1
|
Prakash J, Agrawal SB, Agrawal M. Unraveling the underlying mechanisms of biochemical, physiological, and growth responses of two pea ( Pisum sativum L.) cultivars under simulated acid rain-induced oxidative stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1329-1351. [PMID: 39184554 PMCID: PMC11341807 DOI: 10.1007/s12298-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
The current experiment was designed to evaluate the ramifications of simulated acid rain (SAR) on two pea (Pisum sativum L.) cultivars, Kashi Samridhi (Samridhi) and Kashi Nandini (Nandini), to decipher the intraspecific variations in defence mechanism considering the current scenario of rapid anthropogenic activities leading to increase in rain acidity. The pea cultivars were subjected to SAR of pH 7 (Control), 5.6, 5.0, and 4.5 under field conditions. SAR increased active oxygen species and malondialdehyde content due to increased lipid peroxidation in both cultivars; however, the increment intensity was more remarkable in Samridhi at the later growth stage. Ascorbic acid, thiol, and flavonoids were significantly increased in cultivar Nandini, along with increased peroxidase and superoxide dismutase activities. Total phenolics, glutathione reductase, and ascorbate peroxidase activities were enhanced considerably in Samridhi than in Nandini under SAR treatments. Higher stomatal density and stomatal size in Samridhi prompted greater acidic particles influx which further damaged the chloroplast and mitochondria. The present study concludes that cultivar Nandini is more proficient in inducing defence responses by elevating non-enzymatic antioxidants than Samridhi. Non-enzymatic linked defence mechanisms are more metabolically expensive, leading to less biomass accumulation in Nandini. The study depicted that innate defence responses, particularly the role of non-enzymatic antioxidants, governed the sensitivity level of cultivars towards SAR stress. Further, findings also contribute to bridging the knowledge gap regarding the responses of tropical and subtropical crops to acid rain. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01494-x.
Collapse
Affiliation(s)
- Jigyasa Prakash
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
2
|
Antenozio ML, Caissutti C, Caporusso FM, Marzi D, Brunetti P. Urban Air Pollution and Plant Tolerance: Omics Responses to Ozone, Nitrogen Oxides, and Particulate Matter. PLANTS (BASEL, SWITZERLAND) 2024; 13:2027. [PMID: 39124144 PMCID: PMC11313721 DOI: 10.3390/plants13152027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Urban air pollution is a crucial global challenge, mainly originating from urbanization and industrial activities, which are continuously increasing. Vegetation serves as a natural air filter for air pollution, but adverse effects on plant health, photosynthesis, and metabolism can occur. Recent omics technologies have revolutionized the study of molecular plant responses to air pollution, overcoming previous limitations. This review synthesizes the latest advancements in molecular plant responses to major air pollutants, emphasizing ozone (O3), nitrogen oxides (NOX), and particulate matter (PM) research. These pollutants induce stress responses common to other abiotic and biotic stresses, including the activation of reactive oxygen species (ROSs)-scavenging enzymes and hormone signaling pathways. New evidence has shown the central role of antioxidant phenolic compound biosynthesis, via the phenylpropanoid pathway, in air pollution stress responses. Transcription factors like WRKY, AP2/ERF, and MYB, which connect hormone signaling to antioxidant biosynthesis, were also affected. To date, research has predominantly focused on laboratory studies analyzing individual pollutants. This review highlights the need for comprehensive field studies and the identification of molecular tolerance traits, which are crucial for the identification of tolerant plant species, aimed at the development of sustainable nature-based solutions (NBSs) to mitigate urban air pollution.
Collapse
Affiliation(s)
- Maria Luisa Antenozio
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
| | - Cristina Caissutti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
| | - Francesca Maria Caporusso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
- Department of Biology and Biotechnologies ‘Charles Darwin’ (BBCD), Sapienza University of Roma, 00185 Roma, Italy
| | - Davide Marzi
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Patrizia Brunetti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), 00015 Monterotondo, Italy; (M.L.A.); (C.C.); (F.M.C.)
| |
Collapse
|
3
|
JawaharJothi G, Kovilpillai B, Subramanian A, Mani JR, Kumar S, Kannan B, Mani S. Effect of tropospheric ozone and its protectants on gas exchange parameters, antioxidant enzymes and quality of Garlic (Allium sativum. L). INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:991-1004. [PMID: 38528211 DOI: 10.1007/s00484-024-02642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024]
Abstract
An experimental study was conducted to assess the detrimental effect of ground-level ozone (O3) on garlic physiology and to find out appropriate control measures against ground-level O3, at TNAU-Horticultural Research farm, Udhagamandalam. Elevated ground ozone levels significantly decreased garlic leaf chlorophyll, photosynthetic rate, stomatal conductance, total soluble solids and pungency. The garlic chlorophyll content was highest in ambient ozone level and lowest in elevated ozone@200 ppb, highest stomatal conductance was recorded in ambient ozone with foliar spray of 3%Panchagavya, and the lowest was observed in elevated ozone@200 ppb. Since the elevated O3 had reduced in garlic photosynthetic rate significantly the lowest was observed in elevated O3@200 ppb and the highest photosynthetic rate was observed in ambient Ozone with foliar spray 3% of panchagavya after a week. The antioxidant enzymes of garlic were increased with increased concentration of tropospheric ozone. The highest catalase (60.97 µg of H2O2/g of leaf) and peroxidase (9.13 ΔA/min/g of leaf) concentration was observed at 200 ppb elevated ozone level. Garlic pungency content was highest in ambient ozone with foliar spray of 0.1% ascorbic acid and the lowest was observed under elevated O3@200 ppb. Highest total soluble solids were observed in ambient ozone with foliar spray of 3%Panchagavya and the lowest observed in elevated ozone@200 ppb. Thus, tropospheric ozone has a detrimental impact on the physiology of crops, which reduced crop growth and yield. Under elevated O3 levels, ascorbic acid performed well followed by panchagavya and neem oil. The antioxidant such as catalase and peroxidase had positive correlation among themselves and had negative correlation with chlorophyll content, stomatal conductance, photosynthetic rate, pungency and TSS. The photosynthetic rate has high positive correlation with chlorophyll content, pungency and TSS. Correlation analysis confirmed the negative effects of tropospheric ozone and garlic gas exchange parameters and clove quality. The ozone protectants will reduce stomatal opening by which the entry of O3 in to the cell will be restricted and other hand they also will alleviate ROS and allied stresses.
Collapse
Affiliation(s)
- Gayathri JawaharJothi
- Division of Environment Science, Indian Agricultural Research Institute, New Delhi, India
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Boomiraj Kovilpillai
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - Avudainayagam Subramanian
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Sudhir Kumar
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Balaji Kannan
- Department of Physical Science and Information Technology Tamil, Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sudhakaran Mani
- JKK Munirajah College of Agricultural Science, Tamil Nadu, Erode dt, India
| |
Collapse
|
4
|
Nowroz F, Hasanuzzaman M, Siddika A, Parvin K, Caparros PG, Nahar K, Prasad PV. Elevated tropospheric ozone and crop production: potential negative effects and plant defense mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 14:1244515. [PMID: 38264020 PMCID: PMC10803661 DOI: 10.3389/fpls.2023.1244515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
Ozone (O3) levels on Earth are increasing because of anthropogenic activities and natural processes. Ozone enters plants through the leaves, leading to the overgeneration of reactive oxygen species (ROS) in the mesophyll and guard cell walls. ROS can damage chloroplast ultrastructure and block photosynthetic electron transport. Ozone can lead to stomatal closure and alter stomatal conductance, thereby hindering carbon dioxide (CO2) fixation. Ozone-induced leaf chlorosis is common. All of these factors lead to a reduction in photosynthesis under O3 stress. Long-term exposure to high concentrations of O3 disrupts plant physiological processes, including water and nutrient uptake, respiration, and translocation of assimilates and metabolites. As a result, plant growth and reproductive performance are negatively affected. Thus, reduction in crop yield and deterioration of crop quality are the greatest effects of O3 stress on plants. Increased rates of hydrogen peroxide accumulation, lipid peroxidation, and ion leakage are the common indicators of oxidative damage in plants exposed to O3 stress. Ozone disrupts the antioxidant defense system of plants by disturbing enzymatic activity and non-enzymatic antioxidant content. Improving photosynthetic pathways, various physiological processes, antioxidant defense, and phytohormone regulation, which can be achieved through various approaches, have been reported as vital strategies for improving O3 stress tolerance in plants. In plants, O3 stress can be mitigated in several ways. However, improvements in crop management practices, CO2 fertilization, using chemical elicitors, nutrient management, and the selection of tolerant crop varieties have been documented to mitigate O3 stress in different plant species. In this review, the responses of O3-exposed plants are summarized, and different mitigation strategies to decrease O3 stress-induced damage and crop losses are discussed. Further research should be conducted to determine methods to mitigate crop loss, enhance plant antioxidant defenses, modify physiological characteristics, and apply protectants.
Collapse
Affiliation(s)
- Farzana Nowroz
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Ayesha Siddika
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Khursheda Parvin
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Pedro Garcia Caparros
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
5
|
Agathokleous E, Frei M, Knopf OM, Muller O, Xu Y, Nguyen TH, Gaiser T, Liu X, Liu B, Saitanis CJ, Shang B, Alam MS, Feng Y, Ewert F, Feng Z. Adapting crop production to climate change and air pollution at different scales. NATURE FOOD 2023; 4:854-865. [PMID: 37845546 DOI: 10.1038/s43016-023-00858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Air pollution and climate change are tightly interconnected and jointly affect field crop production and agroecosystem health. Although our understanding of the individual and combined impacts of air pollution and climate change factors is improving, the adaptation of crop production to concurrent air pollution and climate change remains challenging to resolve. Here we evaluate recent advances in the adaptation of crop production to climate change and air pollution at the plant, field and ecosystem scales. The main approaches at the plant level include the integration of genetic variation, molecular breeding and phenotyping. Field-level techniques include optimizing cultivation practices, promoting mixed cropping and diversification, and applying technologies such as antiozonants, nanotechnology and robot-assisted farming. Plant- and field-level techniques would be further facilitated by enhancing soil resilience, incorporating precision agriculture and modifying the hydrology and microclimate of agricultural landscapes at the ecosystem level. Strategies and opportunities for crop production under climate change and air pollution are discussed.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | - Oliver M Knopf
- Institute of Bio- and Geoscience 2: plant sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geoscience 2: plant sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | | | | | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Athens, Greece
| | - Bo Shang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| | - Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | - Yanru Feng
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, Giessen, Germany
| | | | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China.
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Liu C, Liu X, Wang Z, Wang Y, Zhong GY, Li S, Dai Z, Liang Z, Fan P. Basic leucine zipper gene VvbZIP61 is expressed at a quantitative trait locus for high monoterpene content in grape berries. HORTICULTURE RESEARCH 2023; 10:uhad151. [PMID: 37701455 PMCID: PMC10493639 DOI: 10.1093/hr/uhad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/26/2023] [Indexed: 09/14/2023]
Abstract
The widely appreciated muscat flavor of grapes and wine is mainly attributable to the monoterpenes that accumulate in ripe grape berries. To identify quantitative trait loci (QTL) for grape berry monoterpene content, an F1 mapping population was constructed by a cross between two grapevine genotypes, one with neutral aroma berries (cv. 'Beifeng') and the other with a pronounced muscat aroma (elite Vitis vinifera line '3-34'). A high-density genetic linkage map spanning 1563.7 cM was constructed using 3332 SNP markers that were assigned to 19 linkage groups. Monoterpenes were extracted from the berry of the F1 progeny, then identified and quantified by gas chromatography-mass spectrometry. Twelve stable QTLs associated with the amounts of 11 monoterpenes in berries were thus identified. In parallel, the levels of RNA in berries from 34 diverse cultivars were estimated by RNA sequencing and compared to the monoterpene content of the berries. The expression of five genes mapping to stable QTLs correlated well with the monoterpene content of berries. These genes, including the basic leucine zipper VvbZIP61 gene on chromosome 12, are therefore considered as potentially being involved in monoterpene metabolism. Overexpression of VvbZIP61 in Vitis amurensis callus through Agrobacterium-mediated transformation significantly increased the accumulation of several monoterpenes in the callus, including nerol, linalool, geranial, geraniol, β-myrcene, and D-limonene. It is hypothesized that VvbZIP61 expression acts to increase muscat flavor in grapes. These results advance our understanding of the genetic control of monoterpene biosynthesis in grapes and provide important information for the marker-assisted selection of aroma compounds in grape breeding.
Collapse
Affiliation(s)
- Yuyu Zhang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuixia Liu
- Centre for Special Economic Plant Studies, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zemin Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Gan-yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva 14456, USA
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wang H, Li M, Yang Y, Sun P, Zhou S, Kang Y, Xu Y, Yuan X, Feng Z, Jin W. Physiological and molecular responses of different rose ( Rosa hybrida L.) cultivars to elevated ozone levels. PLANT DIRECT 2023; 7:e513. [PMID: 37484545 PMCID: PMC10359767 DOI: 10.1002/pld3.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
The increasing ground-level ozone (O3) pollution resulting from rapid global urbanization and industrialization has negative effects on many plants. Nonetheless, many gaps remain in our knowledge of how ornamental plants respond to O3. Rose (Rosa hybrida L.) is a commercially important ornamental plant worldwide. In this study, we exposed four rose cultivars ("Schloss Mannheim," "Iceberg," "Lüye," and "Spectra") to either unfiltered ambient air (NF), unfiltered ambient air plus 40 ppb O3 (NF40), or unfiltered ambient air plus 80 ppb O3 (NF80). Only the cultivar "Schloss Mannheim" showed significant O3-related effects, including foliar injury, reduced chlorophyll content, reduced net photosynthetic rate, reduced stomatal conductance, and reduced stomatal apertures. In "Schloss Mannheim," several transcription factor genes-HSF, WRKY, and MYB genes-were upregulated by O3 exposure, and their expression was correlated with that of NCED1, PP2Cs, PYR/PYL, and UGTs, which are related to ABA biosynthesis and signaling. These results suggest that HSF, WRKY, and MYB transcription factors and ABA are important components of the plant response to O3 stress, suggesting a possible strategy for cultivating O3-tolerant rose varieties.
Collapse
Affiliation(s)
- Hua Wang
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center of Functional FloricultureBeijingChina
| | - Maofu Li
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center of Functional FloricultureBeijingChina
| | - Yuan Yang
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center for Deciduous Fruit TreesBeijingChina
| | - Pei Sun
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center of Functional FloricultureBeijingChina
| | - Shuting Zhou
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center of Functional FloricultureBeijingChina
| | - Yanhui Kang
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center of Functional FloricultureBeijingChina
| | - Yansen Xu
- School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Xiangyang Yuan
- School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Zhaozhong Feng
- School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Wanmei Jin
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture and Rural AffairsBeijingChina
- Beijing Engineering Research Center of Functional FloricultureBeijingChina
| |
Collapse
|
8
|
Kiekens R, de Koning R, Toili MEM, Angenon G. The Hidden Potential of High-Throughput RNA-Seq Re-Analysis, a Case Study for DHDPS, Key Enzyme of the Aspartate-Derived Lysine Biosynthesis Pathway and Its Role in Abiotic and Biotic Stress Responses in Soybean. PLANTS 2022; 11:plants11131762. [PMID: 35807714 PMCID: PMC9269547 DOI: 10.3390/plants11131762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
DHDPS is a key enzyme in the aspartate-derived lysine biosynthesis pathway and an evident object of study for biofortification strategies in plants. DHDPS isoforms with novel regulatory properties in Medicago truncatula were demonstrated earlier and hypothesized to be involved in abiotic and biotic stress responses. Here, we present a phylogenetic analysis of the DHPDS gene family in land plants which establishes the existence of a legume-specific class of DHDPS, termed DHDPS B-type, distinguishable from the DHDPS A-type commonly present in all land plants. The G. max genome comprises two A-type DHDPS genes (Gm.DHDPS-A1; Glyma.09G268200, Gm.DHDPS-A2; Glyma.18G221700) and one B-type (Gm.DHDPS-B; Glyma.03G022300). To further investigate the expression pattern of the G. max DHDPS isozymes in different plant tissues and under various stress conditions, 461 RNA-seq experiments were exploited and re-analyzed covering two expression atlases, 13 abiotic and 5 biotic stress studies. Gm.DHDPS-B is seen almost exclusively expressed in roots and nodules in addition to old cotyledons or senescent leaves while both DHDPS A-types are expressed constitutively in all tissues analyzed with the highest expression in mature seeds. Furthermore, Gm.DHDPS-B expression is significantly upregulated in some but not all stress responses including salt stress, flooding, ethylene or infection with Phytophthora sojae and coincides with downregulation of DHDPS A-types. In conclusion, we demonstrate the potential of an in-depth RNA-seq re-analysis for the guidance of future experiments and to expand on current knowledge.
Collapse
Affiliation(s)
- Raphaël Kiekens
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
| | - Ramon de Koning
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
| | - Mary Esther Muyoka Toili
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
- Department of Horticulture and Food Security, School of Agriculture and Environmental Sciences, College of Agriculture and Natural Resources, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Geert Angenon
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
- Correspondence: ; Tel.: +32-2-629-1935
| |
Collapse
|
9
|
Kumari A, Goyal M, Mittal A, Kumar R. Defensive capabilities of contrasting sorghum genotypes against Atherigona soccata (Rondani) infestation. PROTOPLASMA 2022; 259:809-822. [PMID: 34553239 DOI: 10.1007/s00709-021-01703-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Plants are equipped with a wide range of defensive mechanisms such as morphophysiological, biochemical, molecular, and hormonal signaling for protecting against insect-pest infestation. The infestation of a devastating pest shoot fly [Atherigona soccata (Rodani)] at seedling stage causes huge loss of sorghum crop productivity. In morphophysiological screening ICSV700, ICSV705, and IS18551 have been categorized as resistant, PSC-4 moderately resistant, SL-44 and SWARNA as susceptible. The present study focused on the role of defensive gene expression and its products viz: superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), polyphenol oxidase (PPO), phenyl alanine ammonia lyase (PAL), responsive enzymes, and metabolites restoring redox status in sorghum plants against shoot fly infestation. In both leaf and stem tissue of sorghum genotypes, shoot fly infestation induced SOD, APX, DHAR, GR, PAL, and PPO activities while CAT activity was significantly declined at 15 and 21 days after emergence (DAE). IS18551 with resistant behavior showed upregulation of SOD, GR, APX, and DHAR along with accumulation of ascorbate, glutathione enhancing redox status of the plant during shoot fly infestation at later stage of infestation. While SWARNA with susceptible response exhibited enhanced activity of phenylpropanoid pathway enzymes PAL and PPO which in turn increased the levels of secondary metabolites like o-dihydroxyphenol and other phenols deterring the insect to attack the plant. The qRT-PCR data predicted that stress-responsive genes were initially unregulated in SWARNA; however, at 21 DAE, multifold higher expression of SOD, CAT, APX, and PPO (24.8-, 37.2-, 21.7-, and 17.9-fold respectively) in 1S18551 indicates the resistance behavior of this genotype against insect infestation owing to sustainable development capability.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Meenakshi Goyal
- Department of Plant Breeding, and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Ravinder Kumar
- Department of Vegetable Crops, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
10
|
Wedow JM, Ainsworth EA, Li S. Plant biochemistry influences tropospheric ozone formation, destruction, deposition, and response. Trends Biochem Sci 2021; 46:992-1002. [PMID: 34303585 DOI: 10.1016/j.tibs.2021.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Tropospheric ozone (O3) is among the most damaging air pollutant to plants. Plants alter the atmospheric O3 concentration in two distinct ways: (i) by the emission of volatile organic compounds (VOCs) that are precursors of O3; and (ii) by dry deposition, which includes diffusion of O3 into vegetation through stomata and destruction by nonstomatal pathways. Isoprene, monoterpenes, and higher terpenoids are emitted by plants in quantities that alter tropospheric O3. Deposition of O3 into vegetation is related to stomatal conductance, leaf structural traits, and the detoxification capacity of the apoplast. The biochemical fate of O3 once it enters leaves and reacts with aqueous surfaces is largely unknown, but new techniques for the tracking and identification of initial products have the potential to open the black box.
Collapse
Affiliation(s)
- Jessica M Wedow
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuai Li
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
11
|
Wu R, Agathokleous E, Feng Z. Novel ozone flux metrics incorporating the detoxification process in the apoplast: An application to Chinese winter wheat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144588. [PMID: 33429267 DOI: 10.1016/j.scitotenv.2020.144588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
A modified Ball-Berry-Leuning model of stomatal conductance was applied to data from fully open-air ozone (O3)-enrichment experiments with winter wheat (Triticum aestivum L.). The O3 fluxes reaching both surface of cell wall (Fcw) and plasmalemma (Fpl) were estimated considering apoplastic ascorbate, a major scavenger of O3. The difference (D) between Fcw and Fpl was defined as detoxification capacity of O3 by reaction with ascorbate in the leaf apoplast (ASCapo). The accumulated stomatal O3 flux above D nmol O3 m-2 s-1 (AFstD) and the accumulated Fpl (AFpl) were calculated over the optimal integration period covering the whole reproductive development of wheat, and used to derive O3AFstD yield-response relationships in comparison with PODY (phytotoxic O3 dose above a threshold of Y nmol m-2 s-1) and AOT40 (accumulated O3 dose over a threshold of 40 ppb). There was a good agreement between the observed and modeled values of ASCapo and stomatal conductance. AFstD and AFpl performed better than PODY and AOT40 in terms of R2 and intercept. However, the AFstD metric was more suitable for assessing grain yield loss due to lower sensitivity of the regression slope to variations in the input parameters, compared with AFpl. The average critical level (CL) of four cultivars for 5% grain-yield reduction was 1.53 mmol m-2 using POD6 and 2.81 mmol m-2 using AFstD, with the latter being well above the POD6-derived value for European cultivars (1.3 mmol m-2). The minimum hourly averaged O3 concentration contributed to CLs was below 20 ppb according to AFstD, a value that is lower than that suggested by POD6 (≈27 ppb). O3 flux-response relationships and CLs on the basis of quantified detoxification capacity shall facilitate the understanding of the different degrees of susceptibility to O3 among species or cultivars, and improve the assessments of O3 impacts on plants.
Collapse
Affiliation(s)
- Rongjun Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| |
Collapse
|
12
|
Goumenaki E, González-Fernández I, Barnes JD. Ozone uptake at night is more damaging to plants than equivalent day-time flux. PLANTA 2021; 253:75. [PMID: 33629150 PMCID: PMC7904732 DOI: 10.1007/s00425-021-03580-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/30/2021] [Indexed: 05/21/2023]
Abstract
MAIN CONCLUSION Plants exposed to equivalent ozone fluxes administered during day-time versus night-time exhibited greater losses in biomass at night and this finding is attributed to night-time depletion of cell wall-localised ascorbate. The present study employed Lactuca sativa and its closest wild relative, L. serriola, to explore the relative sensitivity of plants to ozone-induced oxidative stress during day-time versus night-time. By controlling atmospheric ozone concentration and measuring stomatal conductance, equivalent ozone uptake into leaves was engineered during day and night, and consequences on productivity and net CO2 assimilation rate were determined. Biomass losses attributable to ozone were significantly greater when an equivalent dose of ozone was taken-up by foliage at night compared to the day. Linkages between ozone impacts and ascorbic acid (AA) content, redox status and cellular compartmentation were probed in both species. Leaf AA pools were depleted by exposure of plants to darkness, and then AA levels in the apoplast and symplast were monitored on subsequent transfer of plants to the light. Apoplast AA appeared to be more affected by light-dark transition than the symplast pool. Moreover, equivalent ozone fluxes administered to leaves with contrasting AA levels resulted in contrasting effects on the light-saturated rate of CO2 assimilation (Asat) in both species. Once apoplast AA content recovered to pre-treatment levels, the same ozone flux resulted in no impacts on Asat. The results of the present investigation reveal that plants are significantly more sensitive to equivalent ozone fluxes taken-up at night compared with those during the day and were consistent with diel shifts in apoplast AA content and/or redox status. Furthermore, findings suggest that some thought should be given to weighing regional models of ozone impacts for extraordinary night-time ozone impacts.
Collapse
Affiliation(s)
- Eleni Goumenaki
- Plant and Microbial Biology, School of Natural and Environmental Science [SNES], Devonshire Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
- School of Agricultural Sciences, Hellenic Mediterranean University, P.O. Box 1939, GR-71004, Heraklion, Crete, Greece.
| | - Ignacio González-Fernández
- Plant and Microbial Biology, School of Natural and Environmental Science [SNES], Devonshire Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
- Ecotoxicology of Air Pollution, CIEMAT, Avda. Complutense, 40.28040, Madrid, Spain
| | - Jeremy D Barnes
- Plant and Microbial Biology, School of Natural and Environmental Science [SNES], Devonshire Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| |
Collapse
|
13
|
Wedow JM, Burroughs CH, Rios Acosta L, Leakey ADB, Ainsworth EA. Age-dependent increase in α-tocopherol and phytosterols in maize leaves exposed to elevated ozone pollution. PLANT DIRECT 2021; 5:e00307. [PMID: 33615114 PMCID: PMC7876508 DOI: 10.1002/pld3.307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 05/13/2023]
Abstract
Tropospheric ozone is a major air pollutant that significantly damages crop production. Crop metabolic responses to rising chronic ozone stress have not been well studied in the field, especially in C4 crops. In this study, we investigated the metabolomic profile of leaves from two diverse maize (Zea mays) inbred lines and the hybrid cross during exposure to season-long elevated ozone (~100 nl L-1) in the field using free air concentration enrichment (FACE) to identify key biochemical responses of maize to elevated ozone. Senescence, measured by loss of chlorophyll content, was accelerated in the hybrid line, B73 × Mo17, but not in either inbred line (B73 or Mo17). Untargeted metabolomic profiling further revealed that inbred and hybrid lines of maize differed in metabolic responses to ozone. A significant difference in the metabolite profile of hybrid leaves exposed to elevated ozone occurred as leaves aged, but no age-dependent difference in leaf metabolite profiles between ozone conditions was measured in the inbred lines. Phytosterols and α-tocopherol levels increased in B73 × Mo17 leaves as they aged, and to a significantly greater degree in elevated ozone stress. These metabolites are involved in membrane stabilization and chloroplast reactive oxygen species (ROS) quenching. The hybrid line also showed significant yield loss at elevated ozone, which the inbred lines did not. This suggests that the hybrid maize line was more sensitive to ozone exposure than the inbred lines, and up-regulated metabolic pathways to stabilize membranes and quench ROS in response to chronic ozone stress.
Collapse
Affiliation(s)
- Jessica M. Wedow
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Charles H. Burroughs
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Lorena Rios Acosta
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Andrew D. B. Leakey
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Elizabeth A. Ainsworth
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
- USDA ARS Global Change and Photosynthesis Research UnitUrbanaILUSA
| |
Collapse
|
14
|
Choquette NE, Ainsworth EA, Bezodis W, Cavanagh AP. Ozone tolerant maize hybrids maintain Rubisco content and activity during long-term exposure in the field. PLANT, CELL & ENVIRONMENT 2020; 43:3033-3047. [PMID: 32844407 PMCID: PMC7756399 DOI: 10.1111/pce.13876] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 05/21/2023]
Abstract
Ozone pollution is a damaging air pollutant that reduces maize yields equivalently to nutrient deficiency, heat, and aridity stress. Therefore, understanding the physiological and biochemical responses of maize to ozone pollution and identifying traits predictive of ozone tolerance is important. In this study, we examined the physiological, biochemical and yield responses of six maize hybrids to elevated ozone in the field using Free Air Ozone Enrichment. Elevated ozone stress reduced photosynthetic capacity, in vivo and in vitro, decreasing Rubisco content, but not activation state. Contrary to our hypotheses, variation in maize hybrid responses to ozone was not associated with stomatal limitation or antioxidant pools in maize. Rather, tolerance to ozone stress in the hybrid B73 × Mo17 was correlated with maintenance of leaf N content. Sensitive lines showed greater ozone-induced senescence and loss of photosynthetic capacity compared to the tolerant line.
Collapse
Affiliation(s)
- Nicole E. Choquette
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Elizabeth A. Ainsworth
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Global Change and Photosynthesis Research UnitUSDA ARSUrbanaIllinoisUSA
| | - William Bezodis
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Amanda P. Cavanagh
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
- School of Life SciencesUniversity of EssexColchesterUK
| |
Collapse
|
15
|
Du W, Liu X, Zhao L, Xu Y, Yin Y, Wu J, Ji R, Sun Y, Guo H. Response of cucumber (Cucumis sativus) to perfluorooctanoic acid in photosynthesis and metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138257. [PMID: 32247119 DOI: 10.1016/j.scitotenv.2020.138257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
A mechanistic understanding of perfluorooctanoic acid (PFOA) toxicity to plants is essential for future risk assessment of PFOA in agricultural soil. In this study, soil-grown cucumber (Cucumis sativus) was exposed to 0, 0.2, and 5 mg/kg of PFOA for 60 days. At harvest, contaminant accumulation, cucumber biomass, photosynthesis profiles and metabolites were measured. Results showed that PFOA depressed cucumber biomass and accumulated highest in leaves. Photosynthesis analysis revealed that PFOA at both doses reduced the chlorophyll contents and net photosynthesis rate of cucumber leaves. Gas chromatography-mass spectrometry-based non-targeted metabolomics revealed that PFOA induced metabolic reprogramming in cucumber leaves, including up-regulation of phenols (at 0.2 and 5 mg/kg) and down-regulation of amino acids (at 5 mg/kg), indicating disrupted nitrogen and carbon metabolism. Results revealed how PFOA represses plant growth by down-regulating photosynthetic pigments and disturbing the metabolism of carbohydroxides, phenols and amino acids. These findings provide valuable information for understanding the molecular mechanisms involved in plant responses to PFOA-induced stress.
Collapse
Affiliation(s)
- Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Xing Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yanwen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Dai L, Kobayashi K, Nouchi I, Masutomi Y, Feng Z. Quantifying determinants of ozone detoxification by apoplastic ascorbate in peach (Prunus persica) leaves using a model of ozone transport and reaction. GLOBAL CHANGE BIOLOGY 2020; 26:3147-3162. [PMID: 32090419 DOI: 10.1111/gcb.15049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/10/2020] [Indexed: 05/23/2023]
Abstract
Ascorbate in leaf apoplast (ASCapo ) reacts with ozone (O3 ) and thereby reduces O3 flux reaching plasmalemma (Fpl ). Some studies have shown significant protection of cells from O3 by ASCapo , while others have questioned its efficacy. Hypothesizing that the protection by ASCapo depends on other variables, we quantified determinants of O3 detoxification with a model of O3 transport and reaction in apoplast. The model determines ascorbic acid concentration in apoplast (AAapo ) using measured values of O3 concentration (co ), leaf tissue ascorbic acid concentration (AAleaf ), cell wall thickness (L3 ), apoplastic pH (pHapo ), and stomatal conductance (Gsw ). We compared the measured and model-estimated AAapo in leaves of peach (Prunus persica) grown in open-top chambers under non-filtered air (NF) and elevated (EO3 : NF + 80 ppb) O3 concentrations. The estimated AAapo in individual leaves agreed well with the measured values (R2 = .91). Analyses of the simulation results yielded the following findings: (a) The efficacy of O3 reduction with ASCapo as quantified by fractional reduction (ϕ3 ) of O3 flux at the surface of plasmalemma (Fpl ) was lowered from 70% in NF to 40% in EO3 due to the reduction of L3 . The EO3 reduced AAapo , but the lower Gsw and L3 in EO3 increased AAapo resulting in no significant change in AAapo due to EO3 . ϕ3 can be calculated with measured values of AAapo and L3 , and Fpl can be estimated with the measurement-based ϕ3 . (b) When c0 is increased, Fpl increased curvilinearly with the increase of Fst : nominal O3 flux via stomatal diffusion, exhibiting apparent threshold on Fst . The deviation of Fpl from Fst became greater when L3 , pHapo , and AAleaf were increased. The quantification of ϕ3 and Fpl using leaf traits shall facilitate the understanding of the mechanisms of differential plant sensitivity to O3 and improve quantification of the O3 impacts on plants.
Collapse
Affiliation(s)
- Lulu Dai
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kazuhiko Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Isamu Nouchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Masutomi
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| |
Collapse
|
17
|
Soltani N, Best T, Grace D, Nelms C, Shumaker K, Romero-Severson J, Moses D, Schuster S, Staton M, Carlson J, Gwinn K. Transcriptome profiles of Quercus rubra responding to increased O 3 stress. BMC Genomics 2020; 21:160. [PMID: 32059640 PMCID: PMC7023784 DOI: 10.1186/s12864-020-6549-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/31/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone (O3). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to O3, limited information is available on its responses to exogenous stimuli at the level of gene expression. RESULTS RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to O3 stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the O3-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. CONCLUSION This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to O3. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis.
Collapse
Affiliation(s)
- Nourolah Soltani
- The Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Teo Best
- The Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dantria Grace
- Department of Biological & Environmental Sciences, University of West Alabama, Livingston, AL, 35470, USA
| | - Christen Nelms
- Department of Biological & Environmental Sciences, University of West Alabama, Livingston, AL, 35470, USA
| | - Ketia Shumaker
- Department of Biological & Environmental Sciences, University of West Alabama, Livingston, AL, 35470, USA
| | | | - Daniela Moses
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Nanyang Avenue, 637551, Singapore
| | - Stephan Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Nanyang Avenue, 637551, Singapore
| | - Margaret Staton
- The Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| | - John Carlson
- The Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Kimberly Gwinn
- The Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
18
|
Abstract
This article comments on:Melandri G, AbdElgawad H, Riewe D, Hageman JA, Asard H, Beemster GTS, Kadam N, Jagadish K, Altmann T, Ruyter-Spira1 C, Bouwmeester H. 2019. Biomarkers for grain yield stability in rice under drought stress. Journal of Experimental Botany 71, 669–683.
Collapse
Affiliation(s)
- Ronan Sulpice
- National University Ireland Galway, Plant Systems Biology Laboratory, Ryan Institute, School of Natural Sciences, Galway, Ireland
| |
Collapse
|
19
|
Papazian S, Blande JD. Dynamics of plant responses to combinations of air pollutants. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:68-83. [PMID: 30584692 DOI: 10.1111/plb.12953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
The focus of this review is on how plants respond to combinations of multiple air pollutants. Global pollution trends, plant physiological responses and ecological perspectives in natural and agricultural systems are all discussed. In particular, we highlight the importance of studying sequential or simultaneous exposure of plants to pollutants, rather than exposure to individual pollutants in isolation, and explore how these responses may interfere with the way plants interact with their biotic community. Air pollutants can alter the normal physiology and metabolic functioning of plants. Here we describe how the phenotypic and molecular changes in response to multiple pollutants can differ compared to those elicited by single pollutants, and how different responses have been observed between plants in the field and in controlled laboratory conditions and between trees and crop plants. From an ecological perspective, we discuss how air pollution can result in greater susceptibility to biotic stressors and in direct or indirect effects on interactions with organisms that occupy higher trophic levels. Finally, we provide an overview of the potential uses of plants to mitigate air pollution, exploring the feasibility for pollution removal via the processes of bio-accumulation and phytoremediation. We conclude by proposing some new directions for future research in the field.
Collapse
Affiliation(s)
- S Papazian
- Department of Plant Physiology, Umeå University, Umeå Plant Science Centre, Umeå, Sweden
| | - J D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
Zhang J, Gao F, Jia H, Hu J, Feng Z. Molecular response of poplar to single and combined ozone and drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1364-1375. [PMID: 30577128 DOI: 10.1016/j.scitotenv.2018.11.195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
High concentration in ground-level ozone (O3) and water deficit affect forest ecosystems service. Previously we found intercellular CO2 concentration and isoprene emission were affected by the combination of O3 and drought, but the molecular mechanisms controlling these phenotypes are still open questions. In this study, we investigated the stomatal conductance (gs) and transcriptome changes in an O3-sensitive hybrid poplar exposed to two O3 levels [charcoal-filtered ambient air (CF) and non-filtered ambient air plus 40 ppb (NF40)] and two water conditions [well-watered (W) and moderate drought (D)]. NF40 reduced the gs more under D than W. We identified the differentially expressed genes (DEGs) from pairwise comparisons and found the poplar's molecular response to drought was counteracted by elevated O3. From nine clusters obtained through K-means clustering, 12 core transcription factors were identified. DEGs involved in isoprene biosynthesis and phytohormones signal pathways indicate the molecular response and stomatal closure of poplar under O3 and/or drought might be through MEP/DOXP and ABA-dependent pathways. In addition, 102 Helitrons capturing DEGs were involved in response to O3 and/or drought and related with ABA-dependent pathway. This integrated analysis provides multi-dimensional insights to understand the molecular response to the combination of O3 and drought.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Feng Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
21
|
Dai L, Feng Z, Pan X, Xu Y, Li P, Lefohn AS, Harmens H, Kobayashi K. Increase of apoplastic ascorbate induced by ozone is insufficient to remove the negative effects in tobacco, soybean and poplar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:380-388. [PMID: 30448508 DOI: 10.1016/j.envpol.2018.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Apoplastic ascorbate (ASCapo) is an important contributor to the detoxification of ozone (O3). The objective of the study is to explore whether ASCapo is stimulated by elevated O3 concentrations. The detoxification of O3 by ASCapo was quantified in tobacco (Nicotiana L), soybean (Glycine max (L.) Merr.) and poplar (Populus L), which were exposed to charcoal-filtered air (CF) and elevated O3 treatments (E-O3). ASCapo in the three species were significantly increased by E-O3 compared with the values in the filtered treatment. For all three species, E-O3 significantly increased the malondialdehyde (MDA) content and decreased light-saturated rate of photosynthesis (Asat), suggesting that high O3 has induced injury/damage to plants. E-O3 significantly increased redox state in the apoplast (redox stateapo) for all species, whereas no effect on the apoplastic dehydroascorbate (DHAapo) was observed. In leaf tissues, E-O3 significantly enhanced reduced-ascorbate (ASC) and total ascorbate (ASC+DHA) in soybean and poplar, but significantly reduced these in tobacco, indicating different antioxidative capacity to the high O3 levels among the three species. Total antioxidant capacity in the apoplast (TACapo) was significantly increased by E-O3 in tobacco and poplar, but leaf tissue TAC was significantly enhanced only in tobacco. Leaf tissue superoxide anion (O2•-) in poplar and hydrogen peroxide (H2O2) in tobacco and soybean were significantly increased by E-O3. The diurnal variation of ASCapo, with maximum values occurring in the late morning and lower values experienced in the afternoon, appeared to play an important role in the harmful effects of O3 on tobacco, soybean and poplar.
Collapse
Affiliation(s)
- Lulu Dai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Xiaodong Pan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| | - Pin Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| | - Allen S Lefohn
- A.S.L. & Associates, 302 North Last Chance Gulch, Suite 410, Helena, MT, 59601, USA
| | - Harry Harmens
- Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Kazuhiko Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyoku, Tokyo, Japan
| |
Collapse
|
22
|
Ashrafuzzaman M, Haque Z, Ali B, Mathew B, Yu P, Hochholdinger F, de Abreu Neto JB, McGillen MR, Ensikat HJ, Manning WJ, Frei M. Ethylenediurea (EDU) mitigates the negative effects of ozone in rice: Insights into its mode of action. PLANT, CELL & ENVIRONMENT 2018; 41:2882-2898. [PMID: 30107647 DOI: 10.1111/pce.13423] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/06/2018] [Indexed: 05/08/2023]
Abstract
Monitoring of ozone damage to crops plays an increasingly important role for the food security of many developing countries. Ethylenediurea (EDU) could be a tool to assess ozone damage to vegetation on field scale, but its physiological mode of action remains unclear. This study investigated mechanisms underlying the ozone-protection effect of EDU in controlled chamber experiments. Ozone sensitive and tolerant rice genotypes were exposed to ozone (108 ppb, 7 hr day-1 ) and control conditions. EDU alleviated ozone effects on plant morphology, foliar symptoms, lipid peroxidation, and photosynthetic parameters in sensitive genotypes. Transcriptome profiling by RNA sequencing revealed that thousands of genes responded to ozone in a sensitive variety, but almost none responded to EDU. Significant interactions between ozone and EDU application occurred mostly in ozone responsive genes, in which up-regulation was mitigated by EDU application. Further experiments documented ozone degrading properties of EDU, as well as EDU deposits on leaf surfaces possibly related to surface protection. EDU application did not mitigate the reaction of plants to other abiotic stresses, including iron toxicity, zinc deficiency, and salinity. This study provided evidence that EDU is a surface protectant that specifically mitigates ozone stress without interfering directly with the plants' stress response systems.
Collapse
Affiliation(s)
- Md Ashrafuzzaman
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Zahidul Haque
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Basharat Ali
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Boby Mathew
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Peng Yu
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | | | | | - Hans-Jürgen Ensikat
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | - William J Manning
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Guo LX, Zhang GW, Li QQ, Xu XM, Wang JH. Novel Arsenic Markers for Discriminating Wild and Cultivated Cordyceps. Molecules 2018; 23:molecules23112804. [PMID: 30380635 PMCID: PMC6278644 DOI: 10.3390/molecules23112804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/24/2018] [Accepted: 10/27/2018] [Indexed: 12/26/2022] Open
Abstract
Ophiocordyceps sinensis has been utilized in China and adjacent countries for thousands of years as a rare functional food to promote health and treat diverse chronic diseases. In recent years, adulterants are usually identified in the processed products of wild O. sinensis. However, the effective adulteration examination has to be additionally performed except their routine test, and accordingly is time- and money-consuming. Recently, arsenic determination has become a necessary test for confirming whether the concentrations of inorganic arsenic are over the O. sinensis limit. In this work, the contents of total arsenic and As species in cultivated O. sinensis, Cordyceps militaris, and other edible fungi were determined by ICP-MS and HPLC-ICP-MS. The results suggest that the As speciation exhibits a species-specific behavior, and accompanies the effect of the As background. The proportions of unknown organic As and contents of total As may be considered as sensitive markers for discriminating wild O. sinensis. This result provides a novel clue for discriminating wild and artificially cultivated mushrooms/their products, with emphasis on arsenic markers for authenticating wild O. sinensis.
Collapse
Affiliation(s)
- Lian-Xian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Gui-Wei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, China.
| | - Qing-Qing Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Xiao-Ming Xu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
24
|
Mills G, Sharps K, Simpson D, Pleijel H, Frei M, Burkey K, Emberson L, Uddling J, Broberg M, Feng Z, Kobayashi K, Agrawal M. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. GLOBAL CHANGE BIOLOGY 2018; 24:4869-4893. [PMID: 30084165 DOI: 10.1111/gcb.14381] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 05/22/2023]
Abstract
Increasing both crop productivity and the tolerance of crops to abiotic and biotic stresses is a major challenge for global food security in our rapidly changing climate. For the first time, we show how the spatial variation and severity of tropospheric ozone effects on yield compare with effects of other stresses on a global scale, and discuss mitigating actions against the negative effects of ozone. We show that the sensitivity to ozone declines in the order soybean > wheat > maize > rice, with genotypic variation in response being most pronounced for soybean and rice. Based on stomatal uptake, we estimate that ozone (mean of 2010-2012) reduces global yield annually by 12.4%, 7.1%, 4.4% and 6.1% for soybean, wheat, rice and maize, respectively (the "ozone yield gaps"), adding up to 227 Tg of lost yield. Our modelling shows that the highest ozone-induced production losses for soybean are in North and South America whilst for wheat they are in India and China, for rice in parts of India, Bangladesh, China and Indonesia, and for maize in China and the United States. Crucially, we also show that the same areas are often also at risk of high losses from pests and diseases, heat stress and to a lesser extent aridity and nutrient stress. In a solution-focussed analysis of these results, we provide a crop ideotype with tolerance of multiple stresses (including ozone) and describe how ozone effects could be included in crop breeding programmes. We also discuss altered crop management approaches that could be applied to reduce ozone impacts in the shorter term. Given the severity of ozone effects on staple food crops in areas of the world that are also challenged by other stresses, we recommend increased attention to the benefits that could be gained from addressing the ozone yield gap.
Collapse
Affiliation(s)
- Gina Mills
- Centre for Ecology and Hydrology, Bangor, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - David Simpson
- EMEP MSC-W, Norwegian Meteorological Institute, Oslo, Norway
- Department of Space, Earth & Environment, Chalmers University of Technology, Gothenburg, Sweden
| | - Håkan Pleijel
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Michael Frei
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | | | - Lisa Emberson
- Environment Department, Stockholm Environment Institute at York, University of York, York, UK
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Malin Broberg
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kazuhiko Kobayashi
- Department of Global Agricultural Sciences, The University of Tokyo, Tokyo, Japan
| | - Madhoolika Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Uttar Pradesh, India
| |
Collapse
|
25
|
Ainsworth EA. Understanding and improving global crop response to ozone pollution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:886-897. [PMID: 27739639 DOI: 10.1111/tpj.13298] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 05/21/2023]
Abstract
Concentrations of ground-level ozone ([O3 ]) over much of the Earth's land surface have more than doubled since pre-industrial times. The air pollutant is highly variable over time and space, which makes it difficult to assess the average agronomic and economic impacts of the pollutant as well as to breed crops for O3 tolerance. Recent modeling efforts have improved quantitative understanding of the effects of current and future [O3 ] on global crop productivity, and experimental advances have improved understanding of the cellular O3 sensing, signaling and response mechanisms. This work provides the fundamental background and justification for breeding and biotechnological approaches for improving O3 tolerance in crops. There is considerable within-species variation in O3 tolerance in crops, which has been used to create mapping populations for screening. Quantitative trait loci (QTL) for O3 tolerance have been identified in model and crop species, and although none has been cloned to date, transcript profiling experiments have identified candidate genes associated with QTL. Biotechnological strategies for improving O3 tolerance are also being tested, although there is considerable research to be done before O3 -tolerant germplasm is available to growers for most crops. Strategies to improve O3 tolerance in crops have been hampered by the lack of translation of laboratory experiments to the field, and the lack of correlation between visual leaf-level O3 damage and yield loss to O3 stress. Future efforts to screen mapping populations in the field and to identify more promising phenotypes for O3 tolerance are needed.
Collapse
Affiliation(s)
- Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, USDA ARS, 1201 W. Gregory Drive, Urbana, IL, 61801, USA
- Institute for Genomic Biology & Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
26
|
Papazian S, Khaling E, Bonnet C, Lassueur S, Reymond P, Moritz T, Blande JD, Albrectsen BR. Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure. PLANT PHYSIOLOGY 2016; 172:2057-2078. [PMID: 27758847 PMCID: PMC5100778 DOI: 10.1104/pp.16.01318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/03/2016] [Indexed: 05/04/2023]
Abstract
Plants have evolved adaptive mechanisms that allow them to tolerate a continuous range of abiotic and biotic stressors. Tropospheric ozone (O3), a global anthropogenic pollutant, directly affects living organisms and ecosystems, including plant-herbivore interactions. In this study, we investigate the stress responses of Brassica nigra (wild black mustard) exposed consecutively to O3 and the specialist herbivore Pieris brassicae Transcriptomics and metabolomics data were evaluated using multivariate, correlation, and network analyses for the O3 and herbivory responses. O3 stress symptoms resembled those of senescence and phosphate starvation, while a sequential shift from O3 to herbivory induced characteristic plant defense responses, including a decrease in central metabolism, induction of the jasmonic acid/ethylene pathways, and emission of volatiles. Omics network and pathway analyses predicted a link between glycerol and central energy metabolism that influences the osmotic stress response and stomatal closure. Further physiological measurements confirmed that while O3 stress inhibited photosynthesis and carbon assimilation, sequential herbivory counteracted the initial responses induced by O3, resulting in a phenotype similar to that observed after herbivory alone. This study clarifies the consequences of multiple stress interactions on a plant metabolic system and also illustrates how omics data can be integrated to generate new hypotheses in ecology and plant physiology.
Collapse
Affiliation(s)
- Stefano Papazian
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - Eliezer Khaling
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - Christelle Bonnet
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - Steve Lassueur
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - Philippe Reymond
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.)
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - James D Blande
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.);
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| | - Benedicte R Albrectsen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå (S.P., B.R.A.); Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden (T.M.);
- Department of Environmental and Biological Sciences, University of Eastern Finland, FIN-70211 Kuopio, Finland (E.K., J.D.B.); and
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland (C.B., S.L., P.R.)
| |
Collapse
|
27
|
Saraiva KDDC, Oliveira AER, Dos Santos CP, Lima KTL, de Sousa JM, Fernandes de Melo D, Costa JH. Phylogenetic analysis and differential expression of EF1α genes in soybean during development, stress and phytohormone treatments. Mol Genet Genomics 2016; 291:1505-22. [PMID: 26984342 DOI: 10.1007/s00438-016-1198-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/05/2016] [Indexed: 11/26/2022]
Abstract
The EF1α is a multifunctional protein with additional unrelated activities to its primary function in translation. This protein is encoded by a multigene family and few studies are still available in plants. Expression of six EF1α genes in Glycine max was performed using RT-qPCR and RNA-seq data to advance in the function of each gene during plant development, stress conditions and phytohormone treatments. A phylogenetic classification in Phaseoleae tribe was used to identify the G. max EF1α genes (EF1α 1a1, 1a2, 1b, 2a, 2b and 3). Three EF1α types (1-3) were found in Phaseoleae revealing duplications in G. max types 1 and 2. EF1α genes were expressed in all studied tissues, however, specific amount of each transcript was detected. In plant development, all EF1α transcripts were generally more expressed in younger tissues, however, in unifoliolate leaves and cotyledons a higher expression occurred in older tissues. Five EF1α genes (except 2a) were up-regulated under stress in a response tissue/stress/cultivar-dependent. EF1α 3 was the most stress-induced gene linked to cultivar stress tolerance mainly in aerial tissues. Auxin, salicylate and ethylene induced differentially the EF1α expression. Overall, this study provides a consistent EF1α classification in Phaseoleae tribe to better understand their functional evolution. The RT-qPCR and RNA-seq EF1α expression profiles were consistent, both exhibiting expression diversification of each gene (spatio-temporal, stress and phytohormone stimuli). Our results point out the EF1α genes, especially EF1α 3, as candidate for developing a useful tool for future G. max breeding.
Collapse
Affiliation(s)
- Kátia Daniella da Cruz Saraiva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil
| | - Antonio Edson Rocha Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil
| | - Clesivan Pereira Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil
| | - Karine Thiers Leitão Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil
| | - Janaina Martins de Sousa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil
| | - Dirce Fernandes de Melo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil
| | - José Hélio Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx., 6033, Fortaleza, Fortaleza, CE, 60451-970, Brazil.
| |
Collapse
|
28
|
Sytykiewicz H. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings. Int J Mol Sci 2016; 17:268. [PMID: 26907270 PMCID: PMC4813132 DOI: 10.3390/ijms17030268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/27/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022] Open
Abstract
Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans’ attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland.
| |
Collapse
|