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Hongfeng Wang
- School of Life Science, Guangzhou University, Guangzhou 510006, China;
| | - Zhiqun Gu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Yafei Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Minmin Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Min Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
| | - Qingbiao Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (Q.S.); (G.L.)
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (Q.S.); (G.L.)
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha 410128, China; (J.T.); (L.X.)
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha 410128, China; (J.T.); (L.X.)
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao 266109, China;
| | | | - Jiangqi Wen
- Noble Research Institute, LLC, Ardmore, OK 73401, USA; (K.S.M.); (J.W.)
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China; (X.Z.); (L.L.); (Z.G.); (Y.L.); (M.W.); (M.W.); (Y.X.)
- Correspondence:
| |
Collapse
|