1
|
Huang T, Cheng X, Wang B, Wang G. Chromosome-level genome assembly of the aphid Megoura crassicauda. Sci Data 2025; 12:994. [PMID: 40514394 DOI: 10.1038/s41597-025-05328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025] Open
Abstract
Megoura crassicauda (Hemiptera: Aphididae) is a major pest species that inflicts significant damage on various legume crops worldwide, causing substantial global economic losses. In this study, we present a chromosome-scale genome assembly of M. crassicauda. By integrating PacBio long-read sequencing, Illumina short-read sequencing, and Hi-C scaffolding techniques, we constructed a genome assembly spanning 424.45 Mb genome. Approximately 93.74% of the assembly was successfully anchored into five scaffolds, with contig and scaffold N50 reaching 5.55 Mb and 103.55 Mb, respectively. The genome completeness, as evaluated by BUSCO, achieved a completeness score of 97.75%. Additionally, a total of 14,717 protein-coding genes were identified. This high-quality genome assembly of M. crassicauda serves as a valuable genomic resource, facilitating further studies into the ecological adaptations of M. crassicauda and the development of pest control strategies.
Collapse
Affiliation(s)
- Tianyu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xu Cheng
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Jiang X, Zhao L, Fan J, Chang C, Zhang X, Li Z, Ge F. A chromosome-level genome assembly of the aphid Semiaphis heraclei (Takahashi). Sci Data 2025; 12:770. [PMID: 40348774 PMCID: PMC12065819 DOI: 10.1038/s41597-025-04994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
The S. heraclei (Takahashi) (Hemiptera: Aphididae) is a destructive pest of cultivated insectary plant Cnidium monnieri (L.) Cuss. However, to date, no S. heraclei-related genomic information has been reported. Here, we present the first chromosomal-scale genome assembly of S. heraclei approximately 440.3 Mb with contig N50 of 81.7 Mb. Using PacBio long-read sequencing, Illumina sequencing, and Hi-C scaffolding techniques, 94.24% of the assembled sequences were successfully anchored to the four pseudochromosomes. BUSCO assessment showed a completeness score of 95.4%. The S. heraclei genome consisted of 32.02% repetitive elements and 13,983 predicted protein-coding genes. Phylogenetic analysis showed that S. heraclei was closely related to Diuraphis noxia. This high-quality genome assembly of S. heraclei will serve as a genomic resource for aphid evolution and pave the way for deciphering the tri-trophic interaction mechanisms between plants, herbivores, and natural enemies.
Collapse
Affiliation(s)
- Xin Jiang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ling Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Chunyan Chang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xinrui Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zhuo Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Feng Ge
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
3
|
Lukhtanov VA, Pazhenkova EA. Cytogenetics of insects in the era of chromosome-level genome assemblies. Vavilovskii Zhurnal Genet Selektsii 2025; 29:230-237. [PMID: 40297294 PMCID: PMC12036569 DOI: 10.18699/vjgb-25-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 04/30/2025] Open
Abstract
Over the past few years, a revolution has occurred in cytogenetics, driven by the emergence and spread of methods for obtaining high-quality chromosome-level genome assemblies. In fact, this has led to a new tool for studying chromosomes and chromosomal rearrangements, and this tool is thousands of times more powerful than light microscopy. This tool has revolutionized the cytogenetics of many groups of insects for which previously karyotype information, if available at all, was limited to the chromosome number. Even more impressive are the achievements of the genomic approach for studying the general patterns of chromosome organization and evolution in insects. Thus, it has been shown that rapid transformations of chromosomal numbers, which are often found in the order Lepidoptera, are most often carried out in the most parsimonious way, as a result of simple fusions and fissions of chromosomes. It has been established that these fusions and fissions are not random and occur independently in different phylogenetic lineages due to the reuse of the same ancestral chromosomal breakpoints. It has been shown that the tendency for chromosome fissions is correlated with the presence in chromosomes of the so-called interstitial telomeres, i. e. telomere-like structures located not at the ends of chromosomes, but inside them. It has been revealed that, in most insects, telomeric DNA is not just a set of short repeats, but a very long sequence consisting of (TTAGG)n (or other telomeric motifs), regularly and specifically interrupted by retrotransposons, and the telomeric motifs are diverse in terms of their length and nucleotide composition. The number of high-quality chromosome-level genome assemblies available for insects in the GenBank database is growing exponentially and now exceeds a thousand species. Therefore, the exceptional prospects for using genomic data for karyotype analysis are beyond doubt.
Collapse
Affiliation(s)
- V A Lukhtanov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | | |
Collapse
|
4
|
Huang C, Ji B, Shi Z, Wang J, Yuan J, Yang P, Xu X, Jing H, Xu L, Fu J, Zhao L, Ren Y, Guo K, Li G. A comparative genomic analysis at the chromosomal-level reveals evolutionary patterns of aphid chromosomes. Commun Biol 2025; 8:427. [PMID: 40082663 PMCID: PMC11906883 DOI: 10.1038/s42003-025-07851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Genomic rearrangements are primary drivers of evolution, promoting biodiversity. Aphids, an agricultural pest with high species diversity, exhibit rapid chromosomal evolution and diverse karyotypes. These variations have been attributed to their unique holocentric chromosomes and parthenogenesis, though this hypothesis has faced scrutiny. In this study, we generated a chromosomal-level reference genome assembly of the celery aphid (Semiaphis heraclei) and conducted comparative genomic analysis, revealing varying chromosomal evolution rates among aphid lineages, positively correlating with species diversity. Aphid X chromosomes have undergone frequent intra-chromosomal recombination, while autosomes show accelerated inter-chromosomal recombination. Moreover, considering both inter- and intra-chromosomal rearrangements, the increased autosomal rearrangement rates may be common across the Aphidomorpha. We identified that the expansion of DNA transposable elements and short interspersed nuclear elements (SINEs), coupled with gene loss and duplication associated with karyotypic instability (such as RIF1, BRD8, DMC1, and TERT), may play crucial roles in aphid chromosomal evolution. Additionally, our analysis revealed that the mutation and expansion of detoxification gene families in S. heraclei may be a key factor in adapting to host plant chemical defenses. Our results provide new insights into chromosomal evolutionary patterns and detoxification gene families evolution in aphids, aiding the understanding of species diversity and adaptive evolution.
Collapse
Affiliation(s)
- Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Bingru Ji
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Zhaohui Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiangyue Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Haohao Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Fu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, 723000, P.R. China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Kun Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
5
|
Qiu S, Wu N, Sun X, Xue Y, Xia J. Chromosome-level genome assembly of soybean aphid. Sci Data 2025; 12:386. [PMID: 40044714 PMCID: PMC11882816 DOI: 10.1038/s41597-025-04711-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Soybean aphid (Aphis glycines) is one of the main pests on soybeans, which causes serious damage to the soybean worldwide. The current genome of the soybean aphid is quite fragmented, which has impeded scientific research to some extent. In this study, we assembled a chromosome-level genome of the soybean aphid using MGI short reads, PacBio HiFi long reads and Hi-C reads. The genome sequence was anchored to four pseudo-chromosomes, with a total genome length of 324 Mb and a scaffold N50 length of 88.85 Mb. We evaluated the genome based on insecta_odb10 and the results show it has a completeness of 97.2%. A total of 20,781 protein-coding genes were predicted in the genome, of which 17,183 genes were annotated in at least one protein database. Our work provides a new genomic resource for the soybean aphid study.
Collapse
Affiliation(s)
- Shaolong Qiu
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ningning Wu
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiaodong Sun
- Heilongjiang Province Agro-technical Extension Station, Harbin, 150090, China
| | - Yongguo Xue
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jixing Xia
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Burger NFV, Nicolis VF, Botha AM. Evaluating long-read assemblers to assemble several aphididae genomes. Brief Bioinform 2025; 26:bbaf105. [PMID: 40079265 PMCID: PMC11904405 DOI: 10.1093/bib/bbaf105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
Aphids are a speciose family of the Hemiptera compromising >5500 species. They have adapted to feed off multiple plant species and occur on every continent on Earth. Although economically devastating, very few aphid genomes have been sequenced and assembled, and those that have suffer low contiguity due to repeat-rich and AT-rich genomes. With third-generation sequencing becoming more affordable and approaching quality levels to that of second-generation sequencing, the ability to produce more contiguous aphid genome assemblies is becoming a reality. With a growing list of long-read assemblers becoming available, the choice of which assembly tool to use becomes more complicated. In this study, six recently released long-read assemblers (Canu, Flye, Hifiasm, Mecat2, Raven, and Wtdbg2) were evaluated on several quality and contiguity metrics after assembling four populations (or biotypes) of the same species (Russian wheat aphid, Diuraphis noxia) and two unrelated aphid species that have publicly available long-read sequences. All assemblers did not fare equally well between the different read sets, but, overall, the Hifiasm and Canu assemblers performed the best. Merging of the best assemblies for each read set was also performed using quickmerge, where, in some cases, it resulted in superior assemblies and, in others, introduced more errors. Ab initio gene calling between assemblies of the same read set also showed surprisingly less similarity than expected. Overall, the quality control pipeline followed during the assembly resulted in chromosome-level assemblies with minimal structural or quality artefacts.
Collapse
Affiliation(s)
- Nicolaas F V Burger
- Van der Byl Street, Genetics Department, JC Smuts Building, Faculty of AgriScience, Stellenbosch University, Stellenbosch, South Africa
| | - Vittorio F Nicolis
- Van der Byl Street, Genetics Department, JC Smuts Building, Faculty of AgriScience, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Maria Botha
- Van der Byl Street, Genetics Department, JC Smuts Building, Faculty of AgriScience, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
7
|
Gregory LE, Driscoll RMH, Parker BJ, Brisson JA. Impacts of Body Colour, Symbionts and Genomic Regions on the Pea Aphid Wing Plasticity Variation. Mol Ecol 2025; 34:e17660. [PMID: 39903065 DOI: 10.1111/mec.17660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
Adaptive phenotypic plasticity describes the phenomenon in which a single genotype can produce a variety of phenotypes that match their environments. Like any trait, plasticity is a phenotype that can exhibit variation, but despite the ecological importance of plasticity variation, little is known about its genetic basis. Here we use the pea aphid to investigate the genetic basis of wing plasticity variation. Previous reports have suggested an ecological association between body coloration and wing plasticity strength in the pea aphid, so we tested the hypothesis that the body colour determination locus (tor) associated with wing plasticity variation. We discover that there is no relationship between body colour and wing plasticity in natural populations or in a genetic mapping population. We also localise the tor locus to the third autosome, whereas it was previously thought to be on the first autosome, a finding that will be important for future studies of the locus. We find that the presence of the bacterial symbiont Regiella is associated with higher levels of wing plasticity. Genome-wide association analysis of wing plasticity variation did not reveal an impact of the tor locus, consistent with independence of body colour and wing plasticity. This analysis implicated one possible candidate gene-a Hox gene, abdominal-A-underlying wing plasticity variation, although SNPs do not reach the level of genome-wide significance and therefore will require further study. Our study highlights that plasticity variation is complex, impacted by a bacterial symbiont and genetic variation, but not influenced by body colour.
Collapse
Affiliation(s)
- Lauren E Gregory
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Rose M H Driscoll
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Benjamin J Parker
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer A Brisson
- Department of Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
8
|
Wu J, Li G, Lin Z, Zhang Y, Yu W, Hu R, Zhan S, Chen Y. A chromosome-level genome assembly of the cabbage aphid Brevicoryne brassicae. Sci Data 2025; 12:167. [PMID: 39875415 PMCID: PMC11775192 DOI: 10.1038/s41597-025-04501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
The cabbage aphid, Brevicoryne brassicae, is a major pest on Brassicaceae plants, causing significant yield losses annually. However, the lack of genomic resources has hindered progress in understanding this pest at the molecular level. Here, we present a high-quality, chromosomal-level genome assembly for B. brassicae, based on PacBio HiFi long-read sequencing and Hi-C data. The final assembled genome size was 429.99 Mb, with a scaffold N50 of 93.31 Mb. Notably, 96.19% of the assembled sequences were anchored to eight chromosomes. The genome covered 99.24% of BUSCO genes and 95.16% of CEGMA genes, indicating a high level of completeness. By integrating high-coverage transcriptome data, we annotated 22,671 protein-coding genes and 3,594 lncRNA genes. Preliminary comparative genomic analyses focused on genes related to host colonization, such as chemosensory- and detoxification-related genes, as well as cross-kingdom lncRNA Ya. In summary, this study presents a contiguous and complete genome for B. brassicae, which will advance our understanding of the molecular mechanisms underlying its host adaptation, pest behavior, and interaction with Brassicaceae plants.
Collapse
Affiliation(s)
- Jun Wu
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guomeng Li
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhimou Lin
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangzhi Zhang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyuan Yu
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rong Hu
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Yazhou Chen
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Jing T, Yang J, Pan J, Liu X, Yang X, Farhan M, Su H, Ma X, Zhang S. A near-complete genome reveals the population evolution of the cotton-melon aphid Aphis gossypii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 176:104215. [PMID: 39571737 DOI: 10.1016/j.ibmb.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
The cotton-melon aphid Aphis gossypii Glover is a severe pest worldwide. Interhaplotype genomic variation can be used as a starting point to analyze the adaptability of Ap. gossypii. In this study, we utilized long-read PacBio HiFi sequencing and HiC scaffolding techniques to assemble a near telomere-to-telomere gap-free genome assembly of Hap4. The assembly had two gaps totaling 321.24 Mb. We characterized five telomeric repetitive regions (GGTTA)n, including the four found at the 3' end of the chromosomes, and obtained new structural information about the telomeres. Due to the improved sequencing technology, we also identified more than 55.03 Mb of repetitive DNA in the genome assembly of Hap4, which contributed significantly to the increase in genome size compared to that of Hap1 and Hap3. Most of the additional repetitive DNA content was located on the X chromosome, and the tandem repeat sequence occupied 16.8% of the X chromosome length. The Hap4 assembly showed that the X chromosome exhibited a greater abundance of AT-rich satDNA arrays (11 satDNA arrays longer than 100 kb) than that observed in the autosomes (A1 and A2 harboured 3 and 1 satDNA arrays). We detected presence-absence variations, insertions, and deletions events between Hap1, Hap3, and Hap4 Ap. gossypii, which had significant effects on gene expression. Additionally, we identified a male-specific glyceraldehyde-3-phosphate dehydrogenase of fungal origin in all strains of Ap. gossypii. This comprehensive genome assembly provides valuable insights into the structural characteristics of highly repetitive regions and allows comparative genomic analyses that facilitate our understanding of Ap. gossypii's adaptation and diversification.
Collapse
Affiliation(s)
- Tianxing Jing
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jin Yang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jilong Pan
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaoning Liu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinyi Yang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Muhammad Farhan
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Honghua Su
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaoyan Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Shuai Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
10
|
Defendini H, Prunier-Leterme N, Robin S, Lameiras S, Baulande S, Simon JC, Jaquiéry J. The release of sexual conflict after sex loss is associated with evolutionary changes in gene expression. Proc Biol Sci 2025; 292:20242631. [PMID: 39876718 PMCID: PMC11775605 DOI: 10.1098/rspb.2024.2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Sexual conflict can arise because males and females, while sharing most of their genome, can have different phenotypic optima. Sexually dimorphic gene expression may help reduce conflict, but the expression of many genes may remain sub-optimal owing to unresolved tensions between the sexes. Asexual lineages lack such conflict, making them relevant models for understanding the extent to which sexual conflict influences gene expression. We investigate the evolution of sexual conflict subsequent to sex loss by contrasting the gene expression patterns of sexual and asexual lineages in the pea aphid Acyrthosiphon pisum. Although asexual lineages of this aphid produce a small number of males in autumn, their mating opportunities are limited because of geographic isolation between sexual and asexual lineages. Therefore, gene expression in parthenogenetic females of asexual lineages is no longer constrained by that of other morphs. We found that the expression of genes in males from asexual lineages tended towards the parthenogenetic female optimum, in agreement with theoretical predictions. Surprisingly, males and parthenogenetic females of asexual lineages overexpressed genes normally found in the ovaries and testes of sexual morphs. These changes in gene expression in asexual lineages may arise from the relaxation of selection or the dysregulation of gene networks otherwise used in sexual lineages.
Collapse
Affiliation(s)
- Hélène Defendini
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Nathalie Prunier-Leterme
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Stéphanie Robin
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Sonia Lameiras
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, Paris75005, France
| | - Sylvain Baulande
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, Paris75005, France
| | - Jean-Christophe Simon
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Julie Jaquiéry
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| |
Collapse
|
11
|
Palmer Droguett DH, Fletcher M, Alston BT, Kocher S, Cabral-de-Mello DC, Wright AE. Neo-Sex Chromosome Evolution in Treehoppers Despite Long-Term X Chromosome Conservation. Genome Biol Evol 2024; 16:evae264. [PMID: 39657114 DOI: 10.1093/gbe/evae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Sex chromosomes follow distinct evolutionary trajectories compared to the rest of the genome. In many cases, sex chromosomes (X and Y or Z and W) significantly differentiate from one another resulting in heteromorphic sex chromosome systems. Such heteromorphic systems are thought to act as an evolutionary trap that prevents subsequent turnover of the sex chromosome system. For old, degenerated sex chromosome systems, chromosomal fusion with an autosome may be one way that sex chromosomes can "refresh" their sequence content. We investigated these dynamics using treehoppers (hemipteran insects of the family Membracidae), which ancestrally have XX/X0 sex chromosomes. We assembled the most complete reference assembly for treehoppers to date for Umbonia crassicornis and employed comparative genomic analyses of 12 additional treehopper species to analyze X chromosome variation across different evolutionary timescales. We find that the X chromosome is largely conserved, with one exception being an X-autosome fusion in Calloconophora caliginosa. We also compare the ancestral treehopper X with other X chromosomes in Auchenorrhyncha (the clade containing treehoppers, leafhoppers, spittlebugs, cicadas, and planthoppers), revealing X conservation across more than 300 million years. These findings shed light on chromosomal evolution dynamics in treehoppers and the role of chromosomal rearrangements in sex chromosome evolution.
Collapse
Affiliation(s)
- Daniela H Palmer Droguett
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Micah Fletcher
- Department of Ecology and Evolutionary Biology, the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ben T Alston
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Sarah Kocher
- Department of Ecology and Evolutionary Biology, the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Diogo C Cabral-de-Mello
- Department of General and Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Alison E Wright
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Cabral-de-Mello DC, Yoshido A, Milani D, Šíchová J, Sahara K, Marec F. The burst of satellite DNA in Leptidea wood white butterflies and their putative role in karyotype evolution. DNA Res 2024; 31:dsae030. [PMID: 39460673 PMCID: PMC11565590 DOI: 10.1093/dnares/dsae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 10/28/2024] Open
Abstract
Satellite DNAs (satDNAs) are abundant components of eukaryotic genomes, playing pivotal roles in chromosomal organization, genome stability, and evolution. Here, we combined cytogenetic and genomic methods to characterize the satDNAs in the genomes of Leptidea butterflies. Leptidea is characterized by the presence of a high heterochromatin content, large genomes, and extensive chromosomal reshuffling as well as the occurrence of cryptic species. We show that, in contrast to other Lepidoptera, satDNAs constitute a considerable proportion of Leptidea genomes, ranging between 4.11% and 11.05%. This amplification of satDNAs, together with the hyperactivity of transposable elements, contributes to the substantial genome expansion in Leptidea. Using chromosomal mapping, we show that, particularly LepSat01-100 and LepSat03-167 satDNAs, are preferentially localized in heterochromatin exhibiting variable distribution that may have contributed to the highly diverse karyotypes within the genus. The satDNAs also exhibit W-chromosome accumulation, suggesting their involvement in sex chromosome evolution. Our results provide insights into the dynamics of satDNAs in Lepidoptera genomes and highlight their role in genome expansion and chromosomal organization, which could influence the speciation process. The high proportion of repetitive DNAs in the genomes of Leptidea underscores the complex evolutionary dynamics revealing the interplay between repetitive DNAs and genomic architecture in the genus.
Collapse
Affiliation(s)
- Diogo Cavalcanti Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, UNESP – Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo 13506-900, Brazil
| | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovká 31, 370 05 České Budějovice, Czech Republic
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, UNESP – Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo 13506-900, Brazil
| | - Jindra Šíchová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovká 31, 370 05 České Budějovice, Czech Republic
| | - Ken Sahara
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovká 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
13
|
Cornet C, Mora P, Augustijnen H, Nguyen P, Escudero M, Lucek K. Holocentric repeat landscapes: From micro-evolutionary patterns to macro-evolutionary associations with karyotype evolution. Mol Ecol 2024; 33:e17100. [PMID: 37577951 PMCID: PMC11628661 DOI: 10.1111/mec.17100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
Repetitive elements can cause large-scale chromosomal rearrangements, for example through ectopic recombination, potentially promoting reproductive isolation and speciation. Species with holocentric chromosomes, that lack a localized centromere, might be more likely to retain chromosomal rearrangements that lead to karyotype changes such as fusions and fissions. This is because chromosome segregation during cell division should be less affected than in organisms with a localized centromere. The relationships between repetitive elements and chromosomal rearrangements and how they may translate to patterns of speciation in holocentric organisms are though poorly understood. Here, we use a reference-free approach based on low-coverage short-read sequencing data to characterize the repeat landscape of two independently evolved holocentric groups: Erebia butterflies and Carex sedges. We consider both micro- and macro-evolutionary scales to investigate the repeat landscape differentiation between Erebia populations and the association between repeats and karyotype changes in a phylogenetic framework for both Erebia and Carex. At a micro-evolutionary scale, we found population differentiation in repeat landscape that increases with overall intraspecific genetic differentiation among four Erebia species. At a macro-evolutionary scale, we found indications for an association between repetitive elements and karyotype changes along both Erebia and Carex phylogenies. Altogether, our results suggest that repetitive elements are associated with the level of population differentiation and chromosomal rearrangements in holocentric clades and therefore likely play a role in adaptation and potentially species diversification.
Collapse
Affiliation(s)
- Camille Cornet
- Biodiversity Genomics Laboratory, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Pablo Mora
- Department of Experimental Biology, Genetics AreaUniversity of JaénJaénSpain
- University of South BohemiaFaculty of ScienceČeské BudějoviceCzech Republic
| | | | - Petr Nguyen
- University of South BohemiaFaculty of ScienceČeské BudějoviceCzech Republic
| | - Marcial Escudero
- Department of Plant Biology and EcologyUniversity of SevilleSevilleSpain
| | - Kay Lucek
- Biodiversity Genomics Laboratory, Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
14
|
Glendening AM, Stephens C, Vuruputoor VS, Stern DL, Hogenhout SA, Mathers TC, Chaganti T, Pauloski N, Cernak TA, Wegrzyn JL, Fetter KC. Genomes of two invasive Adelges species (hemlock woolly adelgid and pineapple gall adelgid) enable characterization of nicotinic acetylcholine receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624573. [PMID: 39605547 PMCID: PMC11601503 DOI: 10.1101/2024.11.21.624573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Two invasive hemipteran adelgids cause widespread damage to North American conifers. Adelges tsugae (the hemlock woolly adelgid) has decimated Tsuga canadensis and Tsuga caroliniana (the Eastern and Carolina hemlocks, respectively). A. tsugae was introduced from East Asia and reproduces parthenogenetically in North America, where it can kill trees rapidly. A. abietis, introduced from Europe, makes "pineapple" galls on several North American spruce species, and weakens trees, increasing their susceptibility to other stresses. Broad-spectrum insecticides that are often used to control adelgid populations can have off-target impacts on beneficial insects and the development of more selective chemical treatments could improve control methods and minimize ecological damage. Whole genome sequencing was performed on both species to aid in development of targeted pest control solutions and improve species conservation. The assembled A. tsugae and A. abietis genomes are 220.75 Mbp and 253.16 Mbp, respectively, each consisting of nine chromosomes and both genomes are over 96% complete based on BUSCO assessment. Genome annotation identified 11,424 and 14,118 protein-coding genes in A. tsugae and A. abietis, respectively. Comparative analysis across 29 Hemipteran species and 14 arthropod outgroups identified 31,666 putative gene families. Gene family expansions in A. abietis included ABC transporters and carboxypeptidases involved in carbohydrate metabolism, while both species showed contractions in core histone families and oxidoreductase pathways. Gene family expansions in A. tsugae highlighted families associated with the regulation of cell differentiation and development (survival motor protein, SMN; juvenile hormone acid methyltransferase JHAMT) as well as those that may be involved in the suppression of plant immunity (clip domain serine protease-D, CLIPD; Endoplasmic reticulum aminopeptidase 1, ERAP1). Among the analyzed gene families, Nicotinic acetylcholine receptors (nAChRs) maintained consistent copy numbers and structural features across species, a finding particularly relevant given their role as targets for current forestry management insecticides. Detailed phylogenetic analysis of nAChR subunits across adelgids and other ecologically important insects revealed remarkable conservation in both sequence composition and predicted structural features, providing crucial insights for the development of more selective pest control strategies.
Collapse
Affiliation(s)
- A M Glendening
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| | - Cole Stephens
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
| | - Vidya S Vuruputoor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA, 20147
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Tesko Chaganti
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
- Canton High School, Canton, MI, USA 48187
| | - Nicole Pauloski
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA 06269
| | - Tim A Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA 06269
| | - Karl C Fetter
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| |
Collapse
|
15
|
Crowley LM, University of Oxford and Wytham Woods Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team, Wellcome Sanger Institute Scientific Operations: Sequencing Operations, Wellcome Sanger Institute Tree of Life Core Informatics team, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium. The genome sequence of the sycamore periphyllus aphid, Periphyllus acericola (Walker, 1848). Wellcome Open Res 2024; 9:676. [PMID: 39629217 PMCID: PMC11612552 DOI: 10.12688/wellcomeopenres.23341.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
We present a genome assembly from an individual female Periphyllus acericola (the sycamore periphyllus aphid; Arthropoda; Insecta; Hemiptera; Aphididae). The genome sequence has a total length of 405.30 megabases. Most of the assembly is scaffolded into 9 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 33.63 kilobases in length. Gene annotation of this assembly on Ensembl identified 21,463 protein-coding genes.
Collapse
|
16
|
Zhao J, Xie L, Zhao X, Li L, Cui J, Chen J. Genome sequence of the sugarcane aphid, Melanaphis sacchari (Hemiptera: Aphididae). G3 (BETHESDA, MD.) 2024; 14:jkae223. [PMID: 39290157 PMCID: PMC11540328 DOI: 10.1093/g3journal/jkae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
The sugarcane aphid, Melanaphis sacchari, is an agricultural pest that causes damage to plants in the Poaceae (the grasses) family, such as sorghum and sugarcane. In this study, we used nanopore long reads and a high-throughput chromosome conformation capture chromatin interaction maps to generate a chromosome-level assembly with a total length of 356.1 Mb, of which 85.5% (304.6 Mb) is contained within the 3 autosomes and the X chromosome. Repetitive sequences accounted for 16.29% of the chromosomes, and a total of 12,530 protein-coding genes were annotated, achieving 95.8% Benchmarking Universal Single-Copy Ortholog gene completeness. This offered a substantial improvement compared with previous low-quality genomic resources. A phylogenomic analysis by comparing M. sacchari with 24 published aphid genomes representing 3 aphid tribes revealed that M. sacchari belonged to the tribe Aphidini and maintained a conserved chromosome structure with other Aphidini species. The high-quality genomic resources reported in this study are useful for understanding the evolution of aphid genomes and studying pest management of M. sacchari.
Collapse
Affiliation(s)
- Jinshuai Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqiang Xie
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinrui Zhao
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, Hebei 07100, China
| | - Luhua Li
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Jianghui Cui
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, Hebei 07100, China
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
17
|
Hu QL, Zhuo JC, Fang GQ, Lu JB, Ye YX, Li DT, Lou YH, Zhang XY, Chen X, Wang SL, Wang ZC, Zhang YX, Mazlan N, OO SS, Thet T, Sharma PN, Jauharlina J, Sukorini IH, Ibisate MT, Rahman SM, Ansari NA, Chen AD, Zhu ZR, Heong KL, Lu G, Huang HJ, Li JM, Chen JP, Zhan S, Zhang CX. The genomic history and global migration of a windborne pest. SCIENCE ADVANCES 2024; 10:eadk3852. [PMID: 38657063 PMCID: PMC11042747 DOI: 10.1126/sciadv.adk3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.
Collapse
Affiliation(s)
- Qing-Ling Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gang-Qi Fang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yu-Xuan Ye
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Dan-Ting Li
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yi-Han Lou
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xuan Chen
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Si-Liang Wang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Zhe-Chao Wang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yi-Xiang Zhang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Norida Mazlan
- Institute of Tropical Agriculture and Food Security, and Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Malaysia
| | - San San OO
- Taungoo University, Taungoo 05063, Myanmar
| | - Thet Thet
- Taungoo University, Taungoo 05063, Myanmar
| | - Prem Nidhi Sharma
- Entomology Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur, Kathmandu 44600, Nepal
| | - Jauharlina Jauharlina
- Department of Plant Protection, Faculty of Agriculture, Syiah Kuala University, Banda Aceh 23111, Indonesia
| | - Ir Henik Sukorini
- Agrotechnology Study Program, Muhammadiyah University of Malang, Malang 65145, Indonesia
| | - Michael T. Ibisate
- College of Agriculture, Forestry and Environmental Sciences, Aklan State University, Banga, Aklan 5601, Philippines
| | - S.M. Mizanur Rahman
- Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Naved Ahmad Ansari
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
- Department of Zoology, Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Ai-Dong Chen
- Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Zeng-Rong Zhu
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Kong Luen Heong
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shuai Zhan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Vasquez YM, Li Z, Xue AZ, Bennett GM. Chromosome-level genome assembly of the aster leafhopper (Macrosteles quadrilineatus) reveals the role of environment and microbial symbiosis in shaping pest insect genome evolution. Mol Ecol Resour 2024; 24:e13919. [PMID: 38146900 DOI: 10.1111/1755-0998.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Leafhoppers comprise over 20,000 plant-sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts, Sulcia and Nasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal-level assembly of the aster leafhopper's genome (ALF; Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers, Nephotettix cincticeps, Homalodisca vitripennis, and Empoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont, Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with both Sulcia and its ancient partner, Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support of Sulcia and Nasuia are only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non-symbiotic functions are conserved across all species. The high-quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.
Collapse
Affiliation(s)
- Yumary M Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| | - Zheng Li
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Allen Z Xue
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| |
Collapse
|
19
|
Wright CJ, Stevens L, Mackintosh A, Lawniczak M, Blaxter M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat Ecol Evol 2024; 8:777-790. [PMID: 38383850 PMCID: PMC11009112 DOI: 10.1038/s41559-024-02329-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
Chromosomes are a central unit of genome organization. One-tenth of all described species on Earth are butterflies and moths, the Lepidoptera, which generally possess 31 chromosomes. However, some species display dramatic variation in chromosome number. Here we analyse 210 chromosomally complete lepidopteran genomes and show that the chromosomes of extant lepidopterans are derived from 32 ancestral linkage groups, which we term Merian elements. Merian elements have remained largely intact through 250 million years of evolution and diversification. Against this stable background, eight lineages have undergone extensive reorganization either through numerous fissions or a combination of fusion and fission events. Outside these lineages, fusions are rare and fissions are rarer still. Fusions often involve small, repeat-rich Merian elements and the sex-linked element. Our results reveal the constraints on genome architecture in Lepidoptera and provide a deeper understanding of chromosomal rearrangements in eukaryotic genome evolution.
Collapse
Affiliation(s)
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
20
|
Crowley LM, McCulloch J, James R, University of Oxford and Wytham Woods Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team, Wellcome Sanger Institute Scientific Operations: Sequencing Operations, Wellcome Sanger Institute Tree of Life Core Informatics team, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium. The genome sequence of the giant willow aphid, Tuberolachnus salignus (Gmelin, 1790). Wellcome Open Res 2024; 9:59. [PMID: 39114489 PMCID: PMC11303955 DOI: 10.12688/wellcomeopenres.20646.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 08/10/2024] Open
Abstract
We present a genome assembly from an individual female Tuberolachnus salignus (the giant willow aphid; Arthropoda; Insecta; Hemiptera; Aphididae). The genome sequence is 456.8 megabases in span. Most of the assembly is scaffolded into 10 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 22.43 kilobases in length.
Collapse
Affiliation(s)
- Liam M. Crowley
- Department of Biology, University of Oxford, Oxford, England, UK
| | - James McCulloch
- Department of Biology, University of Oxford, Oxford, England, UK
| | - Reuben James
- Hogenhout Lab, John Innes Centre Department of Crop Genetics, Norwich, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang Y, Xu S. A high-quality genome assembly of the waterlily aphid Rhopalosiphum nymphaeae. Sci Data 2024; 11:194. [PMID: 38351256 PMCID: PMC10864314 DOI: 10.1038/s41597-024-03043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Waterlily aphid, Rhopalosiphum nymphaeae (Linnaeus), is a host-alternating aphid known to feed on both terrestrial and aquatic hosts. It causes damage through direct herbivory and acting as a vector for plant viruses, impacting worldwide Prunus spp. fruits and aquatic plants. Interestingly, R. nymphaeae's ability to thrive in both aquatic and terrestrial conditions sets it apart from other aphids, offering a unique perspective on adaptation. We present the first high-quality R. nymphaeae genome assembly with a size of 324.4 Mb using PacBio long-read sequencing. The resulting assembly is highly contiguous with a contig N50 reached 12.7 Mb. The BUSCO evaluation suggested a 97.5% completeness. The R. nymphaeae genome consists of 16.9% repetitive elements and 16,834 predicted protein-coding genes. Phylogenetic analysis positioned R. nymphaeae within the Aphidini tribe, showing close relations to R. maidis and R. padi. The high-quality reference genome R. nymphaeae provides a unique resource for understanding genome evolution in aphids and paves the foundation for understanding host plant adaptation mechanisms and developing pest control strategies.
Collapse
Affiliation(s)
- Yangzi Wang
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, 55128, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, 48161, Münster, Germany
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
| |
Collapse
|
22
|
Wolf M, Greve C, Schell T, Janke A, Schmitt T, Pauls SU, Aspöck H, Aspöck U. The de novo genome of the Black-necked Snakefly (Venustoraphidia nigricollis Albarda, 1891): A resource to study the evolution of living fossils. J Hered 2024; 115:112-119. [PMID: 37988623 PMCID: PMC10838129 DOI: 10.1093/jhered/esad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023] Open
Abstract
Snakeflies (Raphidioptera) are the smallest order of holometabolous insects that have kept their distinct and name-giving appearance since the Mesozoic, probably since the Jurassic, and possibly even since their emergence in the Carboniferous, more than 300 million years ago. Despite their interesting nature and numerous publications on their morphology, taxonomy, systematics, and biogeography, snakeflies have never received much attention from the general public, and only a few studies were devoted to their molecular biology. Due to this lack of molecular data, it is therefore unknown, if the conserved morphological nature of these living fossils translates to conserved genomic structures. Here, we present the first genome of the species and of the entire order of Raphidioptera. The final genome assembly has a total length of 669 Mbp and reached a high continuity with an N50 of 5.07 Mbp. Further quality controls also indicate a high completeness and no meaningful contamination. The newly generated data was used in a large-scaled phylogenetic analysis of snakeflies using shared orthologous sequences. Quartet score and gene concordance analyses revealed high amounts of conflicting signals within this group that might speak for substantial incomplete lineage sorting and introgression after their presumed re-radiation after the asteroid impact 66 million years ago. Overall, this reference genome will be a door-opening dataset for many future research applications, and we demonstrated its utility in a phylogenetic analysis that provides new insights into the evolution of this group of living fossils.
Collapse
Affiliation(s)
- Magnus Wolf
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Carola Greve
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Tilman Schell
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Thomas Schmitt
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Entomology and Biogeography, Faculty of Science, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Steffen U Pauls
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Insects Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Horst Aspöck
- Institute of Specific Prophylaxis and Tropical Medicine, Medical Parasitology, Medical University of Vienna (MUW), Vienna, Austria
| | - Ulrike Aspöck
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Entomology, Natural History Museum Vienna, Vienna, Austria
| |
Collapse
|
23
|
Gao H, Li Y, Zhang X, Zhang H, Tian Y, Li B. Unraveling the G protein-coupled receptor superfamily in aphids: Contractions and duplications linked to phloem feeding. Gen Comp Endocrinol 2024; 347:114435. [PMID: 38135222 DOI: 10.1016/j.ygcen.2023.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The G Protein-Coupled Receptor (GPCR) superfamily is the largest and most diverse transmembrane receptor family, playing crucial roles in regulating various physiological processes. As one of the most destructive pests, aphids have been subject to previous studies, which revealed fewer GPCR superfamily members in Acyrthosiphon pisum and Aphis gossypii and the loss of multiple neuropeptide GPCRs. To elucidate the contraction patterns and evolutionary features of the aphid GPCR superfamily, we identified 97, 105, and 95 GPCR genes in Rhopalosiphum maidis, A. pisum, and A. gossypii, respectively. Comparative analysis and phylogenetic investigations with other hemipteran insects revealed a contracted GPCR superfamily in aphids. This contraction mainly occurred in biogenic amine receptors, GABA-B-R, and fz families, and several neuropeptide receptors such as ACPR, CrzR, and PTHR were completely lost. This phenomenon may be related to the parasitic nature of aphids. Additionally, several GPCRs associated with aphid feeding and water balance underwent duplication, including Lkr, NPFR, CCHa1-R, and DH-R, Type A LGRs, but the SK/CCKLR that inhibits feeding was completely lost, indicating changes in feeding genes that underpin the aphid's prolonged phloem feeding behavior. Furthermore, we observed fine-tuning in opsins, with reduced long-wavelength opsins and additional duplications of short-wavelength opsin, likely associated with daytime activity. Lastly, we found variations in the number of mthl genes in aphids. In conclusion, our investigation sheds light on the GPCR superfamily in aphids, revealing its association with diet lifestyle and laying the foundation for understanding and developing control strategies for the aphid GPCR superfamily.
Collapse
Affiliation(s)
- Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xianzhen Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
24
|
Ryazansky SS, Chen C, Potters M, Naumenko AN, Lukyanchikova V, Masri RA, Brusentsov II, Karagodin DA, Yurchenko AA, Dos Anjos VL, Haba Y, Rose NH, Hoffman J, Guo R, Menna T, Kelley M, Ferrill E, Schultz KE, Qi Y, Sharma A, Deschamps S, Llaca V, Mao C, Murphy TD, Baricheva EM, Emrich S, Fritz ML, Benoit JB, Sharakhov IV, McBride CS, Tu Z, Sharakhova MV. The chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus uncovers patterns of genome evolution in mosquitoes. BMC Biol 2024; 22:16. [PMID: 38273363 PMCID: PMC10809549 DOI: 10.1186/s12915-024-01825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. METHODS In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. RESULTS We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. CONCLUSION The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.
Collapse
Affiliation(s)
- Sergei S Ryazansky
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Molecular Genetics of Cell, NRC "Kurchatov Institute", Moscow, Russia
| | - Chujia Chen
- Genetics, Bioinformatics, Computational Biology Program, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Mark Potters
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | - Anastasia N Naumenko
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Group of Genomic Mechanisms of Development, Institute of Cytology and Genetics, Novosibirsk, Russia
- Laboratory of Structural and Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
| | - Reem A Masri
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Ilya I Brusentsov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Dmitriy A Karagodin
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Andrey A Yurchenko
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Vitor L Dos Anjos
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Yuki Haba
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Noah H Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jinna Hoffman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Rong Guo
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Theresa Menna
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Emily Ferrill
- County of San Diego Vector Control Program, San Diego, CA, USA
| | - Karen E Schultz
- Mosquito and Vector Management District of Santa Barbara County, Santa Barbara, CA, USA
| | - Yumin Qi
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | - Atashi Sharma
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
| | | | | | - Chunhong Mao
- Biocomplexity Institute & Initiative University of Virginia, Charlottesville, VA, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Elina M Baricheva
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Scott Emrich
- Department of Electrical Engineering & Computer Science, the University of Tennessee, Knoxville, TN, USA
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhijian Tu
- Genetics, Bioinformatics, Computational Biology Program, Virginia Polytechnic and State University, Blacksburg, VA, USA
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, USA
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Maria V Sharakhova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA.
- Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk, Russia.
- Fralin Life Sciences Institute, Virginia Polytechnic and State University, Blacksburg, VA, USA.
| |
Collapse
|
25
|
Kounosu A, Sun S, Maeda Y, Dayi M, Yoshida A, Maruyama H, Hunt V, Sugimoto A, Kikuchi T. Syntenic relationship of chromosomes in Strongyloides species and Rhabditophanes diutinus based on the chromosome-level genome assemblies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220446. [PMID: 38008120 PMCID: PMC10676810 DOI: 10.1098/rstb.2022.0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 11/28/2023] Open
Abstract
The Strongyloides clade, to which the parasitic nematode genus Strongyloides belongs, contains taxa with diverse lifestyles, ranging from free-living to obligate vertebrate parasites. Reproductive strategies are also diverse in this group of nematodes, employing not only sexual reproduction but also parthenogenesis, making it an attractive group to study genome adaptation to specific conditions. An in-depth understanding of genome evolution, however, has been hampered by fragmented genome assemblies. In this study, we generated chromosome-level genome assemblies for two Strongyloides species and the outgroup species Rhabditophanes diutinus using long-read sequencing and high-throughput chromosome conformation capture (Hi-C). Our synteny analyses revealed a clearer picture of chromosome evolution in this group, suggesting that a functional sex chromosome has been maintained throughout the group. We further investigated sex chromosome dynamics in the lifecycle of Strongyloides ratti and found that bivalent formation in oocytes appears to be important for male production in the mitotic parthenogenesis. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Asuka Kounosu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Miyazaki 889-1692, Japan
| | - Simo Sun
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yasunobu Maeda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Miyazaki 889-1692, Japan
| | - Mehmet Dayi
- Forestry Vocational School, Duzce University, 81620 Duzce, Türkiye
| | - Akemi Yoshida
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Haruhiko Maruyama
- Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Miyazaki 889-1692, Japan
| | - Vicky Hunt
- Department of Biology and Biochemistry, University of Bath, Bath BA27AY, UK
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
26
|
Xu Y, Ma L, Liu S, Liang Y, Liu Q, He Z, Tian L, Duan Y, Cai W, Li H, Song F. Chromosome-level genome of the poultry shaft louse Menopon gallinae provides insight into the host-switching and adaptive evolution of parasitic lice. Gigascience 2024; 13:giae004. [PMID: 38372702 PMCID: PMC10904027 DOI: 10.1093/gigascience/giae004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Lice (Psocodea: Phthiraptera) are one important group of parasites that infects birds and mammals. It is believed that the ancestor of parasitic lice originated on the ancient avian host, and ancient mammals acquired these parasites via host-switching from birds. Here we present the first chromosome-level genome of Menopon gallinae in Amblycera (earliest diverging lineage of parasitic lice). We explore the transition of louse host-switching from birds to mammals at the genomic level by identifying numerous idiosyncratic genomic variations. RESULTS The assembled genome is 155 Mb in length, with a contig N50 of 27.42 Mb. Hi-C scaffolding assigned 97% of the bases to 5 chromosomes. The genome of M. gallinae retains a basal insect repertoire of 11,950 protein-coding genes. By comparing the genomes of lice to those of multiple representative insects in other orders, we discovered that gene families of digestion, detoxification, and immunity-related are generally conserved between bird lice and mammal lice, while mammal lice have undergone a significant reduction in genes related to chemosensory systems and temperature. This suggests that mammal lice have lost some of these genes through the adaption to environment and temperatures after host-switching. Furthermore, 7 genes related to hematophagy were positively selected in mammal lice, suggesting their involvement in the hematophagous behavior. CONCLUSIONS Our high-quality genome of M. gallinae provides a valuable resource for comparative genomic research in Phthiraptera and facilitates further studies on adaptive evolution of host-switching within parasitic lice.
Collapse
Affiliation(s)
- Ye Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shanlin Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yanxin Liang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiaoqiao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhixin He
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Dial DT, Weglarz KM, Brunet BMT, Havill NP, von Dohlen CD, Burke GR. Whole-genome sequence of the Cooley spruce gall adelgid, Adelges cooleyi (Hemiptera: Sternorrhyncha: Adelgidae). G3 (BETHESDA, MD.) 2023; 14:jkad224. [PMID: 37766465 PMCID: PMC10755206 DOI: 10.1093/g3journal/jkad224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
The adelgids (Adelgidae) are a small family of sap-feeding insects, which, together with true aphids (Aphididae) and phylloxerans (Phylloxeridae), make up the infraorder Aphidomorpha. Some adelgid species are highly destructive to forest ecosystems such as Adelges tsugae, Adelges piceae, Adelges laricis, Pineus pini, and Pineus boerneri. Despite this, there are no high-quality genomic resources for adelgids, hindering advanced genomic analyses within Adelgidae and among Aphidomorpha. Here, we used PacBio continuous long-read and Illumina RNA-sequencing to construct a high-quality draft genome assembly for the Cooley spruce gall adelgid, Adelges cooleyi (Gillette), a gall-forming species endemic to North America. The assembled genome is 270.2 Mb in total size and has scaffold and contig N50 statistics of 14.87 and 7.18 Mb, respectively. There are 24,967 predicted coding sequences, and the assembly completeness is estimated at 98.1 and 99.6% with core BUSCO gene sets of Arthropoda and Hemiptera, respectively. Phylogenomic analysis using the A. cooleyi genome, 3 publicly available adelgid transcriptomes, 4 phylloxera transcriptomes, the Daktulosphaira vitifoliae (grape phylloxera) genome, 4 aphid genomes, and 2 outgroup coccoid genomes fully resolves adelgids and phylloxerans as sister taxa. The mitochondrial genome is 24 kb, among the largest in insects sampled to date, with 39.4% composed of noncoding regions. This genome assembly is currently the only genome-scale, annotated assembly for adelgids and will be a valuable resource for understanding the ecology and evolution of Aphidomorpha.
Collapse
Affiliation(s)
- Dustin T Dial
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | - Bryan M T Brunet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6
| | - Nathan P Havill
- USDA Forest Service, Northern Research Station, Hamden, CT 06514, USA
| | | | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Li Z, Xue AZ, Maeda GP, Li Y, Nabity PD, Moran NA. Phylloxera and Aphids Show Distinct Features of Genome Evolution Despite Similar Reproductive Modes. Mol Biol Evol 2023; 40:msad271. [PMID: 38069672 DOI: 10.1093/molbev/msad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Genomes of aphids (family Aphididae) show several unusual evolutionary patterns. In particular, within the XO sex determination system of aphids, the X chromosome exhibits a lower rate of interchromosomal rearrangements, fewer highly expressed genes, and faster evolution at nonsynonymous sites compared with the autosomes. In contrast, other hemipteran lineages have similar rates of interchromosomal rearrangement for autosomes and X chromosomes. One possible explanation for these differences is the aphid's life cycle of cyclical parthenogenesis, where multiple asexual generations alternate with 1 sexual generation. If true, we should see similar features in the genomes of Phylloxeridae, an outgroup of aphids which also undergoes cyclical parthenogenesis. To investigate this, we generated a chromosome-level assembly for the grape phylloxera, an agriculturally important species of Phylloxeridae, and identified its single X chromosome. We then performed synteny analysis using the phylloxerid genome and 30 high-quality genomes of aphids and other hemipteran species. Unexpectedly, we found that the phylloxera does not share aphids' patterns of chromosome evolution. By estimating interchromosomal rearrangement rates on an absolute time scale, we found that rates are elevated for aphid autosomes compared with their X chromosomes, but this pattern does not extend to the phylloxera branch. Potentially, the conservation of X chromosome gene content is due to selection on XO males that appear in the sexual generation. We also examined gene duplication patterns across Hemiptera and uncovered horizontal gene transfer events contributing to phylloxera evolution.
Collapse
Affiliation(s)
- Zheng Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Allen Z Xue
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gerald P Maeda
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yiyuan Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Paul D Nabity
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
29
|
Chen X, Wang Z, Zhang C, Hu J, Lu Y, Zhou H, Mei Y, Cong Y, Guo F, Wang Y, He K, Liu Y, Li F. Unraveling the complex evolutionary history of lepidopteran chromosomes through ancestral chromosome reconstruction and novel chromosome nomenclature. BMC Biol 2023; 21:265. [PMID: 37981687 PMCID: PMC10658929 DOI: 10.1186/s12915-023-01762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Lepidoptera is one of the most species-rich animal groups, with substantial karyotype variations among species due to chromosomal rearrangements. Knowledge of the evolutionary patterns of lepidopteran chromosomes still needs to be improved. RESULTS Here, we used chromosome-level genome assemblies of 185 lepidopteran insects to reconstruct an ancestral reference genome and proposed a new chromosome nomenclature. Thus, we renamed over 5000 extant chromosomes with this system, revealing the historical events of chromosomal rearrangements and their features. Additionally, our findings indicate that, compared with autosomes, the Z chromosome in Lepidoptera underwent a fast loss of conserved genes, rapid acquisition of lineage-specific genes, and a low rate of gene duplication. Moreover, we presented evidence that all available 67 W chromosomes originated from a common ancestor chromosome, with four neo-W chromosomes identified, including one generated by fusion with an autosome and three derived through horizontal gene transfer. We also detected nearly 4000 inter-chromosomal gene movement events. Notably, Geminin is transferred from the autosome to the Z chromosome. When located on the autosome, Geminin shows female-biased expression, but on the Z chromosome, it exhibits male-biased expression. This contributes to the sexual dimorphism of body size in silkworms. CONCLUSIONS Our study sheds light on the complex evolutionary history of lepidopteran chromosomes based on ancestral chromosome reconstruction and novel chromosome nomenclature.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zuoqi Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chaowei Zhang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingheng Hu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yueqi Lu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yuyang Cong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Guo
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ying Liu
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province and Agricultural Environment/ Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
30
|
Toups MA, Vicoso B. The X chromosome of insects likely predates the origin of class Insecta. Evolution 2023; 77:2504-2511. [PMID: 37738212 DOI: 10.1093/evolut/qpad169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Sex chromosomes have evolved independently multiple times, but why some are conserved for more than 100 million years whereas others turnover rapidly remains an open question. Here, we examine the homology of sex chromosomes across nine orders of insects, plus the outgroup springtails. We find that the X chromosome is likely homologous across insects and springtails; the only exception is in the Lepidoptera, which has lost the X and now has a ZZ/ZW sex-chromosome system. These results suggest the ancestral insect X chromosome has persisted for more than 450 million years-the oldest known sex chromosome to date. Further, we propose that the shrinking of gene content the dipteran X chromosome has allowed for a burst of sex-chromosome turnover that is absent from other speciose insect orders.
Collapse
Affiliation(s)
- Melissa A Toups
- Department of Life and Environmental Sciences, Bournemouth University, Poole, United Kingdom
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
31
|
Crowley LM, James R, University of Oxford and Wytham Woods Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium. The genome sequence of the Common Sycamore Aphid, Drepanosiphum platanoidis (Schrank, 1801). Wellcome Open Res 2023; 8:481. [PMID: 39193089 PMCID: PMC11347910 DOI: 10.12688/wellcomeopenres.20169.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 08/29/2024] Open
Abstract
We present a genome assembly from an individual female Drepanosiphum platanoidis (the Common Sycamore Aphid; Arthropoda; Insecta; Hemiptera; Aphididae). The genome sequence is 284.5 megabases in span. Most of the assembly is scaffolded into 15 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 19.45 kilobases in length. Gene annotation of this assembly on Ensembl identified 13,286 protein coding genes.
Collapse
Affiliation(s)
- Liam M. Crowley
- Department of Biology, University of Oxford, Oxford, England, UK
| | - Reuben James
- Hogenhout Lab, John Innes Centre Department of Crop Genetics, Norwich, England, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Rimbault M, Legeai F, Peccoud J, Mieuzet L, Call E, Nouhaud P, Defendini H, Mahéo F, Marande W, Théron N, Tagu D, Le Trionnaire G, Simon JC, Jaquiéry J. Contrasting Evolutionary Patterns Between Sexual and Asexual Lineages in a Genomic Region Linked to Reproductive Mode Variation in the pea aphid. Genome Biol Evol 2023; 15:evad168. [PMID: 37717171 PMCID: PMC10538257 DOI: 10.1093/gbe/evad168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Although asexual lineages evolved from sexual lineages in many different taxa, the genetics of sex loss remains poorly understood. We addressed this issue in the pea aphid Acyrthosiphon pisum, whose natural populations encompass lineages performing cyclical parthenogenesis (CP) and producing one sexual generation per year, as well as obligate parthenogenetic (OP) lineages that can no longer produce sexual females but can still produce males. An SNP-based, whole-genome scan of CP and OP populations sequenced in pools (103 individuals from 6 populations) revealed that an X-linked region is associated with the variation in reproductive mode. This 840-kb region is highly divergent between CP and OP populations (FST = 34.9%), with >2,000 SNPs or short Indels showing a high degree of association with the phenotypic trait. In OP populations specifically, this region also shows reduced diversity and Tajima's D, consistent with the OP phenotype being a derived trait in aphids. Interestingly, the low genetic differentiation between CP and OP populations at the rest of the genome (FST = 2.5%) suggests gene flow between them. Males from OP lineages thus likely transmit their op allele to new genomic backgrounds. These genetic exchanges, combined with the selection of the OP and CP reproductive modes under different climates, probably contribute to the long-term persistence of the cp and op alleles.
Collapse
Affiliation(s)
- Maud Rimbault
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Fabrice Legeai
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
- University of Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers CEDEX 9, France
| | - Lucie Mieuzet
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Elsa Call
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Pierre Nouhaud
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Hélène Defendini
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Frédérique Mahéo
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - William Marande
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Nicolas Théron
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Denis Tagu
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Gaël Le Trionnaire
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Jean-Christophe Simon
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Julie Jaquiéry
- INRAE, UMR 1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| |
Collapse
|
33
|
Li Z, Xue AZ, Maeda GP, Li Y, Nabity PD, Moran NA. Phylloxera and aphids show distinct features of genome evolution despite similar reproductive modes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555181. [PMID: 37693541 PMCID: PMC10491136 DOI: 10.1101/2023.08.28.555181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Genomes of aphids (family Aphididae) show several unusual evolutionary patterns. In particular, within the XO sex determination system of aphids, the X chromosome exhibits a lower rate of interchromosomal rearrangements, fewer highly expressed genes, and faster evolution at nonsynonymous sites compared to the autosomes. In contrast, other hemipteran lineages have similar rates of interchromosomal rearrangement for autosomes and X chromosomes. One possible explanation for these differences is the aphid's life cycle of cyclical parthenogenesis, where multiple asexual generations alternate with one sexual generation. If true, we should see similar features in the genomes of Phylloxeridae, an outgroup of aphids which also undergoes cyclical parthenogenesis. To investigate this, we generated a chromosome-level assembly for the grape phylloxera, an agriculturally important species of Phylloxeridae, and identified its single X chromosome. We then performed synteny analysis using the phylloxerid genome and 30 high-quality genomes of aphids and other hemipteran species. Unexpectedly, we found that the phylloxera does not share aphids' patterns of chromosome evolution. By estimating interchromosomal rearrangement rates on an absolute time scale, we found that rates are elevated for aphid autosomes compared to their X chromosomes, but this pattern does not extend to the phylloxera branch. Potentially, the conservation of X chromosome gene content is due to selection on XO males that appear in the sexual generation. We also examined gene duplication patterns across Hemiptera and uncovered horizontal gene transfer events contributing to phylloxera evolution.
Collapse
|
34
|
Knyshov A, Gordon ERL, Masonick PK, Castillo S, Forero D, Hoey-Chamberlain R, Hwang WS, Johnson KP, Lemmon AR, Moriarty Lemmon E, Standring S, Zhang J, Weirauch C. Chromosome-Aware Phylogenomics of Assassin Bugs (Hemiptera: Reduvioidea) Elucidates Ancient Gene Conflict. Mol Biol Evol 2023; 40:msad168. [PMID: 37494292 PMCID: PMC10411492 DOI: 10.1093/molbev/msad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Though the phylogenetic signal of loci on sex chromosomes can differ from those on autosomes, chromosomal-level genome assemblies for nonvertebrates are still relatively scarce and conservation of chromosomal gene content across deep phylogenetic scales has therefore remained largely unexplored. We here assemble a uniquely large and diverse set of samples (17 anchored hybrid enrichment, 24 RNA-seq, and 70 whole-genome sequencing samples of variable depth) for the medically important assassin bugs (Reduvioidea). We assess the performance of genes based on multiple features (e.g., nucleotide vs. amino acid, nuclear vs. mitochondrial, and autosomal vs. X chromosomal) and employ different methods (concatenation and coalescence analyses) to reconstruct the unresolved phylogeny of this diverse (∼7,000 spp.) and old (>180 Ma) group. Our results show that genes on the X chromosome are more likely to have discordant phylogenies than those on autosomes. We find that the X chromosome conflict is driven by high gene substitution rates that impact the accuracy of phylogenetic inference. However, gene tree clustering showed strong conflict even after discounting variable third codon positions. Alternative topologies were not particularly enriched for sex chromosome loci, but spread across the genome. We conclude that binning genes to autosomal or sex chromosomes may result in a more accurate picture of the complex evolutionary history of a clade.
Collapse
Affiliation(s)
- Alexander Knyshov
- Department of Entomology, University of California, Riverside, CA, USA
| | - Eric R L Gordon
- Ecology and Evolutionary Biology Department, University of Connecticut, Storrs, CT, USA
| | - Paul K Masonick
- Department of Entomology, University of California, Riverside, CA, USA
| | | | - Dimitri Forero
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogota, Colombia
| | | | - Wei Song Hwang
- Lee Kong Chian Natural History Museum, National University of Singapore, Queenstown, Singapore
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | | | | - Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, China
| | | |
Collapse
|
35
|
Mathers TC, Wouters RHM, Mugford ST, Biello R, van Oosterhout C, Hogenhout SA. Hybridisation has shaped a recent radiation of grass-feeding aphids. BMC Biol 2023; 21:157. [PMID: 37443008 PMCID: PMC10347838 DOI: 10.1186/s12915-023-01649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Aphids are common crop pests. These insects reproduce by facultative parthenogenesis involving several rounds of clonal reproduction interspersed with an occasional sexual cycle. Furthermore, clonal aphids give birth to live young that are already pregnant. These qualities enable rapid population growth and have facilitated the colonisation of crops globally. In several cases, so-called "super clones" have come to dominate agricultural systems. However, the extent to which the sexual stage of the aphid life cycle has shaped global pest populations has remained unclear, as have the origins of successful lineages. Here, we used chromosome-scale genome assemblies to disentangle the evolution of two global pests of cereals-the English (Sitobion avenae) and Indian (Sitobion miscanthi) grain aphids. RESULTS Genome-wide divergence between S. avenae and S. miscanthi is low. Moreover, comparison of haplotype-resolved assemblies revealed that the S. miscanthi isolate used for genome sequencing is likely a hybrid, with one of its diploid genome copies closely related to S. avenae (~ 0.5% divergence) and the other substantially more divergent (> 1%). Population genomics analyses of UK and China grain aphids showed that S. avenae and S. miscanthi are part of a cryptic species complex with many highly differentiated lineages that predate the origins of agriculture. The complex consists of hybrid lineages that display a tangled history of hybridisation and genetic introgression. CONCLUSIONS Our analyses reveal that hybridisation has substantially contributed to grain aphid diversity, and hence, to the evolutionary potential of this important pest species. Furthermore, we propose that aphids are particularly well placed to exploit hybridisation events via the rapid propagation of live-born "frozen hybrids" via asexual reproduction, increasing the likelihood of hybrid lineage formation.
Collapse
Affiliation(s)
- Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK.
- Tree of Life, Welcome Sanger Institute, Hinxton, Cambridge, UK.
| | - Roland H M Wouters
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Roberto Biello
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
36
|
Huang T, Liu Y, He K, Francis F, Wang B, Wang G. Chromosome-level genome assembly of the spotted alfalfa aphid Therioaphis trifolii. Sci Data 2023; 10:274. [PMID: 37173339 PMCID: PMC10181989 DOI: 10.1038/s41597-023-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The spotted alfalfa aphid (SAA, Therioaphis trifolii) (Hemiptera: Aphididae) is a destructive pest of cultivated alfalfa (Medicago sativa L.) that leads to large financial losses in the livestock industry around the world. Here, we present a chromosome-scale genome assembly of T. trifolii, the first genome assembly for the aphid subfamily Calaphidinae. Using PacBio long-read sequencing, Illumina sequencing, and Hi-C scaffolding techniques, a 541.26 Mb genome was generated, with 90.01% of the assembly anchored into eight scaffolds, and the contig and scaffold N50 are 2.54 Mb and 44.77 Mb, respectively. BUSCO assessment showed a completeness score of 96.6%. A total of 13,684 protein-coding genes were predicted. The high-quality genome assembly of T. trifolii not only provides a genomic resource for the more complete analysis of aphid evolution, but also provides insights into the ecological adaptation and insecticide resistance of T. trifolii.
Collapse
Affiliation(s)
- Tianyu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
37
|
Tang XF, Huang YH, Sun YF, Zhang PF, Huo LZ, Li HS, Pang H. The transcriptome of Icerya aegyptiaca (Hemiptera: Monophlebidae) and comparison with neococcoids reveal genetic clues of evolution in the scale insects. BMC Genomics 2023; 24:231. [PMID: 37138224 PMCID: PMC10158165 DOI: 10.1186/s12864-023-09327-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Scale insects are worldwide sap-sucking parasites, which can be distinguished into neococcoids and non-neococcoids. Neococcoids are monophyletic with a peculiar reproductive system, paternal genome elimination (PGE). Different with neococcoids, Iceryini, a tribe in non-neococcoids including several damaging pests, has abdominal spiracles, compound eyes in males, relatively abundant wax, unique hermaphrodite system, and specific symbionts. However, the current studies on the gene resources and genomic mechanism of scale insects are mainly limited in the neococcoids, and lacked of comparison in an evolution frame. RESULT We sequenced and de novo assembled a transcriptome of Icerya aegyptiaca (Douglas), a worldwide pest of Iceryini, and used it as representative of non-neococcoids to compare with the genomes or transcriptomes of other six species from different families of neococcoids. We found that the genes under positive selection or negative selection intensification (simplified as "selected genes" below) in I. aegyptiaca included those related to neurogenesis and development, especially eye development. Some genes related to fatty acid biosynthesis were unique in its transcriptome with relatively high expression and not detected in neococcoids. These results may indicate a potential link to the unique structures and abundant wax of I. aegyptiaca compared with neococcoids. Meanwhile, genes related to DNA repair, mitosis, spindle, cytokinesis and oogenesis, were included in the selected genes in I. aegyptiaca, which is possibly associated with cell division and germ cell formation of the hermaphrodite system. Chromatin-related process were enriched from selected genes in neococcoids, along with some mitosis-related genes also detected, which may be related to their unique PGE system. Moreover, in neococcoid species, male-biased genes tend to undergo negative selection relaxation under the PGE system. We also found that the candidate horizontally transferred genes (HTGs) in the scale insects mainly derived from bacteria and fungi. bioD and bioB, the two biotin-synthesizing HTGs were exclusively found in the scale insects and neococcoids, respectively, which possibly show potential demand changes in the symbiotic relationships. CONCLUSION Our study reports the first I. aegyptiaca transcriptome and provides preliminary insights for the genetic change of structures, reproductive systems and symbiont relationships at an evolutionary aspect. This will provide a basis for further research and control of scale insects.
Collapse
Affiliation(s)
- Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Pei-Fang Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Li-Zhi Huo
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
38
|
Argandona JA, Kim D, Hansen AK. Comparative transcriptomics of aphid species that diverged > 22 MYA reveals genes that are important for the maintenance of their symbiosis. Sci Rep 2023; 13:5341. [PMID: 37005434 PMCID: PMC10067822 DOI: 10.1038/s41598-023-32291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Most plant-sap feeding insects have obligate relationships with maternally transmitted bacteria. Aphids require their nutritional endosymbiont, Buchnera aphidicola, for the production of essential amino acids. Such endosymbionts are harbored inside of specialized insect cells called bacteriocytes. Here, we use comparative transcriptomics of bacteriocytes between two recently diverged aphid species, Myzus persicae and Acyrthosiphon pisum, to identify key genes that are important for the maintenance of their nutritional mutualism. The majority of genes with conserved expression profiles in M. persicae and A. pisum are for orthologs previously identified in A. pisum to be important for the symbiosis. However, asparaginase which produces aspartate from asparagine was significantly up-regulated only in A. pisum bacteriocytes, potentially because Buchnera of M. persicae encodes its own asparaginase enzyme unlike Buchnera of A. pisum resulting in Buchnera of A. pisum to be dependent on its aphid host for aspartate. One-to-one orthologs that explained the most amount of variation for bacteriocyte specific mRNA expression for both species includes a collaborative gene for methionine biosynthesis, multiple transporters, a horizontally transmitted gene, and secreted proteins. Finally, we highlight species-specific gene clusters which may contribute to host adaptations and/or accommodations in gene regulation to changes in the symbiont or the symbiosis.
Collapse
Affiliation(s)
- Jacob A Argandona
- Department of Entomology, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Dohyup Kim
- Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
39
|
Boissot N. NLRs are highly relevant resistance genes for aphid pests. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101008. [PMID: 36764482 DOI: 10.1016/j.cois.2023.101008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Since the 20th century, when plant resistance to aphids was available, it has been widely used by farmers and the inheritance of plant resistance has been understood for several crops. However, it is only when the plant-aphid relationship was compared with that of microbial pathogens, that aphid resistance has begun to be understood and integrated into the plant immune network. Three of the four genes identified for plant resistance to aphid encode nucleotide-binding site leucine-rich repeat receptor (NLR) proteins responsible for aphid-effector triggered immunity, and NLRs are serious candidates for aphid resistance in four other plant species. Aphids are vectors for plant viruses, and aphid-effectors triggering immunity when they pierce plant cells are expected to trigger resistance to the viruses transmitted to the plant with effectors, as has been shown for aphid resistance in melon. This dual phenotype increases the interest of NLRs in the control of aphids.
Collapse
Affiliation(s)
- Nathalie Boissot
- INRAE, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France.
| |
Collapse
|
40
|
Höök L, Näsvall K, Vila R, Wiklund C, Backström N. High-density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.). Chromosome Res 2023; 31:2. [PMID: 36662301 PMCID: PMC9859909 DOI: 10.1007/s10577-023-09713-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023]
Abstract
Karyotypes are generally conserved between closely related species and large chromosome rearrangements typically have negative fitness consequences in heterozygotes, potentially driving speciation. In the order Lepidoptera, most investigated species have the ancestral karyotype and gene synteny is often conserved across deep divergence, although examples of extensive genome reshuffling have recently been demonstrated. The genus Leptidea has an unusual level of chromosome variation and rearranged sex chromosomes, but the extent of restructuring across the rest of the genome is so far unknown. To explore the genomes of the wood white (Leptidea) species complex, we generated eight genome assemblies using a combination of 10X linked reads and HiC data, and improved them using linkage maps for two populations of the common wood white (L. sinapis) with distinct karyotypes. Synteny analysis revealed an extensive amount of rearrangements, both compared to the ancestral karyotype and between the Leptidea species, where only one of the three Z chromosomes was conserved across all comparisons. Most restructuring was explained by fissions and fusions, while translocations appear relatively rare. We further detected several examples of segregating rearrangement polymorphisms supporting a highly dynamic genome evolution in this clade. Fusion breakpoints were enriched for LINEs and LTR elements, which suggests that ectopic recombination might be an important driver in the formation of new chromosomes. Our results show that chromosome count alone may conceal the extent of genome restructuring and we propose that the amount of genome evolution in Lepidoptera might still be underestimated due to lack of taxonomic sampling.
Collapse
Affiliation(s)
- L Höök
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| | - K Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| | - R Vila
- Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - C Wiklund
- Department of Zoology, Division of Ecology, Stockholm University, Stockholm, Sweden
| | - N Backström
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| |
Collapse
|
41
|
Gundappa MK, Peñaloza C, Regan T, Boutet I, Tanguy A, Houston RD, Bean TP, Macqueen DJ. Chromosome-level reference genome for European flat oyster ( Ostrea edulis L.). Evol Appl 2022; 15:1713-1729. [PMID: 36426132 PMCID: PMC9679249 DOI: 10.1111/eva.13460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
The European flat oyster (Ostrea edulis L.) is a bivalve naturally distributed across Europe, which was an integral part of human diets for centuries, until anthropogenic activities and disease outbreaks severely reduced wild populations. Despite a growing interest in genetic applications to support population management and aquaculture, a reference genome for this species is lacking to date. Here, we report a chromosome-level assembly and annotation for the European Flat oyster genome, generated using Oxford Nanopore, Illumina, Dovetail OmniC™ proximity ligation and RNA sequencing. A contig assembly (N50: 2.38 Mb) was scaffolded into the expected karyotype of 10 pseudochromosomes. The final assembly is 935.13 Mb, with a scaffold-N50 of 95.56 Mb, with a predicted repeat landscape dominated by unclassified elements specific to O. edulis. The assembly was verified for accuracy and completeness using multiple approaches, including a novel linkage map built with ddRAD-Seq technology, comprising 4016 SNPs from four full-sib families (eight parents and 163 F1 offspring). Annotation of the genome integrating multitissue transcriptome data, comparative protein evidence and ab-initio gene prediction identified 35,699 protein-coding genes. Chromosome-level synteny was demonstrated against multiple high-quality bivalve genome assemblies, including an O. edulis genome generated independently for a French O. edulis individual. Comparative genomics was used to characterize gene family expansions during Ostrea evolution that potentially facilitated adaptation. This new reference genome for European flat oyster will enable high-resolution genomics in support of conservation and aquaculture initiatives, and improves our understanding of bivalve genome evolution.
Collapse
Affiliation(s)
- Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Isabelle Boutet
- Station Biologique de RoscoffLaboratoire Adaptation et Diversité en Milieu Marin (UMR 7144 AD2M CNRS‐Sorbonne Université)RoscoffFrance
| | - Arnaud Tanguy
- Station Biologique de RoscoffLaboratoire Adaptation et Diversité en Milieu Marin (UMR 7144 AD2M CNRS‐Sorbonne Université)RoscoffFrance
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUK
| |
Collapse
|
42
|
Li Z, Li Y, Xue AZ, Dang V, Renee Holmes V, Spencer Johnston J, Barrick JE, Moran NA. The genomic basis of evolutionary novelties in a leafhopper. Mol Biol Evol 2022; 39:6677381. [PMID: 36026509 PMCID: PMC9450646 DOI: 10.1093/molbev/msac184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Evolutionary innovations generate phenotypic and species diversity. Elucidating the genomic processes underlying such innovations is central to understanding biodiversity. In this study, we addressed the genomic basis of evolutionary novelties in the glassy-winged sharpshooter (Homalodisca vitripennis, GWSS), an agricultural pest. Prominent evolutionary innovations in leafhoppers include brochosomes, proteinaceous structures that are excreted and used to coat the body, and obligate symbiotic associations with two bacterial types that reside within cytoplasm of distinctive cell types. Using PacBio long-read sequencing and Dovetail Omni-C technology, we generated a chromosome-level genome assembly for the GWSS and then validated the assembly using flow cytometry and karyotyping. Additional transcriptomic and proteomic data were used to identify novel genes that underlie brochosome production. We found that brochosome-associated genes include novel gene families that have diversified through tandem duplications. We also identified the locations of genes involved in interactions with bacterial symbionts. Ancestors of the GWSS acquired bacterial genes through horizontal gene transfer (HGT), and these genes appear to contribute to symbiont support. Using a phylogenomics approach, we inferred HGT sources and timing. We found that some HGT events date to the common ancestor of the hemipteran suborder Auchenorrhyncha, representing some of the oldest known examples of HGT in animals. Overall, we show that evolutionary novelties in leafhoppers are generated by the combination of acquiring novel genes, produced both de novo and through tandem duplication, acquiring new symbiotic associations that enable use of novel diets and niches, and recruiting foreign genes to support symbionts and enhance herbivory.
Collapse
Affiliation(s)
- Zheng Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Yiyuan Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Allen Z Xue
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Vy Dang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - V Renee Holmes
- Department of Entomology, Texas A&M University, College Station, TX,USA
| | | | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
43
|
Wang Q, Liu L, Zhang S, Wu H, Huang J. A chromosome-level genome assembly and intestinal transcriptome of Trypoxylus dichotomus (Coleoptera: Scarabaeidae) to understand its lignocellulose digestion ability. Gigascience 2022; 11:giac059. [PMID: 35764601 PMCID: PMC9239855 DOI: 10.1093/gigascience/giac059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Lignocellulose, as the key structural component of plant biomass, is a recalcitrant structure, difficult to degrade. The traditional management of plant waste, including landfill and incineration, usually causes serious environmental pollution and health problems. Interestingly, the xylophagous beetle, Trypoxylus dichotomus, can decompose lignocellulosic biomass. However, the genomics around the digestion mechanism of this beetle remain to be elucidated. Here, we assembled the genome of T. dichotomus, showing that the draft genome size of T. dichotomus is 636.27 Mb, with 95.37% scaffolds anchored onto 10 chromosomes. Phylogenetic results indicated that a divergent evolution between the ancestors of T. dichotomus and the closely related scarabaeid species Onthophagus taurus occurred in the early Cretaceous (120 million years ago). Through gene family evolution analysis, we found 67 rapidly evolving gene families, within which there were 2 digestive gene families (encoding Trypsin and Enoyl-(Acyl carrier protein) reductase) that have experienced significant expansion, indicating that they may contribute to the high degradation efficiency of lignocellulose in T. dichotomus. Additionally, events of chromosome breakage and rearrangement were observed by synteny analysis during the evolution of T. dichotomus due to chromosomes 6 and 8 of T. dichotomus being intersected with chromosomes 2 and 10 of Tribolium castaneum, respectively. Furthermore, the comparative transcriptome analyses of larval guts showed that the digestion-related genes were more commonly expressed in the midgut or mushroom residue group than the hindgut or sawdust group. This study reports the well-assembled and annotated genome of T. dichotomus, providing genomic and transcriptomic bases for further understanding the functional and evolutionary mechanisms of lignocellulose digestion in T. dichotomus.
Collapse
Affiliation(s)
- Qingyun Wang
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Liwei Liu
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
- Zhejiang Museum of Natural History, No. 6 West Lake Cultural Square, Hangzhou, Zhejiang 310014, China
| | - Sujiong Zhang
- Dapanshan Insect Institute of Zhejiang, Pan'an, Zhejiang 322300, China
| | - Hong Wu
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Junhao Huang
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
44
|
Feron R, Waterhouse RM. Exploring new genomic territories with emerging model insects. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100902. [PMID: 35301165 DOI: 10.1016/j.cois.2022.100902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Improvements in reference genome generation for insects and across the tree of life are extending the concept and utility of model organisms beyond traditional laboratory-tractable supermodels. Species or groups of species with comprehensive genome resources can be developed into model systems for studying a large variety of biological phenomena. Advances in sequencing and assembly technologies are supporting these emerging genome-enabled model systems by producing resources that are increasingly accurate and complete. Nevertheless, quality controls including assessing gene content completeness are required to ensure that these data can be included in expanding catalogues of high-quality references that will greatly advance understanding of insect biology and evolution.
Collapse
Affiliation(s)
- Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and the Swiss Institute of Bioinformatics,1015 Lausanne, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and the Swiss Institute of Bioinformatics,1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
Wei H, Ye Y, Huang H, Chen M, Yang Z, Chen X, Zhang C. Chromosome‐level genome assembly for the horned‐gall aphid provides insights into interactions between gall‐making insect and its host plant. Ecol Evol 2022; 12:e8815. [PMID: 35475184 PMCID: PMC9021935 DOI: 10.1002/ece3.8815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
The aphid Schlechtendalia chinensis is an economically important insect that can induce horned galls, which are valuable for the medicinal and chemical industries. Up to now, more than twenty aphid genomes have been reported. Most of the sequenced genomes are derived from free‐living aphids. Here, we generated a high‐quality genome assembly from a galling aphid. The final genome assembly is 271.52 Mb, representing one of the smallest sequenced genomes of aphids. The genome assembly is based on contig and scaffold N50 values of the genome sequence are 3.77 Mb and 20.41 Mb, respectively. Nine‐seven percent of the assembled sequences was anchored onto 13 chromosomes. Based on BUSCO analysis, the assembly involved 96.9% of conserved arthropod and 98.5% of the conserved Hemiptera single‐copy orthologous genes. A total of 14,089 protein‐coding genes were predicted. Phylogenetic analysis revealed that S. chinensis diverged from the common ancestor of Eriosoma lanigerum approximately 57 million years ago (MYA). In addition, 35 genes encoding salivary gland proteins showed differentially when S. chinensis forms a gall, suggesting they have potential roles in gall formation and plant defense suppression. Taken together, this high‐quality S. chinensis genome assembly and annotation provide a solid genetic foundation for future research to reveal the mechanism of gall formation and to explore the interaction between aphids and their host plants.
Collapse
Affiliation(s)
- Hong‐Yuan Wei
- Key Laboratory of Breeding and Utilization of Resource Insects National Forestry and Grassland Administration Institute of Highland Forest Science Chinese Academy of Forestry Kunming China
| | - Yu‐Xuan Ye
- Institute of Insect Sciences Zhejiang University Hangzhou China
| | - Hai‐Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province Institute of Plant Virology Ningbo University Ningbo China
| | - Ming‐Shun Chen
- Department of Entomology Kansas State University Manhattan Kansas USA
| | - Zi‐Xiang Yang
- Key Laboratory of Breeding and Utilization of Resource Insects National Forestry and Grassland Administration Institute of Highland Forest Science Chinese Academy of Forestry Kunming China
| | - Xiao‐Ming Chen
- Key Laboratory of Breeding and Utilization of Resource Insects National Forestry and Grassland Administration Institute of Highland Forest Science Chinese Academy of Forestry Kunming China
| | - Chuan‐Xi Zhang
- Institute of Insect Sciences Zhejiang University Hangzhou China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province Institute of Plant Virology Ningbo University Ningbo China
| |
Collapse
|
46
|
Shigenobu S, Yorimoto S. Aphid hologenomics: current status and future challenges. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100882. [PMID: 35150917 DOI: 10.1016/j.cois.2022.100882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Aphids are important model organisms in ecological, developmental, and evolutionary studies of, for example, symbiosis, insect-plant interactions, pest management, and developmental polyphenism. Here, we review the recent progress made in the genomics of aphids and their symbionts: hologenomics. The reference genome of Acyrthosiphon pisum has been greatly improved, and chromosome-level assembly is now available. The genomes of over 20 aphid species have been sequenced, and comparative genomic analyses have revealed pervasive gene duplication and dynamic chromosomal rearrangements. Over 120 symbiont genomes (both obligate and facultative) have been sequenced, and modern deep-sequencing technologies have identified novel symbionts. The advances in hologenomics have helped to elucidate the dynamic evolution of facultative and co-obligate symbionts with the ancient obligate symbiont Buchnera.
Collapse
Affiliation(s)
- Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan.
| | - Shunta Yorimoto
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| |
Collapse
|
47
|
Villarroel CA, González-González A, Alvarez-Baca JK, Villarreal P, Ballesteros GI, Figueroa CC, Cubillos FA, Ramírez CC. Genome sequencing of a predominant clonal lineage of the grain aphid Sitobion avenae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103742. [PMID: 35183733 DOI: 10.1016/j.ibmb.2022.103742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The English grain aphid, Sitobion avenae, is a cosmopolitan pest that feeds on cereals, provoking substantial yield losses by injuring plant tissue and by vectoring plant viruses. Here we report a highly complete, de novo draft genome of the grain aphid using long-read sequencing. We generated an assembly of 2740 contigs with a N50 of 450 kb. We compared this draft genome with that of other aphid species, inspecting gene family evolution, genome-wide positive selection, and searched for horizontal gene transfer events. In addition, we described a recent copy number variant expansion of gene families involving aconitase, ABC transporter, and esterase genes that could be associated with resistance to insecticides and plant chemical defenses. This S. avenae genome obtained from a predominant invasive genotype can provide a framework for studying the spatial-temporal success of these clonal lineages in invaded agroecosystems.
Collapse
Affiliation(s)
- Carlos A Villarroel
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile; Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
| | | | | | - Pablo Villarreal
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile; Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile
| | - Gabriel I Ballesteros
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile
| | - Christian C Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; Centro de Ecología Molecular y Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Francisco A Cubillos
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile; Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile
| | - Claudio C Ramírez
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; Centro de Ecología Molecular y Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
48
|
Byrne S, Schughart M, Carolan JC, Gaffney M, Thorpe P, Malloch G, Wilkinson T, McNamara L. Genome sequence of the English grain aphid, Sitobion avenae and its endosymbiont Buchnera aphidicola. G3 GENES|GENOMES|GENETICS 2022; 12:6456306. [PMID: 34878113 PMCID: PMC9210274 DOI: 10.1093/g3journal/jkab418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022]
Abstract
The English grain aphid, Sitobion avenae, is a major agricultural pest of wheat, barley and oats, and one of the principal vectors of barley yellow dwarf virus leading to significant reductions in grain yield, annually. Emerging resistance to and increasing regulation of insecticides has resulted in limited options for their control. Using PacBio HiFi data, we have produced a high-quality draft assembly of the S. avenae genome; generating a primary assembly with a total assembly size of 475.7 Mb, and an alternate assembly with a total assembly size of 430.8 Mb. Our primary assembly was highly contiguous with only 326 contigs and a contig N50 of 15.95 Mb. Assembly completeness was estimated at 97.7% using BUSCO analysis and 31,007 and 29,037 protein-coding genes were predicted from the primary and alternate assemblies, respectively. This assembly, which is to our knowledge the first for an insecticide resistant clonal lineage of English grain aphid, will provide novel insight into the molecular and mechanistic determinants of resistance and will facilitate future research into mechanisms of viral transmission and aphid behavior.
Collapse
Affiliation(s)
- Stephen Byrne
- Teagasc, Crop Science Department, Carlow R93 XE12, Ireland
| | - Maximilian Schughart
- Teagasc, Crop Science Department, Carlow R93 XE12, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | | | - Peter Thorpe
- School of Medicine, University of St Andrews, North Haugh, KY16 9TF St Andrews, UK
| | - Gaynor Malloch
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Tom Wilkinson
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|
49
|
|
50
|
Aphids and Ants, Mutualistic Species, Share a Mariner Element with an Unusual Location on Aphid Chromosomes. Genes (Basel) 2021; 12:genes12121966. [PMID: 34946915 PMCID: PMC8701394 DOI: 10.3390/genes12121966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Aphids (Hemiptera, Aphididae) are small phytophagous insects. The aim of this study was to determine if the mariner elements found in the ant genomes are also present in Aphis fabae and Aphis hederae genomes and the possible existence of horizontal transfer events. Aphids maintain a relationship of mutualism with the ants. The close contact between these insects could favour horizontal transfer events of transposable elements. Myrmar mariner element isolated from Myrmica ruginodis and Tapinoma ibericum ants have also been found in the two Aphis species: A. fabae and A. hederae (Afabmar-Mr and Ahedmar-Mr elements). Besides, Afabmar-Mr could be an active transposon. Myrmar-like elements are also present in other insect species as well as in one Crustacean species. The phylogenetic study carried out with all Myrmar-like elements suggests the existence of horizontal transfer. Most aphids have 2n = 8 with a XX-X0 sex determination system. Their complicated life cycle is mostly parthenogenetic with sexual individuals only in autumn. The production of X0 males, originated by XX females which produce only spermatozoa with one X chromosome, must necessarily occur through specialized cytogenetic and molecular mechanisms which are not entirely known. In both aphid species, the mariner elements are located on all chromosomes, including the X chromosomes. However, on the two X chromosomes, no positive signals are detected in their small DAPI-negative telomere regions. The rDNA sites are located, as in the majority of Aphids species, on one of the telomere regions of each X chromosome. The hybridization patterns obtained by double FISH demonstrate that Afabmar-Mr and Ahedmar-Mr elements do not hybridize at the rDNA sites of their host species. Possible causes for the absence of these transposons in the rDNA genes are discussed, probably related with the X chromosome biology.
Collapse
|