1
|
Siddiqui N, Gabi MT, Kamruzzaman M, Ambaw AM, Teferi TJ, Dadshani S, Léon J, Ballvora A. Genetic dissection of root architectural plasticity and identification of candidate loci in response to drought stress in bread wheat. BMC Genom Data 2023; 24:38. [PMID: 37495985 PMCID: PMC10373353 DOI: 10.1186/s12863-023-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The frequency of droughts has dramatically increased over the last 50 years, causing yield declines in cereals, including wheat. Crop varieties with efficient root systems show great potential for plant adaptation to drought stress, however; genetic control of root systems in wheat under field conditions is not yet well understood. RESULTS Natural variation in root architecture plasticity (phenotypic alteration due to changing environments) was dissected under field-based control (well-irrigated) and drought (rain-out shelter) conditions by a genome-wide association study using 200 diverse wheat cultivars. Our results revealed root architecture and plasticity traits were differentially responded to drought stress. A total of 25 marker-trait associations (MTAs) underlying natural variations in root architectural plasticity were identified in response to drought stress. They were abundantly distributed on chromosomes 1 A, 1B, 2 A, 2B, 3 A, 3B, 4B, 5 A, 5D, 7 A and 7B of the wheat genome. Gene ontology annotation showed that many candidate genes associated with plasticity were involved in water-transport and water channel activity, cellular response to water deprivation, scavenging reactive oxygen species, root growth and development and hormone-activated signaling pathway-transmembrane transport, indicating their response to drought stress. Further, in silico transcript abundance analysis demonstrated that root plasticity-associated candidate genes were highly expressed in roots across different root growth stages and under drought treatments. CONCLUSION Our results suggest that root phenotypic plasticity is highly quantitative, and the corresponding loci are associated with drought stress that may provide novel ways to enable root trait breeding.
Collapse
Affiliation(s)
- Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Melesech T Gabi
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany
| | - Mohammad Kamruzzaman
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202, Bangladesh
| | - Abebaw M Ambaw
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany
| | - Tesfaye J Teferi
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany
| | - Said Dadshani
- INRES-Plant Nutrition, University of Bonn, 53115, Bonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Klein-Altendorf 2, 53359, Rheinbach, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
2
|
Zhang G, Hu Y, Pan X, Cao R, Hu Q, Fu R, Risalat H, Shang B. Effects of increased ozone on rice panicle morphology. iScience 2023; 26:106471. [PMID: 37096034 PMCID: PMC10122049 DOI: 10.1016/j.isci.2023.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Ground-level ozone threatens rice production, which provides staple food for more than half of the world's population. Improving the adaptability of rice crops to ozone pollution is essential to ending global hunger. Rice panicles not only affect grain yield and grain quality but also the adaptability of plants to environmental changes, but the effects of ozone on rice panicles are not well understood. Through an open top chamber experiment, we investigated the effects of long-term and short-term ozone on the traits of rice panicles, finding that both long-term and short-term ozone significantly reduced the number of panicle branches and spikelets in rice, and especially the fertility of spikelets in hybrid cultivar. The reduction in spikelet quantity and fertility because of ozone exposure is caused by changes in secondary branches and attached spikelet. These results suggest the potential for effective adaptation to ozone by altering breeding targets and developing growth stage-specific agricultural techniques.
Collapse
Affiliation(s)
- Guoyou Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yaxin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaoya Pan
- College of Environmental Science and Engineering, Donghua University, ShangHai 201620, China
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rong Cao
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qinan Hu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rao Fu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hamdulla Risalat
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
3
|
Leppälä J, Gaupels F, Xu E, Morales LO, Durner J, Brosché M. Ozone and nitrogen dioxide regulate similar gene expression responses in Arabidopsis but natural variation in the extent of cell death is likely controlled by different genetic loci. FRONTIERS IN PLANT SCIENCE 2022; 13:994779. [PMID: 36340361 PMCID: PMC9627343 DOI: 10.3389/fpls.2022.994779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
High doses of ozone (O3) and nitrogen dioxide (NO2) cause damage and cell death in plants. These two gases are among the most harmful air pollutants for ecosystems and therefore it is important to understand how plant resistance or sensitivity to these gases work at the molecular level and its genetic control. We compared transcriptome data from O3 and NO2 fumigations to other cell death related treatments, as well as individual marker gene transcript level in different Arabidopsis thaliana accessions. Our analysis revealed that O3 and NO2 trigger very similar gene expression responses that include genes involved in pathogen resistance, cell death and ethylene signaling. However, we also identified exceptions, for example RBOHF encoding a reactive oxygen species producing RESPIRATORY BURST OXIDASE PROTEIN F. This gene had increased transcript levels by O3 but decreased transcript levels by NO2, showing that plants can identify each of the gases separately and activate distinct signaling pathways. To understand the genetics, we conducted a genome wide association study (GWAS) on O3 and NO2 tolerance of natural Arabidopsis accessions. Sensitivity to both gases seem to be controlled by several independent small effect loci and we did not find an overlap in the significantly associated regions. Further characterization of the GWAS candidate loci identified new regulators of O3 and NO2 induced cell death including ABH1, a protein that functions in abscisic acid signaling, mRNA splicing and miRNA processing. The GWAS results will facilitate further characterization of the control of programmed cell death and differences between oxidative and nitrosative stress in plants.
Collapse
Affiliation(s)
- Johanna Leppälä
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Enjun Xu
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Luis O. Morales
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Feng Y, Nguyen TH, Alam MS, Emberson L, Gaiser T, Ewert F, Frei M. Identifying and modelling key physiological traits that confer tolerance or sensitivity to ozone in winter wheat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119251. [PMID: 35390418 DOI: 10.1016/j.envpol.2022.119251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Tropospheric ozone threatens crop production in many parts of the world, especially in highly populated countries in economic transition. Crop models suggest substantial global yield losses for wheat, but typically such models fail to address differences in ozone responses between tolerant and sensitive genotypes. Therefore, the purpose of this study was to identify physiological traits contributing to yield losses or yield stability under ozone stress in 18 contrasting wheat cultivars that had been pre-selected from a larger wheat population with known ozone tolerance. Plants were exposed to season-long ozone fumigation in open-top chambers at an average ozone concentration of 70 ppb with three additional acute ozone episodes of around 150 ppb. Compared to control conditions, average yield loss was 18.7 percent, but large genotypic variation was observed ranging from 2.7 to 44.6 percent. Foliar chlorophyll content represented by normalized difference vegetation index and net CO2 assimilation rate of young leaves during grain filling were the physiological traits most strongly correlated with grain yield losses or stability. Accumulative effects of chronic ozone exposure on photosynthesis were more detrimental for grain yield than instantaneous effects of acute ozone shocks, or accelerated senescence of older leaves represented by changes in the ratio of brown leaf area/green leaf area index. We used experimental data of two selected tolerant or sensitive varieties, respectively, to parametrize the LINTULCC2 crop model expanded with an ozone response routine. By specifying parameters representing the distinct physiological responses of contrasting genotypes, we simulated yield losses of 7 percent (tolerant) or 33 percent (sensitive). By considering genotypic differences in ozone response models, this study helps to improve the accuracy of simulation studies, estimate the effects of adaptive breeding, and identify physiological traits for the breeding of ozone tolerant wheat varieties that could deliver stable yields despite ozone exposure.
Collapse
Affiliation(s)
- Yanru Feng
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding, Justus Liebig University Giessen, 35390, Giessen, Germany; Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Thuy Huu Nguyen
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding, Justus Liebig University Giessen, 35390, Giessen, Germany
| | - Lisa Emberson
- Environment and Geography Department, University of York, YO10 5NG, UK
| | - Thomas Gaiser
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Frank Ewert
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany; Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Systems Analysis, 15374, Muencheberg, Germany
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding, Justus Liebig University Giessen, 35390, Giessen, Germany.
| |
Collapse
|
5
|
Alam MS, Maina AW, Feng Y, Wu LB, Frei M. Interactive effects of tropospheric ozone and blast disease (Magnaporthe oryzae) on different rice genotypes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48893-48907. [PMID: 35201578 PMCID: PMC9252976 DOI: 10.1007/s11356-022-19282-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/14/2022] [Indexed: 05/06/2023]
Abstract
Rising tropospheric ozone concentrations can cause rice yield losses and necessitate the breeding of ozone-tolerant rice varieties. However, ozone tolerance should not compromise the resistance to important biotic stresses such as the rice blast disease. Therefore, we investigated the interactive effects of ozone and rice blast disease on nine different rice varieties in an experiment testing an ozone treatment, blast inoculation, and their interaction. Plants were exposed to an ozone concentration of 100 ppb for 7 h per day or ambient air throughout the growth period. Half of the plants were simultaneously infected with rice blast inoculum. Grain yield was significantly reduced in the blast treatment (17%) and ozone treatment (37%), while the combination of both stresses did not further decrease grain yields compared to ozone alone. Similar trends occurred for physiological traits such as vegetation indices, normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), Lichtenthaler index 2 (Lic2), and anthocyanin reflectance index 1 (ARI1), as well as stomatal conductance and lipid peroxidation. Ozone exposure mitigated the formation of visible blast symptoms, while blast inoculation did not significantly affect visible ozone symptoms. Although different genotypes showed contrasting responses to the two types of stresses, no systematic pattern was observed regarding synergies or trade-offs under the two types of stresses. Therefore, we conclude that despite the similarities in physiological stress responses to ozone and blast, the tolerance to these stresses does not appear to be genetically linked in rice.
Collapse
Affiliation(s)
- Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, 35390, Giessen, Germany
| | | | - Yanru Feng
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, 35390, Giessen, Germany
- Institute for Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Lin-Bo Wu
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, 35390, Giessen, Germany
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, 35390, Giessen, Germany.
| |
Collapse
|
6
|
Montes CM, Demler HJ, Li S, Martin DG, Ainsworth EA. Approaches to investigate crop responses to ozone pollution: from O 3 -FACE to satellite-enabled modeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:432-446. [PMID: 34555243 PMCID: PMC9293421 DOI: 10.1111/tpj.15501] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 05/05/2023]
Abstract
Ozone (O3 ) is a damaging air pollutant to crops. As one of the most reactive oxidants known, O3 rapidly forms other reactive oxygen species (ROS) once it enters leaves through stomata. Those ROS in turn can cause oxidative stress, reduce photosynthesis, accelerate senescence, and decrease crop yield. To improve and adapt our feed, fuel, and food supply to rising O3 pollution, a number of Free Air Concentration Enrichment (O3 -FACE) facilities have been developed around the world and have studied key staple crops. In this review, we provide an overview of the FACE facilities and highlight some of the lessons learned from the last two decades of research. We discuss the differences between C3 and C4 crop responses to elevated O3 , the possible trade-off between productivity and protection, genetic variation in O3 response within and across species, and how we might leverage this observed variation for crop improvement. We also highlight the need to improve understanding of the interaction between rising O3 pollution and other aspects of climate change, notably drought. Finally, we propose the use of globally modeled O3 data that are available at increasing spatial and temporal resolutions to expand upon the research conducted at the limited number of global O3 -FACE facilities.
Collapse
Affiliation(s)
- Christopher M. Montes
- USDA ARS Global Change and Photosynthesis Research Unit1201 W. Gregory DriveUrbanaIL61801USA
| | - Hannah J. Demler
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Shuai Li
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Duncan G. Martin
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Elizabeth A. Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit1201 W. Gregory DriveUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
7
|
Siddiqui MN, Teferi TJ, Ambaw AM, Gabi MT, Koua P, Léon J, Ballvora A. New drought-adaptive loci underlying candidate genes on wheat chromosome 4B with improved photosynthesis and yield responses. PHYSIOLOGIA PLANTARUM 2021; 173:2166-2180. [PMID: 34549429 DOI: 10.1111/ppl.13566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Flag leaf serves as an essential source of assimilates during grain filling, thereby contributing to grain yield up to 48%. Thus, high-throughput phenotyping of flag leaves is crucial to determine their physiological and genetic basis of yield formation and drought adaptation. Here, we utilized 200 wheat cultivars to identify drought-adaptive loci underlying candidate genes associated with flag leaf biomass and photosynthesis-related traits using a genome-wide association study (GWAS). GWAS revealed 21 significant marker-trait associations for key photosynthetic traits in response to drought stress. Analysis of linkage disequilibrium (LD) in these SNPs intervals discovered 103 significant SNPs that established distinct LD blocks containing a total of 382 candidate genes putatively involved in physiological processes, including photosynthesis and water responses. Further, in silico transcript analysis identified two candidate genes in locus AX-580365925 on chromosome 4B, those were found to be highly expressed under drought and associated with proton-transporting ATP synthase activity and stress response pathways. Accordingly, we identified significant allelic haplotype differences on this same locus. The tolerant haplotype (higher chlorophyll content under drought) representing major allele was more abundant and stably increased photosynthetic efficiency and yield under drought scenarios. Collectively, this study offers new adaptive loci and beneficial alleles to reshape the flag leaf physiological and associated photosynthetic components for better yield and sustainability to water-deficit stress.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tesfaye J Teferi
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Abebaw M Ambaw
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Melesech T Gabi
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Patrice Koua
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Rheinbach, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Ramya A, Dhevagi P, Priyatharshini S, Saraswathi R, Avudainayagam S, Venkataramani S. Response of rice (Oryza sativa L.) cultivars to elevated ozone stress. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:808. [PMID: 34783908 DOI: 10.1007/s10661-021-09595-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The plant response to elevated ozone stress reveals inter-species and intra-species disparity. Ozone-induced crop yield loss is predicted to increase in the future, posing a threat to the world economy. This study aims to evaluate the cultivar specific variation in rice exposed to elevated ozone. Fifteen short-duration rice cultivars were exposed to 50 ppb ozone for 30 days at reproductive stage. The physiological, biochemical, growth and yield traits of all test cultivars were significantly affected in response to elevated ozone. On an average, ozone stress decreased the tiller number by 22.52%, number of effective tillers by 30.43%, 1000 grain weight by 0.62% and straw weight by 23.83% over control. Spikelet sterility increased by 19.26% and linear multiregression 3D model significantly fits the spikelet sterility and photosynthetic traits with the R2 of 0.74 under elevated ozone. Principal Component Analysis with total variance of 57.5% categorized 15 rice cultivars into four major groups, i.e., ozone sensitive (MDU6, TRY(R)2 and ASD16), moderately ozone sensitive (ASD18, ADT43, and MDU5), moderately ozone tolerant (ADT37, ADT(R)45, TPS5, Anna(R)4, PMK(R)3, and ADT(R)48), and ozone tolerant (CO51, CO47, and ADT36). This study indicates that the different responses of rice cultivars to elevated ozone stress through a change in plant physiology, biochemical, growth, and yield traits and the results directed to provide scientific information on plant adaptations to ozone stress and helps in efforts to search ozone tolerant gene for plant breeding.
Collapse
Affiliation(s)
- Ambikapathi Ramya
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - Sengottiyan Priyatharshini
- Department of Crop Management, Vanavarayar Institute of Agriculture, Tamil Nadu, Pollachi, 642103, India
| | - R Saraswathi
- Department of Rice, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - S Avudainayagam
- Dhanalakshmi Srinivasan Agriculture College, Perambalur, Tamil Nadu, 621 212, India
| | - S Venkataramani
- Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad, Gujarat, 380009, India
| |
Collapse
|
9
|
Abstract
Cadmium (Cd) is an element that is nonessential and extremely toxic to both plants and human beings. Soil contaminated with Cd has adverse impacts on crop yields and threatens human health via the food chain. Cultivation of low-Cd cultivars has been of particular interest and is one of the most cost-effective and promising approaches to minimize human dietary intake of Cd. Low-Cd crop cultivars should meet particular criteria, including acceptable yield and quality, and their edible parts should have Cd concentrations below maximum permissible concentrations for safe consumption, even when grown in Cd-contaminated soil. Several low-Cd cereal cultivars and genotypes have been developed worldwide through cultivar screening and conventional breeding. Molecular markers are powerful in facilitating the selection of low-Cd cereal cultivars. Modern molecular breeding technologies may have great potential in breeding programs for the development of low-Cd cultivars, especially when coupled with conventional breeding. In this review, we provide a synthesis of low-Cd cereal breeding.
Collapse
Affiliation(s)
- Qin Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fei-Bo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Begum H, Alam MS, Feng Y, Koua P, Ashrafuzzaman M, Shrestha A, Kamruzzaman M, Dadshani S, Ballvora A, Naz AA, Frei M. Genetic dissection of bread wheat diversity and identification of adaptive loci in response to elevated tropospheric ozone. PLANT, CELL & ENVIRONMENT 2020; 43:2650-2665. [PMID: 32744331 DOI: 10.1111/pce.13864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 05/22/2023]
Abstract
Rising tropospheric ozone affects the performance of important cereal crops thus threatening global food security. In this study, genetic variation of wheat regarding its physiological and yield responses to ozone was explored by exposing a diversity panel of 150 wheat genotypes to elevated ozone and control conditions throughout the growing season. Differential responses to ozone were observed for foliar symptom formation quantified as leaf bronzing score (LBS), vegetation indices and yield components. Vegetation indices representing the carotenoid to chlorophyll pigment ratio (such as Lic2) were particularly ozone-responsive and were thus considered suitable for the non-invasive diagnosing of ozone stress. Genetic variation in ozone-responsive traits was dissected by a genome-wide association study (GWAS). Significant marker-trait associations were identified for LBS on chromosome 5A and for vegetation indices (NDVI and Lic2) on chromosomes 6B and 6D. Analysis of linkage disequilibrium (LD) in these chromosomal regions revealed distinct LD blocks containing genes with a putative function in plant redox biology such as cytochrome P450 proteins and peroxidases. This study gives novel insight into the natural genetic variation in wheat ozone response, and lays the foundation for the molecular breeding of tolerant wheat varieties.
Collapse
Affiliation(s)
- Hasina Begum
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Muhammad Shahedul Alam
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
| | - Yanru Feng
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
| | - Patrice Koua
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Md Ashrafuzzaman
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
| | - Asis Shrestha
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
| | - Mohammad Kamruzzaman
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Said Dadshani
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Ali Ahmad Naz
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, University of Bonn, Bonn, Germany
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Emberson L. Effects of ozone on agriculture, forests and grasslands. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190327. [PMID: 32981434 PMCID: PMC7536038 DOI: 10.1098/rsta.2019.0327] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 05/06/2023]
Abstract
The damage and injury that ground level ozone (O3) causes vegetation has become increasingly evident over the past half century with a large body of observational and experimental evidence demonstrating a variety of effects at ambient concentrations on crop, forest and grassland species and ecosystems. This paper explores the use of experimental data to develop exposure-response relationships for use in risk assessment studies. These studies have typically identified the USA mid-West, much of Europe, the Indo Gangetic Plain in South Asia and the Eastern coastal region of China as global regions where O3 is likely to threaten food supply and other ecosystems. Global risk assessment modelling estimates yield losses of staple crops between 3 to 16% causing economic losses of between US$14 to 26 billion in the year 2000. Changes in anthropogenic emissions of O3 precursors in recent decades have modified O3 concentration profiles (peaks versus background O3) and global distributions with the Northern Hemisphere seeing increases in O3 levels of between 1 and 5 ppb/decade since the 1950s and the emergence of Asia as the region with the highest O3 concentrations. In the future, O3 mitigation could focus on methane (CH4) and nitrogen oxide (NOx) emissions; these will differentially influence global and local/regional O3 concentrations and influence daily and seasonal profiles. The consequent effects on vegetation will in part depend on how these changes in O3 profile alter the exceedance of detoxification thresholds for plant damage. Adaptation options may play an important role in enhancing food supply while mitigation strategies are being implemented. An improved understanding of the mechanisms by which O3 affects plants, and how this might influence detoxification thresholds and interactions with other environmental variables such as water stress and nutrients, would help develop O3 deposition and impact models to support the development of crop, land-surface exchange and ultimately earth system models for holistic assessments of global change. This article is part of a discussion meeting issue 'Air quality, past present and future'.
Collapse
Affiliation(s)
- Lisa Emberson
- Environment and Geography Department, University of York, Environment Building, Heslington, York, North Yorkshire YO10 5NG, UK
| |
Collapse
|
12
|
Pariasca-Tanaka J, Baertschi C, Wissuwa M. Identification of Loci Through Genome-Wide Association Studies to Improve Tolerance to Sulfur Deficiency in Rice. FRONTIERS IN PLANT SCIENCE 2020; 10:1668. [PMID: 32010158 PMCID: PMC6975283 DOI: 10.3389/fpls.2019.01668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/27/2019] [Indexed: 06/01/2023]
Abstract
Sulfur (S) is an essential nutrient for plant growth and development; however, S supply for crop production is decreasing due to reduced inputs from atmospheric deposition and reduced application of S-containing fertilizers. Sulfur deficiency in soil is therefore becoming a widespread cause of reduced grain yield and quality in rice (Oryza sativa L). We therefore assessed the genotypic variation for tolerance to S deficiency in rice and identified loci associated with improved tolerance. Plants were grown in nutrient solution with either low (0.01 mM) or high (1.0 mM) supply of S. Plants grown under low-S treatment showed a reduction in total biomass, mainly due to a marked reduction in shoot biomass, while root biomass and root-to-shoot ratio increased, relative to plants under high-S treatment. Genome-wide association studies (GWAS) identified loci associated with root length (qSUE2-3, qSUE4, and qSUE9), and root (qSUE1, qSUE2-1, and qSUE3-1 and qSUE3-2) or total dry matter (qSUE2, qSUE3-1, and qSUE11). Candidate genes identified at associated loci coded for enzymes involved in secondary S metabolic pathways (sulfotransferases), wherein the sulfated compounds play several roles in plant responses to abiotic stress; cell wall metabolism including wall loosening and modification (carbohydrate hydrolases: beta-glucosidase and beta-gluconase) important for root growth; and cell detoxification (glutathione S-transferase). This study confirmed the existence of genetic variation conferring tolerance to S deficiency among traditional aus rice varieties. The advantageous haplotypes identified could be exploited through marker assisted breeding to improve tolerance to S-deficiency in modern cultivars in order to achieve sustainable crop production and food security.
Collapse
|
13
|
Feng Z, Kang H, Li M, Zou L, Wang X, Zhao J, Wei L, Zhou N, Li Q, Lan Y, Zhang Y, Chen Z, Liu W, Pan X, Wang GL, Zuo S. Identification of new rice cultivars and resistance loci against rice black-streaked dwarf virus disease through genome-wide association study. RICE (NEW YORK, N.Y.) 2019; 12:49. [PMID: 31309320 PMCID: PMC6629753 DOI: 10.1186/s12284-019-0310-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/01/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND The rice black-streaked dwarf virus (RBSDV) disease causes severe rice yield losses in Eastern China and other East Asian countries. Breeding resistant cultivars is the most economical and effective strategy to control the disease. However, few varieties and QTLs for RBSDV resistance have been identified to date. RESULTS In this study, we conducted a genome-wide association study (GWAS) on RBSDV resistance using the rice diversity panel 1 (RDP1) cultivars that were genotyped by a 44,000 high-density single nucleotide polymorphism (SNP) markers array. We found that less than 15% of these cultivars displayed resistance to RBSDV when tested under natural infection conditions at two locations with serious RBSDV occurrence. The aus, indica and tropical japonica sub-populations displayed higher RBSDV resistance than the aromatic and temperate japonica sub-populations. In particular, we identified four varieties that displayed stable levels of RBSDV resistance at all testing locations. GWAS identified 84 non-redundant SNP loci significantly associated with RBSDV resistance at two locations, leading to the identification of 13 QTLs for RBSDV resistance. Among them, qRBSDV-4.2 and qRBSDV-6.3 were detected at both locations, suggesting their resistance stability against environmental influence. Field disease evaluations showed that qRBSDV-6.3 significantly reduces RBSDV disease severity by 20%. Furthermore, introgression of qRBSDV-6.3 into two susceptible rice cultivars by marker-assisted selection demonstrated the effectiveness of qRBSDV-6.3 in enhancing RBSDV resistance. CONCLUSIONS The new resistant cultivars and QTLs against RBSDV disease identified in this study provide important information and genetic materials for the cloning of RBSDV resistance genes as well as developing RBSDV resistant varieties through marker-assisted selection.
Collapse
Affiliation(s)
- Zhiming Feng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Houxiang Kang
- State Key Laboratory for biology of plant diseases and insect pests/Institute of plant protection, Chinese academy of Agricultural Sciences, Beijing, 100093, China
| | - Mingyou Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lihua Zou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqiu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jianhua Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lang Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Nana Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qianqian Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Ying Lan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yafang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zongxiang Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wende Liu
- State Key Laboratory for biology of plant diseases and insect pests/Institute of plant protection, Chinese academy of Agricultural Sciences, Beijing, 100093, China
| | - Xuebiao Pan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Guo-Liang Wang
- State Key Laboratory for biology of plant diseases and insect pests/Institute of plant protection, Chinese academy of Agricultural Sciences, Beijing, 100093, China.
- Department of Plant Pathology, the Ohio State University, Columbus, OH, 43210, USA.
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Feng Z, Kang H, Li M, Zou L, Wang X, Zhao J, Wei L, Zhou N, Li Q, Lan Y, Zhang Y, Chen Z, Liu W, Pan X, Wang GL, Zuo S. Identification of new rice cultivars and resistance loci against rice black-streaked dwarf virus disease through genome-wide association study. RICE (NEW YORK, N.Y.) 2019; 12:49. [PMID: 31309320 DOI: 10.1016/j.rsci.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/01/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND The rice black-streaked dwarf virus (RBSDV) disease causes severe rice yield losses in Eastern China and other East Asian countries. Breeding resistant cultivars is the most economical and effective strategy to control the disease. However, few varieties and QTLs for RBSDV resistance have been identified to date. RESULTS In this study, we conducted a genome-wide association study (GWAS) on RBSDV resistance using the rice diversity panel 1 (RDP1) cultivars that were genotyped by a 44,000 high-density single nucleotide polymorphism (SNP) markers array. We found that less than 15% of these cultivars displayed resistance to RBSDV when tested under natural infection conditions at two locations with serious RBSDV occurrence. The aus, indica and tropical japonica sub-populations displayed higher RBSDV resistance than the aromatic and temperate japonica sub-populations. In particular, we identified four varieties that displayed stable levels of RBSDV resistance at all testing locations. GWAS identified 84 non-redundant SNP loci significantly associated with RBSDV resistance at two locations, leading to the identification of 13 QTLs for RBSDV resistance. Among them, qRBSDV-4.2 and qRBSDV-6.3 were detected at both locations, suggesting their resistance stability against environmental influence. Field disease evaluations showed that qRBSDV-6.3 significantly reduces RBSDV disease severity by 20%. Furthermore, introgression of qRBSDV-6.3 into two susceptible rice cultivars by marker-assisted selection demonstrated the effectiveness of qRBSDV-6.3 in enhancing RBSDV resistance. CONCLUSIONS The new resistant cultivars and QTLs against RBSDV disease identified in this study provide important information and genetic materials for the cloning of RBSDV resistance genes as well as developing RBSDV resistant varieties through marker-assisted selection.
Collapse
Affiliation(s)
- Zhiming Feng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Houxiang Kang
- State Key Laboratory for biology of plant diseases and insect pests/Institute of plant protection, Chinese academy of Agricultural Sciences, Beijing, 100093, China
| | - Mingyou Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lihua Zou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqiu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jianhua Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lang Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Nana Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qianqian Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Ying Lan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yafang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zongxiang Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wende Liu
- State Key Laboratory for biology of plant diseases and insect pests/Institute of plant protection, Chinese academy of Agricultural Sciences, Beijing, 100093, China
| | - Xuebiao Pan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Guo-Liang Wang
- State Key Laboratory for biology of plant diseases and insect pests/Institute of plant protection, Chinese academy of Agricultural Sciences, Beijing, 100093, China.
- Department of Plant Pathology, the Ohio State University, Columbus, OH, 43210, USA.
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Zhang P, Zhong K, Zhong Z, Tong H. Genome-wide association study of important agronomic traits within a core collection of rice (Oryza sativa L.). BMC PLANT BIOLOGY 2019; 19:259. [PMID: 31208337 PMCID: PMC6580581 DOI: 10.1186/s12870-019-1842-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/21/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Cultivated rice (Oryza sativa L.) is one of the staple food for over half of the world's population. Thus, improvement of cultivated rice is important for the development of the world. It has been shown that abundant elite genes exist in rice landraces in previous studies. RESULTS A genome-wide association study (GWAS) performed with EMMAX for 12 agronomic traits measured in both Guangzhou and Hangzhou was carried out using 150 accessions of Ting's core collection selected based on 48 phenotypic traits from 2262 accessions of Ting's collection, the GWAS included more than 3.8 million SNPs. Within Ting's core collection, which has a simple population structure, low relatedness, and rapid linkage disequilibrium (LD) decay, we found 32 peaks located closely to previously cloned genes such as Hd1, SD1, Ghd7, GW8, and GL7 or mapped QTL, and these loci might be natural variations in the cloned genes or QTL which influence potentially agronomic traits. Furthermore, we also detected 32 regions where new genes might be located, and some peaks of these new candidate genes such as the signal on chromosome 11 for heading days were even higher than that of Hd1. Detailed annotation of these significant loci were shown in this study. Moreover, according to the estimated LD decay distance of 100 to 350 kb on the 12 chromosomes in this study, we found 13 identical significant regions in the two locations. CONCLUSIONS This research provided important information for further mining these elite genes within Ting's core collection and using them for rice breeding.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Kaizhen Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Zhengzheng Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
16
|
Tuskan GA, Muchero W, Tschaplinski TJ, Ragauskas AJ. Population-level approaches reveal novel aspects of lignin biosynthesis, content, composition and structure. Curr Opin Biotechnol 2019; 56:250-257. [PMID: 30925430 DOI: 10.1016/j.copbio.2019.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Population-level studies enabled by high-throughput phenotyping have revealed significant variation in lignin characteristics including content, S:G:H ratio, inter-unit linkage distributions, and molecular weights across multiple plant species. Coupled with genome-wide association mapping studies (GWAS) targeted at linking genetic mutations to phenotype, significant progress has been made in associating putative causal mutations to variation in lignin characteristics. Despite this progress, there are few examples, in which these associations have been molecularly validated to provide new insights into the genetic regulation of lignin biosynthesis. Given a recent report of a GWAS-discovered 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase moonlighting as a transcriptional regulator of lignin biosynthesis, the potential to bridge scientific disciplines in order to uncover hidden elements of lignin biosynthesis has been demonstrated, offering a path to alter lignin characteristics via genetic manipulation in order to expedite lignin valorization. To maximize this potential, however, there is a crucial need for (1) broader surveys of naturally varying diverse plant populations and (2) analytical platforms that can resolve subtle properties at fine chemical and biological scales.
Collapse
Affiliation(s)
- Gerald A Tuskan
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - Wellington Muchero
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Timothy J Tschaplinski
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Arthur J Ragauskas
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; University of Tennessee Governor's Chair, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| |
Collapse
|
17
|
Lekklar C, Pongpanich M, Suriya-arunroj D, Chinpongpanich A, Tsai H, Comai L, Chadchawan S, Buaboocha T. Genome-wide association study for salinity tolerance at the flowering stage in a panel of rice accessions from Thailand. BMC Genomics 2019; 20:76. [PMID: 30669971 PMCID: PMC6343365 DOI: 10.1186/s12864-018-5317-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Salt stress, a major plant environmental stress, is a critical constraint for rice productivity. Dissecting the genetic loci controlling salt tolerance in rice for improving productivity, especially at the flowering stage, remains challenging. Here, we conducted a genome-wide association study (GWAS) of salt tolerance based on exome sequencing of the Thai rice accessions. RESULTS Photosynthetic parameters and cell membrane stability under salt stress at the flowering stage; and yield-related traits of 104 Thai rice (Oryza sativa L.) accessions belonging to the indica subspecies were evaluated. The rice accessions were subjected to exome sequencing, resulting in 112,565 single nucleotide polymorphisms (SNPs) called with a minor allele frequency of at least 5%. LD decay analysis of the panel indicates that the average LD for SNPs at 20 kb distance from each other was 0.34 (r2), which decayed to its half value (~ 0.17) at around 80 kb. By GWAS performed using mixed linear model, two hundred loci containing 448 SNPs on exons were identified based on the salt susceptibility index of the net photosynthetic rate at day 6 after salt stress; and the number of panicles, filled grains and unfilled grains per plant. One hundred and forty six genes, which accounted for 73% of the identified loci, co-localized with the previously reported salt quantitative trait loci (QTLs). The top four regions that contained a high number of significant SNPs were found on chromosome 8, 12, 1 and 2. While many are novel, their annotation is consistent with potential involvement in plant salt tolerance and in related agronomic traits. These significant SNPs greatly help narrow down the region within these QTLs where the likely underlying candidate genes can be identified. CONCLUSIONS Insight into the contribution of potential genes controlling salt tolerance from this GWAS provides further understanding of salt tolerance mechanisms of rice at the flowering stage, which can help improve yield productivity under salinity via gene cloning and genomic selection.
Collapse
Affiliation(s)
- Chakkree Lekklar
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellent in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Duangjai Suriya-arunroj
- Nakhon Ratchasima Rice Research Center, Rice Department, Ministry of Agriculture and Cooperatives, Nakhon Ratchasima, Thailand
| | - Aumnart Chinpongpanich
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Helen Tsai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA USA
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA USA
| | - Supachitra Chadchawan
- Center of Excellent in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerapong Buaboocha
- Center of Excellent in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
Ashrafuzzaman M, Haque Z, Ali B, Mathew B, Yu P, Hochholdinger F, de Abreu Neto JB, McGillen MR, Ensikat HJ, Manning WJ, Frei M. Ethylenediurea (EDU) mitigates the negative effects of ozone in rice: Insights into its mode of action. PLANT, CELL & ENVIRONMENT 2018; 41:2882-2898. [PMID: 30107647 DOI: 10.1111/pce.13423] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/06/2018] [Indexed: 05/08/2023]
Abstract
Monitoring of ozone damage to crops plays an increasingly important role for the food security of many developing countries. Ethylenediurea (EDU) could be a tool to assess ozone damage to vegetation on field scale, but its physiological mode of action remains unclear. This study investigated mechanisms underlying the ozone-protection effect of EDU in controlled chamber experiments. Ozone sensitive and tolerant rice genotypes were exposed to ozone (108 ppb, 7 hr day-1 ) and control conditions. EDU alleviated ozone effects on plant morphology, foliar symptoms, lipid peroxidation, and photosynthetic parameters in sensitive genotypes. Transcriptome profiling by RNA sequencing revealed that thousands of genes responded to ozone in a sensitive variety, but almost none responded to EDU. Significant interactions between ozone and EDU application occurred mostly in ozone responsive genes, in which up-regulation was mitigated by EDU application. Further experiments documented ozone degrading properties of EDU, as well as EDU deposits on leaf surfaces possibly related to surface protection. EDU application did not mitigate the reaction of plants to other abiotic stresses, including iron toxicity, zinc deficiency, and salinity. This study provided evidence that EDU is a surface protectant that specifically mitigates ozone stress without interfering directly with the plants' stress response systems.
Collapse
Affiliation(s)
- Md Ashrafuzzaman
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Zahidul Haque
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Basharat Ali
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Boby Mathew
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Peng Yu
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | | | | | - Hans-Jürgen Ensikat
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | - William J Manning
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
19
|
Mills G, Sharps K, Simpson D, Pleijel H, Frei M, Burkey K, Emberson L, Uddling J, Broberg M, Feng Z, Kobayashi K, Agrawal M. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. GLOBAL CHANGE BIOLOGY 2018; 24:4869-4893. [PMID: 30084165 DOI: 10.1111/gcb.14381] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 05/22/2023]
Abstract
Increasing both crop productivity and the tolerance of crops to abiotic and biotic stresses is a major challenge for global food security in our rapidly changing climate. For the first time, we show how the spatial variation and severity of tropospheric ozone effects on yield compare with effects of other stresses on a global scale, and discuss mitigating actions against the negative effects of ozone. We show that the sensitivity to ozone declines in the order soybean > wheat > maize > rice, with genotypic variation in response being most pronounced for soybean and rice. Based on stomatal uptake, we estimate that ozone (mean of 2010-2012) reduces global yield annually by 12.4%, 7.1%, 4.4% and 6.1% for soybean, wheat, rice and maize, respectively (the "ozone yield gaps"), adding up to 227 Tg of lost yield. Our modelling shows that the highest ozone-induced production losses for soybean are in North and South America whilst for wheat they are in India and China, for rice in parts of India, Bangladesh, China and Indonesia, and for maize in China and the United States. Crucially, we also show that the same areas are often also at risk of high losses from pests and diseases, heat stress and to a lesser extent aridity and nutrient stress. In a solution-focussed analysis of these results, we provide a crop ideotype with tolerance of multiple stresses (including ozone) and describe how ozone effects could be included in crop breeding programmes. We also discuss altered crop management approaches that could be applied to reduce ozone impacts in the shorter term. Given the severity of ozone effects on staple food crops in areas of the world that are also challenged by other stresses, we recommend increased attention to the benefits that could be gained from addressing the ozone yield gap.
Collapse
Affiliation(s)
- Gina Mills
- Centre for Ecology and Hydrology, Bangor, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - David Simpson
- EMEP MSC-W, Norwegian Meteorological Institute, Oslo, Norway
- Department of Space, Earth & Environment, Chalmers University of Technology, Gothenburg, Sweden
| | - Håkan Pleijel
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Michael Frei
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | | | - Lisa Emberson
- Environment Department, Stockholm Environment Institute at York, University of York, York, UK
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Malin Broberg
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kazuhiko Kobayashi
- Department of Global Agricultural Sciences, The University of Tokyo, Tokyo, Japan
| | - Madhoolika Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Uttar Pradesh, India
| |
Collapse
|
20
|
Xiao N, Gao Y, Qian H, Gao Q, Wu Y, Zhang D, Zhang X, Yu L, Li Y, Pan C, Liu G, Zhou C, Jiang M, Huang N, Dai Z, Liang C, Chen Z, Chen J, Li A. Identification of Genes Related to Cold Tolerance and a Functional Allele That Confers Cold Tolerance. PLANT PHYSIOLOGY 2018; 177:1108-1123. [PMID: 29764927 PMCID: PMC6052991 DOI: 10.1104/pp.18.00209] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/05/2018] [Indexed: 05/22/2023]
Abstract
Cold stress is a major factor limiting rice (Oryza sativa) production worldwide, especially at the seedling and booting stages. The identification of genes associated with cold tolerance (CT) in rice is important for sustainable food production. Here, we report the results of a genome-wide association study to identify the genetic loci associated with CT by using a 1,033-accession diversity panel. We identified five CT-related genetic loci at the booting stage. Accessions carrying multiple cold-tolerant alleles displayed a higher seed-setting rate than did accessions that had no cold-tolerant alleles or carried a single allele. At the seedling stage, eight genetic loci related to CT have been identified. Among these, LOC_Os10g34840 was identified as the candidate gene for the qPSR10 genetic locus that is associated with CT in rice seedlings. A single-nucleotide polymorphism (SNP), SNP2G, at position 343 in LOC_Os10g34840 is responsible for conferring CT at the seedling stage in rice. Further analysis of the haplotype network revealed that SNP2G was present in 80.08% of the temperate japonica accessions but only 3.8% of the indica ones. We used marker-assisted selection to construct a series of BC4F3 near-isogenic lines possessing the cold-tolerant allele SNP2G When subjected to cold stress, plants carrying SNP2G survived better as seedlings and showed higher grain weight than plants carrying the SNP2A allele. The CT-related loci identified here and the functional verification of LOC_Os10g34840 will provide genetic resources for breeding cold-tolerant varieties and for studying the molecular basis of CT in rice.
Collapse
Affiliation(s)
- Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- National Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, 225009, China
| | - Yong Gao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou 225009, China
| | - Huangjun Qian
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou 225009, China
| | - Qiang Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunyu Wu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- National Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, 225009, China
| | - Dongping Zhang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou 225009, China
| | - Xiaoxiang Zhang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Ling Yu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Yuhong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Cunhong Pan
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Guangqing Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Changhai Zhou
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Min Jiang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- National Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, 225009, China
| | - Niansheng Huang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- National Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, 225009, China
| | - Zhengyuan Dai
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- National Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, 225009, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhou Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmin Chen
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou 225009, China
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
- National Rice Industry Technology System of Yangzhou Comprehensive Experimental Station, Yangzhou, Jiangsu Province, 225009, China
| |
Collapse
|
21
|
Patishtan J, Hartley TN, Fonseca de Carvalho R, Maathuis FJM. Genome-wide association studies to identify rice salt-tolerance markers. PLANT, CELL & ENVIRONMENT 2018; 41:970-982. [PMID: 28436093 DOI: 10.1111/pce.12975] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 05/17/2023]
Abstract
Salinity is an ever increasing menace that affects agriculture worldwide. Crops such as rice are salt sensitive, but its degree of susceptibility varies widely between cultivars pointing to extensive genetic diversity that can be exploited to identify genes and proteins that are relevant in the response of rice to salt stress. We used a diversity panel of 306 rice accessions and collected phenotypic data after short (6 h), medium (7 d) and long (30 d) salinity treatment (50 mm NaCl). A genome-wide association study (GWAS) was subsequently performed, which identified around 1200 candidate genes from many functional categories, but this was treatment period dependent. Further analysis showed the presence of cation transporters and transcription factors with a known role in salinity tolerance and those that hitherto were not known to be involved in salt stress. Localization analysis of single nucleotide polymorphisms (SNPs) showed the presence of several hundred non-synonymous SNPs (nsSNPs) in coding regions and earmarked specific genomic regions with increased numbers of nsSNPs. It points to components of the ubiquitination pathway as important sources of genetic diversity that could underpin phenotypic variation in stress tolerance.
Collapse
Affiliation(s)
- Juan Patishtan
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Tom N Hartley
- Department of Biology, University of York, York, YO10 5DD, UK
| | | | | |
Collapse
|
22
|
Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice. PLoS One 2018; 13:e0192116. [PMID: 29425206 PMCID: PMC5806864 DOI: 10.1371/journal.pone.0192116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
Abstract
Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.
Collapse
|
23
|
Dziwornu AK, Shrestha A, Matthus E, Ali B, Wu LB, Frei M. Responses of contrasting rice genotypes to excess manganese and their implications for lignin synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:252-259. [PMID: 29257997 DOI: 10.1016/j.plaphy.2017.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 05/10/2023]
Abstract
Manganese (Mn) toxicity is frequently encountered in crops grown on soils with low pH or low redox potential, and harmful to plant development and growth. This study aimed at exploring adaptive mechanisms to Mn toxicity in rice, and investigated the effects of Mn toxicity on shoot lignification. Sixteen rice genotypes were grown in hydroponic solutions and exposed to normal (0.5 mg dm-3) or toxic (5 mg dm-3) Mn concentrations for three weeks. Morphological responses to Mn toxicity included a significant reduction in shoot length and the formation of visible symptoms scored as leaf damage index (LDI). Based on shoot Mn concentrations in the Mn toxic treatment, genotypes were classified as Mn includers and excluders. Across different genotypes, shoot Mn concentrations were significantly negatively correlated with relative shoot length and positively correlated with LDI. Consequently, the most tolerant genotypes in terms of morphology were all excluders, while the most sensitive genotypes were includers. The sensitive genotypes were also more responsive to manganese in terms of lipid peroxidation than tolerant genotypes. Shoots of rice plants grown in the high Mn treatment showed a higher level of lignification measured as thioglycolic acid lignin (TGAL), especially among Mn includers. TGAL was positively correlated with shoot Mn concentration and the levels of phenolics. In contrast, peroxidase activity was not responsive to the Mn treatment and was not significantly correlated with shoot lignification. In conclusion, exclusion is a dominant tolerance mechanism to Mn toxicity in rice. Further, Mn stimulated lignin biosynthesis in rice, especially in genotypes that were unable to exclude Mn.
Collapse
Affiliation(s)
- Ambrose Kwaku Dziwornu
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany
| | - Asis Shrestha
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany; Institute of Crop Sciences and Resource Conservation (INRES), Plant Breeding, University of Bonn, Germany
| | - Elsa Matthus
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany; Department of Plant Sciences, University of Cambridge, UK
| | - Basharat Ali
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany
| | - Lin-Bo Wu
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany
| | - Michael Frei
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany.
| |
Collapse
|
24
|
Zhao X, Luo L, Cao Y, Liu Y, Li Y, Wu W, Lan Y, Jiang Y, Gao S, Zhang Z, Shen Y, Pan G, Lin H. Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. BMC Genomics 2018; 19:91. [PMID: 29370753 PMCID: PMC5785805 DOI: 10.1186/s12864-017-4395-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/15/2017] [Indexed: 11/10/2022] Open
Abstract
Background Accumulation of cadmium (Cd) in maize (Zea mays L.) poses a significant risk to human health as it is ingested via the food chain. A genome-wide association study (GWAS) was conducted in a population of 269 maize accessions with 43,737 single nucleotide polymorphisms (SNPs) to identify candidate genes and favorable alleles for controlling Cd accumulation in maize. Results When grown in contaminated soil, accessions varied significantly in leaf Cd concentration at both the seeding and maturing stages with phenotypic variation and the coefficient of variation all above 48%. The co-localized region between SYN27837 (147,034,650 bp) and SYN36598 (168,551,327 bp) on chromosome 2 was associated with leaf Cd under three soil conditions varying in Cd content in 2015 and 2016. The significant SNP (SYN25051) at position 161,275,547 could explained 27.1% of the phenotype variation. Through QTL mapping using the IBMSyn10 double haploid (DH) population, we validated the existence of a major QTL identified by GWAS; qLCd2 could explain the 39.8% average phenotype variation across the experiments. Expression of GRMZM2G175576 encoding a cadmium/zinc-transporting ATPase underlying the QTL was significantly increased in roots, stems and leaves of B73, a low Cd accumulation line in response to Cd stress. Conclusions Our findings provide new insights into the genetic control of Cd accumulation and could aid rapid development of maize genotypes with low-Cd accumulation by manipulation of the favorable alleles. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4395-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiongwei Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Longxin Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanhua Cao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yajuan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhua Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenmei Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuzhou Lan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, 47906, USA
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiming Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaou Shen
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangtang Pan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Haijian Lin
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
25
|
Ashrafuzzaman M, Lubna FA, Holtkamp F, Manning WJ, Kraska T, Frei M. Diagnosing ozone stress and differential tolerance in rice (Oryza sativa L.) with ethylenediurea (EDU). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:339-350. [PMID: 28668595 DOI: 10.1016/j.envpol.2017.06.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/12/2017] [Accepted: 06/17/2017] [Indexed: 05/22/2023]
Abstract
Rising tropospheric ozone concentrations in Asia necessitate the breeding of adapted rice varieties to ensure food security. However, breeding requires field-based evaluation of ample plant material, which can be technically challenging or very costly when using ozone fumigation facilities. The chemical ethylenediurea (EDU) has been proposed for estimating the effects of ozone in large-scale field applications, but controlled experiments investigating constitutive effects on rice or its suitability to detect genotypic differences in ozone tolerance are missing. This study comprised a controlled open top chamber experiment with four treatments (i) control (average ozone concentration 16 ppb), (ii) control with EDU application, (iii) ozone stress (average 77 ppb for 7 h daily throughout the season), and (iv) ozone stress with EDU application. Three contrasting rice genotypes were tested, i.e. the tolerant line L81 and the sensitive Nipponbare and BR28. The ozone treatment had significant negative effects on plant growth (height and tillering), stomatal conductance, SPAD value, spectral reflectance indices such as the normalized difference vegetation index (NDVI), lipid peroxidation, as well as biomass and grain yields. These negative effects were more pronounced in the a priori sensitive varieties, especially the widely grown Bangladeshi variety BR28, which showed grain yield reductions by 37 percent. EDU application had almost no effects on plants in the absence of ozone, but partly mitigated ozone effects on foliar symptoms, lipid peroxidation, SPAD value, stomatal conductance, several spectral reflectance parameters, panicle number, grain yield, and spikelet sterility. EDU responses were more pronounced in sensitive genotypes than in the tolerant L81. In conclusion, EDU had no constitutive effects on rice and partly offset negative ozone effects, especially in sensitive varieties. It can thus be used to diagnose ozone damage in field grown rice and for distinguishing tolerant (less EDU-responsive) and sensitive (more EDU-responsive) genotypes.
Collapse
Affiliation(s)
- Md Ashrafuzzaman
- Institute of Crop Sciences and Resource Conservation (INRES) Plant Nutrition, University of Bonn, Bonn, Germany; Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Farzana Afrose Lubna
- Institute of Crop Sciences and Resource Conservation (INRES) Plant Nutrition, University of Bonn, Bonn, Germany
| | - Felix Holtkamp
- Institute of Crop Sciences and Resource Conservation (INRES) Plant Nutrition, University of Bonn, Bonn, Germany
| | | | - Thorsten Kraska
- Field Lab Campus Klein-Altendorf, University of Bonn, Rheinbach, Germany
| | - Michael Frei
- Institute of Crop Sciences and Resource Conservation (INRES) Plant Nutrition, University of Bonn, Bonn, Germany.
| |
Collapse
|
26
|
Ainsworth EA. Understanding and improving global crop response to ozone pollution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:886-897. [PMID: 27739639 DOI: 10.1111/tpj.13298] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 05/21/2023]
Abstract
Concentrations of ground-level ozone ([O3 ]) over much of the Earth's land surface have more than doubled since pre-industrial times. The air pollutant is highly variable over time and space, which makes it difficult to assess the average agronomic and economic impacts of the pollutant as well as to breed crops for O3 tolerance. Recent modeling efforts have improved quantitative understanding of the effects of current and future [O3 ] on global crop productivity, and experimental advances have improved understanding of the cellular O3 sensing, signaling and response mechanisms. This work provides the fundamental background and justification for breeding and biotechnological approaches for improving O3 tolerance in crops. There is considerable within-species variation in O3 tolerance in crops, which has been used to create mapping populations for screening. Quantitative trait loci (QTL) for O3 tolerance have been identified in model and crop species, and although none has been cloned to date, transcript profiling experiments have identified candidate genes associated with QTL. Biotechnological strategies for improving O3 tolerance are also being tested, although there is considerable research to be done before O3 -tolerant germplasm is available to growers for most crops. Strategies to improve O3 tolerance in crops have been hampered by the lack of translation of laboratory experiments to the field, and the lack of correlation between visual leaf-level O3 damage and yield loss to O3 stress. Future efforts to screen mapping populations in the field and to identify more promising phenotypes for O3 tolerance are needed.
Collapse
Affiliation(s)
- Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, USDA ARS, 1201 W. Gregory Drive, Urbana, IL, 61801, USA
- Institute for Genomic Biology & Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
27
|
de Abreu Neto JB, Hurtado-Perez MC, Wimmer MA, Frei M. Genetic factors underlying boron toxicity tolerance in rice: genome-wide association study and transcriptomic analysis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:687-700. [PMID: 28204664 PMCID: PMC5444448 DOI: 10.1093/jxb/erw423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Boron (B) toxicity is a nutritional disorder affecting crop production in many parts of the world. This study explored genetic factors associated with B tolerance in rice (Oryza sativa L.) through an integrated genome mapping and transcriptomic approach. Variation in B tolerance was first evaluated by screening a panel of 137 indica genotypes in B toxic conditions (+2 mM B), followed by genome-wide association study (GWAS). Leaf bronzing and greenness were significantly correlated with shoot and root dry weight, but B uptake was not correlated with any stress phenotype. Single nucleotide polymorphism (SNP) markers exceeding a significance value of –log10P>4.0 were obtained for four traits, namely leaf bronzing, shoot dry weight, root dry weight, and root length. Linkage disequilibrium block analysis of the corresponding chromosomal regions revealed candidate loci containing 75 gene models. Two contrasting genotypes from the panel were selected for transcriptomic analysis, which included gene ontology enrichment analysis of differentially regulated genes and investigating transcriptional responses of GWAS candidate genes. Characteristic expression patterns associated with tolerance or sensitivity were seen in genes related to biochemical binding, transport, transcriptional regulation, and redox homeostasis. These results advance the understanding of genetic and physiological factors associated with B tolerance in rice.
Collapse
Affiliation(s)
| | | | - Monika A Wimmer
- Abiotic Stress Tolerance in Crops, INRES, University of Bonn, Bonn, Germany
| | - Michael Frei
- Abiotic Stress Tolerance in Crops, INRES, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Zheng M, Peng C, Liu H, Tang M, Yang H, Li X, Liu J, Sun X, Wang X, Xu J, Hua W, Wang H. Genome-Wide Association Study Reveals Candidate Genes for Control of Plant Height, Branch Initiation Height and Branch Number in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1246. [PMID: 28769955 PMCID: PMC5513965 DOI: 10.3389/fpls.2017.01246] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 05/13/2023]
Abstract
Plant architecture is crucial for rapeseed yield and is determined by plant height (PH), branch initiation height (BIH), branch number (BN) and leaf and inflorescence morphology. In this study, we measured three major factors (PH, BIH, and BN) in a panel of 333 rapeseed accessions across 4 years. A genome-wide association study (GWAS) was performed via Q + K model and the panel was genotyped using the 60 k Brassica Infinium SNP array. We identified seven loci for PH, four for BIH, and five for BN. Subsequently, by determining linkage disequilibrium (LD) decay associated with 38 significant SNPs, we gained 31, 15, and 17 candidate genes for these traits, respectively. We also showed that PH is significantly correlated with BIH, while no other correlation was revealed. Notably, a GA signaling gene (BnRGA) and a flowering gene (BnFT) located on chromosome A02 were identified as the most likely candidate genes associated with PH regulation. Furthermore, a meristem initiation gene (BnLOF2) and a NAC domain transcriptional factor (BnCUC3) that may be associated with BN were identified on the chromosome A07. This study reveals novel insight into the genetic control of plant architecture and may facilitate marker-based breeding for rapeseed.
Collapse
Affiliation(s)
- Ming Zheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Cheng Peng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Hongfang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Min Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Xiaokang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Jinglin Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Xingchao Sun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Junfeng Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
- *Correspondence: Hanzhong Wang
| |
Collapse
|
29
|
Kang YJ, Lee T, Lee J, Shim S, Jeong H, Satyawan D, Kim MY, Lee SH. Translational genomics for plant breeding with the genome sequence explosion. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1057-69. [PMID: 26269219 PMCID: PMC5042036 DOI: 10.1111/pbi.12449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/04/2015] [Accepted: 07/10/2015] [Indexed: 05/22/2023]
Abstract
The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.
Collapse
Affiliation(s)
- Yang Jae Kang
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Taeyoung Lee
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jayern Lee
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sangrea Shim
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Haneul Jeong
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Dani Satyawan
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Indonesian Center for Agricultural Biotechnology and Genomic resources Research and Development (ICABIOGRAD-IAARD), Bogor, Indonesia
| | - Moon Young Kim
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Suk-Ha Lee
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
30
|
Jing L, Dombinov V, Shen S, Wu Y, Yang L, Wang Y, Frei M. Physiological and genotype-specific factors associated with grain quality changes in rice exposed to high ozone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:397-408. [PMID: 26807986 DOI: 10.1016/j.envpol.2016.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 05/22/2023]
Abstract
Rising tropospheric ozone concentrations in Asia affect the yield and quality of rice. This study investigated ozone-induced changes in rice grain quality in contrasting rice genotypes, and explored the associated physiological processes during the reproductive growth phase. The ozone sensitive variety Nipponbare and a breeding line (L81) containing two tolerance QTLs in Nipponbare background were exposed to 100 ppb ozone (8 h per day) or control conditions throughout their growth. Ozone affected grain chalkiness and protein concentration and composition. The percentage of chalky grains was significantly increased in Nipponbare but not in L81. Physiological measurements suggested that grain chalkiness was associated with a drop in foliar carbohydrate and nitrogen levels during grain filling, which was less pronounced in the tolerant L81. Grain total protein concentration was significantly increased in the ozone treatment, although the albumin fraction (water soluble protein) decreased. The increase in protein was more pronounced in L81, due to increases in the glutelin fraction in this genotype. Amino acids responded differently to the ozone treatment. Three essential amino acids (leucine, methionine and threonine) showed significant increases, while seven showed significant treatment by genotype interactions, mostly due to more positive responses in L81. The trend of increased grain protein was in contrast to foliar nitrogen levels, which were negatively affected by ozone. A negative correlation between grain protein and foliar nitrogen in ozone stress indicated that higher grain protein cannot be explained by a concentration effect in all tissues due to lower biomass production. Rather, ozone exposure affected the nitrogen distribution, as indicated by altered foliar activity of the enzymes involved in nitrogen metabolism, such as glutamine synthetase and glutamine-2-oxoglutarate aminotransferase. Our results demonstrate differential responses of grain quality to ozone due to the presence of tolerance QTL, and partly explain the underlying physiological processes.
Collapse
Affiliation(s)
- Liquan Jing
- Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, PR China
| | - Vitalij Dombinov
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Germany
| | - Shibo Shen
- Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, PR China
| | - Yanzhen Wu
- Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, PR China
| | - Lianxin Yang
- Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, PR China
| | - Yunxia Wang
- College of Environmental Science and Engineering, Yangzhou University, PR China
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Germany.
| |
Collapse
|
31
|
Tello J, Torres-Pérez R, Grimplet J, Ibáñez J. Association analysis of grapevine bunch traits using a comprehensive approach. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:227-42. [PMID: 26536891 DOI: 10.1007/s00122-015-2623-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/17/2015] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE A set of SNP markers associated to bunch compactness and related traits were identified in grapevine. ABSTRACT Bunch compactness plays an important role in the sanitary status and perceived quality of table and wine grapes, being influenced by cultural practices and by environmental and genetic factors, which are mostly unknown. In this work, we took advantage of genetic, genomic and bioinformatic advances to analyze part of its molecular basis through a combination of transcriptomic and association analyses. Results from different transcriptomic comparisons between loose and compact grapevine clones were analyzed to select a set of candidate genes likely involved in the observed variation for bunch compactness. Up to 183 genes were sequenced in a grapevine collection, and 7032 single nucleotide polymorphisms (SNPs) were detected in more than 100 varieties with a frequency of the minor allele over 5%. They were used to test their association in three consecutive seasons with bunch compactness and two of its most influencing factors: total berry number and length of the first ramification of the rachis. Only one SNP was associated with berry number in two seasons, suggesting the high sensitiveness of this trait to seasonal environmental changes. On the other hand, we found a set of SNPs associated with both the first ramification length and bunch compactness in various seasons, in several genes which had not previously related to bunch compactness or bunch compactness-related traits. They are proposed as interesting candidates for further functional analyses aimed to verify the results obtained in this work, as a previous step to their inclusion in marker-assisted selection strategies.
Collapse
Affiliation(s)
- Javier Tello
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-Universidad de La Rioja-Gobierno de La Rioja), Carretera de Burgos km 6. Finca La Grajera, 26007, Logroño, Spain
| | - Rafael Torres-Pérez
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-Universidad de La Rioja-Gobierno de La Rioja), Carretera de Burgos km 6. Finca La Grajera, 26007, Logroño, Spain
| | - Jérôme Grimplet
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-Universidad de La Rioja-Gobierno de La Rioja), Carretera de Burgos km 6. Finca La Grajera, 26007, Logroño, Spain
| | - Javier Ibáñez
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-Universidad de La Rioja-Gobierno de La Rioja), Carretera de Burgos km 6. Finca La Grajera, 26007, Logroño, Spain.
| |
Collapse
|
32
|
Zhang P, Zhong K, Shahid MQ, Tong H. Association Analysis in Rice: From Application to Utilization. FRONTIERS IN PLANT SCIENCE 2016; 7:1202. [PMID: 27582745 PMCID: PMC4987372 DOI: 10.3389/fpls.2016.01202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/28/2016] [Indexed: 05/03/2023]
Abstract
Association analysis based on linkage disequilibrium (LD) is an efficient way to dissect complex traits and to identify gene functions in rice. Although association analysis is an effective way to construct fine maps for quantitative traits, there are a few issues which need to be addressed. In this review, we will first summarize type, structure, and LD level of populations used for association analysis of rice, and then discuss the genotyping methods and statistical approaches used for association analysis in rice. Moreover, we will review current shortcomings and benefits of association analysis as well as specific types of future research to overcome these shortcomings. Furthermore, we will analyze the reasons for the underutilization of the results within association analysis in rice breeding.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- *Correspondence: Peng Zhang
| | - Kaizhen Zhong
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- Hanhua Tong
| |
Collapse
|
33
|
Rebolledo MC, Peña AL, Duitama J, Cruz DF, Dingkuhn M, Grenier C, Tohme J. Combining Image Analysis, Genome Wide Association Studies and Different Field Trials to Reveal Stable Genetic Regions Related to Panicle Architecture and the Number of Spikelets per Panicle in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1384. [PMID: 27703460 PMCID: PMC5029283 DOI: 10.3389/fpls.2016.01384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/30/2016] [Indexed: 05/19/2023]
Abstract
Number of spikelets per panicle (NSP) is a key trait to increase yield potential in rice (O. sativa). The architecture of the rice inflorescence which is mainly determined by the length and number of primary (PBL and PBN) and secondary (SBL and SBN) branches can influence NSP. Although several genes controlling panicle architecture and NSP in rice have been identified, there is little evidence of (i) the genetic control of panicle architecture and NSP in different environments and (ii) the presence of stable genetic associations with panicle architecture across environments. This study combines image phenotyping of 225 accessions belonging to a genetic diversity array of indica rice grown under irrigated field condition in two different environments and Genome Wide Association Studies (GWAS) based on the genotyping of the diversity panel, providing 83,374 SNPs. Accessions sown under direct seeding in one environement had reduced Panicle Length (PL), NSP, PBN, PBL, SBN, and SBL compared to those established under transplanting in the second environment. Across environments, NSP was significantly and positively correlated with PBN, SBN and PBL. However, the length of branches (PBL and SBL) was not significantly correlated with variables related to number of branches (PBN and SBN), suggesting independent genetic control. Twenty- three GWAS sites were detected with P ≤ 1.0E-04 and 27 GWAS sites with p ≤ 5.9E-04. We found 17 GWAS sites related to NSP, 10 for PBN and 11 for SBN, 7 for PBL and 11 for SBL. This study revealed new regions related to NSP, but only three associations were related to both branching number (PBN and SBN) and NSP. Two GWAS sites associated with SBL and SBN were stable across contrasting environments and were not related to genes previously reported. The new regions reported in this study can help improving NSP in rice for both direct seeded and transplanted conditions. The integrated approach of high-throughput phenotyping, multi-environment field trials and GWAS has the potential to dissect complex traits, such as NSP, into less complex traits and to match single nucleotide polymorphisms with relevant function under different environments, offering a potential use for molecular breeding.
Collapse
Affiliation(s)
- Maria C. Rebolledo
- Agrobiodiversity, International Center for Tropical AgriculturePalmira, Colombia
- *Correspondence: Maria C. Rebolledo
| | - Alexandra L. Peña
- Agrobiodiversity, International Center for Tropical AgriculturePalmira, Colombia
| | - Jorge Duitama
- Agrobiodiversity, International Center for Tropical AgriculturePalmira, Colombia
| | - Daniel F. Cruz
- Agrobiodiversity, International Center for Tropical AgriculturePalmira, Colombia
| | - Michael Dingkuhn
- Agrobiodiversity, International Center for Tropical AgriculturePalmira, Colombia
- Agricultural Research for Development - CIRAD, Unités Mixtes de Recherche - Amélioration Génétique et Adaptation des PlantesMontpellier, France
| | - Cecile Grenier
- Agrobiodiversity, International Center for Tropical AgriculturePalmira, Colombia
- Agricultural Research for Development - CIRAD, Unités Mixtes de Recherche - Amélioration Génétique et Adaptation des PlantesMontpellier, France
| | - Joe Tohme
- Agrobiodiversity, International Center for Tropical AgriculturePalmira, Colombia
| |
Collapse
|
34
|
Matthus E, Wu LB, Ueda Y, Höller S, Becker M, Frei M. Loci, genes, and mechanisms associated with tolerance to ferrous iron toxicity in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2085-98. [PMID: 26152574 DOI: 10.1007/s00122-015-2569-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/16/2015] [Indexed: 05/08/2023]
Abstract
A genome-wide association study in rice yielded loci and candidate genes associated with tolerance to iron toxicity, and revealed biochemical mechanisms associated with tolerance in contrasting haplotypes. Iron toxicity is a major nutrient disorder affecting rice. Therefore, understanding the genetic and physiological mechanisms associated with iron toxicity tolerance is crucial in adaptive breeding and biofortification. We conducted a genome-wide association study (GWAS) by exposing a population of 329 accessions representing all subgroups of rice to ferrous iron stress (1000 ppm, 5 days). Expression patterns and sequence polymorphisms of candidate genes were investigated, and physiological hypotheses related to candidate loci were tested using a subset of contrasting haplotypes. Both iron including and excluding tolerant genotypes were observed, and shoot iron concentrations explained around 15.5 % of the variation in foliar symptom formation. GWAS for seven traits yielded 20 SNP markers exceeding a significance threshold of -log10 P > 4.0, which represented 18 distinct loci. One locus mapped for foliar symptom formation on chromosome 1 contained two putative glutathione-S-transferases, which were strongly expressed under iron stress and showed sequence polymorphisms in complete linkage disequilibrium with the most significant SNP. Contrasting haplotypes for this locus showed significant differences in dehydroascorbate reductase activity, which affected the plants' redox status under iron stress. We conclude that maintaining foliar redox homeostasis under iron stress represented an important tolerance mechanism associated with a locus identified through GWAS.
Collapse
Affiliation(s)
- Elsa Matthus
- Institute of Crop Science and Resource Conservation (INRES) - Plant Nutrition, University of Bonn, Karlrobert-Kreiten Straße 13, Bonn, 53115, Germany
| | - Lin-Bo Wu
- Institute of Crop Science and Resource Conservation (INRES) - Plant Nutrition, University of Bonn, Karlrobert-Kreiten Straße 13, Bonn, 53115, Germany
| | - Yoshiaki Ueda
- Institute of Crop Science and Resource Conservation (INRES) - Plant Nutrition, University of Bonn, Karlrobert-Kreiten Straße 13, Bonn, 53115, Germany
| | - Stefanie Höller
- Institute of Crop Science and Resource Conservation (INRES) - Plant Nutrition, University of Bonn, Karlrobert-Kreiten Straße 13, Bonn, 53115, Germany
| | - Mathias Becker
- Institute of Crop Science and Resource Conservation (INRES) - Plant Nutrition, University of Bonn, Karlrobert-Kreiten Straße 13, Bonn, 53115, Germany
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES) - Plant Nutrition, University of Bonn, Karlrobert-Kreiten Straße 13, Bonn, 53115, Germany.
| |
Collapse
|
35
|
Ueda Y, Siddique S, Frei M. A Novel Gene, OZONE-RESPONSIVE APOPLASTIC PROTEIN1, Enhances Cell Death in Ozone Stress in Rice. PLANT PHYSIOLOGY 2015; 169:873-89. [PMID: 26220952 PMCID: PMC4577431 DOI: 10.1104/pp.15.00956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/22/2015] [Indexed: 05/20/2023]
Abstract
A novel protein, OZONE-RESPONSIVE APOPLASTIC PROTEIN1 (OsORAP1), was characterized, which was previously suggested as a candidate gene underlying OzT9, a quantitative trait locus for ozone stress tolerance in rice (Oryza sativa). The sequence of OsORAP1 was similar to that of ASCORBATE OXIDASE (AO) proteins. It was localized in the apoplast, as shown by transient expression of an OsORAP1/green fluorescent protein fusion construct in Nicotiana benthamiana leaf epidermal and mesophyll cells, but did not possess AO activity, as shown by heterologous expression of OsORAP1 in Arabidopsis (Arabidopsis thaliana) mutants with reduced background AO activity. A knockout rice line of OsORAP1 showed enhanced tolerance to ozone stress (120 nL L(-1) average daytime concentration, 20 d), as demonstrated by less formation of leaf visible symptoms (i.e. cell death), less lipid peroxidation, and lower NADPH oxidase activity, indicating reduced active production of reactive oxygen species. In contrast, the effect of ozone on chlorophyll content was not significantly different among the lines. These observations suggested that OsORAP1 specifically induced cell death in ozone stress. Significantly enhanced expression of jasmonic acid-responsive genes in the knockout line implied the involvement of the jasmonic acid pathway in symptom mitigation. Sequence analysis revealed extensive polymorphisms in the promoter region of OsORAP1 between the ozone-susceptible cv Nipponbare and the ozone-tolerant cv Kasalath, the OzT9 donor variety, which could be responsible for the differential regulation of OsORAP1 reported earlier. These pieces of evidence suggested that OsORAP1 enhanced cell death in ozone stress, and its expression levels could explain the effect of a previously reported quantitative trait locus.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Institute of Crop Science and Resource Conservation, Plant Nutrition (Y.U., M.F.) and Molecular Phytomedicine (S.S.), University of Bonn, 53115 Bonn, Germany
| | - Shahid Siddique
- Institute of Crop Science and Resource Conservation, Plant Nutrition (Y.U., M.F.) and Molecular Phytomedicine (S.S.), University of Bonn, 53115 Bonn, Germany
| | - Michael Frei
- Institute of Crop Science and Resource Conservation, Plant Nutrition (Y.U., M.F.) and Molecular Phytomedicine (S.S.), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
36
|
Höller S, Ueda Y, Wu L, Wang Y, Hajirezaei MR, Ghaffari MR, von Wirén N, Frei M. Ascorbate biosynthesis and its involvement in stress tolerance and plant development in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2015; 88:545-60. [PMID: 26129988 DOI: 10.1007/s11103-015-0341-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/23/2015] [Indexed: 05/26/2023]
Abstract
Ascorbic acid (AsA) biosynthesis and its implications for stress tolerance and plant development were investigated in a set of rice knock-out (KO) mutants for AsA biosynthetic genes and their wild-types. KO of two isoforms of GDP-D-mannose epimerase (OsGME) reduced the foliar AsA level by 20-30%, and KO of GDP-L-galactose phosphorylase (OsGGP) by 80%, while KO of myo-inositol oxygenase (OsMIOX) did not affect foliar AsA levels. AsA concentration was negatively correlated with lipid peroxidation in foliar tissue under ozone stress and zinc deficiency, but did not affect the sensitivity to iron toxicity. Lack of AsA reduced the photosynthetic efficiency as represented by the maximum carboxylation rate of Rubisco (Vmax), the maximum electron transport rate (Jmax) and the chlorophyll fluorescence parameter ΦPSII. Mutants showed lower biomass production than their wild-types, especially when OsGGP was lacking (around 80% reductions). All plants except for KO mutants of OsGGP showed distinct peaks in foliar AsA concentrations during the growth, which were consistent with up-regulation of OsGGP, suggesting that OsGGP plays a pivotal role in regulating foliar AsA levels during different growth stages. In conclusion, our data demonstrate multiple roles of AsA in stress tolerance and development of rice.
Collapse
Affiliation(s)
- Stefanie Höller
- Institute of Crop Science and Resource Conservation (INRES), Abiotic Stress Tolerance in Crops, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|