1
|
Potkay A, Sloan B, Feng X. Stomatal Parameters in a Changing Environment. PLANT, CELL & ENVIRONMENT 2025; 48:2986-2997. [PMID: 39665224 DOI: 10.1111/pce.15293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024]
Abstract
Summary statementWe recommend that stomatal slope parameters (g1) be inferred by inversion so that variations in g1 may be attributed to variations physiological and environmental conditions. Understanding g1 will advance predictions of plant gas exchange and performance under global climate.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Brandon Sloan
- Environmental Sciences Division, Bioresources Science and Engineering Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Xue Feng
- Department of Civil Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Zhao N, Lu S, Li S, Li B, Yu X, Xu X. Enhancing the water use efficiency model predictions for Platycladus orientalis and Quercus variabilis: Integrating the dynamics of carbon dioxide concentration and soil water availability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178179. [PMID: 39721536 DOI: 10.1016/j.scitotenv.2024.178179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Water use efficiency (WUE) is a tracer for plants on the trade-off exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere; therefore, a dynamic investigation of WUE and its driving factors will be of great significance to optimize water and carbon fitness and predict the plants' response to climate change. In our study, a modified water use efficiency model was proposed to improve the quantification of carbon and water processes by adding a photosynthesis-gs simulation dependent on CO2 concentration and soil moisture to the photosynthetic transpiration model (noted as SMPTSB model). Actual measured water use efficiencies were respectively obtained by the gas exchange measurements (WUEge) and the δ13CWSC that defined as the carbon-heavy isotope of the water-soluble compound in leaves (WUEwsc) of three-year tree saplings of Platycladus orientalis (L.) Franco and Quercus variabilis Blume, which were cultured in an orthogonal treatment consisting of four ambient CO2 concentrations ([CO2]) and five soil volumetric water contents (SWC). Direct comparisons of the modeled and measured stomatal conductance and WUE further indicated that the modified WUE model makes carbon assimilation, stomatal conductance and WUE more sensitive to [CO2] and soil moisture. From this, the enhancement of WUE in P. orientalis and Q. variabilis saplings is expected to occur when the ambient CO2 concentration increases to 600 ppm - 700 ppm and the appropriate SWC reaches 60 % to 80 % of the field capacity for potted soil. In general, the water use efficiency model that accounts for the synergistic effects of environmental CO2 concentration and soil moisture can accurately identify the corresponding thresholds for the optimal efficiency of carbon and water use of vegetation, which is expected to provide a theoretical basis for predicting the corresponding forest management practices to address future climate change.
Collapse
Affiliation(s)
- Na Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
| | - Shaowei Lu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
| | - Shaoning Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
| | - Bin Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
| | - Xinxiao Yu
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Xiaotian Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China.
| |
Collapse
|
3
|
Preisler Y, Grünzweig JM, Ahiman O, Amer M, Oz I, Feng X, Muller JD, Ruehr N, Rotenberg E, Birami B, Yakir D. Vapour pressure deficit was not a primary limiting factor for gas exchange in an irrigated, mature dryland Aleppo pine forest. PLANT, CELL & ENVIRONMENT 2023; 46:3775-3790. [PMID: 37680062 DOI: 10.1111/pce.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Climate change is often associated with increasing vapour pressure deficit (VPD) and changes in soil moisture (SM). While atmospheric and soil drying often co-occur, their differential effects on plant functioning and productivity remain uncertain. We investigated the divergent effects and underlying mechanisms of soil and atmospheric drought based on continuous, in situ measurements of branch gas exchange with automated chambers in a mature semiarid Aleppo pine forest. We investigated the response of control trees exposed to combined soil-atmospheric drought (low SM, high VPD) during the rainless Mediterranean summer and that of trees experimentally unconstrained by soil dryness (high SM; using supplementary dry season water supply) but subjected to atmospheric drought (high VPD). During the seasonal dry period, branch conductance (gbr ), transpiration rate (E) and net photosynthesis (Anet ) decreased in low-SM trees but greatly increased in high-SM trees. The response of E and gbr to the massive rise in VPD (to 7 kPa) was negative in low-SM trees and positive in high-SM trees. These observations were consistent with predictions based on a simple plant hydraulic model showing the importance of plant water potential in the gbr and E response to VPD. These results demonstrate that avoiding drought on the supply side (SM) and relying on plant hydraulic regulation constrains the effects of atmospheric drought (VPD) as a stressor on canopy gas exchange in mature pine trees under field conditions.
Collapse
Affiliation(s)
- Yakir Preisler
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - José M Grünzweig
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ori Ahiman
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Beit Dagan, Israel
| | - Madi Amer
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Itai Oz
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan D Muller
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Nadine Ruehr
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Eyal Rotenberg
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Birami
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Dan Yakir
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Jin EJ, Yoon JH, Lee H, Bae EJ, Yong SH, Choi MS. Evaluation of drought stress level in Sargent's cherry ( Prunus sargentii Rehder) using photosynthesis and chlorophyll fluorescence parameters and proline content analysis. PeerJ 2023; 11:e15954. [PMID: 37842053 PMCID: PMC10576498 DOI: 10.7717/peerj.15954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/02/2023] [Indexed: 10/17/2023] Open
Abstract
Sargent's cherry trees (Prunus sargentiiRehder) are widely planted as an ornamental, climate change-sensing species. This study investigated changes in the soil moisture content, fresh weight, photosynthesis and chlorophyll fluorescence properties, and the chlorophyll and proline content of four-year-old P. sargentii seedlings after 30 days of drought stress. In the trees subjected to drought stress treatment, soil moisture content decreased, and the fresh weight of the aboveground part of the plant decreased. However, there was no significant difference in the root growth of the dried plants. Among the photosynthesis parameters, Pn MAX, E and gs showed a significant (p < 0.001) decrease after 15 days in dry-stressed seedlings, but there was no difference between treatments in WUE until 20 days, and there was a significant (p < 0.001) difference after 24 days. Chlorophyll fluorescence parameters, Fv/Fm, ΦPSII, Rfd, NPQ, and Pn MAX, also increased after 10 days in dry-stressed seedlings, but these changes did not reach statistical significance compared to the control treatment. These results may suggest that drought stress highly correlates with photosynthesis and chlorophyll fluorescence parameters. Chlorophyll content also significantly decreased in the seedlings under drought stress compared with the control treatment. The proline content decreased until the 10th day of drought stress treatment and increased after the 15th day, showing an increase of 10.9% on the 15th day and 57.1% on the 30th day, compared to the control treatment. These results suggest that photosynthesis, chlorophyll fluorescence parameters, and proline content can be used to evaluate drought stress in trees. The results of this study can contribute to the management of forests, such as the irrigation of trees when pore control ability and photosynthesis ability decrease.
Collapse
Affiliation(s)
- Eon Ju Jin
- Forest Biomaterials Research Center, National institute of Forest Science, Jinju, South Korea
| | - Jun-Hyuk Yoon
- Forest Biomaterials Research Center, National institute of Forest Science, Jinju, South Korea
| | - Hyeok Lee
- Forest Biomaterials Research Center, National institute of Forest Science, Jinju, South Korea
| | - Eun Ji Bae
- Forest Biomaterials Research Center, National institute of Forest Science, Jinju, South Korea
| | - Seong Hyeon Yong
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Myung Suk Choi
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Division of Environmental Forest Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
5
|
Davidson KJ, Lamour J, McPherran A, Rogers A, Serbin SP. Seasonal trends in leaf-level photosynthetic capacity and water use efficiency in a North American Eastern deciduous forest and their impact on canopy-scale gas exchange. THE NEW PHYTOLOGIST 2023; 240:138-156. [PMID: 37475146 DOI: 10.1111/nph.19137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/24/2023] [Indexed: 07/22/2023]
Abstract
Vegetative transpiration (E) and photosynthetic carbon assimilation (A) are known to be seasonally dynamic, with changes in their ratio determining the marginal water use efficiency (WUE). Despite an understanding that stomata play a mechanistic role in regulating WUE, it is still unclear how stomatal and nonstomatal processes influence change in WUE over the course of the growing season. As a result, limited understanding of the primary physiological drivers of seasonal dynamics of canopy WUE remains one of the largest uncertainties in earth system model projections of carbon and water exchange in temperate deciduous forest ecosystems. We investigated seasonal patterns in leaf-level physiological, hydraulic, and anatomical properties, including the seasonal progress of the stomatal slope parameter (g1 ; inversely proportional to WUE) and the maximum carboxylation rate (Vcmax ). Vcmax and g1 were seasonally variable; however, their patterns were not temporally synchronized. g1 generally showed an increasing trend until late in the season, while Vcmax peaked during the midsummer months. Seasonal progression of Vcmax was primarily driven by changes in leaf structural, and anatomical characteristics, while seasonal changes in g1 were most strongly related to changes in Vcmax and leaf hydraulics. Using a seasonally variable Vcmax and g1 to parameterize a canopy-scale gas exchange model increased seasonally aggregated A and E by 3% and 16%, respectively.
Collapse
Affiliation(s)
- Kenneth J Davidson
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Julien Lamour
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Anna McPherran
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alistair Rogers
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Shawn P Serbin
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
6
|
Kohonen KM, Dewar R, Tramontana G, Mauranen A, Kolari P, Kooijmans LMJ, Papale D, Vesala T, Mammarella I. Intercomparison of methods to estimate gross primary production based on CO 2 and COS flux measurements. BIOGEOSCIENCES (ONLINE) 2022; 19:4067-4088. [PMID: 36171741 PMCID: PMC7613647 DOI: 10.5194/bg-19-4067-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Separating the components of ecosystem-scale carbon exchange is crucial in order to develop better models and future predictions of the terrestrial carbon cycle. However, there are several uncertainties and unknowns related to current photosynthesis estimates. In this study, we evaluate four different methods for estimating photosynthesis at a boreal forest at the ecosystem scale, of which two are based on carbon dioxide (CO2) flux measurements and two on carbonyl sulfide (COS) flux measurements. The CO2-based methods use traditional flux partitioning and artificial neural networks to separate the net CO2 flux into respiration and photosynthesis. The COS-based methods make use of a unique 5-year COS flux data set and involve two different approaches to determine the leaf-scale relative uptake ratio of COS and CO2 (LRU), of which one (LRUCAP) was developed in this study. LRUCAP was based on a previously tested stomatal optimization theory (CAP), while LRUPAR was based on an empirical relation to measured radiation. For the measurement period 2013-2017, the artificial neural network method gave a GPP estimate very close to that of traditional flux partitioning at all timescales. On average, the COS-based methods gave higher GPP estimates than the CO2-based estimates on daily (23% and 7% higher, using LRUPAR and LRUCAP, respectively) and monthly scales (20% and 3% higher), as well as a higher cumulative sum over 3 months in all years (on average 25% and 3% higher). LRUCAP was higher than LRU estimated from chamber measurements at high radiation, leading to underestimation of midday GPP relative to other GPP methods. In general, however, use of LRUCAP gave closer agreement with CO2-based estimates of GPP than use of LRUPAR. When extended to other sites, LRUCAP may be more robust than LRUPAR because it is based on a physiological model whose parameters can be estimated from simple measurements or obtained from the literature. In contrast, the empirical radiation relation in LRUPAR may be more site-specific. However, this requires further testing at other measurement sites.
Collapse
Affiliation(s)
- Kukka-Maaria Kohonen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Roderick Dewar
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Gianluca Tramontana
- Image Processing Laboratory (IPL), Parc Científic Universitat de València, Universitat de València, Paterna, Spain
- Terrasystem s.r.l, Viterbo, Italy
| | - Aleksanteri Mauranen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Pasi Kolari
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Linda M. J. Kooijmans
- Meteorology and Air Quality, Wageningen University and Research, Wageningen, the Netherlands
| | - Dario Papale
- DIBAF, Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
- IAFES, Euro-Mediterranean Center for Climate Change (CMCC), Viterbo, Italy
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Ivan Mammarella
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Stangl ZR, Tarvainen L, Wallin G, Marshall JD. Limits to photosynthesis: seasonal shifts in supply and demand for CO 2 in Scots pine. THE NEW PHYTOLOGIST 2022; 233:1108-1120. [PMID: 34775610 DOI: 10.1111/nph.17856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Boreal forests undergo a strong seasonal photosynthetic cycle; however, the underlying processes remain incompletely characterized. Here, we present a novel analysis of the seasonal diffusional and biochemical limits to photosynthesis (Anet ) relative to temperature and light limitations in high-latitude mature Pinus sylvestris, including a high-resolution analysis of the seasonality of mesophyll conductance (gm ) and its effect on the estimation of carboxylation capacity ( VCmax ). We used a custom-built gas-exchange system coupled to a carbon isotope analyser to obtain continuous measurements for the estimation of the relevant shoot gas-exchange parameters and quantified the biochemical and diffusional controls alongside the environmental controls over Anet . The seasonality of Anet was strongly dependent on VCmax and the diffusional limitations. Stomatal limitation was low in spring and autumn but increased to 31% in June. By contrast, mesophyll limitation was nearly constant (19%). We found that VCmax limited Anet in the spring, whereas daily temperatures and the gradual reduction of light availability limited Anet in the autumn, despite relatively high VCmax . We describe for the first time the role of mesophyll conductance in connection with seasonal trends in net photosynthesis of P. sylvestris, revealing a strong coordination between gm and Anet , but not between gm and stomatal conductance.
Collapse
Affiliation(s)
- Zsofia R Stangl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-413 19, Gothenburg, Sweden
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-413 19, Gothenburg, Sweden
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| |
Collapse
|
8
|
Dewar R, Hölttä T, Salmon Y. Exploring optimal stomatal control under alternative hypotheses for the regulation of plant sources and sinks. THE NEW PHYTOLOGIST 2022; 233:639-654. [PMID: 34637543 DOI: 10.1111/nph.17795] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Experimental evidence that nonstomatal limitations to photosynthesis (NSLs) correlate with leaf sugar and/or leaf water status suggests the possibility that stomata adjust to maximise photosynthesis through a trade-off between leaf CO2 supply and NSLs, potentially involving source-sink interactions. However, the mechanisms regulating NSLs and sink strength, as well as their implications for stomatal control, remain uncertain. We used an analytically solvable model to explore optimal stomatal control under alternative hypotheses for source and sink regulation. We assumed that either leaf sugar concentration or leaf water potential regulates NSLs, and that either phloem turgor pressure or phloem sugar concentration regulates sink phloem unloading. All hypotheses led to realistic stomatal responses to light, CO2 and air humidity, including conservative behaviour for the intercellular-to-atmospheric CO2 concentration ratio. Sugar-regulated and water-regulated NSLs are distinguished by the presence/absence of a stomatal closure response to changing sink strength. Turgor-regulated and sugar-regulated phloem unloading are distinguished by the presence/absence of stomatal closure under drought and avoidance/occurrence of negative phloem turgor. Results from girdling and drought experiments on Pinus sylvestris, Betula pendula, Populus tremula and Picea abies saplings are consistent with optimal stomatal control under sugar-regulated NSLs and turgor-regulated unloading. Our analytical results provide a simple representation of stomatal responses to above-ground and below-ground environmental factors and sink activity.
Collapse
Affiliation(s)
- Roderick Dewar
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Teemu Hölttä
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, PO Box 27, Latokartanonkaari 7, Helsinki, 00014, Finland
| | - Yann Salmon
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, PO Box 27, Latokartanonkaari 7, Helsinki, 00014, Finland
| |
Collapse
|
9
|
Salvi AM, Smith DD, Adams MA, McCulloh KA, Givnish TJ. Mesophyll photosynthetic sensitivity to leaf water potential in Eucalyptus: a new dimension of plant adaptation to native moisture supply. THE NEW PHYTOLOGIST 2021; 230:1844-1855. [PMID: 33630331 DOI: 10.1111/nph.17304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic sensitivity to drought is a fundamental constraint on land-plant evolution and ecosystem function. However, little is known about how the sensitivity of photosynthesis to nonstomatal limitations varies among species in the context of phylogenetic relationships. Using saplings of 10 Eucalyptus species, we measured maximum CO2 -saturated photosynthesis using A-ci curves at several different leaf water potentials (ψleaf ) to quantify mesophyll photosynthetic sensitivity to ψleaf (MPS), a measure of how rapidly nonstomatal limitations to carbon uptake increase with declining ψleaf . MPS was compared to the macroclimatic moisture availability of the species' native habitats, while accounting for phylogenetic relationships. We found that species native to mesic habitats have greater MPS but higher maximum photosynthetic rates during non-water-stressed conditions, revealing a trade-off between maximum photosynthesis and drought sensitivity. Species with lower turgor loss points have lower MPS, indicating coordination among photosynthetic and water-relations traits. By accounting for phylogenetic relationships among closely related species, we provide the first compelling evidence that MPS in Eucalyptus evolved in an adaptive fashion with climatically determined moisture availability, opening the way for further study of this poorly explored dimension of plant adaptation to drought.
Collapse
Affiliation(s)
- Amanda M Salvi
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Ecosystem and Forest Sciences, University of Melbourne, Creswick, Vic., 3363, Australia
- Swinburne University of Technology, John Street, Hawthorn, Vic., 3122, Australia
| | - Mark A Adams
- Swinburne University of Technology, John Street, Hawthorn, Vic., 3122, Australia
| | | | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
10
|
Zhuang J, Wang Y, Chi Y, Zhou L, Chen J, Zhou W, Song J, Zhao N, Ding J. Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. PeerJ 2020; 8:e10046. [PMID: 33024649 PMCID: PMC7520092 DOI: 10.7717/peerj.10046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/04/2020] [Indexed: 01/13/2023] Open
Abstract
Chlorophyll fluorescence (ChlF) has been used to understand photosynthesis and its response to climate change, particularly with satellite-based data. However, it remains unclear how the ChlF ratio and photosynthesis are linked at the leaf level under drought stress. Here, we examined the link between ChlF ratio and photosynthesis at the leaf level by measuring photosynthetic traits, such as net CO2 assimilation rate (An), the maximum carboxylation rate of Rubisco (Vcmax), the maximum rate of electron transport (Jmax), stomatal conductance (gs) and total chlorophyll content (Chlt). The ChlF ratio of the leaf level such as maximum quantum efficiency of PSII (Fv/Fm) is based on fluorescence kinetics. ChlF intensity ratio (LD685/LD740) based on spectrum analysis was obtained. We found that a combination of the stomatal limitation, non-stomatal limitation, and Chlt regulated leaf photosynthesis under drought stress, while Jmax and Chlt governed the ChlF ratio. A significant link between the ChlF ratio and An was found under drought stress while no significant correlation in the control, which indicated that drought stress strengthens the link between the ChlF ratio and photosynthetic traits. These results suggest that the ChlF ratio can be a powerful tool to track photosynthetic traits of terrestrial ecosystems under drought stress.
Collapse
Affiliation(s)
- Jie Zhuang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yonglin Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yonggang Chi
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Lei Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jijing Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Wen Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jun Song
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Ning Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jianxi Ding
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
11
|
Gourlez de la Motte L, Beauclaire Q, Heinesch B, Cuntz M, Foltýnová L, Šigut L, Kowalska N, Manca G, Ballarin IG, Vincke C, Roland M, Ibrom A, Lousteau D, Siebicke L, Neiryink J, Longdoz B. Non-stomatal processes reduce gross primary productivity in temperate forest ecosystems during severe edaphic drought. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190527. [PMID: 32892725 DOI: 10.1098/rstb.2019.0527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Severe drought events are known to cause important reductions of gross primary productivity (GPP) in forest ecosystems. However, it is still unclear whether this reduction originates from stomatal closure (Stomatal Origin Limitation) and/or non-stomatal limitations (Non-SOL). In this study, we investigated the impact of edaphic drought in 2018 on GPP and its origin (SOL, NSOL) using a dataset of 10 European forest ecosystem flux towers. In all stations where GPP reductions were observed during the drought, these were largely explained by declines in the maximum apparent canopy scale carboxylation rate VCMAX,APP (NSOL) when the soil relative extractable water content dropped below around 0.4. Concurrently, we found that the stomatal slope parameter (G1, related to SOL) of the Medlyn et al. unified optimization model linking vegetation conductance and GPP remained relatively constant. These results strengthen the increasing evidence that NSOL should be included in stomatal conductance/photosynthesis models to faithfully simulate both GPP and water fluxes in forest ecosystems during severe drought. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
Collapse
Affiliation(s)
- Louis Gourlez de la Motte
- Terra Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Quentin Beauclaire
- Terra Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Bernard Heinesch
- Terra Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Mathias Cuntz
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | | | - Ladislav Šigut
- Global Change Research Institute CAS, Brno, Czech Republic
| | | | - Giovanni Manca
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Caroline Vincke
- Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Marilyn Roland
- Plants and Ecosystems, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Andreas Ibrom
- Department of Environmental Engineering, Technical University of Denmark (DTU), Bygningstorvet 115, 2800 Lyngby, Denmark
| | | | - Lukas Siebicke
- Bioclimatology, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
| | - Johan Neiryink
- Institute for Nature and Forest Research, INBO, Havenlaan 88 Box 73, 1000 Brussels, Belgium
| | - Bernard Longdoz
- Terra Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| |
Collapse
|
12
|
Zhang Z, Gong J, Wang B, Li X, Ding Y, Yang B, Zhu C, Liu M, Zhang W. Regrowth strategies of Leymus chinensis in response to different grazing intensities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02113. [PMID: 32112460 DOI: 10.1002/eap.2113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
In temperate grassland ecosystems, grazing can affect plant growth by foraging, trampling, and excretion. The ability of dominant plant species to regrow after grazing is critical, since it allows the regeneration of photosynthetic tissues to support growth. We conducted a field experiment to evaluate the effects of different grazing intensities (control, light, medium, and heavy) on the physiological and biochemical responses of Leymus chinensis and the carbon (C) sources utilized during regrowth. Light grazing promoted regrowth and photoassimilate storage of L. chinensis, by increasing the net photosynthetic rate (Pn ), photosynthetic quenching, light interception, sugar accumulation, sucrose synthase activities, and fructose supply from stems. At medium grazing intensity, L. chinensis had low Pn , light interception, and sugar accumulation, but higher expression of a sucrose transporter gene (LcSUT1) and water-use efficiency, which reflected a tendency to store C in belowground to promote survival. This strategy was associated with regulation by abscisic acid (ABA), jasmonate, and salicylic acid (SA) signaling. However, L. chinensis tolerated heavy grazing by increased ABA and jasmonate-induced promotion of C assimilation and osmotic adjustment, combined with photoprotection against photo-oxidation, suggesting a strategy based on regrowth. In addition, stems were the main C source organs and energy supply rather than roots. Simultaneously, SA represented a weaker defense than ABA and jasmonate. Therefore, L. chinensis adopted different strategies for regrowth under different grazing intensities, and light grazing promoted regrowth the most. Our results demonstrate the regulation of C reserves utilization by phytohormones, and this regulation provides an explanation for recent results about grazing responses.
Collapse
Affiliation(s)
- Zihe Zhang
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jirui Gong
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Biao Wang
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaobing Li
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yong Ding
- Grassland Research Institute of Chinese Academic of Agricultural Science, Hohhot, Inner Mongolia, 010021, China
| | - Bo Yang
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Chenchen Zhu
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Min Liu
- Key Laboratory of Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Wei Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Salmon Y, Lintunen A, Dayet A, Chan T, Dewar R, Vesala T, Hölttä T. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. THE NEW PHYTOLOGIST 2020; 226:690-703. [PMID: 31955422 DOI: 10.1111/nph.16436] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/18/2019] [Indexed: 05/22/2023]
Abstract
Photosynthetic rate is concurrently limited by stomatal limitations and nonstomatal limitations (NSLs). However, the controls on NSLs to photosynthesis and their coordination with stomatal control on different timescales remain poorly understood. According to a recent optimization hypothesis, NSLs depend on leaf osmotic or water status and are coordinated with stomatal control so as to maximize leaf photosynthesis. Drought and notching experiments were conducted on Pinus sylvestris, Picea abies, Betula Pendula and Populus tremula seedlings in glasshouse conditions to study the dependence of NSLs on leaf osmotic and water status, and their coordination with stomatal control, on timescales of minutes and weeks, to test the assumptions and predictions of the optimization hypothesis. Both NSLs and stomatal conductance followed power-law functions of leaf osmotic concentration and leaf water potential. Moreover, stomatal conductance was proportional to the square root of soil-to-leaf hydraulic conductance, as predicted by the optimization hypothesis. Though the detailed mechanisms underlying the dependence of NSLs on leaf osmotic or water status lie outside the scope of this study, our results support the hypothesis that NSLs and stomatal control are coordinated to maximize leaf photosynthesis and allow the effect of NSLs to be included in models of tree gas-exchange.
Collapse
Affiliation(s)
- Yann Salmon
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Anna Lintunen
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Alexia Dayet
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Tommy Chan
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Roderick Dewar
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Timo Vesala
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, PO Box 68, Gustaf Hällströmin katu 2b, Helsinki, 00014, Finland
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| | - Teemu Hölttä
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, PO Box 27, Helsinki, 00014, Finland
| |
Collapse
|
14
|
Lintunen A, Paljakka T, Salmon Y, Dewar R, Riikonen A, Hölttä T. The influence of soil temperature and water content on belowground hydraulic conductance and leaf gas exchange in mature trees of three boreal species. PLANT, CELL & ENVIRONMENT 2020; 43:532-547. [PMID: 31873942 DOI: 10.1111/pce.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Understanding stomatal regulation is fundamental to predicting the impact of changing environmental conditions on vegetation. However, the influence of soil temperature (ST) and soil water content (SWC) on canopy conductance (gs ) through changes in belowground hydraulic conductance (kbg ) remains poorly understood, because kbg has seldom been measured in field conditions. Our aim was to (a) examine the dependence of kbg on ST and SWC, (b) examine the dependence of gs on kbg and (c) test a recent stomatal optimization model according to which gs and soil-to-leaf hydraulic conductance are strongly coupled. We estimated kbg from continuous sap flow and xylem diameter measurements in three boreal species. kbg increased strongly with increasing ST when ST was below +8°C, and typically increased with increasing SWC when ST was not limiting. gs was correlated with kbg in all three species, and modelled and measured gs were well correlated in Pinus sylvestris (a model comparison was only possible for this species). These results imply an important role for kbg in mediating linkages between the soil environment and leaf gas exchange. In particular, our finding that ST strongly influences kbg in mature trees may help us to better understand tree behaviour in cold environments.
Collapse
Affiliation(s)
- Anna Lintunen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Teemu Paljakka
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Roderick Dewar
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Anu Riikonen
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Lavergne A, Voelker S, Csank A, Graven H, de Boer HJ, Daux V, Robertson I, Dorado-Liñán I, Martínez-Sancho E, Battipaglia G, Bloomfield KJ, Still CJ, Meinzer FC, Dawson TE, Julio Camarero J, Clisby R, Fang Y, Menzel A, Keen RM, Roden JS, Prentice IC. Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. THE NEW PHYTOLOGIST 2020; 225:2484-2497. [PMID: 31696932 DOI: 10.1111/nph.16314] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/31/2019] [Indexed: 05/08/2023]
Abstract
The ratio of leaf internal (ci ) to ambient (ca ) partial pressure of CO2 , defined here as χ, is an index of adjustments in both leaf stomatal conductance and photosynthetic rate to environmental conditions. Measurements and proxies of this ratio can be used to constrain vegetation model uncertainties for predicting terrestrial carbon uptake and water use. We test a theory based on the least-cost optimality hypothesis for modelling historical changes in χ over the 1951-2014 period, across different tree species and environmental conditions, as reconstructed from stable carbon isotopic measurements across a global network of 103 absolutely dated tree-ring chronologies. The theory predicts optimal χ as a function of air temperature, vapour pressure deficit, ca and atmospheric pressure. The theoretical model predicts 39% of the variance in χ values across sites and years, but underestimates the intersite variability in the reconstructed χ trends, resulting in only 8% of the variance in χ trends across years explained by the model. Overall, our results support theoretical predictions that variations in χ are tightly regulated by the four environmental drivers. They also suggest that explicitly accounting for the effects of plant-available soil water and other site-specific characteristics might improve the predictions.
Collapse
Affiliation(s)
- Aliénor Lavergne
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Physics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Steve Voelker
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Adam Csank
- Department of Geography, University of Nevada-Reno, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Heather Graven
- Department of Physics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Grantham Institute - Climate Change and the Environment, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Hugo J de Boer
- Department of Environmental Sciences, Utrecht University, 3584 CB, Utrecht, the Netherlands
| | - Valérie Daux
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, 91191, Gif-sur-Yvette, France
| | - Iain Robertson
- Department of Geography, Swansea University, Swansea, SA2 8PP, UK
| | - Isabel Dorado-Liñán
- Forest Genetics and Ecophysiology Research Group, Technical University of Madrid, Madrid, 28040, Spain
| | - Elisabet Martínez-Sancho
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Via Vivaldi, 81100, Caserta, Italy
| | - Keith J Bloomfield
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Christopher J Still
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331-5704, USA
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331-8550, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California - Berkeley, Berkeley, CA, 94720-3200, USA
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), E-50192, Zaragoza, Spain
| | - Rory Clisby
- Department of Geography, Swansea University, Swansea, SA2 8PP, UK
| | - Yunting Fang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Annette Menzel
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technical University of Munich, 85354, Freising, Germany
| | - Rachel M Keen
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - John S Roden
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
| | - I Colin Prentice
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Grantham Institute - Climate Change and the Environment, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Su R, Chen L, Wang Z, Hu Y. Differential response of cuticular wax and photosynthetic capacity by glaucous and non-glaucous wheat cultivars under mild and severe droughts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:303-312. [PMID: 31901453 DOI: 10.1016/j.plaphy.2019.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Cuticular wax is known to play an important role in non-stomatal transpiration. However, support is lacking regarding the waxy phenotype for wheat breeding against drought. In this study, four wheat cultivars with different wax phenotypes (glaucous and non-glaucous types) were used to evaluate their responses to drought stress and impact on photosynthetic capability of wheat. Xinong 291 and HY 2912, with the glaucous trait, demonstrated higher diketone ratios and contents compared with Pubing 201 and Jinmai 47, which are the non-glaucous type. The cultivars HY 2912 and Jinmai 47 had 35% higher biomass than did Xinong 291 and Pubing 201 under severe drought condition. HY 2912 exhibited the highest wax load with or without drought stress. Jinmai 47 showed the highest ratio of alkane content. Among glaucous cultivars, drought-resistant HY 2912 may promote growth by decreasing water loss, increasing the diketone content, increasing the total wax load, and maintaining mesophyll and stomatal conductance. Among non-glaucous cultivars, drought-resistant Jinmai 47 may enhance growth via stomatal closure and increased mesophyll conductance and alkane ratios. The glaucous trait was not always associated with drought resistance, and correlation analysis revealed that the diketone ratio was positively related to the intercellular CO2 concentration. These results suggest that the mechanism of drought resistance in wheat is systematically regulated by wax alteration, stomatal conductance and mesophyll conductance. Therefore, wax content and composition as well as mesophyll and stomatal regulation should be considered in the breeding and selection of drought-resistant wheat cultivars.
Collapse
Affiliation(s)
- Rina Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yingang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, PR China; Institute of Water Saving Agriculture in Arid Regions of China, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
17
|
Asgher M, Verma S, Khan NA, Vyas D, Kumari P, Rashid S, Khan S, Qadir S, Ajmal Ali M, Ahmad P. Physiological, Biochemical and Reproductive Studies on Valeriana wallichii, a Critically Endangered Medicinal Plant of the Himalayan Region Grown under In-Situ and Ex-Situ Conditions. PLANTS 2020; 9:plants9020131. [PMID: 31973064 PMCID: PMC7076705 DOI: 10.3390/plants9020131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/29/2022]
Abstract
Valeriana wallichii, a perennial herb belonging to family Valerianaceae, is an important medicinal herb of the Himalayan region. The incessant exploitation of nature for meeting the demands of the pharmaceutical industry has put unbearable pressure on its natural habitats. A study on its physiological, biochemical, growth and reproductive attributes was planned. Physiological study revealed that ex-situ (outside their natural habitat) populations faced severe stress as compared to in-situ (natural habitat) plants. The difference in the performance of these habitat plants was related to superoxide and H2O2 in the leaves. Photosynthetic attributes were increased in in-situ populations. Proline content and its biosynthetic enzymes ornithine aminotransferase, and pyrroline-5-carboxylate reductase showed an increase in ex-situ plants; proline oxidase decreased. Glucose-6-phosphate dehydrogenase, shikimic acid dehydrogenese, phenylalanine lyase, and flavonoids content showed an increment in ex-situ plants. Antioxidants enzyme superoxide dismutase, catalase, ascorbate peroxidase and reduced glutathione showed an increment in ex-situ conditions. Growth and reproductive attributes were more in ex-situ plants. The observations made are suggestive that a comprehensive conservation programme involving in-situ as well as ex-situ strategies will be effective for the conservation and long term survival of the species.
Collapse
Affiliation(s)
- Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India;
- Correspondence: (M.A.); (P.A.); Tel.: +966-1-1467-5873 (P.A.)
| | - Susheel Verma
- Conservation and Molecular Biology Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India; (S.V.); (P.K.); (S.K.)
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Dhiraj Vyas
- Biodiversity and Applied Botany Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, Jammu and Kashmir 180001, India;
| | - Priyanka Kumari
- Conservation and Molecular Biology Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India; (S.V.); (P.K.); (S.K.)
| | - Shaista Rashid
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India;
| | - Sajid Khan
- Conservation and Molecular Biology Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India; (S.V.); (P.K.); (S.K.)
| | - Shaista Qadir
- Department of Botany, Womens College, Maulana Azad Road, Srinagar, Jammu and Kashmir 190001, India;
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir 190001, India
- Correspondence: (M.A.); (P.A.); Tel.: +966-1-1467-5873 (P.A.)
| |
Collapse
|