1
|
Pagnani G, Lorenzo A, Occhipinti N, Antonucci L, D’Egidio S, Stagnari F, Pisante M. Effect of Flowering Shading on Grain Yield and Quality of Durum Wheat in a Mediterranean Environment. PLANTS (BASEL, SWITZERLAND) 2024; 14:76. [PMID: 39795336 PMCID: PMC11722777 DOI: 10.3390/plants14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
The phenomenon known as "dimming" or shading, caused by the increase in aerosols, air pollutants, and population density, is reducing global radiation, including both direct solar radiation and radiation scattered by the atmosphere. This phenomenon poses a significant challenge for agricultural production in many regions worldwide, with a global radiation decrease estimated between 1.4% and 2.7% per decade in areas between 25° N and 45° N. In particular, in Mediterranean regions, the production of durum wheat (Triticum turgidum L. subsp. Durum) is increasingly constrained by abiotic factors, such as spring/summer heat stress and drought, as well as reductions in solar radiation. Field experiments were conducted in Mosciano Sant'Angelo, Italy, over two cropping seasons (2016-2017 and 2017-2018) to evaluate the effects of photosynthetically active radiation (PAR) availability and nitrogen (N) fertilization on durum wheat. A split-plot design was used with two PAR levels (100% and 20% PAR) and three N rates (0, 100, and 250 kg ha-1). Results highlighted that full sunlight (NoSh) significantly increased grain yield (+25%), thousand kernel weight (+46%), and total gluten fractions (+16%) compared to shaded conditions (Sh). Chlorophyll content and NDVI values were highest under Sh combined with 250 kg N ha-1. Rainfall patterns strongly influenced productivity, with better vegetative growth in 2016-2017 and improved grain filling in 2017-2018. Nitrogen application significantly enhanced grain protein content, particularly under arid conditions. These findings emphasize the interaction between light availability and nitrogen management, suggesting that optimizing these factors can improve yield and quality in durum wheat under Mediterranean conditions.
Collapse
Affiliation(s)
- Giancarlo Pagnani
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Balzarini, 1, 64100 Teramo, Italy; (A.L.); (N.O.); (L.A.); (S.D.); (M.P.)
| | | | | | | | | | - Fabio Stagnari
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Balzarini, 1, 64100 Teramo, Italy; (A.L.); (N.O.); (L.A.); (S.D.); (M.P.)
| | | |
Collapse
|
2
|
Yu Y, Kang H, Wang H, Wang Y, Tang Y. The leaf-scale mass-based photosynthetic optimization model better predicts photosynthetic acclimation than the area-based. AOB PLANTS 2024; 16:plae044. [PMID: 39380849 PMCID: PMC11459265 DOI: 10.1093/aobpla/plae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/16/2024] [Indexed: 10/10/2024]
Abstract
Leaf-scale photosynthetic optimization models can quantitatively predict photosynthetic acclimation and have become an important means of improving vegetation and land surface models. Previous models have generally been based on the optimality assumption of maximizing the net photosynthetic assimilation per unit leaf area (i.e. the area-based optimality) while overlooking other optimality assumptions such as maximizing the net photosynthetic assimilation per unit leaf dry mass (i.e. the mass-based optimality). This paper compares the predicted results of photosynthetic acclimation to different environmental conditions between the area-based optimality and the mass-based optimality models. The predictions are then verified using the observational data from the literatures. The mass-based optimality model better predicted photosynthetic acclimation to growth light intensity, air temperature and CO2 concentration, and captured more variability in photosynthetic traits than the area-based optimality models. The findings suggest that the mass-based optimality approach may be a promising strategy for improving the predictive power and accuracy of optimization models, which have been widely used in various studies related to plant carbon issues.
Collapse
Affiliation(s)
- Yuan Yu
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huixing Kang
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Yuheng Wang
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yanhong Tang
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Lauterberg M, Tschiersch H, Zhao Y, Kuhlmann M, Mücke I, Papa R, Bitocchi E, Neumann K. Implementation of theoretical non-photochemical quenching (NPQ (T)) to investigate NPQ of chickpea under drought stress with High-throughput Phenotyping. Sci Rep 2024; 14:13970. [PMID: 38886488 PMCID: PMC11183218 DOI: 10.1038/s41598-024-63372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Non-photochemical quenching (NPQ) is a protective mechanism for dissipating excess energy generated during photosynthesis in the form of heat. The accelerated relaxation of the NPQ in fluctuating light can lead to an increase in the yield and dry matter productivity of crops. Since the measurement of NPQ is time-consuming and requires specific light conditions, theoretical NPQ (NPQ(T)) was introduced for rapid estimation, which could be suitable for High-throughput Phenotyping. We investigated the potential of NPQ(T) to be used for testing plant genetic resources of chickpea under drought stress with non-invasive High-throughput Phenotyping complemented with yield traits. Besides a high correlation between the hundred-seed-weight and the Estimated Biovolume, significant differences were observed between the two types of chickpea desi and kabuli for Estimated Biovolume and NPQ(T). Desi was able to maintain the Estimated Biovolume significantly better under drought stress. One reason could be the effective dissipation of excess excitation energy in photosystem II, which can be efficiently measured as NPQ(T). Screening of plant genetic resources for photosynthetic performance could take pre-breeding to a higher level and can be implemented in a variety of studies, such as here with drought stress or under fluctuating light in a High-throughput Phenotyping manner using NPQ(T).
Collapse
Affiliation(s)
- Madita Lauterberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Ingo Mücke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Roberto Papa
- Marche Polytechnic University (UNIVPM), Ancona, Italy
| | | | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany.
| |
Collapse
|
4
|
Niinemets Ü. Variation in leaf photosynthetic capacity within plant canopies: optimization, structural, and physiological constraints and inefficiencies. PHOTOSYNTHESIS RESEARCH 2023; 158:131-149. [PMID: 37615905 DOI: 10.1007/s11120-023-01043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Leaf photosynthetic capacity (light-saturated net assimilation rate, AA) increases from bottom to top of plant canopies as the most prominent acclimation response to the conspicuous within-canopy gradients in light availability. Light-dependent variation in AA through plant canopies is associated with changes in key leaf structural (leaf dry mass per unit leaf area), chemical (nitrogen (N) content per area and dry mass, N partitioning between components of photosynthetic machinery), and physiological (stomatal and mesophyll conductance) traits, whereas the contribution of different traits to within-canopy AA gradients varies across sites, species, and plant functional types. Optimality models maximizing canopy carbon gain for a given total canopy N content predict that AA should be proportionally related to canopy light availability. However, comparison of model expectations with experimental data of within-canopy photosynthetic trait variations in representative plant functional types indicates that such proportionality is not observed in real canopies, and AA vs. canopy light relationships are curvilinear. The factors responsible for deviations from full optimality include stronger stomatal and mesophyll diffusion limitations at higher light, reflecting greater water limitations and more robust foliage in higher light. In addition, limits on efficient packing of photosynthetic machinery within leaf structural scaffolding, high costs of N redistribution among leaves, and limited plasticity of N partitioning among components of photosynthesis machinery constrain AA plasticity. Overall, this review highlights that the variation of AA through plant canopies reflects a complex interplay between adjustments of leaf structure and function to multiple environmental drivers, and that AA plasticity is limited by inherent constraints on and trade-offs between structural, chemical, and physiological traits. I conclude that models trying to simulate photosynthesis gradients in plant canopies should consider co-variations among environmental drivers, and the limitation of functional trait variation by physical constraints and include the key trade-offs between structural, chemical, and physiological leaf characteristics.
Collapse
Affiliation(s)
- Ülo Niinemets
- Chair of Plant and Crop Science, Estonian University of Life Sciences, Kreutzwaldi 1, 51011, Tartu, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
5
|
Burgess AJ, Retkute R, Murchie EH. Photoacclimation and entrainment of photosynthesis by fluctuating light varies according to genotype in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1116367. [PMID: 36968397 PMCID: PMC10034362 DOI: 10.3389/fpls.2023.1116367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Acclimation of photosynthesis to light intensity (photoacclimation) takes days to achieve and so naturally fluctuating light presents a potential challenge where leaves may be exposed to light conditions that are beyond their window of acclimation. Experiments generally have focused on unchanging light with a relatively fixed combination of photosynthetic attributes to confer higher efficiency in those conditions. Here a controlled LED experiment and mathematical modelling was used to assess the acclimation potential of contrasting Arabidopsis thaliana genotypes following transfer to a controlled fluctuating light environment, designed to present frequencies and amplitudes more relevant to natural conditions. We hypothesize that acclimation of light harvesting, photosynthetic capacity and dark respiration are controlled independently. Two different ecotypes were selected, Wassilewskija-4 (Ws), Landsberg erecta (Ler) and a GPT2 knock out mutant on the Ws background (gpt2-), based on their differing abilities to undergo dynamic acclimation i.e. at the sub-cellular or chloroplastic scale. Results from gas exchange and chlorophyll content indicate that plants can independently regulate different components that could optimize photosynthesis in both high and low light; targeting light harvesting in low light and photosynthetic capacity in high light. Empirical modelling indicates that the pattern of 'entrainment' of photosynthetic capacity by past light history is genotype-specific. These data show flexibility of photoacclimation and variation useful for plant improvement.
Collapse
Affiliation(s)
| | - Renata Retkute
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Erik H. Murchie
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
6
|
Photosynthetic acclimation to changing environments. Biochem Soc Trans 2023; 51:473-486. [PMID: 36892145 DOI: 10.1042/bst20211245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Plants are exposed to environments that fluctuate of timescales varying from seconds to months. Leaves that develop in one set of conditions optimise their metabolism to the conditions experienced, in a process called developmental acclimation. However, when plants experience a sustained change in conditions, existing leaves will also acclimate dynamically to the new conditions. Typically this process takes several days. In this review, we discuss this dynamic acclimation process, focussing on the responses of the photosynthetic apparatus to light and temperature. We briefly discuss the principal changes occurring in the chloroplast, before examining what is known, and not known, about the sensing and signalling processes that underlie acclimation, identifying likely regulators of acclimation.
Collapse
|
7
|
Burgess AJ, Cardoso AA. Throwing shade: Limitations to photosynthesis at high planting densities and how to overcome them. PLANT PHYSIOLOGY 2023; 191:825-827. [PMID: 36493382 PMCID: PMC9922388 DOI: 10.1093/plphys/kiac567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Affiliation(s)
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
8
|
Garcia A, Gaju O, Bowerman AF, Buck SA, Evans JR, Furbank RT, Gilliham M, Millar AH, Pogson BJ, Reynolds MP, Ruan Y, Taylor NL, Tyerman SD, Atkin OK. Enhancing crop yields through improvements in the efficiency of photosynthesis and respiration. THE NEW PHYTOLOGIST 2023; 237:60-77. [PMID: 36251512 PMCID: PMC10100352 DOI: 10.1111/nph.18545] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/15/2022] [Indexed: 06/06/2023]
Abstract
The rate with which crop yields per hectare increase each year is plateauing at the same time that human population growth and other factors increase food demand. Increasing yield potential (Y p ) of crops is vital to address these challenges. In this review, we explore a component ofY p that has yet to be optimised - that being improvements in the efficiency with which light energy is converted into biomass (ε c ) via modifications to CO2 fixed per unit quantum of light (α), efficiency of respiratory ATP production (ε prod ) and efficiency of ATP use (ε use ). For α, targets include changes in photoprotective machinery, ribulose bisphosphate carboxylase/oxygenase kinetics and photorespiratory pathways. There is also potential forε prod to be increased via targeted changes to the expression of the alternative oxidase and mitochondrial uncoupling pathways. Similarly, there are possibilities to improveε use via changes to the ATP costs of phloem loading, nutrient uptake, futile cycles and/or protein/membrane turnover. Recently developed high-throughput measurements of respiration can serve as a proxy for the cumulative energy cost of these processes. There are thus exciting opportunities to use our growing knowledge of factors influencing the efficiency of photosynthesis and respiration to create a step-change in yield potential of globally important crops.
Collapse
Affiliation(s)
- Andres Garcia
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Oorbessy Gaju
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- College of Science, Lincoln Institute for Agri‐Food TechnologyUniversity of LincolnLincolnshireLN2 2LGUK
| | - Andrew F. Bowerman
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Sally A. Buck
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - John R. Evans
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Robert T. Furbank
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences & Institute of AgricultureThe University of Western AustraliaCrawleyWA6009Australia
| | - Barry J. Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Matthew P. Reynolds
- International Maize and Wheat Improvement Center (CIMMYT)Km. 45, Carretera Mexico, El BatanTexcoco56237Mexico
| | - Yong‐Ling Ruan
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Nicolas L. Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences & Institute of AgricultureThe University of Western AustraliaCrawleyWA6009Australia
| | - Stephen D. Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research InstituteUniversity of AdelaideGlen OsmondSA5064Australia
| | - Owen K. Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|
9
|
Sukhova E, Ratnitsyna D, Gromova E, Sukhov V. Development of Two-Dimensional Model of Photosynthesis in Plant Leaves and Analysis of Induction of Spatial Heterogeneity of CO 2 Assimilation Rate under Action of Excess Light and Drought. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233285. [PMID: 36501325 PMCID: PMC9739240 DOI: 10.3390/plants11233285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 05/11/2023]
Abstract
Photosynthesis is a key process in plants that can be strongly affected by the actions of environmental stressors. The stressor-induced photosynthetic responses are based on numerous and interacted processes that can restrict their experimental investigation. The development of mathematical models of photosynthetic processes is an important way of investigating these responses. Our work was devoted to the development of a two-dimensional model of photosynthesis in plant leaves that was based on the Farquhar-von Caemmerer-Berry model of CO2 assimilation and descriptions of other processes including the stomatal and transmembrane CO2 fluxes, lateral CO2 and HCO3- fluxes, transmembrane and lateral transport of H+ and K+, interaction of these ions with buffers in the apoplast and cytoplasm, light-dependent regulation of H+-ATPase in the plasma membrane, etc. Verification of the model showed that the simulated light dependences of the CO2 assimilation rate were similar to the experimental ones and dependences of the CO2 assimilation rate of an average leaf CO2 conductance were also similar to the experimental dependences. An analysis of the model showed that a spatial heterogeneity of the CO2 assimilation rate on a leaf surface should be stimulated under an increase in light intensity and a decrease in the stomatal CO2 conductance or quantity of the open stomata; this prediction was supported by the experimental verification. Results of the work can be the basis of the development of new methods of the remote sensing of the influence of abiotic stressors (at least, excess light and drought) on plants.
Collapse
|
10
|
Zhang W, Yu G, Chen Z, Zhu X, Han L, Liu Z, Lin Y, Han S, Sha L, Wang H, Wang Y, Yan J, Zhang Y, Gharun M. Photosynthetic capacity dominates the interannual variation of annual gross primary productivity in the Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157856. [PMID: 35934043 DOI: 10.1016/j.scitotenv.2022.157856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/09/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Annual gross primary productivity (AGPP) of terrestrial ecosystems is the largest carbon flux component in ecosystems; however, it's unclear whether photosynthetic capacity or phenology dominates interannual variation of AGPP, and a better understanding of this could contribute to estimation of carbon sinks and their interactions with climate change. In this study, observed GPP data of 494 site-years from 39 eddy covariance sites in Northern Hemisphere were used to investigate mechanisms of interannual variation of AGPP. This study first decomposed AGPP into three seasonal dynamic attribute parameters (growing season length (CUP), maximum daily GPP (GPPmax), and the ratio of mean daily GPP to GPPmax (αGPP)), and then decomposed AGPP into mean leaf area index (LAIm) and annual photosynthetic capacity per leaf area (AGPPlm). Furthermore, GPPmax was decomposed into leaf area index of DOYmax (the day when GPPmax appeared) (LAImax) and photosynthesis per leaf area of DOYmax (GPPlmax). Relative contributions of parameters to AGPP and GPPmax were then calculated. Finally, environmental variables of DOYmax were extracted to analyze factors influencing interannual variation of GPPlmax. Trends of AGPP in 39 ecosystems varied from -65.23 to 53.05 g C m-2 yr-2, with the mean value of 6.32 g C m-2 yr-2. Photosynthetic capacity (GPPmax and AGPPlm), not CUP or LAI, was the main factor dominating interannual variation of AGPP. GPPlmax determined the interannual variation of GPPmax, and temperature, water, and radiation conditions of DOYmax affected the interannual variation of GPPlmax. This study used the cascade relationship of "environmental variables-GPPlmax-GPPmax-AGPP" to explain the mechanism of interannual variation of AGPP, which can provide new ideas for the AGPP estimation based on seasonal dynamic of GPP.
Collapse
Affiliation(s)
- Weikang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xianjin Zhu
- College of Agronomy, Shenyang Agricultural University, Shenyang 100161, China
| | - Lang Han
- School of Earth System Science, Tianjin University, Tianjin 300072, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaogang Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Lin
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Han
- School of Life Science, Henan University, Kaifeng 475004, China
| | - Liqing Sha
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
| | - Huimin Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfen Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yiping Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
| | - Mana Gharun
- Department of Environmental Systems Science, ETH Zürich, Switzerland; Institute of Landscape Ecology, University of Münster, Germany
| |
Collapse
|
11
|
Durand M, Stangl ZR, Salmon Y, Burgess AJ, Murchie EH, Robson TM. Sunflecks in the upper canopy: dynamics of light-use efficiency in sun and shade leaves of Fagus sylvatica. THE NEW PHYTOLOGIST 2022; 235:1365-1378. [PMID: 35569099 PMCID: PMC9543657 DOI: 10.1111/nph.18222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/07/2022] [Indexed: 05/12/2023]
Abstract
Sunflecks are transient patches of direct radiation that provide a substantial proportion of the daily irradiance to leaves in the lower canopy. In this position, faster photosynthetic induction would allow for higher sunfleck-use efficiency, as is commonly reported in the literature. Yet, when sunflecks are too few and far between, it may be more beneficial for shade leaves to prioritize efficient photosynthesis under shade. We investigated the temporal dynamics of photosynthetic induction, recovery under shade, and stomatal movement during a sunfleck, in sun and shade leaves of Fagus sylvatica from three provenances of contrasting origin. We found that shade leaves complete full induction in a shorter time than sun leaves, but that sun leaves respond faster than shade leaves due to their much larger amplitude of induction. The core-range provenance achieved faster stomatal opening in shade leaves, which may allow for better sunfleck-use efficiency in denser canopies and lower canopy positions. Our findings represent a paradigm shift for future research into light fluctuations in canopies, drawing attention to the ubiquitous importance of sunflecks for photosynthesis, not only in lower-canopy leaves where shade is prevalent, but particularly in the upper canopy where longer sunflecks are more common due to canopy openness.
Collapse
Affiliation(s)
- Maxime Durand
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
| | - Zsofia R. Stangl
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences901 83UmeåSweden
| | - Yann Salmon
- Faculty of Science, Institute for Atmospheric and Earth System Research/PhysicsUniversity of HelsinkiPO Box 68, Gustaf Hällströminkatu 2bHelsinki00014Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest SciencesUniversity of HelsinkiPO Box 27Helsinki00014Finland
| | - Alexandra J. Burgess
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusSutton BoningtonLE12 5RDUK
| | - Erik H. Murchie
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusSutton BoningtonLE12 5RDUK
| | - T. Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental SciencesUniversity of Helsinki00014HelsinkiFinland
| |
Collapse
|
12
|
Osei-Kwarteng M, Ayipio E, Moualeu-Ngangue D, Buck-Sorlin G, Stützel H. Interspecific variation in leaf traits, photosynthetic light response, and whole-plant productivity in amaranths (Amaranthus spp. L.). PLoS One 2022; 17:e0270674. [PMID: 35771745 PMCID: PMC9246199 DOI: 10.1371/journal.pone.0270674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic light response curve parameters help us understand the interspecific variation in photosynthetic traits, leaf acclimation status, carbon uptake, and plant productivity in specific environments. These parameters are also influenced by leaf traits which rely on species and growth environment. In accessions of four amaranth species (Amaranthus. hybridus, A. dubius, A. hypochondriacus, and A. cruentus), we determined variations in the net photosynthetic light response curves and leaf traits, and analysed the relationships between maximum gross photosynthetic rate, leaf traits, and whole-plant productivity. Non-rectangular hyperbolae were used for the net photosynthesis light response curves. Maximum gross photosynthetic rate (Pgmax) was the only variant parameter among the species, ranging from 22.29 to 34.21 μmol m–2 s–1. Interspecific variation existed for all the leaf traits except leaf mass per area and leaf inclination angle. Stomatal conductance, nitrogen, chlorophyll, and carotenoid contents, as well as leaf area correlated with Pgmax. Stomatal conductance and leaf nitrogen explained much of the variation in Pgmax at the leaf level. At the plant level, the slope between absolute growth rate and leaf area showed a strong linear relationship with Pgmax. Overall, A. hybridus and A. cruentus exhibited higher Pgmax at the leaf level and light use efficiency at the whole-plant level than A. dubius, and A. hypochondriacus. Thus, A. hybridus and A. cruentus tended to be more efficient with respect to carbon assimilation. These findings highlight the correlation between leaf photosynthetic characteristics, other leaf traits, and whole plant productivity in amaranths. Future studies may explore more species and accessions of Amaranthus at different locations or light environments.
Collapse
Affiliation(s)
- Mildred Osei-Kwarteng
- Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
- Department of Horticulture, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Nyankpala, Tamale, Ghana
- * E-mail: ,
| | - Emmanuel Ayipio
- CSIR-Savannah Agricultural Research Institute, Nyankpala, Ghana
- Auburn University, Department of Horticulture, Auburn, Alabama, United States of America
| | - Dany Moualeu-Ngangue
- Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| | | | - Hartmut Stützel
- Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
13
|
Robles-Zazueta CA, Pinto F, Molero G, Foulkes MJ, Reynolds MP, Murchie EH. Prediction of Photosynthetic, Biophysical, and Biochemical Traits in Wheat Canopies to Reduce the Phenotyping Bottleneck. FRONTIERS IN PLANT SCIENCE 2022; 13:828451. [PMID: 35481146 PMCID: PMC9036448 DOI: 10.3389/fpls.2022.828451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
To achieve food security, it is necessary to increase crop radiation use efficiency (RUE) and yield through the enhancement of canopy photosynthesis to increase the availability of assimilates for the grain, but its study in the field is constrained by low throughput and the lack of integrative measurements at canopy level. In this study, partial least squares regression (PLSR) was used with high-throughput phenotyping (HTP) data in spring wheat to build predictive models of photosynthetic, biophysical, and biochemical traits for the top, middle, and bottom layers of wheat canopies. The combined layer model predictions performed better than individual layer predictions with a significance as follows for photosynthesis R 2 = 0.48, RMSE = 5.24 μmol m-2 s-1 and stomatal conductance: R 2 = 0.36, RMSE = 0.14 mol m-2 s-1. The predictions of these traits from PLSR models upscaled to canopy level compared to field observations were statistically significant at initiation of booting (R 2 = 0.3, p < 0.05; R 2 = 0.29, p < 0.05) and at 7 days after anthesis (R 2 = 0.15, p < 0.05; R 2 = 0.65, p < 0.001). Using HTP allowed us to increase phenotyping capacity 30-fold compared to conventional phenotyping methods. This approach can be adapted to screen breeding progeny and genetic resources for RUE and to improve our understanding of wheat physiology by adding different layers of the canopy to physiological modeling.
Collapse
Affiliation(s)
- Carlos A. Robles-Zazueta
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, United Kingdom
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Francisco Pinto
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Gemma Molero
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - M. John Foulkes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, United Kingdom
| | - Matthew P. Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, United Kingdom
| |
Collapse
|
14
|
Hintz NH, Schulze B, Wacker A, Striebel M. Ecological impacts of photosynthetic light harvesting in changing aquatic environments: A systematic literature map. Ecol Evol 2022; 12:e8753. [PMID: 35356568 PMCID: PMC8939368 DOI: 10.1002/ece3.8753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Underwater light is spatially as well as temporally variable and directly affects phytoplankton growth and competition. Here we systematically (following the guidelines of PRISMA-EcoEvo) searched and screened the published literature resulting in 640 individual articles. We mapped the conducted research for the objectives of (1) phytoplankton fundamental responses to light, (2) effects of light on the competition between phytoplankton species, and (3) effects of climate-change-induced changes in the light availability in aquatic ecosystems. Among the fundamental responses of phytoplankton to light, the effects of light intensity (quantity, as measure of total photon or energy flux) were investigated in most identified studies. The effects of the light spectrum (quality) that via species-specific light absorbance result in direct consequences on species competition emerged more recently. Complexity in competition arises due to variability and fluctuations in light which effects are sparsely investigated on community level. Predictions regarding future climate change scenarios included changes in in stratification and mixing, lake and coastal ocean darkening, UV radiation, ice melting as well as light pollution which affect the underwater light-climate. Generalization of consequences is difficult due to a high variability, interactions of consequences as well as a lack in sustained timeseries and holistic approaches. Nevertheless, our systematic literature map, and the identified articles within, provide a comprehensive overview and shall guide prospective research.
Collapse
Affiliation(s)
- Nils Hendrik Hintz
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University of OldenburgWilhelmshavenGermany
| | - Brian Schulze
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Alexander Wacker
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University of OldenburgWilhelmshavenGermany
| |
Collapse
|
15
|
Yu L, Fujiwara K, Matsuda R. Estimating Light Acclimation Parameters of Cucumber Leaves Using Time-Weighted Averages of Daily Photosynthetic Photon Flux Density. FRONTIERS IN PLANT SCIENCE 2022; 12:809046. [PMID: 35211135 PMCID: PMC8860900 DOI: 10.3389/fpls.2021.809046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Leaves acclimate to day-to-day fluctuating levels of photosynthetic photon flux density (PPFD) by adjusting their morphological and physiological parameters. Accurate estimation of these parameters under day-to-day fluctuating PPFD conditions benefits crop growth modeling and light environment management in greenhouses, although it remains challenging. We quantified the relationships between day-to-day PPFD changes over 6 days and light acclimation parameters for cucumber seedling leaves, including leaf mass per area (LMA), chlorophyll (Chl) a/b ratio, maximum net photosynthetic rate (P nmax), maximum rate of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (V cmax), and maximum rate of electron transport (J max). The last two parameters reflect the capacity of the photosynthetic partial reactions. We built linear regression models of these parameters based on average or time-weighted averages of daily PPFDs. For time-weighted averages of daily PPFDs, the influence of daily PPFD was given a specific weight. We employed three types of functions to calculate this weight, including linear, quadratic, and sigmoid derivative types. We then determined the trend of weights that estimated each parameter most accurately. Moreover, we introduced saturating functions to calibrate the average or time-weighted averages of daily PPFDs, considering that light acclimation parameters are usually saturated under high PPFDs. We found that time-weighted average PPFDs, in which recent PPFD levels had larger weights than earlier levels, better estimated LMA than average PPFDs. This suggests that recent PPFDs contribute more to LMA than earlier PPFDs. Except for the Chl a/b ratio, the average PPFDs estimated P nmax, V cmax, and J max with acceptable accuracy. In contrast, time-weighted averages of daily PPFDs did not improve the estimation accuracy of these four parameters, possibly due to their low response rates and plasticity. Calibrating functions generally improved estimation of Chl a/b ratio, V cmax, and J max because of their saturating tendencies under high PPFDs. Our findings provide a reasonable approach to quantifying the extent to which the leaves acclimate to day-to-day fluctuating PPFDs, especially the extent of LMA.
Collapse
|
16
|
Salvatori N, Carteni F, Giannino F, Alberti G, Mazzoleni S, Peressotti A. A System Dynamics Approach to Model Photosynthesis at Leaf Level Under Fluctuating Light. FRONTIERS IN PLANT SCIENCE 2022; 12:787877. [PMID: 35154180 PMCID: PMC8833254 DOI: 10.3389/fpls.2021.787877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Photosynthesis has been mainly studied under steady-state conditions even though this assumption results inadequate for assessing the biochemical responses to rapid variations occurring in natural environments. The combination of mathematical models with available data may enhance the understanding of the dynamic responses of plants to fluctuating environments and can be used to make predictions on how photosynthesis would respond to non-steady-state conditions. In this study, we present a leaf level System Dynamics photosynthesis model based and validated on an experiment performed on two soybean varieties, namely, the wild type Eiko and the chlorophyll-deficient mutant MinnGold, grown in constant and fluctuating light conditions. This mutant is known to have similar steady-state photosynthesis compared to the green wild type, but it is found to have less biomass at harvest. It has been hypothesized that this might be due to an unoptimized response to non-steady-state conditions; therefore, this mutant seems appropriate to investigate dynamic photosynthesis. The model explained well the photosynthetic responses of these two varieties to fluctuating and constant light conditions and allowed to make relevant conclusions on the different dynamic responses of the two varieties. Deviations between data and model simulations are mostly evident in the non-photochemical quenching (NPQ) dynamics due to the oversimplified combination of PsbS- and zeaxanthin-dependent kinetics, failing in finely capturing the NPQ responses at different timescales. Nevertheless, due to its simplicity, the model can provide the basis of an upscaled dynamic model at a plant level.
Collapse
Affiliation(s)
- Nicole Salvatori
- DI4A, Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Fabrizio Carteni
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giorgio Alberti
- DI4A, Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Alessandro Peressotti
- DI4A, Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
17
|
Burgess AJ, Durand M, Gibbs JA, Retkute R, Robson TM, Murchie EH. The effect of canopy architecture on the patterning of "windflecks" within a wheat canopy. PLANT, CELL & ENVIRONMENT 2021; 44:3524-3537. [PMID: 34418115 DOI: 10.1111/pce.14168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Under field conditions, plants are subject to wind-induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat (Triticum aestivum) canopies during full sun conditions was measured using a spectroradiometer to determine the frequency, duration and magnitude of low- to high-light events plus the spectral composition during wind-induced movement. Similarly, a static canopy was modelled using three-dimensional reconstruction and ray tracing to determine fleck characteristics without the presence of wind. Corresponding architectural traits were measured manually and in silico including plant height, leaf area and angle plus biomechanical properties. Light intensity can differ up to 40% during a windfleck, with changes occurring on a sub-second scale compared to ~5 min in canopies not subject to wind. Features such as a shorter height, more erect leaf stature and having an open structure led to an increased frequency and reduced time interval of light flecks in the CMH79A canopy compared to Paragon. This finding illustrates the potential for architectural traits to be selected to improve the canopy light environment and provides the foundation to further explore the links between plant form and function in crop canopies.
Collapse
Affiliation(s)
- Alexandra J Burgess
- Division of Agriculture and Environmental Sciences, School of Biosciences, University of Nottingham Sutton Bonington Campus, Leicestershire, UK
| | - Maxime Durand
- Organismal and Evolutionary Biology (OEB), Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Jonathon A Gibbs
- Computer Vision Lab, School of Computer Science, University of Nottingham Jubilee Campus, Nottingham, UK
| | - Renata Retkute
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham Sutton Bonington Campus, Leicestershire, UK
| |
Collapse
|
18
|
Salvatori N, Giorgio A, Muller O, Rascher U, Peressotti A. A low-cost automated growth chamber system for continuous measurements of gas exchange at canopy scale in dynamic conditions. PLANT METHODS 2021; 17:69. [PMID: 34193215 PMCID: PMC8243713 DOI: 10.1186/s13007-021-00772-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Obtaining instantaneous gas exchanges data is fundamental to gain information on photosynthesis. Leaf level data are reliable, but their scaling up to canopy scale is difficult as they are acquired in standard and/or controlled conditions, while natural environments are extremely dynamic. Responses to dynamic environmental conditions need to be considered, as measurements at steady state and their related models may overestimate total carbon (C) plant uptake. RESULTS In this paper, we describe an automatic, low-cost measuring system composed of 12 open chambers (60 × 60 × 150 cm; around 400 euros per chamber) able to measure instantaneous CO2 and H2O gas exchanges, as well as environmental parameters, at canopy level. We tested the system's performance by simulating different CO2 uptake and respiration levels using a tube filled with soda lime or pure CO2, respectively, and quantified its response time and measurement accuracy. We have been also able to evaluate the delayed response due to the dimension of the chambers, proposing a method to correct the data by taking into account the response time ([Formula: see text]) and the residence time (τ). Finally, we tested the system by growing a commercial soybean variety in fluctuating and non-fluctuating light, showing the system to be fast enough to capture fast dynamic conditions. At the end of the experiment, we compared cumulative fluxes with total plant dry biomass. CONCLUSIONS The system slightly over-estimated (+ 7.6%) the total C uptake, even though not significantly, confirming its ability in measuring the overall CO2 fluxes at canopy scale. Furthermore, the system resulted to be accurate and stable, allowing to estimate the response time and to determine steady state fluxes from unsteady state measured values. Thanks to the flexibility in the software and to the dimensions of the chambers, even if only tested in dynamic light conditions, the system is thought to be used for several applications and with different plant canopies by mimicking different environmental conditions.
Collapse
Affiliation(s)
- Nicole Salvatori
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy.
| | - Alberti Giorgio
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str, 52425, Jülich, Germany
| | - Uwe Rascher
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str, 52425, Jülich, Germany
| | - Alessandro Peressotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| |
Collapse
|
19
|
Gjindali A, Herrmann HA, Schwartz JM, Johnson GN, Calzadilla PI. A Holistic Approach to Study Photosynthetic Acclimation Responses of Plants to Fluctuating Light. FRONTIERS IN PLANT SCIENCE 2021; 12:668512. [PMID: 33936157 PMCID: PMC8079764 DOI: 10.3389/fpls.2021.668512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/23/2021] [Indexed: 05/10/2023]
Abstract
Plants in natural environments receive light through sunflecks, the duration and distribution of these being highly variable across the day. Consequently, plants need to adjust their photosynthetic processes to avoid photoinhibition and maximize yield. Changes in the composition of the photosynthetic apparatus in response to sustained changes in the environment are referred to as photosynthetic acclimation, a process that involves changes in protein content and composition. Considering this definition, acclimation differs from regulation, which involves processes that alter the activity of individual proteins over short-time periods, without changing the abundance of those proteins. The interconnection and overlapping of the short- and long-term photosynthetic responses, which can occur simultaneously or/and sequentially over time, make the study of long-term acclimation to fluctuating light in plants challenging. In this review we identify short-term responses of plants to fluctuating light that could act as sensors and signals for acclimation responses, with the aim of understanding how plants integrate environmental fluctuations over time and tailor their responses accordingly. Mathematical modeling has the potential to integrate physiological processes over different timescales and to help disentangle short-term regulatory responses from long-term acclimation responses. We review existing mathematical modeling techniques for studying photosynthetic responses to fluctuating light and propose new methods for addressing the topic from a holistic point of view.
Collapse
Affiliation(s)
- Armida Gjindali
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Helena A. Herrmann
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Giles N. Johnson
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Pablo I. Calzadilla
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Foo CC, Burgess AJ, Retkute R, Tree-Intong P, Ruban AV, Murchie EH. Photoprotective energy dissipation is greater in the lower, not the upper, regions of a rice canopy: a 3D analysis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7382-7392. [PMID: 32905587 PMCID: PMC7906788 DOI: 10.1093/jxb/eraa411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/07/2020] [Indexed: 05/22/2023]
Abstract
High light intensities raise photosynthetic and plant growth rates but can cause damage to the photosynthetic machinery. The likelihood and severity of deleterious effects are minimised by a set of photoprotective mechanisms, one key process being the controlled dissipation of energy from chlorophyll within PSII known as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity is important because it momentarily reduces the quantum efficiency of photosynthesis. Rice plants overexpressing and deficient in the gene encoding a central regulator of NPQ, the protein PsbS, were used to assess the effect of protective effectiveness of NPQ (pNPQ) at the canopy scale. Using a combination of three-dimensional reconstruction, modelling, chlorophyll fluorescence, and gas exchange, the influence of altered NPQ capacity on the distribution of pNPQ was explored. A higher phototolerance in the lower layers of a canopy was found, regardless of genotype, suggesting a mechanism for increased protection for leaves that experience relatively low light intensities interspersed with brief periods of high light. Relative to wild-type plants, psbS overexpressors have a reduced risk of photoinactivation and early growth advantage, demonstrating that manipulating photoprotective mechanisms can impact both subcellular mechanisms and whole-canopy function.
Collapse
Affiliation(s)
- Chuan Ching Foo
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Alexandra J Burgess
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Renata Retkute
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Pracha Tree-Intong
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Correspondence:
| |
Collapse
|
21
|
Wang X, Wang Y, Ling A, Guo Z, Asim M, Song F, Wang Q, Sun Y, Khan R, Yan H, Shi Y. Rationale: Photosynthesis of Vascular Plants in Dim Light. FRONTIERS IN PLANT SCIENCE 2020; 11:573881. [PMID: 33329633 PMCID: PMC7732443 DOI: 10.3389/fpls.2020.573881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Light dominates the earth's climate and ecosystems via photosynthesis, and fine changes of that might cause extensive material and energy alternation. Dim light (typically less than 5 μmol photons m-2 s-1) occurs widely in terrestrial ecosystems, while the frequency, duration, and extent of that are increasing because of climate change and urbanization. Dim light is important for the microorganism in the photosynthetic process, but omitted or unconsidered in the vascular plant, because the photosynthesis in the high-light adapted vascular leaves was almost impossible. In this review, we propose limitations of photosynthesis in vascular plant leaves, then elucidate the possibility and evidence of photosynthesis in terms of energy demand, stomatal opening, photosynthetic induction, and photosynthesis-related physiological processes in dim light. This article highlights the potential and noteworthy influence of dim light on photosynthesis in vascular plant leaves, and the research gap of dim light in model application and carbon accounting.
Collapse
Affiliation(s)
- Xiaolin Wang
- Tobacco Research Institute, of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yong Wang
- Liangshan Branch of Sichuan Tobacco Company, Xichang, Qingdao, China
| | - Aifeng Ling
- Liangshan Branch of Sichuan Tobacco Company, Xichang, Qingdao, China
| | - Zhen Guo
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Muhammad Asim
- Tobacco Research Institute, of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Fupeng Song
- College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Qing Wang
- College of Tropical Crop, Hainan University, Haikou, China
| | - Yanguo Sun
- Tobacco Research Institute, of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Rayyan Khan
- Tobacco Research Institute, of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Huifeng Yan
- Tobacco Research Institute, of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yi Shi
- Tobacco Research Institute, of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
22
|
Zhang Y, Kaiser E, Marcelis LFM, Yang Q, Li T. Salt stress and fluctuating light have separate effects on photosynthetic acclimation, but interactively affect biomass. PLANT, CELL & ENVIRONMENT 2020; 43:2192-2206. [PMID: 32463133 DOI: 10.1111/pce.13810] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 05/03/2023]
Abstract
In nature, soil salinity and fluctuating light (FL) often occur concomitantly. However, it is unknown whether salt stress interacts with FL on leaf photosynthesis, architecture, biochemistry, pigmentation, mineral concentrations, as well as whole-plant biomass. To elucidate this, tomato (Solanum lycopersicum) seedlings were grown under constant light (C, 200 μmol m-2 s-1 ) or FL (5-650 μmol m-2 s-1 ), in combination with no (0 mM NaCl) or moderate (80 mM NaCl) salinity, for 14 days, at identical photoperiods and daily light integrals. FL and salt stress had separate effects on leaf anatomy, biochemistry and photosynthetic capacity: FL reduced leaf thickness as well as nitrogen, chlorophyll and carotenoid contents per unit leaf area, but rarely affected steady-state and dynamic photosynthetic properties along with abundance of key proteins in the electron transport chain. Salt stress, meanwhile, mainly disorganized chloroplast grana stacking, reduced stomatal density, size and aperture as well as photosynthetic capacity. Plant biomass was affected interactively by light regime and salt stress: FL reduced biomass in salt stressed plants by 17%, but it did not affect biomass of non-stressed plants. Our results stress the importance of considering FL when inferring effects of salt-stress on photosynthesis and productivity under fluctuating light intensities.
Collapse
Affiliation(s)
- Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| |
Collapse
|
23
|
Kushwaha BK, Rai M, Alamri S, Siddiqui MH, Singh VP. Full sunlight acclimation mechanisms in Riccia discolor thalli: Assessment at morphological, anatomical, and biochemical levels. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111983. [PMID: 32781383 DOI: 10.1016/j.jphotobiol.2020.111983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/28/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
Abstract
Light occupies a central position in regulating development of plants. Either little or excess of light could be harmful for plants. Since bryophytes are shade loving organisms, they must adapt to function in fluctuating light regimes. Therefore, the aim of this study was to investigate acclimatory responses of Riccia discolor thalli grown under full sunlight, and were compared with shade grown thalli (control). Length, width, and fresh mass of thallus were significantly lower (by 27, 41 and 37%, respectively) but endogenous nitric oxide content (by 81%) and nitric oxide synthase like activity (by 58%) were higher in full sunlight grown thalli than shade grown thalli. Number of rhizoids was greater in shade but length and width of rhizoids were higher (by 36 and 25%, respectively) in full sunlight grown thalli. The content of carotenoids was higher (by 34%) in full sunlight grown thalli. In full sunlight grown thalli, chloroplasts exhibited avoidance movement but in shade grown thalli they exhibited accumulation movement. Photosynthetic yields were higher in shade grown thalli. Among energy fluxes, ABS/RC did not vary but DI0/RC was higher (by 12%) in full sunlight grown thalli. Reactive oxygen species and damage were greater in full sunlight grown thalli despite enhanced levels of antioxidants i.e. superoxide dismutase (by 66%) and catalase (by 34%). Overall results suggest that full sunlight acclimation in Riccia discolor thalli occurred at various levels in which endogenous NO plays a positive role.
Collapse
Affiliation(s)
- Bishwajit Kumar Kushwaha
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Meena Rai
- Bryology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|
24
|
Relation of Photochemical Reflectance Indices Based on Different Wavelengths to the Parameters of Light Reactions in Photosystems I and II in Pea Plants. REMOTE SENSING 2020. [DOI: 10.3390/rs12081312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Measurement and analysis of the numerous reflectance indices of plants is an effective approach for the remote sensing of plant physiological processes in agriculture and ecological monitoring. A photochemical reflectance index (PRI) plays an important role in this kind of remote sensing because it can be related to early changes in photosynthetic processes under the action of stressors (excess light, changes in temperature, drought, etc.). In particular, we previously showed that light-induced changes in PRIs could be strongly related to the energy-dependent component of the non-photochemical quenching in photosystem II. The aim of the present work was to undertake comparative analysis of the efficiency of using light-induced changes in PRIs (ΔPRIs) based on different wavelengths for the estimation of the parameters of photosynthetic light reactions (including the parameters of photosystem I). Pea plants were used in the investigation; the photosynthetic parameters were measured using the pulse-amplitude-modulated (PAM) fluorometer Dual-PAM-100 and the intensities of the reflected light were measured using the spectrometer S100. The ΔPRIs were calculated as ΔPRI(band,570), where the band was 531 nm for the typical PRI and 515, 525, 535, 545, or 555 nm for modified PRIs; 570 nm was the reference wavelength for all PRIs. There were several important results: (1) ∆PRI(525,570), ∆PRI(531,570), ∆PRI(535,570), and ∆PRI(545,570) could be used for estimation of most of the photosynthetic parameters under light only or under dark only conditions. (2) The combination of dark and light conditions decreased the efficiency of ∆PRIs for the estimation of the photosynthetic parameters; ∆PRI(535,570) and ∆PRI(545,570) had maximal efficiency under these conditions. (3) ∆PRI(515,570) and ∆PRI(525,570) mainly included the slow-relaxing component of PRI; in contrast, ∆PRI(531,570), ∆PRI(535,570), ∆PRI(545,570), and ∆PRI(555,570) mainly included the fast-relaxing component of PRI. These components were probably caused by different mechanisms.
Collapse
|
25
|
Morales A, Kaiser E. Photosynthetic Acclimation to Fluctuating Irradiance in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:268. [PMID: 32265952 PMCID: PMC7105707 DOI: 10.3389/fpls.2020.00268] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 05/07/2023]
Abstract
Unlike the short-term responses of photosynthesis to fluctuating irradiance, the long-term response (i.e., acclimation) at the chloroplast, leaf, and plant level has received less attention so far. The ability of plants to acclimate to irradiance fluctuations and the speed at which this acclimation occurs are potential limitations to plant growth under field conditions, and therefore this process deserves closer study. In the first section of this review, we look at the sources of natural irradiance fluctuations, their effects on short-term photosynthesis, and the interaction of these effects with circadian rhythms. This is followed by an overview of the mechanisms that are involved in acclimation to fluctuating (or changes of) irradiance. We highlight the chain of events leading to acclimation: retrograde signaling, systemic acquired acclimation (SAA), gene transcription, and changes in protein abundance. We also review how fluctuating irradiance is applied in experiments and highlight the fact that they are significantly slower than natural fluctuations in the field, although the technology to achieve realistic fluctuations exists. Finally, we review published data on the effects of growing plants under fluctuating irradiance on different plant traits, across studies, spatial scales, and species. We show that, when plants are grown under fluctuating irradiance, the chlorophyll a/b ratio and plant biomass decrease, specific leaf area increases, and photosynthetic capacity as well as root/shoot ratio are, on average, unaffected.
Collapse
Affiliation(s)
- Alejandro Morales
- Centre for Crop Systems Analysis, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
26
|
Sukhova E, Khlopkov A, Vodeneev V, Sukhov V. Simulation of a nonphotochemical quenching in plant leaf under different light intensities. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148138. [PMID: 31825810 DOI: 10.1016/j.bbabio.2019.148138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
An analysis of photosynthetic response on action of stressors is an important problem, which can be solved by experimental and theoretical methods, including mathematical modeling of photosynthetic processes. The aim of our work was elaboration of a mathematical model, which simulated development of a nonphotochemical quenching under different light conditions. We analyzed two variants of the model: the first variant included a light-induced activation of the electron transport chain; in contrast, the second variant did not describe this activation. Both variants of the model described interactions between transitions from open reaction centers to closed ones (and vice versa) and development of the nonphotochemical quenching. Investigation of both variants of the model showed well qualitative and quantitative accordance between simulated and experimental changes in coefficient of the nophotochemical quenching which were analyzed under different light regimes: (i) the stepped increase of the light intensity without dark intervals between steps, (ii) periodical illuminations by different light intensities with constant durations which were separated by constant dark intervals, and (iii) periodical illuminations by the constant light intensity with different durations which were separated by different dark intervals. Thus, the model can be used for theoretical prediction of stress changes in photosynthesis under fluctuations in light intensity and search of optimal regimes of plant illumination.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| | - Andrey Khlopkov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
27
|
Murchie EH, Ruban AV. Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:885-896. [PMID: 31686424 DOI: 10.1111/tpj.14601] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 05/02/2023]
Abstract
Photoprotection refers to a set of well defined plant processes that help to prevent the deleterious effects of high and excess light on plant cells, especially within the chloroplast. Molecular components of chloroplast photoprotection are closely aligned with those of photosynthesis and together they influence productivity. Proof of principle now exists that major photoprotective processes such as non-photochemical quenching (NPQ) directly determine whole canopy photosynthesis, biomass and yield via prevention of photoinhibition and a momentary downregulation of photosynthetic quantum yield. However, this phenomenon has neither been quantified nor well characterized across different environments. Here we address this problem by assessing the existing literature with a different approach to that taken previously, beginning with our understanding of the molecular mechanism of NPQ and its regulation within dynamic environments. We then move to the leaf and the plant level, building an understanding of the circumstances (when and where) NPQ limits photosynthesis and linking to our understanding of how this might take place on a molecular and metabolic level. We argue that such approaches are needed to fine tune the relevant features necessary for improving dynamic NPQ in important crop species.
Collapse
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
28
|
|
29
|
Dehigaspitiya P, Milham P, Ash GJ, Arun-Chinnappa K, Gamage D, Martin A, Nagasaka S, Seneweera S. Exploring natural variation of photosynthesis in a site-specific manner: evolution, progress, and prospects. PLANTA 2019; 250:1033-1050. [PMID: 31254100 DOI: 10.1007/s00425-019-03223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Site-specific changes of photosynthesis, a relatively new concept, can be used to improve the productivity of critical food crops to mitigate the foreseen food crisis. Global food security is threatened by an increasing population and the effects of climate change. Large yield improvements were achieved in major cereal crops between the 1950s and 1980s through the Green Revolution. However, we are currently experiencing a significant decline in yield progress. Of the many approaches to improved cereal yields, exploitation of the mode of photosynthesis has been intensely studied. Even though the C4 pathway is considered the most efficient, mainly because of the carbon concentrating mechanisms around the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, which minimize photorespiration, much is still unknown about the specific gene regulation of this mode of photosynthesis. Most of the critical cereal crops, including wheat and rice, are categorized as C3 plants based on the photosynthesis of major photosynthetic organs. However, recent findings raise the possibility of different modes of photosynthesis occurring at different sites in the same plant and/or in plants grown in different habitats. That is, it seems possible that efficient photosynthetic traits may be expressed in specific organs, even though the major photosynthetic pathway is C3. Knowledge of site-specific differences in photosynthesis, coupled with site-specific regulation of gene expression, may therefore hold a potential to enhance the yields of economically important C3 crops.
Collapse
Affiliation(s)
| | - Paul Milham
- Hawkesbury Institute for the Environment, Western Sydney University, LB 1797, Penrith, NSW, 2753, Australia
| | - Gavin J Ash
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Kiruba Arun-Chinnappa
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Dananjali Gamage
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Seiji Nagasaka
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
- National Institute of Fundamental Studies, Hanthana Road, Kandy, 20000, Central, Sri Lanka.
| |
Collapse
|
30
|
Ding J, Zhao J, Pan T, Xi L, Zhang J, Zou Z. Comparative Transcriptome Analysis of Gene Expression Patterns in Tomato Under Dynamic Light Conditions. Genes (Basel) 2019; 10:genes10090662. [PMID: 31470680 PMCID: PMC6770952 DOI: 10.3390/genes10090662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 02/02/2023] Open
Abstract
Plants grown under highly variable natural light regimes differ strongly from plants grown under constant light (CL) regimes. Plant phenotype and adaptation responses are important for plant biomass and fitness. However, the underlying regulatory mechanisms are still poorly understood, particularly from a transcriptional perspective. To investigate the influence of different light regimes on tomato plants, three dynamic light (DL) regimes were designed, using a CL regime as control. Morphological, photosynthetic, and transcriptional differences after five weeks of treatment were compared. Leaf area, plant height, shoot /root weight, total chlorophyll content, photosynthetic rate, and stomatal conductance all significantly decreased in response to DL regimes. The biggest expression difference was found between the treatment with the highest light intensity at the middle of the day with a total of 1080 significantly up-/down-regulated genes. A total of 177 common differentially expressed genes were identified between DL and CL conditions. Finally, significant differences were observed in the levels of gene expression between DL and CL treatments in multiple pathways, predominantly of plant–pathogen interactions, plant hormone signal transductions, metabolites, and photosynthesis. These results expand the understanding of plant development and photosynthetic regulations under DL conditions by multiple pathways.
Collapse
Affiliation(s)
- Juanjuan Ding
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jiantao Zhao
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, 67 Allée des Chênes CS 60094, 84143 Montfavet, France
| | - Tonghua Pan
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Linjie Xi
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jing Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhirong Zou
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
31
|
Pao YC, Stützel H, Chen TW. A mechanistic view of the reduction in photosynthetic protein abundance under diurnal light fluctuation. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3705-3708. [PMID: 31002108 PMCID: PMC6685652 DOI: 10.1093/jxb/erz164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/27/2019] [Indexed: 05/12/2023]
Affiliation(s)
- Yi-Chen Pao
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
- Correspondence:
| | - Hartmut Stützel
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | - Tsu-Wei Chen
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
32
|
Pérez-Ramos IM, Matías L, Gómez-Aparicio L, Godoy Ó. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat Commun 2019; 10:2555. [PMID: 31186418 PMCID: PMC6560116 DOI: 10.1038/s41467-019-10453-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/08/2019] [Indexed: 12/02/2022] Open
Abstract
Functional traits are expected to modulate plant competitive dynamics. However, how traits and their plasticity in response to contrasting environments connect with the mechanisms determining species coexistence remains poorly understood. Here, we couple field experiments under two contrasting climatic conditions to a plant population model describing competitive dynamics between 10 annual plant species in order to evaluate how 19 functional traits, covering physiological, morphological and reproductive characteristics, are associated with species' niche and fitness differences. We find a rich diversity of univariate and multidimensional associations, which highlight the primary role of traits related to water- and light-use-efficiency for modulating the determinants of competitive outcomes. Importantly, such traits and their plasticity promote species coexistence across climatic conditions by enhancing stabilizing niche differences and by generating competitive trade-offs between species. Our study represents a significant advance showing how leading dimensions of plant function connect to the mechanisms determining the maintenance of biodiversity.
Collapse
Affiliation(s)
| | - Luis Matías
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Ed. B3, Paraje las Lagunillas SN, E-23071, Jaén, Spain
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Av. Reina Mercedes, Sevilla, E-41080, Spain
| | | | - Óscar Godoy
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, E-11510, Puerto Real, Spain.
| |
Collapse
|
33
|
Burgess AJ, Gibbs JA, Murchie EH. A canopy conundrum: can wind-induced movement help to increase crop productivity by relieving photosynthetic limitations? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2371-2380. [PMID: 30481324 DOI: 10.1093/jxb/ery424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/19/2018] [Indexed: 05/12/2023]
Abstract
Wind-induced movement is a ubiquitous occurrence for all plants grown in natural or agricultural settings, and in the context of high, damaging wind speeds it has been well studied. However, the impact of lower wind speeds (which do not cause any damage) on mode of movement, light transmission, and photosynthetic properties has, surprisingly, not been fully explored. This impact is likely to be influenced by biomechanical properties and architectural features of the plant and canopy. A limited number of eco-physiological studies have indicated that movement in wind has the potential to alter light distribution within canopies, improving canopy productivity by relieving photosynthetic limitations. Given the current interest in canopy photosynthesis, it is timely to consider such movement in terms of crop yield progress. This opinion article sets out the background to wind-induced crop movement and argues that plant biomechanical properties may have a role in the optimization of whole-canopy photosynthesis via established physiological processes. We discuss how this could be achieved using canopy models.
Collapse
Affiliation(s)
- Alexandra J Burgess
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, UK
| | - Jonathon A Gibbs
- School of Computer Science, University of Nottingham, Jubilee Campus, UK
| | - Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, UK
| |
Collapse
|
34
|
Pao YC, Chen TW, Moualeu-Ngangue DP, Stützel H. Environmental triggers for photosynthetic protein turnover determine the optimal nitrogen distribution and partitioning in the canopy. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2419-2434. [PMID: 30124935 PMCID: PMC6519421 DOI: 10.1093/jxb/ery308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/14/2018] [Indexed: 05/12/2023]
Abstract
Plants continually adjust the photosynthetic functions in their leaves to fluctuating light, thereby optimizing the use of photosynthetic nitrogen (Nph) at the canopy level. To investigate the complex interplay between external signals during the acclimation processes, a mechanistic model based on the concept of protein turnover (synthesis and degradation) was proposed and parameterized using cucumber grown under nine combinations of nitrogen and light in growth chambers. Integrating this dynamic model into a multi-layer canopy model provided accurate predictions of photosynthetic acclimation of greenhouse cucumber canopies grown under high and low nitrogen supply in combination with day-to-day fluctuations in light at two different levels. This allowed us to quantify the degree of optimality in canopy nitrogen use for maximizing canopy carbon assimilation, which was influenced by Nph distribution along canopy depth or Nph partitioning between functional pools. Our analyses suggest that Nph distribution is close to optimum and Nph reallocation is more important under low nitrogen. Nph partitioning is only optimal under a light level similar to the average light intensity during acclimation, meaning that day-to-day light fluctuations inevitably result in suboptimal Nph partitioning. Our results provide insights into photoacclimation and can be applied to crop model improvement.
Collapse
Affiliation(s)
- Yi-Chen Pao
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | - Tsu-Wei Chen
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | | | - Hartmut Stützel
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
35
|
Wilson S, Ruban AV. Enhanced NPQ affects long-term acclimation in the spring ephemeral Berteroa incana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148014. [PMID: 30880080 DOI: 10.1016/j.bbabio.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/08/2019] [Accepted: 03/10/2019] [Indexed: 12/25/2022]
Abstract
The spring ephemeral Berteroa incana is a familial relative of Arabidopsis thaliana and thrives in a diverse range of terrestrial ecosystems. Within this study, the novel chlorophyll fluorescence parameter of photochemical quenching in the dark (qPd) was used to measure the redox state of the primary quinone electron acceptor (QA) in order to estimate the openness of photosystem II (PSII) reaction centres (RC). From this, the early onset of photoinactivation can be sensitively quantified alongside the light tolerance of PSII and the photoprotective efficiency of nonphotochemical quenching (NPQ). This study shows that, with regards to A. thaliana, NPQ is enhanced in B. incana in both low-light (LL) and high-light (HL) acclimation states. Moreover, light tolerance is increased by up to 500%, the rate of photoinactivation is heavily diminished, and the ability to recover from light stress is enhanced in B. incana, relative to A. thaliana. This is due to faster synthesis of zeaxanthin and a larger xanthophyll cycle (XC) pool available for deepoxidation. Moreover, preferential energy transfer via CP47 around the RC further enhances efficient photoprotection. As a result, a high functional cross-section of photosystem II is maintained and is not downregulated when B. incana is acclimated to HL. A greater capacity for protective NPQ allows B. incana to maintain an enhanced light-harvesting capability when acclimated to a range of light conditions. This enhancement of flexible short-term protection saves the metabolic cost of long-term acclimatory changes.
Collapse
Affiliation(s)
- Sam Wilson
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
36
|
Fold-change Response of Photosynthesis to Step Increases of Light Level. iScience 2018; 8:126-137. [PMID: 30312863 PMCID: PMC6176854 DOI: 10.1016/j.isci.2018.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/28/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022] Open
Abstract
Plants experience light intensity over several orders of magnitude. High light is stressful, and plants have several protective feedback mechanisms against this stress. Here we asked how plants respond to sudden rises at low ambient light, far below stressful levels. For this, we studied the fluorescence of excited chlorophyll a of photosystem II in Arabidopsis thaliana plants in response to step increases in light level at different background illuminations. We found a response at low-medium light with characteristics of a sensory system: fold-change detection (FCD), Weber law, and exact adaptation, in which the response depends only on relative, and not absolute, light changes. We tested various FCD circuits and provide evidence for an incoherent feedforward mechanism upstream of known stress response feedback loops. These findings suggest that plant photosynthesis may have a sensory modality for low light background that responds early to small light increases, to prepare for damaging high light levels. Chl a fluorescence responds to fold-change (FCD) in low-medium input light Identified fast feedforward (IFFL) regulation that depends on direct light input The direct sensing of input and FCD response are typical of sensory modules The IFFL precedes known feedback photoprotective regulation
Collapse
|
37
|
Effects of canopy structure and species diversity on primary production in upper Great Lakes forests. Oecologia 2018; 188:405-415. [DOI: 10.1007/s00442-018-4236-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/27/2018] [Indexed: 12/30/2022]
|
38
|
Retkute R, Townsend AJ, Murchie EH, Jensen OE, Preston SP. Three-dimensional plant architecture and sunlit-shaded patterns: a stochastic model of light dynamics in canopies. ANNALS OF BOTANY 2018; 122:291-302. [PMID: 29846520 PMCID: PMC6070062 DOI: 10.1093/aob/mcy067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/17/2018] [Indexed: 05/06/2023]
Abstract
Background and Aims Diurnal changes in solar position and intensity combined with the structural complexity of plant architecture result in highly variable and dynamic light patterns within the plant canopy. This affects productivity through the complex ways that photosynthesis responds to changes in light intensity. Current methods to characterize light dynamics, such as ray-tracing, are able to produce data with excellent spatio-temporal resolution but are computationally intensive and the resulting data are complex and high-dimensional. This necessitates development of more economical models for summarizing the data and for simulating realistic light patterns over the course of a day. Methods High-resolution reconstructions of field-grown plants are assembled in various configurations to form canopies, and a forward ray-tracing algorithm is applied to the canopies to compute light dynamics at high (1 min) temporal resolution. From the ray-tracer output, the sunlit or shaded state for each patch on the plants is determined, and these data are used to develop a novel stochastic model for the sunlit-shaded patterns. The model is designed to be straightforward to fit to data using maximum likelihood estimation, and fast to simulate from. Key Results For a wide range of contrasting 3-D canopies, the stochastic model is able to summarize, and replicate in simulations, key features of the light dynamics. When light patterns simulated from the stochastic model are used as input to a model of photoinhibition, the predicted reduction in carbon gain is similar to that from calculations based on the (extremely costly) ray-tracer data. Conclusions The model provides a way to summarize highly complex data in a small number of parameters, and a cost-effective way to simulate realistic light patterns. Simulations from the model will be particularly useful for feeding into larger-scale photosynthesis models for calculating how light dynamics affects the photosynthetic productivity of canopies.
Collapse
Affiliation(s)
- Renata Retkute
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, UK
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences, University of Warwick, Coventry, UK
| | - Alexandra J Townsend
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, UK
| | - Oliver E Jensen
- School of Mathematics, University of Manchester, Oxford Road, Manchester, UK
| | - Simon P Preston
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
39
|
Kaiser E, Matsubara S, Harbinson J, Heuvelink E, Marcelis LFM. Acclimation of photosynthesis to lightflecks in tomato leaves: interaction with progressive shading in a growing canopy. PHYSIOLOGIA PLANTARUM 2018; 162:506-517. [PMID: 29125181 DOI: 10.1111/ppl.12668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/20/2017] [Accepted: 10/29/2017] [Indexed: 05/23/2023]
Abstract
Plants in natural environments are often exposed to fluctuations in light intensity, and leaf-level acclimation to light may be affected by those fluctuations. Concurrently, leaves acclimated to a given light climate can become progressively shaded as new leaves emerge and grow above them. Acclimation to shade alters characteristics such as photosynthetic capacity. To investigate the interaction of fluctuating light and progressive shading, we exposed three-week old tomato (Solanum lycopersicum) plants to either lightflecks or constant light intensities. Lightflecks of 20 s length and 1000 μmol m-2 s-1 peak intensity were applied every 5 min for 16 h per day, for 3 weeks. Lightfleck and constant light treatments received identical daily light sums (15.2 mol m-2 day-1 ). Photosynthesis was monitored in leaves 2 and 4 (counting from the bottom) during canopy development throughout the experiment. Several dynamic and steady-state characteristics of photosynthesis became enhanced by fluctuating light when leaves were partially shaded by the upper canopy, but much less so when they were fully exposed to lightflecks. This was the case for CO2 -saturated photosynthesis rates in leaves 2 and 4 growing under lightflecks 14 days into the treatment period. Also, leaf 2 of plants in the lightfleck treatment showed significantly faster rates of photosynthetic induction when exposed to a stepwise change in light intensity on day 15. As the plants grew larger and these leaves became increasingly shaded, acclimation of leaf-level photosynthesis to lightflecks disappeared. These results highlight continuous acclimation of leaf photosynthesis to changing light conditions inside developing canopies.
Collapse
Affiliation(s)
- Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | | | - Jeremy Harbinson
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
40
|
Hubbart S, Smillie IRA, Heatley M, Swarup R, Foo CC, Zhao L, Murchie EH. Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Commun Biol 2018; 1:22. [PMID: 30271909 PMCID: PMC6123638 DOI: 10.1038/s42003-018-0026-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022] Open
Abstract
High sunlight can raise plant growth rates but can potentially cause cellular damage. The likelihood of deleterious effects is lowered by a sophisticated set of photoprotective mechanisms, one of the most important being the controlled dissipation of energy from chlorophyll within photosystem II (PSII) measured as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity remains uncertain because it momentarily reduces the quantum efficiency of photosynthesis. Here we used plants overexpressing the gene encoding a central regulator of NPQ, the protein PsbS, within a major crop species (rice) to assess the effect of photoprotection at the whole canopy scale. We accounted for canopy light interception, to our knowledge for the first time in this context. We show that in comparison to wild-type plants, psbS overexpressors increased canopy radiation use efficiency and grain yield in fluctuating light, demonstrating that photoprotective mechanisms should be altered to improve rice crop productivity.
Collapse
Affiliation(s)
- Stella Hubbart
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Ian R A Smillie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Matthew Heatley
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Ranjan Swarup
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Chuan Ching Foo
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Liang Zhao
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| |
Collapse
|
41
|
Townsend AJ, Retkute R, Chinnathambi K, Randall JWP, Foulkes J, Carmo-Silva E, Murchie EH. Suboptimal Acclimation of Photosynthesis to Light in Wheat Canopies. PLANT PHYSIOLOGY 2018; 176:1233-1246. [PMID: 29217593 PMCID: PMC5813572 DOI: 10.1104/pp.17.01213] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
Photosynthetic acclimation (photoacclimation) is the process whereby leaves alter their morphology and/or biochemistry to optimize photosynthetic efficiency and productivity according to long-term changes in the light environment. The three-dimensional architecture of plant canopies imposes complex light dynamics, but the drivers for photoacclimation in such fluctuating environments are poorly understood. A technique for high-resolution three-dimensional reconstruction was combined with ray tracing to simulate a daily time course of radiation profiles for architecturally contrasting field-grown wheat (Triticum aestivum) canopies. An empirical model of photoacclimation was adapted to predict the optimal distribution of photosynthesis according to the fluctuating light patterns throughout the canopies. While the photoacclimation model output showed good correlation with field-measured gas-exchange data at the top of the canopy, it predicted a lower optimal light-saturated rate of photosynthesis at the base. Leaf Rubisco and protein contents were consistent with the measured optimal light-saturated rate of photosynthesis. We conclude that, although the photosynthetic capacity of leaves is high enough to exploit brief periods of high light within the canopy (particularly toward the base), the frequency and duration of such sunflecks are too small to make acclimation a viable strategy in terms of carbon gain. This suboptimal acclimation renders a large portion of residual photosynthetic capacity unused and reduces photosynthetic nitrogen use efficiency at the canopy level, with further implications for photosynthetic productivity. It is argued that (1) this represents an untapped source of photosynthetic potential and (2) canopy nitrogen could be lowered with no detriment to carbon gain or grain protein content.
Collapse
Affiliation(s)
- Alexandra J Townsend
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
- Crops for the Future, Jalan Broga, 43500 Semenyih Selangor Darul Ehsan, Malaysia
| | - Renata Retkute
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Kannan Chinnathambi
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Jamie W P Randall
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - John Foulkes
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Elizabete Carmo-Silva
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| |
Collapse
|
42
|
Burgess AJ, Retkute R, Herman T, Murchie EH. Exploring Relationships between Canopy Architecture, Light Distribution, and Photosynthesis in Contrasting Rice Genotypes Using 3D Canopy Reconstruction. FRONTIERS IN PLANT SCIENCE 2017; 8:734. [PMID: 28567045 PMCID: PMC5434157 DOI: 10.3389/fpls.2017.00734] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/20/2017] [Indexed: 05/19/2023]
Abstract
The arrangement of leaf material is critical in determining the light environment, and subsequently the photosynthetic productivity of complex crop canopies. However, links between specific canopy architectural traits and photosynthetic productivity across a wide genetic background are poorly understood for field grown crops. The architecture of five genetically diverse rice varieties-four parental founders of a multi-parent advanced generation intercross (MAGIC) population plus a high yielding Philippine variety (IR64)-was captured at two different growth stages using a method for digital plant reconstruction based on stereocameras. Ray tracing was employed to explore the effects of canopy architecture on the resulting light environment in high-resolution, whilst gas exchange measurements were combined with an empirical model of photosynthesis to calculate an estimated carbon gain and total light interception. To further test the impact of different dynamic light patterns on photosynthetic properties, an empirical model of photosynthetic acclimation was employed to predict the optimal light-saturated photosynthesis rate (Pmax ) throughout canopy depth, hypothesizing that light is the sole determinant of productivity in these conditions. First, we show that a plant type with steeper leaf angles allows more efficient penetration of light into lower canopy layers and this, in turn, leads to a greater photosynthetic potential. Second the predicted optimal Pmax responds in a manner that is consistent with fractional interception and leaf area index across this germplasm. However, measured Pmax , especially in lower layers, was consistently higher than the optimal Pmax indicating factors other than light determine photosynthesis profiles. Lastly, varieties with more upright architecture exhibit higher maximum quantum yield of photosynthesis indicating a canopy-level impact on photosynthetic efficiency.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- Division of Plant and Crop Sciences, School of Biosciences, University of NottinghamLoughborough, UK
- Crops For the FutureSemenyih, Malaysia
| | - Renata Retkute
- School of Life Sciences, The University of WarwickCoventry, UK
| | - Tiara Herman
- School of Biosciences, University of Nottingham Malaysia CampusSemenyih, Malaysia
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of NottinghamLoughborough, UK
| |
Collapse
|
43
|
Vialet-Chabrand S, Matthews JSA, Simkin AJ, Raines CA, Lawson T. Importance of Fluctuations in Light on Plant Photosynthetic Acclimation. PLANT PHYSIOLOGY 2017; 173:2163-2179. [PMID: 28184008 PMCID: PMC5373038 DOI: 10.1104/pp.16.01767] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/07/2017] [Indexed: 05/18/2023]
Abstract
The acclimation of plants to light has been studied extensively, yet little is known about the effect of dynamic fluctuations in light on plant phenotype and acclimatory responses. We mimicked natural fluctuations in light over a diurnal period to examine the effect on the photosynthetic processes and growth of Arabidopsis (Arabidopsis thaliana). High and low light intensities, delivered via a realistic dynamic fluctuating or square wave pattern, were used to grow and assess plants. Plants subjected to square wave light had thicker leaves and greater photosynthetic capacity compared with fluctuating light-grown plants. This, together with elevated levels of proteins associated with electron transport, indicates greater investment in leaf structural components and photosynthetic processes. In contrast, plants grown under fluctuating light had thinner leaves, lower leaf light absorption, but maintained similar photosynthetic rates per unit leaf area to square wave-grown plants. Despite high light use efficiency, plants grown under fluctuating light had a slow growth rate early in development, likely due to the fact that plants grown under fluctuating conditions were not able to fully utilize the light energy absorbed for carbon fixation. Diurnal leaf-level measurements revealed a negative feedback control of photosynthesis, resulting in a decrease in total diurnal carbon assimilated of at least 20%. These findings highlight that growing plants under square wave growth conditions ultimately fails to predict plant performance under realistic light regimes and stress the importance of considering fluctuations in incident light in future experiments that aim to infer plant productivity under natural conditions in the field.
Collapse
Affiliation(s)
| | - Jack S A Matthews
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Andrew J Simkin
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Christine A Raines
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
44
|
Koussoroplis AM, Pincebourde S, Wacker A. Understanding and predicting physiological performance of organisms in fluctuating and multifactorial environments. ECOL MONOGR 2017. [DOI: 10.1002/ecm.1247] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Apostolos-Manuel Koussoroplis
- Theoretical Aquatic Ecology & Ecophysiology; Institute of Biochemistry and Biology; University of Potsdam; Am Neuen Palais 10, Maulbeerallee 2 D-14469 Potsdam Germany
| | - Sylvain Pincebourde
- Faculté des Sciences et Techniques; Institut de Recherche sur la Biologie de l'Insecte (IRBI, CNRS UMR 7261); Université François Rabelais; 37200 Tours France
| | - Alexander Wacker
- Theoretical Aquatic Ecology & Ecophysiology; Institute of Biochemistry and Biology; University of Potsdam; Am Neuen Palais 10, Maulbeerallee 2 D-14469 Potsdam Germany
| |
Collapse
|
45
|
Soleh MA, Tanaka Y, Kim SY, Huber SC, Sakoda K, Shiraiwa T. Identification of large variation in the photosynthetic induction response among 37 soybean [Glycine max (L.) Merr.] genotypes that is not correlated with steady-state photosynthetic capacity. PHOTOSYNTHESIS RESEARCH 2017. [PMID: 27878416 DOI: 10.1007/s11120-016-0323-321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Irradiance continuously fluctuates during the day in the field. The speed of the induction response of photosynthesis in high light affects the cumulative carbon gain of the plant and could impact growth and yield. The photosynthetic induction response and its relationship with the photosynthetic capacity under steady-state conditions (P max) were evaluated in 37 diverse soybean [Glycine max (L.) Merr.] genotypes. The induction response of leaf photosynthesis showed large variation among the soybean genotypes. After 5 min illumination with strong light, genotype NAM23 had the highest leaf photosynthetic rate of 33.8 µmol CO2 m-2 s-1, while genotype NAM12 showed the lowest rate at 4.7 µmol CO2 m-2 s-1. Cumulative CO2 fixation (CCF) during the first 5 min of high light exposure ranged from 5.5 mmol CO2 m-2 for NAM23 to 0.81 mmol CO2 m-2 for NAM12. The difference in the induction response among genotypes was consistent throughout the growth season. However, there was no significant correlation between CCF and P max among genotypes suggesting that different mechanisms regulate P max and the induction response. The observed variation in the induction response was mainly attributed to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation, but soybean lines differing in the induction response did not differ in the leaf content of Rubisco activase α- and β-proteins. Future studies will be focused on identifying molecular determinants of the photosynthetic induction response and determining whether this trait could be an important breeding target to achieve improved growth of soybeans in the field.
Collapse
Affiliation(s)
- M A Soleh
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Faculty of Agriculture, Padjadjaran University, Jalan Raya Bandung-Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Y Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - S Y Kim
- Global Change and Photosynthesis Research Unit, USDA-ARS, and Department of Plant Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - S C Huber
- Global Change and Photosynthesis Research Unit, USDA-ARS, and Department of Plant Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - K Sakoda
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - T Shiraiwa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
46
|
Burgess AJ, Retkute R, Pound MP, Mayes S, Murchie EH. Image-based 3D canopy reconstruction to determine potential productivity in complex multi-species crop systems. ANNALS OF BOTANY 2017; 119:517-532. [PMID: 28065926 PMCID: PMC5458713 DOI: 10.1093/aob/mcw242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 05/22/2023]
Abstract
Background and Aims Intercropping systems contain two or more species simultaneously in close proximity. Due to contrasting features of the component crops, quantification of the light environment and photosynthetic productivity is extremely difficult. However it is an essential component of productivity. Here, a low-tech but high-resolution method is presented that can be applied to single- and multi-species cropping systems to facilitate characterization of the light environment. Different row layouts of an intercrop consisting of Bambara groundnut ( Vigna subterranea ) and proso millet ( Panicum miliaceum ) have been used as an example and the new opportunities presented by this approach have been analysed. Methods Three-dimensional plant reconstruction, based on stereo cameras, combined with ray tracing was implemented to explore the light environment within the Bambara groundnut-proso millet intercropping system and associated monocrops. Gas exchange data were used to predict the total carbon gain of each component crop. Key Results The shading influence of the tall proso millet on the shorter Bambara groundnut results in a reduction in total canopy light interception and carbon gain. However, the increased leaf area index (LAI) of proso millet, higher photosynthetic potential due to the C4 pathway and sub-optimal photosynthetic acclimation of Bambara groundnut to shade means that increasing the number of rows of millet will lead to greater light interception and carbon gain per unit ground area, despite Bambara groundnut intercepting more light per unit leaf area. Conclusions Three-dimensional reconstruction combined with ray tracing provides a novel, accurate method of exploring the light environment within an intercrop that does not require difficult measurements of light interception and data-intensive manual reconstruction, especially for such systems with inherently high spatial possibilities. It provides new opportunities for calculating potential productivity within multi-species cropping systems, enables the quantification of dynamic physiological differences between crops grown as monoculture and those within intercrops, and enables the prediction of new productive combinations of previously untested crops.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Crops For the Future, Jalan Broga, 43500 Semenyih Selangor Darul Ehsan, Malaysia
| | - Renata Retkute
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry CV4 7AL, UK
| | - Michael P. Pound
- School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
| | - Sean Mayes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Crops For the Future, Jalan Broga, 43500 Semenyih Selangor Darul Ehsan, Malaysia
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
47
|
Soleh MA, Tanaka Y, Kim SY, Huber SC, Sakoda K, Shiraiwa T. Identification of large variation in the photosynthetic induction response among 37 soybean [Glycine max (L.) Merr.] genotypes that is not correlated with steady-state photosynthetic capacity. PHOTOSYNTHESIS RESEARCH 2017; 131:305-315. [PMID: 27878416 DOI: 10.1007/s11120-016-0323-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 11/07/2016] [Indexed: 05/08/2023]
Abstract
Irradiance continuously fluctuates during the day in the field. The speed of the induction response of photosynthesis in high light affects the cumulative carbon gain of the plant and could impact growth and yield. The photosynthetic induction response and its relationship with the photosynthetic capacity under steady-state conditions (P max) were evaluated in 37 diverse soybean [Glycine max (L.) Merr.] genotypes. The induction response of leaf photosynthesis showed large variation among the soybean genotypes. After 5 min illumination with strong light, genotype NAM23 had the highest leaf photosynthetic rate of 33.8 µmol CO2 m-2 s-1, while genotype NAM12 showed the lowest rate at 4.7 µmol CO2 m-2 s-1. Cumulative CO2 fixation (CCF) during the first 5 min of high light exposure ranged from 5.5 mmol CO2 m-2 for NAM23 to 0.81 mmol CO2 m-2 for NAM12. The difference in the induction response among genotypes was consistent throughout the growth season. However, there was no significant correlation between CCF and P max among genotypes suggesting that different mechanisms regulate P max and the induction response. The observed variation in the induction response was mainly attributed to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation, but soybean lines differing in the induction response did not differ in the leaf content of Rubisco activase α- and β-proteins. Future studies will be focused on identifying molecular determinants of the photosynthetic induction response and determining whether this trait could be an important breeding target to achieve improved growth of soybeans in the field.
Collapse
Affiliation(s)
- M A Soleh
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Faculty of Agriculture, Padjadjaran University, Jalan Raya Bandung-Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Y Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - S Y Kim
- Global Change and Photosynthesis Research Unit, USDA-ARS, and Department of Plant Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - S C Huber
- Global Change and Photosynthesis Research Unit, USDA-ARS, and Department of Plant Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - K Sakoda
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - T Shiraiwa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
48
|
Matsubara S, Schneider T, Maurino VG. Dissecting Long-Term Adjustments of Photoprotective and Photo-Oxidative Stress Acclimation Occurring in Dynamic Light Environments. FRONTIERS IN PLANT SCIENCE 2016; 7:1690. [PMID: 27881991 PMCID: PMC5101218 DOI: 10.3389/fpls.2016.01690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/26/2016] [Indexed: 05/23/2023]
Abstract
Changes in light intensity directly affect the performance of the photosynthetic apparatus. Light energy absorbed in excess of cells' needs leads to production of reactive oxygen species and photo-oxidative damage. Excess light in both constant and dynamic environments induces photoprotective acclimation in plants. Distinct sets of signals and regulatory mechanisms are involved in acclimatory adjustment of photoprotection and photosynthesis under constant and dynamic (fluctuating) light conditions. We are still far away from drawing a comprehensive picture of acclimatory signal transduction pathways, particularly in dynamic environments. In this perspective article, we propose the use of Arabidopsis plants that produce H2O2 in chloroplasts (GO plants) under atmospheric CO2 levels as a tool to study the mechanisms of long-term acclimation to photo-oxidative stress. In our opinion there are new avenues to future investigations on acclimatory adjustments and signal transduction occurring in plants under dynamic light environments.
Collapse
Affiliation(s)
- Shizue Matsubara
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum JülichJülich, Germany
| | - Trang Schneider
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum JülichJülich, Germany
- iGRAD-Plant, Heinrich-Heine-UniversitätDüsseldorf, Germany
| | - Veronica G. Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität and Cluster of Excellence on Plant SciencesDüsseldorf, Germany
| |
Collapse
|
49
|
Burgess AJ, Retkute R, Preston SP, Jensen OE, Pound MP, Pridmore TP, Murchie EH. The 4-Dimensional Plant: Effects of Wind-Induced Canopy Movement on Light Fluctuations and Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:1392. [PMID: 27708654 PMCID: PMC5030302 DOI: 10.3389/fpls.2016.01392] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/01/2016] [Indexed: 05/20/2023]
Abstract
Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation) is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown. As a result, biologically relevant data relating canopy architecture, light- dynamics, and short-scale photosynthetic responses in the canopy setting are scarce. Here, we hypothesize that wind-induced movement will have large consequences for the photosynthetic productivity of our crops due to its influence on light patterning. To address this issue, in this study we combined high resolution 3D reconstructions of a plant canopy with a simple representation of canopy perturbation as a result of wind using solid body rotation in order to explore the potential effects on light patterning, interception, and photosynthetic productivity. We looked at two different scenarios: firstly a constant distortion where a rice canopy was subject to a permanent distortion throughout the whole day; and secondly, a dynamic distortion, where the canopy was distorted in incremental steps between two extremes at set time points in the day. We find that mechanical canopy excitation substantially alters light dynamics; light distribution and modeled canopy carbon gain. We then discuss methods required for accurate modeling of mechanical canopy excitation (here coined the 4-dimensional plant) and some associated biological and applied implications of such techniques. We hypothesize that biomechanical plant properties are a specific adaptation to achieve wind-induced photosynthetic enhancement and we outline how traits facilitating canopy excitation could be used as a route for improving crop yield.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- Division of Plant and Crop Sciences, School of Biosciences, University of NottinghamLoughborough, UK
- Crops for The Future, Semenyih Selangor Darul EhsanSemenyih, Malaysia
| | - Renata Retkute
- School of Life Sciences, The University of WarwickCoventry, UK
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamUK
| | - Simon P. Preston
- School of Mathematical Sciences, University of NottinghamNottingham, UK
| | | | - Michael P. Pound
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamUK
- School of Computer Sciences, University of NottinghamNottingham, UK
| | - Tony P. Pridmore
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamUK
- School of Computer Sciences, University of NottinghamNottingham, UK
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of NottinghamLoughborough, UK
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamUK
| |
Collapse
|
50
|
Gitelson AA, Peng Y, Viña A, Arkebauer T, Schepers JS. Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops. JOURNAL OF PLANT PHYSIOLOGY 2016; 201:101-110. [PMID: 27374843 DOI: 10.1016/j.jplph.2016.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/05/2016] [Accepted: 05/19/2016] [Indexed: 05/03/2023]
Abstract
One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system.
Collapse
Affiliation(s)
- Anatoly A Gitelson
- Israel Institute of Technology, Haifa, Israel; Center for Advanced Land Management Information Technologies, University of Nebraska, Lincoln, NE 68583, USA.
| | - Yi Peng
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China
| | - Andrés Viña
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing MI 48823, USA; Department of Geography, University of North Carolina, Chapel Hill NC 27599, USA
| | - Timothy Arkebauer
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - James S Schepers
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|