1
|
De la Peña M, Poucet T, Montardit-Tarda F, Urmeneta L, Urbano-Gámez JA, Cassan C, Vega-Mas I, Catalán P, Igartua E, Gibon Y, Gonzalez-Moro MB, Marino D. Natural variation in the adjustment of primary metabolism determines ammonium tolerance in the model grass Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7237-7253. [PMID: 39292826 PMCID: PMC11629996 DOI: 10.1093/jxb/erae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
Nitrogen (N) fertilization is essential to maximize crop production. However, around half of the applied N is lost to the environment, causing water and air pollution and contributing to climate change. Understanding the natural genetic and metabolic basis underlying plants N use efficiency is of great interest to attain an agriculture with less N demand and thus more sustainable. The study of ammonium (NH4+) nutrition is of particular interest, because it mitigates N losses due to nitrate (NO3-) leaching or denitrification. In this work, we studied Brachypodium distachyon, the model plant for C3 grasses, grown with NH4+ or NO3- supply. We performed gene expression analysis in the root of the B. distachyon reference accession Bd21 and examined the phenotypic variation across 52 natural accessions through analyzing plant growth and a panel of 22 metabolic traits in leaf and root. We found that the adjustment of primary metabolism to NH4+ nutrition is essential for the natural variation of NH4+ tolerance, notably involving NH4+ assimilation and phosphoenolpyruvate carboxylase (PEPC) activity. Additionally, genome-wide association studies (GWAS) indicated several loci associated with B. distachyon growth and metabolic adaptation to NH4+ nutrition. We found that the GDH2 gene was associated with the induction of root glutamate dehydrogenase activity under NH4+ nutrition and that two genes encoding malic enzyme were associated with leaf PEPC activity. Altogether, our work underlines the value of natural variation and the key role of primary metabolism to improve NH4+ tolerance.
Collapse
Affiliation(s)
- Marlon De la Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Théo Poucet
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et Pathologie, Bordeaux Metabolome, F-33140 Villenave d’Ornon, France
| | - Francesc Montardit-Tarda
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059 Zaragoza, Spain
| | - Leyre Urmeneta
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Jose Alberto Urbano-Gámez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Cédric Cassan
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et Pathologie, Bordeaux Metabolome, F-33140 Villenave d’Ornon, France
| | - Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Pilar Catalán
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071 Huesca, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059 Zaragoza, Spain
| | - Yves Gibon
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et Pathologie, Bordeaux Metabolome, F-33140 Villenave d’Ornon, France
| | - M Begoña Gonzalez-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| |
Collapse
|
2
|
Bovet L, Battey J, Lu J, Sierro N, Dewey RE, Goepfert S. Nitrate assimilation pathway is impacted in young tobacco plants overexpressing a constitutively active nitrate reductase or displaying a defective CLCNt2. BMC PLANT BIOLOGY 2024; 24:1132. [PMID: 39592946 PMCID: PMC11600588 DOI: 10.1186/s12870-024-05834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND We have previously shown that the expression of a constitutively active nitrate reductase variant and the suppression of CLCNt2 gene function (belonging to the chloride channel (CLC) gene family) in field-grown tobacco reduces tobacco-specific nitrosamines (TSNA) accumulation in cured leaves and cigarette smoke. In both cases, TSNA reductions resulted from a strong diminution of free nitrate in the leaf, as nitrate is a precursor of the TSNA-producing nitrosating agents formed during tobacco curing and smoking. These nitrosating agents modify tobacco alkaloids to produce TSNAs, the most problematic of which are NNN (N-nitrosonornicotine) and NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone). The expression of a deregulated nitrate reductase enzyme (DNR) that is no longer responsive to light regulation is believed to diminish free nitrate pools by immediately channeling incoming nitrate into the nitrate assimilation pathway. The reduction in nitrate observed when the two tobacco gene copies encoding the vacuolar nitrate transporter CLCNt2 were down-regulated by RNAi-mediated suppression or knocked out using the CRISPR-Cas technology was mechanistically distinct; likely attributable to the inability of the tobacco cell to efficiently sequester nitrate into the vacuole where this metabolite is protected from further assimilation. In this study, we used transcriptomic and metabolomic analyses to compare the nitrate assimilation response in tobacco plants either expressing DNR or lacking CLCNt2 function. RESULTS When grown in a controlled environment, both DNR and CLCNt2-KO (CLCKO) plants exhibited (1) reduced nitrate content in the leaf; (2) increased N-assimilation into the amino acids Gln and Asn; and (3) a similar pattern of differential regulation of several genes controlling stress responses, including water stress, and cell wall metabolism in comparison to wild-type plants. Differences in gene regulation were also observed between DNR and CLCKO plants, including genes encoding nitrite reductase and asparagine synthetase. CONCLUSIONS Our data suggest that even though both DNR and CLCKO plants display common characteristics with respect to nitrate assimilation, cellular responses, water stress, and cell wall remodeling, notable differences in gene regulatory patterns between the two low nitrate plants are also observed. These findings open new avenues in using plants fixing more nitrogen into amino acids for plant improvement or nutrition perspectives.
Collapse
Affiliation(s)
- L Bovet
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland.
| | - J Battey
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| | - J Lu
- Department of Crop and Soil Sciences, North Carolina State University, Campus Box 8009, Raleigh, NC, 27695, USA
| | - N Sierro
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| | - R E Dewey
- Department of Crop and Soil Sciences, North Carolina State University, Campus Box 8009, Raleigh, NC, 27695, USA
| | - S Goepfert
- PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland
| |
Collapse
|
3
|
Anas M, Khan IU, Alomrani SO, Nawaz M, Huang ZY, Alshehri MA, Al-Ghanim KA, Qi SS, Li J, Dai ZC, Ali S, Du DL. Evaluating Sorghum bicolor resistance to Solidago canadensis invasion under different nitrogen scenarios. FRONTIERS IN PLANT SCIENCE 2024; 15:1468816. [PMID: 39534106 PMCID: PMC11555567 DOI: 10.3389/fpls.2024.1468816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Ecosystem exposure to a biological invasion such as plant invasion could contribute to the extinction of native species and loss of productivity and ecosystem balance. Solidago canadensis (S. canadensis) is a highly invasive species that has formed monocultures in China, Europe, Asia, Australia, and New Zealand. It was designated as a notorious invasive species by the Chinese government. It has adversely affected the agroecosystem's ability to germinate various plant seeds, including wheat, lettuce, and pepper, which could lead to food insecurity. This study was conducted to control the invasive species S. canadensis by utilizing a competitive species, Sorghum bicolor (S. bicolor) as a cover plant. Sorghum bicolor exudes allelochemicals such as sorgoleone from its roots which suppress the photosystem II activity of nearby plants. The synthesis of sorgoleone depends on a supply of nitrogen. The present study involved the cultivation of S. bicolor alongside the invasive species S. canadensis, with three different invasion levels (high, medium, and low) and three different nitrogen forms (ammonical, nitrate, and combined ammonical and nitrate nitrogen) applied as a modified Hogland solution. S. bicolor expressed higher performance over the invasive species under ammonical and combined nitrogen forms under low and medium invasion levels. Furthermore, even at greater levels of invasion, S. bicolor was not suppressed by S. canadensis. However, the plant height and dry biomass of S. bicolor were significantly high across both nitrogen forms. Leaf area, CO2 uptake, and photosystem II activity of S. canadensis were unable to sustain its growth under the low invasion condition. The plant biomass of S. canadensis was suppressed by up to 80% and the relative dominance index of S. bicolor was 5.22 over S. canadensis. There was a strong correlation between CO2 uptake, leaf area, and plant biomass. Principal component analysis showed that the first four components had a total variance of 96.89%, with principal component 1 (PC1) having the highest eigenvalue at 18.65. These promising findings suggested that S. bicolor, whose high intensity might be employed to control the invasion process for environmental safety, might be able to recover the barren ground that S. canadensis had invaded.
Collapse
Affiliation(s)
- Muhammad Anas
- School of Emergency Management, Jiangsu University, Zhenjiang, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Irfan Ullah Khan
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Zhi-Yun Huang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | | | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shan-Shan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Jian Li
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Zhi-Cong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Dao-Lin Du
- Jingjiang College, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Miao F, Wang Y, Haq NU, Lyu MJA, Zhu XG. Rewiring of primary metabolism for ammonium recycling under short-term low CO 2 treatment - its implication for C 4 evolution. FRONTIERS IN PLANT SCIENCE 2024; 15:1322261. [PMID: 39148616 PMCID: PMC11324553 DOI: 10.3389/fpls.2024.1322261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
The dramatic decrease in atmospheric CO2 concentration during Oligocene was proposed as directly linked to C4 evolution. However, it remains unclear how the decreased CO2 concentration directly facilitate C4 evolution, besides its role as a selection pressure. We conducted a systematic transcriptomics and metabolomics analysis under short-term low CO2 condition and found that Arabidopsis grown under this condition showed 1) increased expression of most genes encoding C4-related enzymes and transporters; 2) increased expression of genes involved in photorespiration and pathways related to carbon skeleton generation for ammonium refixation; 3) increased expression of genes directly involved in ammonium refixation. Furthermore, we found that in vitro treatment of leaves with NH4 + induced a similar pattern of changes in C4 related genes and genes involved in ammonium refixation. These data support the view that Arabidopsis grown under short-term low CO2 conditions rewired its metabolism to supply carbon skeleton for ammonium recycling, during which process the expression of C4 genes were up-regulated as a result of a hitchhiking process. This study provides new insights into the adaptation of the C3 model plant Arabidopsis under low CO2 conditions and suggests that low CO2 can facilitate the evolution of C4 photosynthesis beyond the commonly assumed role of being a selection pressure.
Collapse
Affiliation(s)
- Fenfen Miao
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ying Wang
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Noor Ui Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber-Pakhtunkhwa, Pakistan
| | - Ming-Ju Amy Lyu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xin-Guang Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
5
|
Rubio-Asensio JS, Saitta D, Intrigliolo DS. Moderate salinity and high ammonium/nitrate ratio enhance early growth in "summer wonder" lettuce cultivar. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154183. [PMID: 38295651 DOI: 10.1016/j.jplph.2024.154183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 01/14/2024] [Indexed: 03/10/2024]
Abstract
Because its impact in plant development and growth and its interaction with Na+ and Cl-, the supply of different N-forms to crops can be an easy-to-use tool with effective results on salinity tolerance. Here the effect of four N-NO3-/N-NH4+ ratios (mM; 2/0, 1.6/0.4, 0.4/1.6, 0/2) on adaptation to salt conditions (15 mM NaCl in a first experiment and 40 mM NaCl in a second experiment) was studied in young lettuce (cv "Summer wonder") plants. The experiments were carried out in greenhouse and under hydroponics conditions. The results show that this cultivar tolerates and adapts to moderate salinity by deploying several structural and physiological mechanisms; (i) increasing allocation of biomass to the root, (ii) increasing root Na+ uptake and storing it in the shoot and root tissues, (iii) increasing intrinsic water use efficiency and (iv) increasing root N and P uptake. The beneficial effect of salt exposure on growth was greater when the predominant N-form was N-NO3-. These plants with higher tissue N-NO3- concentration, decreased Cl- uptake and shoot and root Cl- concentration. Regardless of salt conditions, plants with a high proportion of N-NH4+ (1.6 mM) and a low proportion of N-NO3- (0.4 mM) had a greater growth and nitrogen use efficiency, that was associated with the improved uptake of nutrients, and the maintenance of water status.
Collapse
Affiliation(s)
- José Salvador Rubio-Asensio
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Espinardo, 30100, Murcia, Spain.
| | - Daniela Saitta
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Espinardo, 30100, Murcia, Spain
| | - Diego S Intrigliolo
- Dept. Ecology, Consejo Superior de Investigaciones Científicas - Centro de Investigación sobre Desertificación (CSIC-UV-GV), Carretera CV-315, km 10.7, 46113, Moncada, Valencia, Spain
| |
Collapse
|
6
|
Xiong Y, Oduor AMO, Zhao C. Population genetic differentiation and phenotypic plasticity of Ambrosia artemisiifolia under different nitrogen levels. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2903. [PMID: 37347236 DOI: 10.1002/eap.2903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Rapid adaptive evolution and phenotypic plasticity are two mechanisms that often underlie invasiveness of alien plant species, but whether they can co-occur within invasive plant populations under altered environmental conditions such as nitrogen (N) enrichment has seldom been explored. Latitudinal clines in plant trait responses to variation in environmental factors may provide evidence of local adaptation. Here, we inferred the relative contributions of phenotypic plasticity and local adaptation to the performance of the invasive plant Ambrosia artemisiifolia under different soil N levels, using a common garden approach. We grew A. artemisiifolia individuals raised from seeds that were sampled from six invasive populations along a wide latitudinal cline in China (23°42' N to 45°43' N) under three N (0, 5, and 10 g N m-2 ) levels in a common garden. Results show significant interpopulation genetic differentiation in plant height, number of branches, total biomass, and transpiration rate of the invader A. artemisiifolia across the N treatments. The populations also expressed genetic differentiation in basal diameter, growth rate, leaf area, seed width, root biomass, aboveground biomass, stomatal conductance, and intercellular CO2 concentration regardless of N treatments. Moreover, plants from different populations of the invader displayed plastic responses in time to first flower, hundred-grain weight, net photosynthetic rate, and relative biomass allocation to roots and shoots and seed length under different N treatments. Additionally, individuals of A. artemisiifolia from higher latitudes grew shorter and allocated less biomass to the roots regardless of N treatment, while latitudinal cline (or lack thereof) in other traits depended on the level of N in which the plants were grown. Overall, these results suggest that rapid adaptive evolution and phenotypic plasticity in the various traits that we quantified may jointly contribute to invasiveness of A. artemisiifolia under different levels of N availability. More broadly, the results support the idea that phenotypic plasticity and rapid adaptive evolution can jointly enable invasive plants to colonize a wide range of environmental conditions.
Collapse
Affiliation(s)
- Yunqi Xiong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ayub M O Oduor
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- Department of Applied Biology, Technical University of Kenya, Nairobi, Kenya
| | - Caiyun Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
7
|
Marín-Peña AJ, Vega-Mas I, Busturia I, de la Osa C, González-Moro MB, Monreal JA, Marino D. Root phosphoenolpyruvate carboxylase activity is essential for Sorghum bicolor tolerance to ammonium nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108312. [PMID: 38154297 DOI: 10.1016/j.plaphy.2023.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/05/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an enzyme family with pivotal roles in plant carbon and nitrogen metabolism. A main role for non-photosynthetic PEPC is as anaplerotic enzyme to load tricarboxylic acid (TCA) cycle with carbon skeletons that compensate the intermediates diverted for biomolecule synthesis such as amino acids. When plants are grown under ammonium (NH4+) nutrition, the excessive uptake of NH4+ often provokes a stress situation. When plants face NH4+ stress, N assimilation is greatly induced and thus, requires the supply of carbon skeletons coming from TCA cycle. In this work, we addressed the importance of root PEPC and TCA cycle for sorghum (Sorghum bicolor L. Moench), a C4 cereal crop, grown under ammonium nutrition. To do so, we used RNAi sorghum lines that display a decrease expression of SbPPC3 (Ppc3 lines), the main root PEPC isoform, and reduced root PEPC activity. SbPPC3 silencing provoked ammonium hypersensitivity, meaning lower biomass accumulation in Ppc3 respect to WT plants when growing under ammonium nutrition. The silenced plants presented a deregulation of primary metabolism as highlighted by the accumulation of NH4+ in the root and the alteration of normal TCA functioning, which was evidenced by the accumulation of organic acids in the root under ammonium nutrition. Altogether, our work evidences the importance of non-photosynthetic PEPC, and root TCA cycle, in sorghum to deal with high external NH4+ availability.
Collapse
Affiliation(s)
- A J Marín-Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - I Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - I Busturia
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - C de la Osa
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - M B González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - J A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain.
| | - D Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
| |
Collapse
|
8
|
Chen H, Lv W, Zhang W, Zhao J, Zhang Q, Zhang Z. Integrated comparative transcriptome and physiological analysis reveals the metabolic responses underlying genotype variations in NH 4+ tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1286174. [PMID: 38192699 PMCID: PMC10773859 DOI: 10.3389/fpls.2023.1286174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 01/10/2024]
Abstract
Several mechanisms have been proposed to explain NH4 + toxicity. However, the core information about the biochemical regulation of plants in response to NH4 + toxicity is still lacking. In this study, the tissue NH4 + concentration is an important factor contributing to variations in plant growth even under nitrate nutrition and NH4 + tolerance under ammonium nutrition. Furthermore, NH4 + led to the reprogramming of the transcriptional profile, as genes related to trehalose-6-phosphate and zeatin biosynthesis were downregulated, whereas genes related to nitrogen metabolism, camalexin, stilbenoid and phenylpropanoid biosynthesis were upregulated. Further analysis revealed that a large number of genes, which enriched in phenylpropanoid and stilbenoid biosynthesis, were uniquely upregulated in the NH4 +- tolerant ecotype Or-1. These results suggested that the NH4 +-tolerant ecotype showed a more intense response to NH4 + by activating defense processes and pathways. Importantly, the tolerant ecotype had a higher 15NH4 + uptake and nitrogen utilization efficiency, but lower NH4 +, indicating the tolerant ecotype maintained a low NH4 + level, mainly by promoting NH4 + assimilation rather than inhibiting NH4 + uptake. The carbon and nitrogen metabolism analysis revealed that the tolerant ecotype had a stronger carbon skeleton production capacity with higher levels of hexokinase, pyruvate kinase, and glutamate dehydrogenase activity to assimilate free NH4 +, Taken together, the results revealed the core mechanisms utilized by plants in response to NH4 +, which are consequently of ecological and agricultural importance.
Collapse
Affiliation(s)
- Haifei Chen
- College of Resources, Hunan Agricultural University, Changsha, China
| | - Wei Lv
- College of Resources, Hunan Agricultural University, Changsha, China
| | - Wenqi Zhang
- College of Resources, Hunan Agricultural University, Changsha, China
| | - Jie Zhao
- College of Resources, Hunan Agricultural University, Changsha, China
| | - Quan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, China
| |
Collapse
|
9
|
Kojima S, Minagawa H, Yoshida C, Inoue E, Takahashi H, Ishiyama K. Coregulation of glutamine synthetase1;2 ( GLN1;2) and NADH-dependent glutamate synthase ( GLT1) gene expression in Arabidopsis roots in response to ammonium supply. FRONTIERS IN PLANT SCIENCE 2023; 14:1127006. [PMID: 36890884 PMCID: PMC9986259 DOI: 10.3389/fpls.2023.1127006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Ammonium absorbed by roots is assimilated into amino acids. The glutamine synthetase/glutamate synthase (glutamine 2-oxoglutarate aminotransferase) (GS/GOGAT) cycle is essential to this biological process. In Arabidopsis thaliana, GLN1;2 and GLT1 are the GS and GOGAT isoenzymes induced in response to ammonium supply and playing key roles in ammonium utilization. Although recent studies suggest gene regulatory networks involved in transcriptional regulation of ammonium-responsive genes, direct regulatory mechanisms for ammonium-induced expression of GS/GOGAT remain unclear. In this study, we revealed that the expression of GLN1;2 and GLT1 in Arabidopsis is not directly induced by ammonium but is regulated by glutamine or post-glutamine metabolites produced by ammonium assimilation. Previously, we identified a promoter region required for ammonium-responsive expression of GLN1;2. In this study, we further dissected the ammonium-responsive region of the GLN1;2 promoter and also performed a deletion analysis of the GLT1 promoter, which led to the identification of a conserved ammonium-responsive region. Yeast one-hybrid screening using the ammonium-responsive region of the GLN1;2 promoter as a decoy sequence revealed a trihelix family transcription factor DF1 that binds to this region. A putative DF1 binding site was also found in the ammonium-responsive region of the GLT1 promoter.
Collapse
Affiliation(s)
- Soichi Kojima
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Plant Science Center, RIKEN, Yokohama, Japan
| | - Haruka Minagawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Chika Yoshida
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Eri Inoue
- Plant Science Center, RIKEN, Yokohama, Japan
| | - Hideki Takahashi
- Plant Science Center, RIKEN, Yokohama, Japan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Keiki Ishiyama
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Plant Science Center, RIKEN, Yokohama, Japan
| |
Collapse
|
10
|
Walsh CA, Bräutigam A, Roberts MR, Lundgren MR. Evolutionary implications of C2 photosynthesis: how complex biochemical trade-offs may limit C4 evolution. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:707-722. [PMID: 36437625 PMCID: PMC9899418 DOI: 10.1093/jxb/erac465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The C2 carbon-concentrating mechanism increases net CO2 assimilation by shuttling photorespiratory CO2 in the form of glycine from mesophyll to bundle sheath cells, where CO2 concentrates and can be re-assimilated. This glycine shuttle also releases NH3 and serine into the bundle sheath, and modelling studies suggest that this influx of NH3 may cause a nitrogen imbalance between the two cell types that selects for the C4 carbon-concentrating mechanism. Here we provide an alternative hypothesis outlining mechanisms by which bundle sheath NH3 and serine play vital roles to not only influence the status of C2 plants along the C3 to C4 evolutionary trajectory, but to also convey stress tolerance to these unique plants. Our hypothesis explains how an optimized bundle sheath nitrogen hub interacts with sulfur and carbon metabolism to mitigate the effects of high photorespiratory conditions. While C2 photosynthesis is typically cited for its intermediary role in C4 photosynthesis evolution, our alternative hypothesis provides a mechanism to explain why some C2 lineages have not made this transition. We propose that stress resilience, coupled with open flux tricarboxylic acid and photorespiration pathways, conveys an advantage to C2 plants in fluctuating environments.
Collapse
Affiliation(s)
- Catherine A Walsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrea Bräutigam
- Faculty of Biology, Bielefeld University, Universität str. 27, D-33615 Bielefeld, Germany
| | - Michael R Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | |
Collapse
|
11
|
Barrit T, Campion C, Aligon S, Bourbeillon J, Rousseau D, Planchet E, Teulat B. A new in vitro monitoring system reveals a specific influence of Arabidopsis nitrogen nutrition on its susceptibility to Alternaria brassicicola at the seedling stage. PLANT METHODS 2022; 18:131. [PMID: 36482365 PMCID: PMC9733346 DOI: 10.1186/s13007-022-00962-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Seedling growth is an early phase of plant development highly susceptible to environmental factors such as soil nitrogen (N) availability or presence of seed-borne pathogens. Whereas N plays a central role in plant-pathogen interactions, its role has never been studied during this early phase for the interaction between Arabidopsis thaliana and Alternaria brassicicola, a seed-transmitted necrotrophic fungus. The aim of the present work was to develop an in vitro monitoring system allowing to study the impact of the fungus on A. thaliana seedling growth, while modulating N nutrition. RESULTS The developed system consists of square plates placed vertically and filled with nutrient agar medium allowing modulation of N conditions. Seeds are inoculated after sowing by depositing a droplet of conidial suspension. A specific semi-automated image analysis pipeline based on the Ilastik software was developed to quantify the impact of the fungus on seedling aerial development, calculating an index accounting for every aspect of fungal impact, namely seedling death, necrosis and developmental delay. The system also permits to monitor root elongation. The interest of the system was then confirmed by characterising how N media composition [0.1 and 5 mM of nitrate (NO3-), 5 mM of ammonium (NH4+)] affects the impact of the fungus on three A. thaliana ecotypes. Seedling development was strongly and negatively affected by the fungus. However, seedlings grown with 5 mM NO3- were less susceptible than those grown with NH4+ or 0.1 mM NO3-, which differed from what was observed with adult plants (rosette stage). CONCLUSIONS The developed monitoring system allows accurate determination of seedling growth characteristics (both on aerial and root parts) and symptoms. Altogether, this system could be used to study the impact of plant nutrition on susceptibility of various genotypes to fungi at the seedling stage.
Collapse
Affiliation(s)
- Thibault Barrit
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Claire Campion
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Sophie Aligon
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Julie Bourbeillon
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - David Rousseau
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Elisabeth Planchet
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Béatrice Teulat
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QUASAV, 49000, Angers, France.
| |
Collapse
|
12
|
Poucet T, Beauvoit B, González‐Moro MB, Cabasson C, Pétriacq P, Flandin A, Gibon Y, Marino D, Dieuaide‐Noubhani M. Impaired cell growth under ammonium stress explained by modeling the energy cost of vacuole expansion in tomato leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1014-1028. [PMID: 36198049 PMCID: PMC9828129 DOI: 10.1111/tpj.15991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Ammonium (NH4 + )-based fertilization efficiently mitigates the adverse effects of nitrogen fertilization on the environment. However, high concentrations of soil NH4 + provoke growth inhibition, partly caused by the reduction of cell enlargement and associated with modifications of cell composition, such as an increase of sugars and a decrease in organic acids. Cell expansion depends largely on the osmotic-driven enlargement of the vacuole. However, the involvement of subcellular compartmentation in the adaptation of plants to ammonium nutrition has received little attention, until now. To investigate this, tomato (Solanum lycopersicum) plants were cultivated under nitrate and ammonium nutrition and the fourth leaf was harvested at seven developmental stages. The vacuolar expansion was monitored and metabolites and inorganic ion contents, together with intracellular pH, were determined. A data-constrained model was constructed to estimate subcellular concentrations of major metabolites and ions. It was first validated at the three latter developmental stages by comparison with subcellular concentrations obtained experimentally using non-aqueous fractionation. Then, the model was used to estimate the subcellular concentrations at the seven developmental stages and the net vacuolar uptake of solutes along the developmental series. Our results showed ammonium nutrition provokes an acidification of the vacuole and a reduction in the flux of solutes into the vacuoles. Overall, analysis of the subcellular compartmentation reveals a mechanism behind leaf growth inhibition under ammonium stress linked to the higher energy cost of vacuole expansion, as a result of alterations in pH, the inhibition of glycolysis routes and the depletion of organic acids.
Collapse
Affiliation(s)
- Théo Poucet
- Department of Plant Biology and EcologyUniversity of the Basque Country (UPV/EHU)E‐48940LeioaSpain
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et PathologieVillenave d'Ornon33140France
| | - Bertrand Beauvoit
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et PathologieVillenave d'Ornon33140France
| | | | - Cécile Cabasson
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et PathologieVillenave d'Ornon33140France
- Bordeaux Metabolome, MetaboHUBPHENOME‐EMPHASISVillenave d'Ornon33140France
| | - Pierre Pétriacq
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et PathologieVillenave d'Ornon33140France
- Bordeaux Metabolome, MetaboHUBPHENOME‐EMPHASISVillenave d'Ornon33140France
| | - Amélie Flandin
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et PathologieVillenave d'Ornon33140France
- Bordeaux Metabolome, MetaboHUBPHENOME‐EMPHASISVillenave d'Ornon33140France
| | - Yves Gibon
- Université de Bordeaux, INRAE, UMR Biologie du Fruit et PathologieVillenave d'Ornon33140France
- Bordeaux Metabolome, MetaboHUBPHENOME‐EMPHASISVillenave d'Ornon33140France
| | - Daniel Marino
- Department of Plant Biology and EcologyUniversity of the Basque Country (UPV/EHU)E‐48940LeioaSpain
- Ikerbasque, Basque Foundation for ScienceE‐48011BilbaoSpain
| | | |
Collapse
|
13
|
Noh K, Jeong BR. Silicon Supplementation Alleviates Adverse Effects of Ammonium on Ssamchoo Grown in Home Cultivation System. PLANTS (BASEL, SWITZERLAND) 2022; 11:2882. [PMID: 36365334 PMCID: PMC9654249 DOI: 10.3390/plants11212882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Ssamchoo is recently attracting attention as a household hydroponic vegetable in Korea. It has a refreshing texture and a rich content of vitamins and fiber. Ssamchoo with a wide leaf area is suitable for traditional ssam or vegetable wraps, as well as a vegetable for salads; thus, it can be used in a variety of dishes. However, Ssamchoo plants responds sensitively to the nutrient solution, and it is often difficult to secure sufficient leaf area and robust growth using a commercial nutrient solution for leafy vegetables. This study consisted of three experiments conducted to develop the nutrient solution for Ssamchoo grown in a newly developed home hydroponic cultivation system using light-emitting diodes as the sole source of light. In the first experiment, growth and development of Ssamchoo in a representative commercial nutrient solution, Peters Professional (20-20-20, The Scotts Co., Marysville, OH, USA), was compared with laboratory-prepared nutrient solutions, GNU1 and GNU2. As a result, the Ssamchoo grown in Peters Professional had a high NH4+ content in the tissue, leaf yellowing, darkened root color, and suppressed root hair development. In addition, adverse effects of ammonium such as low fresh weight and shorter shoot length were observed. In the second experiment, Peters Professional was excluded, and the ratio of NO3- to NH4+ in the GNU1 and GNU2 nutrient solutions was set to four levels each (100:0, 83.3:16.7, 66.7:33.3, and 50:50). As a result, the fresh weights of 83.3:16.7 and 66.7:33.3 were the greatest, and the leaf color was a healthy green. However, at 100:0 and 50:50 NO3-/NH4+ ratios, the fresh weight was low, and leaf yellowing, tip burn, and leaf burn appeared. The nutrient solution with a 83.3:16.7 NO3-- to-NH4+ ratio, which gave the greatest fresh weight in the second experiment, was chosen as the control, while the solution with a 50:50 NO3-/NH4+ ratio with a lower nitrate content among the two unfavorable treatments was selected as a treatment group for the next experiment. In the third experiment, NH4+ was partially replaced with urea to make four different ratios of NO3- to NH4+ to urea (83:17:0, 50:50:0, 50:25:25, and 50:0:50) in combination with two levels of Si (0 and 10.7 mmol·L-1 Si). The greatest fresh weight was obtained in the treatment in which the NO3-/NH4+/urea ratio was 50:25:25. In particular, when Si was added to the solution, there was no decrease in the number of leaves, and plants with the greatest fresh weight, chlorophyll content, and leaf area were obtained. The number of leaves and leaf area are important indicators of high productivity since the Ssamchoo is used in ssam dishes. It can be concluded that a solution with a NO3-/NH4+/urea ratio of 50:25:25 and supplemented with 10.7 mmol·L-1 Si is the most suitable nutrient solution for growing Ssamchoo in the home hydroponic system developed.
Collapse
Affiliation(s)
- Kyungdeok Noh
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School, Gyeongsang National University, Jinju 52828, Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
14
|
Iqbal A, Jing N, Qiang D, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. Physiological Characteristics of Cotton Subtending Leaf Are Associated With Yield in Contrasting Nitrogen-Efficient Cotton Genotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:825116. [PMID: 35197997 PMCID: PMC8859460 DOI: 10.3389/fpls.2022.825116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) plays an important role in various plant physiological processes, but studies on the photosynthetic efficiency and enzymatic activities in the cotton subtending leaves and their contribution to yield are still lacking. This study explored the influence of low, moderate, and high N levels on the growth, photosynthesis, carbon (C) and N metabolizing enzymes, and their contribution to yield in CCRI-69 (N-efficient) and XLZ-30 (N-inefficient). The results showed that moderate to high N levels had significantly improved growth, photosynthesis, and sucrose content of CCRI-69 as compared to XLZ-30. The seed cotton yield and lint yield of CCRI-69 were similar under moderate and high N levels but higher than XLZ-30. Similarly, moderate to high N levels improved the C/N metabolizing enzymatic activities in the subtending leaf of CCRI-69 than XLZ-30. A strong correlation was found between subtending leaf N concentration with C/N metabolizing enzymes, photosynthesis, sucrose contents, boll weight, and seed cotton yield of N-efficient cotton genotype. These findings suggest that subtending leaf N concentration regulates the enzymatic activities and has a key role in improving the yield. These parameters may be considered for breeding N-efficient cotton genotypes, which might help to reduce fertilizer loss and improve crop productivity.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Niu Jing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pang Nianchang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Song J, Yang J, Jeong BR. Root GS and NADH-GDH Play Important Roles in Enhancing the Ammonium Tolerance in Three Bedding Plants. Int J Mol Sci 2022; 23:ijms23031061. [PMID: 35162985 PMCID: PMC8834993 DOI: 10.3390/ijms23031061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Ammonium is a paradoxical nutrient because it is more metabolically efficient than nitrate, but also causes plant stresses in excess, i.e., ammonium toxicity. Current knowledge indicates that ammonium tolerance is species-specific and related to the ammonium assimilation enzyme activities. However, the mechanisms underlying the ammonium tolerance in bedding plants remain to be elucidated. The study described herein explores the primary traits contributing to the ammonium tolerance in three bedding plants. Three NH4+:NO3− ratios (0:100, 50:50, 100:0) were supplied to salvia, petunia, and ageratum. We determined that they possessed distinct ammonium tolerances: salvia and petunia were, respectively, extremely sensitive and moderately sensitive to high NH4+ concentrations, whereas ageratum was tolerant to NH4+, as characterized by the responses of the shoot and root growth, photosynthetic capacity, and nitrogen (amino acid and soluble protein)-carbohydrate (starch) distributions. An analysis of the major nitrogen assimilation enzymes showed that the root GS (glutamine synthetase) and NADH-GDH (glutamate dehydrogenase) activities in ageratum exhibited a dose-response relationship (reinforced by 25.24% and 6.64%, respectively) as the NH4+ level was raised from 50% to 100%; but both enzyme activities were significantly diminished in salvia. Besides, negligible changes of GS activities monitored in leaves revealed that only the root GS and NADH-GDH underpin the ammonium tolerances of the three bedding plants.
Collapse
Affiliation(s)
- Jinnan Song
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.S.); (J.Y.)
| | - Jingli Yang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.S.); (J.Y.)
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.S.); (J.Y.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1913
| |
Collapse
|
16
|
Barrit T, Porcher A, Cukier C, Satour P, Guillemette T, Limami AM, Teulat B, Campion C, Planchet E. Nitrogen nutrition modifies the susceptibility of Arabidopsis thaliana to the necrotrophic fungus, Alternaria brassicicola. PHYSIOLOGIA PLANTARUM 2022; 174:e13621. [PMID: 34989007 DOI: 10.1111/ppl.13621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The impact of the form of nitrogen (N) source (nitrate versus ammonium) on the susceptibility to Alternaria brassicicola, a necrotrophic fungus, has been examined in Arabidopsis thaliana at the rosette stage. Nitrate nutrition was found to increase fungal lesions considerably. There was a similar induction of defence gene expression following infection under both N nutritions, except for the phytoalexin deficient 3 gene, which was overexpressed with nitrate. Nitrate also led to a greater nitric oxide production occurring in planta during the saprophytic growth and lower nitrate reductase (NIA1) expression 7 days after inoculation. This suggests that nitrate reductase-dependent nitric oxide production had a dual role, whereby, despite its known role in the generic response to pathogens, it affected plant metabolism, and this facilitated fungal infection. In ammonium-grown plants, infection with A. brassicicola induced a stronger gene expression of ammonium transporters and significantly reduced the initially high ammonium content in the leaves. There was a significant interaction between N source and inoculation (presence versus absence of the fungus) on the total amino acid content, while N nutrition reconfigured the spectrum of major amino acids. Typically, a higher content of total amino acid, mainly due to a stronger increase in asparagine and glutamine, is observed under ammonium nutrition while, in nitrate-fed plants, glutamate was the only amino acid which content increased significantly after fungal inoculation. N nutrition thus appears to control fungal infection via a complex set of signalling and nutritional events, shedding light on how nitrate availability can modulate disease susceptibility.
Collapse
Affiliation(s)
| | - Alexis Porcher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, France
| | | | - Pascale Satour
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, France
| | | | - Anis M Limami
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, France
| | | | - Claire Campion
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, France
| | | |
Collapse
|
17
|
Zhou T, Hua Y, Yue C, Huang J, Zhang Z. Physiologic, metabolomic, and genomic investigations reveal distinct glutamine and mannose metabolism responses to ammonium toxicity in allotetraploid rapeseed genotypes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110963. [PMID: 34315588 DOI: 10.1016/j.plantsci.2021.110963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Ammonium (NH4+) toxicity has become a serious ecological and agricultural issue owing to increasing soil nitrogen inputs and atmospheric nitrogen deposition. There is accumulating evidence for the mechanisms underlying NH4+-tolerance in rice and Arabidopsis, but similar knowledge for dryland crops is currently limited. We investigated the responses of a natural population of allotetraploid rapeseed to NH4+ and nitrate (NO3-) and screened one NH4+-tolerant genotype (T5) and one NH4+-sensitive genotype (S211). Determination of the shoot and root NH4+ concentrations showed that levels were higher in S211 than in T5. 15NH4+ uptake assays, glutamine synthetase (GS) activity quantification, and relative gene transcriptional analysis indicated that the significantly higher GS activity observed in T5 roots than that in S211 was the main reason for its NH4+-tolerance. In-depth metabolomic analysis verified that Gln metabolism plays an important role in rapeseed NH4+-tolerance. Furthermore, adaptive changes in carbon metabolism were much more active in T5 shoots than in S211. Interestingly, we found that N-glycosylation pathway was significantly induced by NH4+, especially the mannose metabolism, which concentration was 2.75-fold higher in T5 shoots than in S211 with NH4+ treatment, indicating that mannose may be a metabolomic marker which also confers physiological adaptations for NH4+ tolerance in rapeseed. The corresponding amino acid and soluble sugar concentrations and gene expression in T5 and S211 were consistent with these results. Genomic sequencing identified variations in the GLN (encoding GS) and GMP1 (encoding the enzyme that provides GDP-mannose) gene families between the T5 and S211 lines. These genes will be utilized as candidate genes for future investigations of the molecular mechanisms underlying NH4+ tolerance in rapeseed.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 430128, PR China.
| |
Collapse
|
18
|
Moseler A, Kruse I, Maclean AE, Pedroletti L, Franceschetti M, Wagner S, Wehler R, Fischer-Schrader K, Poschet G, Wirtz M, Dörmann P, Hildebrandt TM, Hell R, Schwarzländer M, Balk J, Meyer AJ. The function of glutaredoxin GRXS15 is required for lipoyl-dependent dehydrogenases in mitochondria. PLANT PHYSIOLOGY 2021; 186:1507-1525. [PMID: 33856472 PMCID: PMC8260144 DOI: 10.1093/plphys/kiab172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 05/02/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe-S supply in grxs15 mutants.
Collapse
Affiliation(s)
- Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
- Université de Lorraine, INRAE, IAM, Nancy 54000, France
| | - Inga Kruse
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Present address: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Present address: Wellcome Trust Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Luca Pedroletti
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | | | - Stephan Wagner
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | - Regina Wehler
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Katrin Fischer-Schrader
- Department of Chemistry, Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | | | - Rüdiger Hell
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP)—Plant Energy Biology, University of Münster, 48143 Münster, Germany
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich, 52425 Jülich, Germany
- Author for communication:
| |
Collapse
|
19
|
Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M. Interactions of Silicon With Essential and Beneficial Elements in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:697592. [PMID: 34249069 PMCID: PMC8261142 DOI: 10.3389/fpls.2021.697592] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
Silicon (Si) is not classified as an essential element for plants, but numerous studies have demonstrated its beneficial effects in a variety of species and environmental conditions, including low nutrient availability. Application of Si shows the potential to increase nutrient availability in the rhizosphere and root uptake through complex mechanisms, which still remain unclear. Silicon-mediated transcriptional regulation of element transporters for both root acquisition and tissue homeostasis has recently been suggested as an important strategy, varying in detail depending on plant species and nutritional status. Here, we summarize evidence of Si-mediated acquisition, uptake and translocation of nutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), chlorine (Cl), and nickel (Ni) under both deficiency and excess conditions. In addition, we discuss interactions of Si-with beneficial elements: aluminum (Al), sodium (Na), and selenium (Se). This review also highlights further research needed to improve understanding of Si-mediated acquisition and utilization of nutrients and vice versa nutrient status-mediated Si acquisition and transport, both processes which are of high importance for agronomic practice (e.g., reduced use of fertilizers and pesticides).
Collapse
Affiliation(s)
- Jelena Pavlovic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Kostic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Predrag Bosnic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ernest A. Kirkby
- Faculty of Biological Sciences, Leeds University, Leeds, United Kingdom
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
20
|
Ancín M, Larraya L, Florez-Sarasa I, Bénard C, Fernández-San Millán A, Veramendi J, Gibon Y, Fernie AR, Aranjuelo I, Farran I. Overexpression of thioredoxin m in chloroplasts alters carbon and nitrogen partitioning in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4949-4964. [PMID: 33963398 PMCID: PMC8219043 DOI: 10.1093/jxb/erab193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/27/2021] [Indexed: 06/02/2023]
Abstract
In plants, there is a complex interaction between carbon (C) and nitrogen (N) metabolism, and its coordination is fundamental for plant growth and development. Here, we studied the influence of thioredoxin (Trx) m on C and N partitioning using tobacco plants overexpressing Trx m from the chloroplast genome. The transgenic plants showed altered metabolism of C (lower leaf starch and soluble sugar accumulation) and N (with higher amounts of amino acids and soluble protein), which pointed to an activation of N metabolism at the expense of carbohydrates. To further delineate the effect of Trx m overexpression, metabolomic and enzymatic analyses were performed on these plants. These results showed an up-regulation of the glutamine synthetase-glutamate synthase pathway; specifically tobacco plants overexpressing Trx m displayed increased activity and stability of glutamine synthetase. Moreover, higher photorespiration and nitrate accumulation were observed in these plants relative to untransformed control plants, indicating that overexpression of Trx m favors the photorespiratory N cycle rather than primary nitrate assimilation. Taken together, our results reveal the importance of Trx m as a molecular mediator of N metabolism in plant chloroplasts.
Collapse
Affiliation(s)
- María Ancín
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| | - Luis Larraya
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| | - Igor Florez-Sarasa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Camille Bénard
- UMR 1332 Biologie du Fruit et Pathologie and Plateforme Metabolome Bordeaux, INRA, Bordeaux University, 33882 Villenave d’Ornon, France
| | - Alicia Fernández-San Millán
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| | - Jon Veramendi
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie and Plateforme Metabolome Bordeaux, INRA, Bordeaux University, 33882 Villenave d’Ornon, France
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Avda. Pamplona 123, 31192 Mutilva, Spain
| | - Inmaculada Farran
- Institute for Multidisciplinary Applied Biology (IMAB), Dpto. Agronomía, Biotecnología y Alimentación, Universidad Publica de Navarra (UPNA), Campus Arrosadia, 31006 Pamplona, Spain
| |
Collapse
|
21
|
Zhu Y, Qi B, Hao Y, Liu H, Sun G, Chen R, Song S. Appropriate NH 4 +/NO 3 - Ratio Triggers Plant Growth and Nutrient Uptake of Flowering Chinese Cabbage by Optimizing the pH Value of Nutrient Solution. FRONTIERS IN PLANT SCIENCE 2021; 12:656144. [PMID: 33995453 PMCID: PMC8121088 DOI: 10.3389/fpls.2021.656144] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Compared with sole nitrogen (N), the nutrition mixture of ammonium (NH4 +) and nitrate (NO3 -) is known to better improve crop yield and quality. However, the mechanism underlying this improvement remains unclear. In the present study, we analyzed the changes in nutrient solution composition, content of different N forms in plant tissues and exudates, and expression of plasma membrane (PM) H+-ATPase genes (HAs) under different NH4 +/NO3 - ratios (0/100, 10/90, 25/75, 50/50 as control, T1, T2, and T3) in flowering Chinese cabbage. We observed that compared with the control, T1 and T2 increased the economical yield of flowering Chinese cabbage by 1.26- and 1.54-fold, respectively, whereas T3 significantly reduced plant yield. Compared with the control, T1-T3 significantly reduced the NO3 - content and increased the NH4 +, amino acid, and soluble protein contents of flowering Chinese cabbage to varying extents. T2 significantly increased the N use efficiency (NUE), whereas T3 significantly decreased it to only being 70.25% of that of the control. Owing to the difference in N absorption and utilization among seedlings, the pH value of the nutrient solution differed under different NH4 +/NO3 - ratios. At harvest, the pH value of T2 was 5.8; in the control and T1, it was approximately 8.0, and in T3 it was only 3.6. We speculated that appropriate NH4 +/NO3 - ratios may improve N absorption and assimilation and thus promote the growth of flowering Chinese cabbage, owing to the suitable pH value. On the contrary, addition of excessive NH4 + may induce rhizosphere acidification and ammonia toxicity, causing plant growth inhibition. We further analyzed the transcription of PM H+-ATPase genes (HAs). HA1 and HA7 transcription in roots was significantly down-regulated by the addition of the mixture of NH4 + and NO3 -, whereas the transcription of HA2, HA9 in roots and HA7, HA8, and HA10 in leaves was sharply up-regulated by the addition of the mixture; the transcription of HA3 was mainly enhanced by the highest ratio of NH4 +/NO3 -. Our results provide valuable information about the effects of treatments with different NH4 +/NO3 - ratios on plant growth and N uptake and utilization.
Collapse
Affiliation(s)
- Yunna Zhu
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Baifu Qi
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Houcheng Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guangwen Sun
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Ijato T, Porras-Murillo R, Ganz P, Ludewig U, Neuhäuser B. Concentration-dependent physiological and transcriptional adaptations of wheat seedlings to ammonium. PHYSIOLOGIA PLANTARUM 2021; 171:328-342. [PMID: 32335941 DOI: 10.1111/ppl.13113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/20/2020] [Indexed: 05/24/2023]
Abstract
Conventional wheat production utilizes fertilizers of various nitrogen forms. Sole ammonium nutrition has been shown to improve grain quality, despite the potential toxic effects of ammonium at elevated concentrations. We therefore investigated the responses of young seedlings of winter wheat to different nitrogen sources (NH4 NO3 = NN, NH4 Cl = NNH4 + and KNO3 = NNO3 - ). Growth with ammonium-nitrate was superior. However, an elevated concentration of sole ammonium caused severe toxicity symptoms and significant decreases in biomass accumulation. We addressed the molecular background of the ammonium uptake by gathering an overview of the ammonium transporter (AMT) of wheat (Triticum aestivum) and characterized the putative high-affinity TaAMT1 transporters. TaAMT1;1 and TaAMT1;2 were both active in yeast and Xenopus laevis oocytes and showed saturating high-affinity ammonium transport characteristics. Interestingly, nitrogen starvation, as well as ammonium resupply to starved seedlings triggered an increase in the expression of the TaAMT1s. The presence of nitrate seamlessly repressed their expression. We conclude that wheat showed the ability to respond robustly to sole ammonium supply by adopting distinct physiological and transcriptional responses.
Collapse
Affiliation(s)
- Toyosi Ijato
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| | - Romano Porras-Murillo
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| | - Pascal Ganz
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593, Stuttgart, Germany
| |
Collapse
|
23
|
Khalofah A, Khan MI, Arif M, Hussain A, Ullah R, Irfan M, Mahpara S, Shah RU, Ansari MJ, Kintl A, Brtnicky M, Danish S, Datta R. Deep placement of nitrogen fertilizer improves yield, nitrogen use efficiency and economic returns of transplanted fine rice. PLoS One 2021; 16:e0247529. [PMID: 33630922 PMCID: PMC7906316 DOI: 10.1371/journal.pone.0247529] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Rice (Oryza sativa L.) feeds to two-third of the global population by serving as staple food. It is the main export commodity of several countries; thus, contributes towards foreign exchange earnings. Unfortunately, average global rice yield is far below than its genetic potential. Low nitrogen (N) use efficiency (NUE) is among the major reasons for low average yield. Current study evaluated the impact of nitrogen fertilizer application methods (conventional and deep placement) on growth, yield-related traits, chlorophyll contents, photosynthesis rate, agronomic N-use efficiency (ANUE), partial factors productivity of applied N (PFP) and economic returns of two different transplanted rice varieties (Basmati-515 and Super-Basmati). Fertilizer application methods significantly affected allometry, yield-related traits, chlorophyll contents, photosynthesis rate, ANUE, PFP and economic returns. Deep placement of N-fertilizer (DPNF) observed better allometric traits, high chlorophyll contents, photosynthesis rate, ANUE, PFP, yield attributes and economic returns compared to conventional application of N-fertilizer (CANF). Similarly, Basmati-515 had better allometric and yield-related traits, chlorophyll contents, photosynthesis rate, ANUE, PFP and economic returns than Super-Basmati. Regarding interactions among N-fertilizer application methods and rice varieties, Basmati-515 with DPNF resulted in higher chlorophyll contents, photosynthesis rate, ANUE, PFP, allometric and yield related traits and economic returns than CANF. The lowest values of these traits were observed for Super-Basmati with no application of N-fertilizer. Both varieties had better yield and economic returns with DPNF compared to CANF. It is concluded that DPNF improved yield, ANUE and economic returns; therefore, should be opted to improve productivity of transplanted fine rice. Nonetheless, lower nitrogen doses need to be tested for DPNF to infer whether it could lower N use in rice crop.
Collapse
Affiliation(s)
- Ahlam Khalofah
- Faculty of Science, Department of Biology, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
- * E-mail: (MIK); (RD)
| | - Muhammad Arif
- Department of Plant Protection, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Ansar Hussain
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Rehmat Ullah
- Soil and Water Testing Laboratory, Dera Ghazi Khan, Pakistan
| | - Muhammad Irfan
- Faculty of Agricultural Sciences and Technology, Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Shahzadi Mahpara
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Rahmat Ullah Shah
- Faculty of Agricultural Sciences and Technology, Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University Bareilly, Bareilly, India
| | - Antonin Kintl
- Agriculture Research, Ltd., Troubsko, Czech Republic
- Faculty of Agrisciences, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Brno, Czech Republic
| | - Martin Brtnicky
- Agriculture Research, Ltd., Troubsko, Czech Republic
- Faculty of Agrisciences, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Brno, Czech Republic
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czech Republic
| | - Subhan Danish
- Faculty of Agricultural Sciences and Technology, Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Rahul Datta
- Faculty of Forestry and Wood Technology, Department of Geology and Soil Science, Mendel University in Brno, Brno, Czech Republic
- * E-mail: (MIK); (RD)
| |
Collapse
|
24
|
Robert G, Yagyu M, Koizumi T, Naya L, Masclaux-Daubresse C, Yoshimoto K. Ammonium stress increases microautophagic activity while impairing macroautophagic flux in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1083-1097. [PMID: 33222335 DOI: 10.1111/tpj.15091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Plant responses to NH4+ stress are complex, and multiple mechanisms underlying NH4+ sensitivity and tolerance in plants may be involved. Here, we demonstrate that macro- and microautophagic activities are oppositely affected in plants grown under NH4+ toxicity conditions. When grown under NH4+ stress conditions, macroautophagic activity was impaired in roots. Root cells accumulated autophagosomes in the cytoplasm, but showed less autophagic flux, indicating that late steps of the macroautophagy process are affected under NH4+ stress conditions. Under this scenario, we also found that the CCZ1-MON1 complex, a critical factor for vacuole delivery pathways, functions in the late step of the macroautophagic pathway in Arabidopsis. In contrast, an accumulation of tonoplast-derived vesicles was observed in vacuolar lumens of root cells of NH4+ -stressed plants, suggesting the induction of a microautophagy-like process. In this sense, some SYP22-, but mainly VAMP711-positive vesicles were observed inside vacuole in roots of NH4+ -stressed plants. Consistent with the increased tonoplast degradation and the reduced membrane flow to the vacuole due to the impaired macroautophagic flux, the vacuoles of root cells of NH4+ -stressed plants showed a simplified structure and lower tonoplast content. Taken together, this study presents evidence that postulates late steps of the macroautophagic process as a relevant physiological mechanism underlying the NH4+ sensitivity response in Arabidopsis, and additionally provides insights into the molecular tools for studying microautophagy in plants.
Collapse
Affiliation(s)
- Germán Robert
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
- Instituto Nacional de Tecnología Agropecuaria (INTA) - Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Av. 11 de Septiembre, Córdoba, 4755-X5020ICA, Argentina
- Unidad de doble dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre, Córdoba, 4755-X5020ICA, Argentina
| | - Mako Yagyu
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Takaya Koizumi
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Loreto Naya
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Kohki Yoshimoto
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| |
Collapse
|
25
|
González-Moro MB, González-Moro I, de la Peña M, Estavillo JM, Aparicio-Tejo PM, Marino D, González-Murua C, Vega-Mas I. A Multi-Species Analysis Defines Anaplerotic Enzymes and Amides as Metabolic Markers for Ammonium Nutrition. FRONTIERS IN PLANT SCIENCE 2021; 11:632285. [PMID: 33584765 PMCID: PMC7873483 DOI: 10.3389/fpls.2020.632285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 05/09/2023]
Abstract
Nitrate and ammonium are the main nitrogen sources in agricultural soils. In the last decade, ammonium (NH4 +), a double-sided metabolite, has attracted considerable attention by researchers. Its ubiquitous presence in plant metabolism and its metabolic energy economy for being assimilated contrast with its toxicity when present in high amounts in the external medium. Plant species can adopt different strategies to maintain NH4 + homeostasis, as the maximization of its compartmentalization and assimilation in organic compounds, primarily as amino acids and proteins. In the present study, we report an integrative metabolic response to ammonium nutrition of seven plant species, belonging to four different families: Gramineae (ryegrass, wheat, Brachypodium distachyon), Leguminosae (clover), Solanaceae (tomato), and Brassicaceae (oilseed rape, Arabidopsis thaliana). We use principal component analysis (PCA) and correlations among metabolic and biochemical data from 40 experimental conditions to understand the whole-plant response. The nature of main amino acids is analyzed among species, under the hypothesis that those Asn-accumulating species will show a better response to ammonium nutrition. Given the provision of carbon (C) skeletons is crucial for promotion of the nitrogen assimilation, the role of different anaplerotic enzymes is discussed in relation to ammonium nutrition at a whole-plant level. Among these enzymes, isocitrate dehydrogenase (ICDH) shows to be a good candidate to increase nitrogen assimilation in plants. Overall, metabolic adaptation of different carbon anaplerotic activities is linked with the preference to synthesize Asn or Gln in their organs. Lastly, glutamate dehydrogenase (GDH) reveals as an important enzyme to surpass C limitation during ammonium assimilation in roots, with a disparate collaboration of glutamine synthetase (GS).
Collapse
Affiliation(s)
| | - Itziar González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Marlon de la Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - José María Estavillo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Pedro M. Aparicio-Tejo
- Instituto Multidisciplinar de Biología Aplicada (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
26
|
de Ávila Silva L, Omena-Garcia RP, Condori-Apfata JA, Costa PMDA, Silva NM, DaMatta FM, Zsögön A, Araújo WL, de Toledo Picoli EA, Sulpice R, Nunes-Nesi A. Specific leaf area is modulated by nitrogen via changes in primary metabolism and parenchymal thickness in pepper. PLANTA 2021; 253:16. [PMID: 33392753 DOI: 10.1007/s00425-020-03519-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/02/2020] [Indexed: 05/27/2023]
Abstract
Nitrogen promotes changes in SLA through metabolism and anatomical traits in Capsicum plants. Specific leaf area (SLA) is a key trait influencing light interception and light use efficiency that often impacts plant growth and production. SLA is a key trait explaining growth variations of plant species under different environments. Both light and nitrogen (N) supply are important determinants of SLA. To better understand the effect of irradiance level and N on SLA in Capsicum chinense, we evaluated primary metabolites and morphological traits of two commercial cultivars (Biquinho and Habanero) in response to changes in both parameters. Both genotypes showed increased SLA with shading, and a decrease in SLA in response to increased N supply, however, with Habanero showing a stable SLA in the range of N deficiency to sufficient N doses. Correlation analyses indicated that decreased SLA in response to higher N supply was mediated by altered amino acids, protein, and starch levels, influencing leaf density. Moreover, in the range of moderate N deficiency to N sufficiency, both genotypes exhibited differences in SLA response, with Biquinho and Habanero displaying alterations on palisade and spongy parenchyma, respectively. Altogether, the results suggest that SLA responses to N supply are modulated by the balance between certain metabolites content and genotype-dependent changes in the parenchyma cells influencing leaf thickness and density.
Collapse
Affiliation(s)
- Lucas de Ávila Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Rebeca P Omena-Garcia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Jorge A Condori-Apfata
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | - Natália Machado Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Edgard A de Toledo Picoli
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Ronan Sulpice
- Plant Systems Biology Lab, National University of Ireland, Ryan Institute, Galway, Ireland
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
27
|
Ke J, Pu WX, Wang H, Liu LH, Sheng S. Phenotypical evidence of effective amelioration of ammonium-inhibited plant (root) growth by exogenous low urea. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153306. [PMID: 33129078 DOI: 10.1016/j.jplph.2020.153306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 05/27/2023]
Abstract
Ammonium and nitrate are major soil inorganic-nitrogen sources for plant growth, but many species cultivated with even low millimolar NH4+ as a sole N form display a growth retardation. To date, critical biological components and applicable approaches involved in the effective enhancement of NH4+ tolerance remain to be thoroughly explored. Here, we report phenotypical traits of urea-dependent improvement of NH4+-suppressed plant/root growth. Urea at 0.1 mM was sufficient to remarkably stimulate NH4+ (3 mM)-fed cotton growth, showing a 2.5∼4-fold increase in shoot- and root-biomass and total root-length, 20 % higher GS activity, 18 % less NH4+-accumulation in roots, and a comparable plant total-N content compared to the control, implying a novel role for urea in cotton NH4+detoxification. A similar phenomenon was observed in tobacco and rice. Moreover, comparisons between twelve NH4+-grown Arabidopsis accessions revealed a great degree of natural variation in their root-growth response to low urea, with WAR and Blh-1 exhibiting the most significant increase in primary- and lateral-root length and numbers, and Sav-0 and Edi-0 being the most insensitive. Such phenotypical evidence suggests a common ability of plants to accommodate NH4+-stress by responding to exogenous urea, providing a novel aspect for further understanding the process of urea-dependent plant NH4+ tolerance.
Collapse
Affiliation(s)
- Jie Ke
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China
| | - Wen-Xuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha 410007, China
| | - Hui Wang
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China
| | - Lai-Hua Liu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China.
| | - Song Sheng
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Domínguez-Figueroa J, Carrillo L, Renau-Morata B, Yang L, Molina RV, Marino D, Canales J, Weih M, Vicente-Carbajosa J, Nebauer SG, Medina J. The Arabidopsis Transcription Factor CDF3 Is Involved in Nitrogen Responses and Improves Nitrogen Use Efficiency in Tomato. FRONTIERS IN PLANT SCIENCE 2020; 11:601558. [PMID: 33329669 PMCID: PMC7732579 DOI: 10.3389/fpls.2020.601558] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Nitrate is an essential macronutrient and a signal molecule that regulates the expression of multiple genes involved in plant growth and development. Here, we describe the participation of Arabidopsis DNA binding with one finger (DOF) transcription factor CDF3 in nitrate responses and shows that CDF3 gene is induced under nitrate starvation. Moreover, knockout cdf3 mutant plants exhibit nitrate-dependent lateral and primary root modifications, whereas CDF3 overexpression plants show increased biomass and enhanced root development under both nitrogen poor and rich conditions. Expression analyses of 35S::CDF3 lines reveled that CDF3 regulates the expression of an important set of nitrate responsive genes including, glutamine synthetase-1, glutamate synthase-2, nitrate reductase-1, and nitrate transporters NRT2.1, NRT2.4, and NRT2.5 as well as carbon assimilation genes like PK1 and PEPC1 in response to N availability. Consistently, metabolite profiling disclosed that the total amount of key N metabolites like glutamate, glutamine, and asparagine were higher in CDF3-overexpressing plants, but lower in cdf3-1 in N limiting conditions. Moreover, overexpression of CDF3 in tomato increased N accumulation and yield efficiency under both optimum and limiting N supply. These results highlight CDF3 as an important regulatory factor for the nitrate response, and its potential for improving N use efficiency in crops.
Collapse
Affiliation(s)
- José Domínguez-Figueroa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Laura Carrillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Begoña Renau-Morata
- Departamento de Producción Vegetal, Universitat Politécnica de Valencia, Valencia, Spain
| | - Lu Yang
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Rosa-V Molina
- Departamento de Producción Vegetal, Universitat Politécnica de Valencia, Valencia, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- ANID–Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Martin Weih
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Sergio G. Nebauer
- Departamento de Producción Vegetal, Universitat Politécnica de Valencia, Valencia, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
29
|
Xun Z, Guo X, Li Y, Wen X, Wang C, Wang Y. Quantitative proteomics analysis of tomato growth inhibition by ammonium nitrogen. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:129-141. [PMID: 32559517 DOI: 10.1016/j.plaphy.2020.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 05/25/2023]
Abstract
As a single nitrogen source, ammonium (NH4+) can inhibit the growth of plants, especially when applied in excess. Tandem mass tag (TMT) quantitative proteomics technology was employed in the current study to explore and analyze the mechanisms of ammonium-induced inhibition. F1 tomato (Lycopersicon esculentum Mill) was used in this study. Seedlings at the four leaf-stages grown in a greenhouse were irrigated using nutrient solution with NH4+-N as single nitrogen source (15 mmol L-1, single NO3--N as control) for 5 weeks. Compared to the control, the root biomass of NH4+-N-treated seedlings decreased by 50%. In addition, NH4+ content in roots was 2.83-fold increased and soluble sugar and protein contents were increased. However, the starch content did not change significantly. The activities of glutamine synthetase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH), which are involved in ammonium assimilation, were increased, and glutamine (Gln) content was also increased. However, glutamate (Glu) content, which is important for amino transfer, did not significantly increase. Ammonium assimilation was inhibited. Root quantitative proteomics showed that carbonic anhydrase Q5NE21 was significantly downregulated. Although K4BPV5 and K4D9J3 proteins, which improve ammonium assimilation, were upregulated, ammonium assimilation was limited. In addition, NH4+ accumulated, which is likely due to Q5NE21 downregulation. Meanwhile, cell wall metabolism related to phenylpropanoid biosynthesis was altered due to the accumulation of NH4+ levels. Subsequently, tomato root growth was inhibited.
Collapse
Affiliation(s)
- Zhili Xun
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Xiaofei Guo
- Institute of Edible Fungi, Shanxi Academy of Agricultural Sciences, Taiyuan, 030000, Shanxi, People's Republic of China
| | - Yaling Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| | - Xiangzhen Wen
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Chuanqi Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Yue Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| |
Collapse
|
30
|
Hao DL, Zhou JY, Yang SY, Qi W, Yang KJ, Su YH. Function and Regulation of Ammonium Transporters in Plants. Int J Mol Sci 2020; 21:E3557. [PMID: 32443561 PMCID: PMC7279009 DOI: 10.3390/ijms21103557] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Ammonium transporter (AMT)-mediated acquisition of ammonium nitrogen from soils is essential for the nitrogen demand of plants, especially for those plants growing in flooded or acidic soils where ammonium is dominant. Recent advances show that AMTs additionally participate in many other physiological processes such as transporting ammonium from symbiotic fungi to plants, transporting ammonium from roots to shoots, transferring ammonium in leaves and reproductive organs, or facilitating resistance to plant diseases via ammonium transport. Besides being a transporter, several AMTs are required for the root development upon ammonium exposure. To avoid the adverse effects of inadequate or excessive intake of ammonium nitrogen on plant growth and development, activities of AMTs are fine-tuned not only at the transcriptional level by the participation of at least four transcription factors, but also at protein level by phosphorylation, pH, endocytosis, and heterotrimerization. Despite these progresses, it is worth noting that stronger growth inhibition, not facilitation, unfortunately occurs when AMT overexpression lines are exposed to optimal or slightly excessive ammonium. This implies that a long road remains towards overcoming potential limiting factors and achieving AMT-facilitated yield increase to accomplish the goal of persistent yield increase under the present high nitrogen input mode in agriculture.
Collapse
Affiliation(s)
- Dong-Li Hao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| | - Jin-Yan Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| | - Shun-Ying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| | - Wei Qi
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China;
| | - Ke-Jun Yang
- Agro-Tech Extension and Service Center, Zhucheng 262200, China;
| | - Yan-Hua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (D.-L.H.); (J.-Y.Z.); (S.-Y.Y.)
| |
Collapse
|
31
|
Wang D, Xu T, Yin Z, Wu W, Geng H, Li L, Yang M, Cai H, Lian X. Overexpression of OsMYB305 in Rice Enhances the Nitrogen Uptake Under Low-Nitrogen Condition. FRONTIERS IN PLANT SCIENCE 2020; 11:369. [PMID: 32351516 PMCID: PMC7174616 DOI: 10.3389/fpls.2020.00369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/13/2020] [Indexed: 05/10/2023]
Abstract
Excessive nitrogen fertilizer application causes severe environmental degradation and drives up agricultural production costs. Thus, improving crop nitrogen use efficiency (NUE) is essential for the development of sustainable agriculture. Here, we characterized the roles of the MYB transcription factor OsMYB305 in nitrogen uptake and assimilation in rice. OsMYB305 encoded a transcriptional activator and its expression was induced by N deficiency in rice root. Under low-N condition, OsMYB305 overexpression significantly increased the tiller number, shoot dry weight and total N concentration. In the roots of OsMYB305-OE rice lines, the expression of OsNRT2.1, OsNRT2.2, OsNAR2.1, and OsNiR2 was up-regulated and 15NO3 - influx was significantly increased. In contrast, the expression of lignocellulose biosynthesis-related genes was repressed so that cellulose content decreased, and soluble sugar concentration increased. Certain intermediates in the glycolytic pathway and the tricarboxylic acid cycle were significantly altered and NADH-GOGAT, Pyr-K, and G6PDH were markedly elevated in the roots of OsMYB305-OE rice lines grown under low-N condition. Our results revealed that OsMYB305 overexpression suppressed cellulose biosynthesis under low-nitrogen condition, thereby freeing up carbohydrate for nitrate uptake and assimilation and enhancing rice growth. OsMYB305 is a potential molecular target for increasing NUE in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xingming Lian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Iqbal A, Dong Q, Wang X, Gui HP, Zhang H, Pang N, Zhang X, Song M. Nitrogen preference and genetic variation of cotton genotypes for nitrogen use efficiency. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2761-2773. [PMID: 32020619 DOI: 10.1002/jsfa.10308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Although nitrogen (N) availability is a major determinant of cotton production, little is known about the importance of plants' preference for ammonium versus nitrate for better growth and nitrogen use efficiency (NUE). We aimed to assess the growth, physiology, and NUE of contrasting N-efficient cotton genotypes (Z-1017, N-efficient and GD-89, N-inefficient) supplied with low and high concentrations of ammonium- and nitrate-N. RESULTS The results revealed that ammonium fed plants showed poor root growth, lower dry biomass, N content, leaf chlorophyll and gas exchange than those under nitrate irrespective of the concentration. However, the highest N uptake and utilization efficiency were obtained with nitrate fed plants, which also resulted in the highest dry biomass, N content, leaf chlorophyll and gas exchange as well as root growth. The results further confirmed that N-efficient (Z-1017) genotype performed better under both N sources, showing more flexibility to contrasting N condition by increasing growth and NUE in either source of N. Moreover, multivariate analysis showed a strong relationship of root morphological traits with N utilization efficiency, suggesting the physiological importance of roots over shoots in response to low nitrate concentration. CONCLUSION Thus, it was confirmed that nitrate-N is superior to ammonium-N and the use of nitrate and N-efficient genotype is the best option for optimum cotton growth and NUE. Further, field evaluation is required to confirm the hypothesis that nitrate is a preferred N source for better cotton production and NUE. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, P. R. China
| | - Qiang Dong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, P. R. China
| | - Xiangru Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, P. R. China
| | - Hui-Ping Gui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, P. R. China
| | - Hengheng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, P. R. China
| | - Nianchang Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, P. R. China
| | - Xiling Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, P. R. China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, P. R. China
| |
Collapse
|
33
|
Iqbal A, Qiang D, Zhun W, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:61-74. [PMID: 32050119 DOI: 10.1016/j.plaphy.2020.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 05/23/2023]
Abstract
Crops, including cotton, are sensitive to nitrogen (N) and excessive use can lead to an increase in production costs and environmental problems. We hypothesized that the use of cotton genotypes with substantial root systems and high genetic potentials for nitrogen-use efficiency (NUE) would best address these problems. Therefore, the interspecific variations and traits contributing to NUE in six cotton genotypes having contrasting NUEs were studied in response to various nitrate concentrations. Large genotypic variations were observed in morphophysiological and biochemical traits, especially shoot dry weight, root traits, and N-assimilating enzyme levels. The roots of all the cotton genotypes were more sensitive to low-than high-nitrate concentrations, and the genotype CCRI-69 had the largest root system irrespective of the nitrate concentration. The root morphological traits were positively correlated with N-utilization efficiency and were more affected by genotype than nitrate concentration. Conversely, growth and N-assimilating enzyme levels were more affected by nitrate concentration and were positively correlated with N-uptake efficiency. Based on shoot dry weight, CCRI-69 and XLZ-30 were identified as N-efficient and N-inefficient genotypes, respectively, and these results were confirmed by their contrasting root systems, N metabolism, and NUEs. In the future, multi-omics techniques will be performed to identify key genes/pathways involved in N metabolism, which may have the potential to improve root architecture and increase NUE.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wang Zhun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Pang Nianchang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| |
Collapse
|
34
|
Mauceri A, Bassolino L, Lupini A, Badeck F, Rizza F, Schiavi M, Toppino L, Abenavoli MR, Rotino GL, Sunseri F. Genetic variation in eggplant for Nitrogen Use Efficiency under contrasting NO 3 - supply. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:487-508. [PMID: 31087763 DOI: 10.1111/jipb.12823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/08/2019] [Indexed: 05/03/2023]
Abstract
Eggplant (Solanum melongena L.) yield is highly sensitive to N fertilization, the excessive use of which is responsible for environmental and human health damage. Lowering N input together with the selection of improved Nitrogen-Use-Efficiency (NUE) genotypes, more able to uptake, utilize, and remobilize N available in soils, can be challenging to maintain high crop yields in a sustainable agriculture. The aim of this study was to explore the natural variation among eggplant accessions from different origins, in response to Low (LN) and High (HN) Nitrate (NO3 - ) supply, to identify NUE-contrasting genotypes and their NUE-related traits, in hydroponic and greenhouse pot experiments. Two eggplants, AM222 and AM22, were identified as N-use efficient and inefficient, respectively, in hydroponic, and these results were confirmed in a pot experiment, when crop yield was also evaluated. Overall, our results indicated the key role of N-utilization component (NUtE) to confer high NUE. The remobilization of N from leaves to fruits may be a strategy to enhance NUtE, suggesting glutamate synthase as a key enzyme. Further, omics technologies will be used for focusing on C-N metabolism interacting networks. The availability of RILs from two other selected NUE-contrasting genotypes will allow us to detect major genes/quantitative trait loci related to NUE.
Collapse
Affiliation(s)
- Antonio Mauceri
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, I-89124, Reggio Calabria, Italy
| | - Laura Bassolino
- CREA Centro di ricerca Genomica e Bioinformatica, I-26836, Montanaso Lombardo, Italy
| | - Antonio Lupini
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, I-89124, Reggio Calabria, Italy
| | - Franz Badeck
- CREA Centro di ricerca Genomica e Bioinformatica, I-29017, Fiorenzuola d'Arda, Italy
| | - Fulvia Rizza
- CREA Centro di ricerca Genomica e Bioinformatica, I-29017, Fiorenzuola d'Arda, Italy
| | - Massimo Schiavi
- CREA Centro di ricerca Genomica e Bioinformatica, I-26836, Montanaso Lombardo, Italy
| | - Laura Toppino
- CREA Centro di ricerca Genomica e Bioinformatica, I-26836, Montanaso Lombardo, Italy
| | - Maria Rosa Abenavoli
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, I-89124, Reggio Calabria, Italy
| | - Giuseppe L Rotino
- CREA Centro di ricerca Genomica e Bioinformatica, I-26836, Montanaso Lombardo, Italy
| | - Francesco Sunseri
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, I-89124, Reggio Calabria, Italy
| |
Collapse
|
35
|
Zhang J, Xie J, Gan Y, Coulter JA, Dawuda MM, Yu J, Lv J, Li J, Zhang X, Tang C, Wang C, Niu T, Calderón-Urrea A. Promoting pepper (Capsicum annuum) photosynthesis via chloroplast ultrastructure and enzyme activities by optimising the ammonium to nitrate ratio. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:303-317. [PMID: 32122461 DOI: 10.1071/fp19149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/16/2019] [Indexed: 05/26/2023]
Abstract
Optimal plant growth in many species is achieved when the two major forms of N are supplied at a particular ratio. In this pot experiment, the effects of five different ammonium:nitrate ratios (ANRs) (0:100, 12.5:87.5, 25:75, 37.5:62.5, and 50:50) on photosynthesis efficiency in chilli pepper (Capsicum annuum L.) plants were evaluated. The results showed that an ANR of 25:75 increased the contents of chl a, leaf area and dry matter, whereas chl b content was not affected by the ANRs. Regarding chlorophyll fluorescence, an ANR of 25:75 also enhanced the actual photochemical efficiency, photochemical quenching and maximum photosynthetic rate. However, the 0:100 and 50:50 ANRs resulted in higher values for nonphotochemical quenching. An inhibition of maximal photochemical efficiency was found when 50% NH4+ was supplied at the later stage of plant growth. The addition of 25% or 37.5% NH4+ was beneficial for gas exchange parameters and the 25% NH4+ optimised the thylakoid of chloroplasts. Compared with nitrate alone, 12.5–50% NH4+ upregulated glutamate dehydrogenase (GDH), the large subunit and the small subunit of Rubisco. It can be concluded that the 25:75 ANR accelerated N assimilation through active GDH, which provides a material basis for chloroplast and Rubisco formation, resulting in the increased photosynthetic rate and enhanced growth in chilli pepper.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, P.R. China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, P.R. China; and Corresponding Author.
| | - Yantai Gan
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK, S9H 3X2, Canada
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, P.R. China; and Department of Horticulture, Faculty of Agriculture, University for Development Studies, Post Office Box TL 1882, Tamale, Ghana
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, P.R. China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, P.R. China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, P.R. China
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, P.R. China
| | - Chaonan Tang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, P.R. China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, P.R. China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, P.R. China
| | - Alejandro Calderón-Urrea
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, P.R. China; and Department of Biology, College of Science and Mathematics, California State University, Fresno, Fresno, CA, USA
| |
Collapse
|
36
|
Transcriptome Analysis Reveals Differences in Key Genes and Pathways Regulating Carbon and Nitrogen Metabolism in Cotton Genotypes under N Starvation and Resupply. Int J Mol Sci 2020; 21:ijms21041500. [PMID: 32098345 PMCID: PMC7073098 DOI: 10.3390/ijms21041500] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 01/03/2023] Open
Abstract
Nitrogen (N) is the most important limiting factor for cotton production worldwide. Genotype-dependent ability to cope with N shortage has been only partially explored in cotton, and in this context, the comparison of molecular responses of cotton genotypes with different nitrogen use efficiency (NUE) is of particular interest to dissect the key molecular mechanisms underlying NUE. In this study, we employed Illumina RNA-Sequencing to determine the genotypic difference in transcriptome profile using two cotton genotypes differing in NUE (CCRI-69, N-efficient, and XLZ-30, N-inefficient) under N starvation and resupply treatments. The results showed that a large genetic variation existed in differentially expressed genes (DEGs) related to amino acid, carbon, and nitrogen metabolism between CCRI-69 and XLZ-30. Further analysis of metabolic changes in cotton genotypes under N resupply showed that nitrogen metabolism and aromatic amino acid metabolism pathways were mainly enriched in CCRI-69 by regulating carbon metabolism pathways such as starch and sucrose metabolism, glycolysis/gluconeogenesis, and pentose phosphate pathway. Additionally, we performed an expression network analysis of genes related to amino acid, carbon, and nitrogen metabolism. In total, 75 and 33 genes were identified as hub genes in shoots and roots of cotton genotypes, respectively. In summary, the identified hub genes may provide new insights into coordinating carbon and nitrogen metabolism and improving NUE in cotton.
Collapse
|
37
|
Tang D, Liu MY, Zhang Q, Ma L, Shi Y, Ruan J. Preferential assimilation of NH 4+ over NO 3- in tea plant associated with genes involved in nitrogen transportation, utilization and catechins biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110369. [PMID: 31928660 DOI: 10.1016/j.plantsci.2019.110369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Physiological effects of ammonium (NH4+) and nitrate (NO3-) on tea have confirmed that tea plants prefer NH4+ as the dominant nitrogen (N) source. To investigate the possible explanations for this preference, studies of 15NH4+ and 15NO3- assimilation using hydroponically grown tea plants were conducted. During the time course of 15NH4+ and 15NO3- assimilation, the absorption of 15N from 15NH4+ was more rapid than that from 15NO3-, as there was a more efficient expression pattern of NH4+ transporters compared with that of NO3- transporters. 15NH4+-fed tea plants accumulated more 15N than 15NO3- fed plants, which was demonstrated by that genes related to primary N assimilation, like CsNR, CsNiR, CsGDH and CsGOGAT, were more affected by 15NH4+ than 15NO3-. Markedly higher NH4+ concentrations were observed in 15NH4+-fed tea roots in comparison with NO3- treatment, whereas tea plants maintained a balanced concentration of NH4+ in tea leaves under both these two N forms. This maintenance was achieved through the increased expression of genes involved in theanine biosynthesis and the inhibition of genes related to catechins derived from phenylpropanoid pathway. The current results suggest that efficient NH4+ transportation, assimilation, and reutilization enables tea plant as an ammonium preferring plant species.
Collapse
Affiliation(s)
- Dandan Tang
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mei-Ya Liu
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Qunfeng Zhang
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lifeng Ma
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuanzhi Shi
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization (Ministry of Agriculture), Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
38
|
Iqbal A, Qiang D, Alamzeb M, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:904-914. [PMID: 31612486 DOI: 10.1002/jsfa.10085] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 05/19/2023]
Abstract
A huge amount of nitrogenous fertilizer is used to increase crop production. This leads to an increase in the cost of production, and to human and environmental problems. It is therefore necessary to improve nitrogen use efficiency (NUE) and to design agronomic, biotechnological and breeding strategies for better fertilizer use. Nitrogen use efficiency relies primarily on how plants extract, uptake, transport, assimilate, and remobilize nitrogen. Many plants use nitrate as a preferred nitrogen source. It acts as a signaling molecule in the various important physiological processes required for growth and development. As nitrate is the main source of nitrogen in the soil, root nitrate transporters are important subjects for study. The latest reports have also discussed how nitrate transporter and assimilation genes can be used as molecular tools to improve NUE in crops. The purpose of this review is to describe the mechanisms and functions of nitrate as a specific factor that can be addressed to increase NUE. Improving factors such as nitrate uptake, transport, assimilation, and remobilization through activation by signaling, sensing, and regulatory processes will improve plant growth and NUE. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Madeeha Alamzeb
- Standardization of cotton planting technology, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Pang Nianchang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| |
Collapse
|
39
|
Magadlela A, Morcillo RJL, Kleinert A, Venter M, Steenkamp E, Valentine A. Glutamate dehydrogenase is essential in the acclimation of Virgilia divaricata, a legume indigenous to the nutrient-poor Mediterranean-type ecosystems of the Cape Fynbos. JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153053. [PMID: 31644998 DOI: 10.1016/j.jplph.2019.153053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Glutamate dehydrogenase (NAD(H)- GDH, EC 1.4.1.2) is an important enzyme in nitrogen (N) metabolism. It serves as a link between C and N metabolism, in its role of assimilating ammonia into glutamine or deaminating glutamate into 2-oxoglutarate and ammonia. GDH may also have a key in the N assimilation of legumes growing in P-poor soils. Virgilia divaricata is such a legume, growing in the nutrient limited soils of the mediterranean-type Cape fynbos ecosystem. In order to understand the role of GDH in the nitrogen nutrition of V. divaricata, the aim of this study was to identify the GDH gene transcripts, their relative expressions and enzyme activity in P-stressed roots and nodules during N metabolism. During P deficiency there was a reduction in total plant biomass as well as total plant P concentration. The analysis of the GDH cDNA sequences in V. divaricata revealed the presence of GHD1 and GHD2 subunits, these corresponding to the GDH1, GDH-B and GDH3 genes of legumes and non-legume plants. The relative expression of GDH1 and GDH2 genes in the roots and nodules, indicates that two the subunits were differently regulated depending on the organ type, rather than P supply. Although both transcripts appeared to be ubiquitously expressed in the roots and nodules, the GDH2 transcript evidently predominated over those of GDH1. Furthermore, the higher expression of both GDH transcripts in the roots than nodules, suggests that roots are more reliant on on GDH in P-poor soils, than nodules. With regards to GHD activity, both aminating and deaminating GDH activities were differently affected by P deficiency in roots and nodules. This may function to assimilate N and regulate internal C and N in the roots and nodules. The variation in GDH1 and GDH2 transcript expression and GDH enzyme activities, indicate that the enzyme may be regulated by post-translational modification, instead of by gene expression during P deficiency in V. divaricata.
Collapse
Affiliation(s)
- Anathi Magadlela
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X 01, Scottsville 3209, South Africa
| | - Rafael Jorge Leon Morcillo
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, No. 3888 Chenhua Road, Shanghai 201602, People's Republic of China
| | - Aleysia Kleinert
- Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Mauritz Venter
- AzarGen Biotechnologies, Launchlab, Hammandshand Road, Stellenbosch 7600, South Africa
| | - Emma Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Alex Valentine
- Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
40
|
de Ï Vila Silva L, Condori-Apfata JA, Costa PMDA, Martino PBO, Tavares ACA, Marcelino MM, Raimundi SBCJR, Picoli EADT, Araï Jo WL, Zsï Gï N A, Sulpice R, Nunes-Nesi A. Source Strength Modulates Fruit Set by Starch Turnover and Export of Both Sucrose and Amino Acids in Pepper. PLANT & CELL PHYSIOLOGY 2019; 60:2319-2330. [PMID: 31268146 DOI: 10.1093/pcp/pcz128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Fruit set is an important yield-related parameter, which varies drastically due to genetic and environmental factors. Here, two commercial cultivars of Capsicum chinense (Biquinho and Habanero) were evaluated in response to light intensity (unshaded and shaded) and N supply (deficiency and sufficiency) to understand the role of source strength on fruit set at the metabolic level. We assessed the metabolic balance of primary metabolites in source leaves during the flowering period. Furthermore, we investigated the metabolic balance of the same metabolites in flowers to gain more insights into their influence on fruit set. Genotype and N supply had a strong effect on fruit set and the levels of primary metabolites, whereas light intensity had a moderate effect. Higher fruit set was mainly related to the export of both sucrose and amino acids from source leaves to flowers. Additionally, starch turnover in source leaves, but not in flowers, had a central role on the sucrose supply to sink organs at night. In flowers, our results not only confirmed the role of the daily supply of carbohydrates on fruit set but also indicated a potential role of the balance of amino acids and malate.
Collapse
Affiliation(s)
- Lucas de Ï Vila Silva
- Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa, Minas Gerais, Brazil
| | - Jorge A Condori-Apfata
- Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa, Minas Gerais, Brazil
| | | | - Pedro Brandï O Martino
- Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa, Minas Gerais, Brazil
| | - Ana C Azevedo Tavares
- Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa, Minas Gerais, Brazil
| | | | | | | | - Wagner L Araï Jo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa, Minas Gerais, Brazil
| | - Agustin Zsï Gï N
- Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa, Minas Gerais, Brazil
| | - Ronan Sulpice
- Plant Systems Biology Laboratory, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa, Minas Gerais, Brazil
| |
Collapse
|
41
|
Vega-Mas I, Cukier C, Coleto I, González-Murua C, Limami AM, González-Moro MB, Marino D. Isotopic labelling reveals the efficient adaptation of wheat root TCA cycle flux modes to match carbon demand under ammonium nutrition. Sci Rep 2019; 9:8925. [PMID: 31222161 PMCID: PMC6586781 DOI: 10.1038/s41598-019-45393-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/06/2019] [Indexed: 11/25/2022] Open
Abstract
Proper carbon (C) supply is essential for nitrogen (N) assimilation especially when plants are grown under ammonium (NH4+) nutrition. However, how C and N metabolic fluxes adapt to achieve so remains uncertain. In this work, roots of wheat (Triticum aestivum L.) plants grown under exclusive NH4+ or nitrate (NO3-) supply were incubated with isotope-labelled substrates (15NH4+, 15NO3-, or [13C]Pyruvate) to follow the incorporation of 15N or 13C into amino acids and organic acids. Roots of plants adapted to ammonium nutrition presented higher capacity to incorporate both 15NH4+ and 15NO3- into amino acids, thanks to the previous induction of the NH4+ assimilative machinery. The 15N label was firstly incorporated into [15N]Gln vía glutamine synthetase; ultimately leading to [15N]Asn accumulation as an optimal NH4+ storage. The provision of [13C]Pyruvate led to [13C]Citrate and [13C]Malate accumulation and to rapid [13C]2-OG consumption for amino acid synthesis and highlighted the importance of the anaplerotic routes associated to tricarboxylic acid (TCA) cycle. Taken together, our results indicate that root adaptation to ammonium nutrition allowed efficient assimilation of N thanks to the promotion of TCA cycle open flux modes in order to sustain C skeleton availability for effective NH4+ detoxification into amino acids.
Collapse
Affiliation(s)
- Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Caroline Cukier
- University of Angers, Institut de Recherche en Horticulture et Semences, INRA, Structure Fédérative de Recherche 4207, Qualité et Santé du Végétal, F-49045, Angers, France
| | - Inmaculada Coleto
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Anis M Limami
- University of Angers, Institut de Recherche en Horticulture et Semences, INRA, Structure Fédérative de Recherche 4207, Qualité et Santé du Végétal, F-49045, Angers, France
| | - M Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080, Bilbao, Spain.
- Ikerbasque, Basque Foundation for Science, E-48011, Bilbao, Spain.
| |
Collapse
|
42
|
de Ávila Silva L, Condori-Apfata JA, Marcelino MM, Tavares ACA, Raimundi SCJ, Martino PB, Araújo WL, Zsögön A, Sulpice R, Nunes-Nesi A. Nitrogen differentially modulates photosynthesis, carbon allocation and yield related traits in two contrasting Capsicum chinense cultivars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:224-237. [PMID: 31128692 DOI: 10.1016/j.plantsci.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 05/24/2023]
Abstract
Yield-related traits of Capsicum chinense are highly dependent on coordination between vegetative and reproductive growth, since the formation of reproductive tissues occurs iteratively in new sympodial bifurcations. In this study, we used two C. chinense cultivars (Biquinho and Habanero), contrasting for fruit size and fruit set, to investigate the responses of nitrogen (N) deficiency and excess on growth, photosynthesis, carbon (C) and N metabolisms as well as yield-related traits. Both cultivars increased biomass allocation to leaves in conditions of higher N supply and exhibited a parabolic behavior for fruit biomass allocation. Plants growing under N-deficiency produced a lower number of flowers and heavier fruits. Contrarily, plants under high N condition tended to decrease their CO2 assimilation rate, harvest index and fruit weight. Biquinho, the cultivar with lower fruit size and higher fruit set, was initially less affected by excess of N due to its continuous formation of new reproductive sinks in relation to Habanero (which has lower fruit set and higher fruit size). The results suggest that N amount influences sucrose supply to different organs and can differentially affect yield-related traits between Capsicum cultivars with contrasting source-sink relations.
Collapse
Affiliation(s)
- Lucas de Ávila Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jorge A Condori-Apfata
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Mariana Marques Marcelino
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Ana C Azevedo Tavares
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Sábata C Januário Raimundi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Pedro Brandão Martino
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- National University of Ireland, Galway, Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, Ryan Institute, Ireland
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
43
|
de la Peña M, González-Moro MB, Marino D. Providing carbon skeletons to sustain amide synthesis in roots underlines the suitability of Brachypodium distachyon for the study of ammonium stress in cereals. AOB PLANTS 2019; 11:plz029. [PMID: 31139336 PMCID: PMC6534281 DOI: 10.1093/aobpla/plz029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/04/2019] [Accepted: 05/09/2019] [Indexed: 05/24/2023]
Abstract
Plants mainly acquire N from the soil in the form of nitrate (NO3 -) or ammonium (NH4 +). Ammonium-based nutrition is gaining interest because it helps to avoid the environmental pollution associated with nitrate fertilization. However, in general, plants prefer NO3 - and indeed, when growing only with NH4 + they can encounter so-called ammonium stress. Since Brachypodium distachyon is a useful model species for the study of monocot physiology and genetics, we chose it to characterize performance under ammonium nutrition. Brachypodium distachyon Bd21 plants were grown hydroponically in 1 or 2.5 mM NO3 - or NH4 +. Nitrogen and carbon metabolism associated with NH4 + assimilation was evaluated in terms of tissue contents of NO3 -, NH4 +, K, Mg, Ca, amino acids and organic acids together with tricarboxylic acid (TCA) cycle and NH4 +-assimilating enzyme activities and RNA transcript levels. The roots behaved as a physiological barrier preventing NH4 + translocation to aerial parts, as indicated by a sizeable accumulation of NH4 +, Asn and Gln in the roots. A continuing high NH4 + assimilation rate was made possible by a tuning of the TCA cycle and its associated anaplerotic pathways to match 2-oxoglutarate and oxaloacetate demand for Gln and Asn synthesis. These results show B. distachyon to be a highly suitable tool for the study of the physiological, molecular and genetic basis of ammonium nutrition in cereals.
Collapse
Affiliation(s)
- Marlon de la Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
44
|
Wang R, Xu S, Sun H, Feng S, Jiang C, Zhou S, Wu S, Zhuang G, Chen B, Bai Z, Zhuang X. Complex regulatory network allows Myriophyllum aquaticum to thrive under high-concentration ammonia toxicity. Sci Rep 2019; 9:4801. [PMID: 30886354 PMCID: PMC6423053 DOI: 10.1038/s41598-019-41236-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/05/2019] [Indexed: 01/24/2023] Open
Abstract
Plants easily experience ammonia (NH4+) toxicity, especially aquatic plants. However, a unique wetland plant species, Myriophyllum aquaticum, can survive in livestock wastewater with more than 26 mM NH4+. In this study, the mechanisms of the M. aquaticum response to NH4+ toxicity were analysed with RNA-seq. Preliminary analysis of enzyme activities indicated that key enzymes involved in nitrogen metabolism were activated to assimilate toxic NH4+ into amino acids and proteins. In response to photosystem damage, M. aquaticum seemed to remobilize starch and cellulose for greater carbon and energy supplies to resist NH4+ toxicity. Antioxidative enzyme activity and the secondary metabolite content were significantly elevated for reactive oxygen species removal. Transcriptomic analyses also revealed that genes involved in diverse functions (e.g., nitrogen, carbon and secondary metabolisms) were highly responsive to NH4+ stress. These results suggested that a complex physiological and genetic regulatory network in M. aquaticum contributes to its NH4+ tolerance.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haishu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shugeng Feng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cancan Jiang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sining Zhou
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shimin Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baodong Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
45
|
Coleto I, Vega-Mas I, Glauser G, González-Moro MB, Marino D, Ariz I. New Insights on Arabidopsis thaliana Root Adaption to Ammonium Nutrition by the Use of a Quantitative Proteomic Approach. Int J Mol Sci 2019; 20:ijms20040814. [PMID: 30769801 PMCID: PMC6412517 DOI: 10.3390/ijms20040814] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is an essential element for plant nutrition. Nitrate and ammonium are the two major inorganic nitrogen forms available for plant growth. Plant preference for one or the other form depends on the interplay between plant genetic background and environmental variables. Ammonium-based fertilization has been shown less environmentally harmful compared to nitrate fertilization, because of reducing, among others, nitrate leaching and nitrous oxide emissions. However, ammonium nutrition may become a stressful situation for a wide range of plant species when the ion is present at high concentrations. Although studied for long time, there is still an important lack of knowledge to explain plant tolerance or sensitivity towards ammonium nutrition. In this context, we performed a comparative proteomic study in roots of Arabidopsis thaliana plants grown under exclusive ammonium or nitrate supply. We identified and quantified 68 proteins with differential abundance between both conditions. These proteins revealed new potential important players on root response to ammonium nutrition, such as H⁺-consuming metabolic pathways to regulate pH homeostasis and specific secondary metabolic pathways like brassinosteroid and glucosinolate biosynthetic pathways.
Collapse
Affiliation(s)
- Inmaculada Coleto
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| | - Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland.
| | - María Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain.
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain.
| | - Idoia Ariz
- Departamento de Biología Ambiental. Facultad de Ciencias, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain.
| |
Collapse
|
46
|
Daou L, Shipley B. The measurement and quantification of generalized gradients of soil fertility relevant to plant community ecology. Ecology 2019; 100:e02549. [DOI: 10.1002/ecy.2549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Laurent Daou
- Département de biologie Laboratoire d’Écologie Fonctionnelle Université de Sherbrooke Sherbrooke Quebec J1K 2R1 Canada
| | - Bill Shipley
- Département de biologie Laboratoire d’Écologie Fonctionnelle Université de Sherbrooke Sherbrooke Quebec J1K 2R1 Canada
| |
Collapse
|
47
|
Marino D, Moran JF. Can Ammonium Stress Be Positive for Plant Performance? FRONTIERS IN PLANT SCIENCE 2019; 10:1103. [PMID: 31608080 PMCID: PMC6771378 DOI: 10.3389/fpls.2019.01103] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/12/2019] [Indexed: 05/22/2023]
Affiliation(s)
- Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Daniel Marino, ; Jose Fernando Moran,
| | - Jose Fernando Moran
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), Mutilva, Spain
- *Correspondence: Daniel Marino, ; Jose Fernando Moran,
| |
Collapse
|
48
|
Mantovani C, Prado RM, Pivetta KFL. Impact of Nitrate and Ammonium ratio on Nutrition and Growth of two Epiphytic Orchids. AN ACAD BRAS CIENC 2018; 90:3423-3431. [PMID: 30365712 DOI: 10.1590/0001-3765201820171008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/02/2018] [Indexed: 12/30/2022] Open
Abstract
Phalaenopsis and Dendrobium do not grow and flower well with 100% ammonium (NH4-N); and there are detailed studies on the effects of nitrate (NO3-N) and ammonium ratios on the flowering, but no information about accumulation of other nutrients and the effects of ammonium toxicity on orchids. For this reason, two experiments were carried out with orchids: Phalaenopsis 'Golden Peoker' and Dendrobium 'Valentine'. Six months after acclimatization the plants were transplanted to individual plastic vessels and the treatments consisted of five ratios (%) of nitrate / ammonium (0/100, 25/75, 50/50, 75/25, 100/0). The sources of NO3-N and NH4-N were calcium nitrate and ammonium sulfate, respectively. After 12 months treatment, when the plants were beginning to issuance of flower stem, the accumulation of: N, P, K, Ca and Mg in the shoot and biometric variables were evaluated for both species. The NH4-N ratio of 40% and 50% of the total nitrogen benefited the growth of Phalaenopsis and Dendrobium, respectively. The application of higher proportions of ammonium resulted in decreased N, K, Ca and Mg absorption, index of green color and increased leakage of electrolytes in Phalaenopsis and Dendrobium. NH4-N proportions greater than 75% for 12 months caused toxicity in Phalaenopsis and Dendrobium.
Collapse
Affiliation(s)
- Cibele Mantovani
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho"/UNESP, Via de Acesso Prof. Dr. Paulo Donato Castellane, s/n, Zona Rural, 14884-900 Jaboticabal, SP, Brazil
| | - Renato M Prado
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho"/UNESP, Via de Acesso Prof. Dr. Paulo Donato Castellane, s/n, Zona Rural, 14884-900 Jaboticabal, SP, Brazil
| | - Kathia F L Pivetta
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho"/UNESP, Via de Acesso Prof. Dr. Paulo Donato Castellane, s/n, Zona Rural, 14884-900 Jaboticabal, SP, Brazil
| |
Collapse
|
49
|
Vega-Mas I, Pérez-Delgado CM, Marino D, Fuertes-Mendizábal T, González-Murua C, Márquez AJ, Betti M, Estavillo JM, González-Moro MB. Elevated CO2 Induces Root Defensive Mechanisms in Tomato Plants When Dealing with Ammonium Toxicity. PLANT & CELL PHYSIOLOGY 2017; 58:2112-2125. [PMID: 29059445 DOI: 10.1093/pcp/pcx146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/20/2017] [Indexed: 05/23/2023]
Abstract
An adequate carbon supply is fundamental for plants to thrive under ammonium stress. In this work, we studied the mechanisms involved in tomato (Solanum lycopersicum L.) response to ammonium toxicity when grown under ambient or elevated CO2 conditions (400 or 800 p.p.m. CO2). Tomato roots were observed to be the primary organ dealing with ammonium nutrition. We therefore analyzed nitrogen (N) and carbon (C) metabolism in the roots, integrating the physiological response with transcriptomic regulation. Elevated levels of CO2 preferentially stimulated root growth despite the high ammonium content. The induction of anaplerotic enzymes from the tricarboxylic acid (TCA) cycle led to enhanced amino acid synthesis under ammonium nutrition. Furthermore, the root transcriptional response to ammonium toxicity was improved by CO2-enriched conditions, leading to higher expression of stress-related genes, as well as enhanced modulation of genes related to signaling, transcription, transport and hormone metabolism. Tomato roots exposed to ammonium stress also showed a defense-like transcriptional response according to the modulation of genes related to detoxification and secondary metabolism, involving principally terpenoid and phenolic compounds. These results indicate that increasing C supply allowed the co-ordinated regulation of root defense mechanisms when dealing with ammonium toxicity.
Collapse
Affiliation(s)
- Izargi Vega-Mas
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Carmen M Pérez-Delgado
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, Sevilla, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Teresa Fuertes-Mendizábal
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, Sevilla, Spain
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, Sevilla, Spain
| | - José María Estavillo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - María Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| |
Collapse
|
50
|
Coleto I, de la Peña M, Rodríguez-Escalante J, Bejarano I, Glauser G, Aparicio-Tejo PM, González-Moro MB, Marino D. Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus). BMC PLANT BIOLOGY 2017; 17:157. [PMID: 28931380 PMCID: PMC5607504 DOI: 10.1186/s12870-017-1100-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/05/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND The coordination between nitrogen (N) and sulfur (S) assimilation is required to suitably provide plants with organic compounds essential for their development and growth. The N source induces the adaptation of many metabolic processes in plants; however, there is scarce information about the influence that it may exert on the functioning of S metabolism. The aim of this work was to provide an overview of N and S metabolism in oilseed rape (Brassica napus) when exposed to different N sources. To do so, plants were grown in hydroponic conditions with nitrate or ammonium as N source at two concentrations (0.5 and 1 mM). RESULTS Metabolic changes mainly occurred in leaves, where ammonium caused the up-regulation of enzymes involved in the primary assimilation of N and a general increase in the concentration of N-compounds (NH4+, amino acids and proteins). Similarly, the activity of key enzymes of primary S assimilation and the content of S-compounds (glutathione and glucosinolates) were also higher in leaves of ammonium-fed plants. Interestingly, sulfate level was lower in leaves of ammonium-fed plants, which was accompanied by the down-regulation of SULTR1 transporters gene expression. CONCLUSIONS The results highlight the impact of the N source on different steps of N and S metabolism in oilseed rape, notably inducing N and S assimilation in leaves, and put forward the potential of N source management to modulate the synthesis of compounds with biotechnological interest, such as glucosinolates.
Collapse
Affiliation(s)
- Inmaculada Coleto
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Marlon de la Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Jon Rodríguez-Escalante
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Iraide Bejarano
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Pedro M. Aparicio-Tejo
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Pamplona, Navarre Spain
| | - M. Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| |
Collapse
|