1
|
Persyn E, Duyck PF, François MC, Mille C, Jacob V, Jacquin-Joly E. Transcriptomic analyses in thirteen Tephritidae species provide insights into the ecological driving force behind odorant receptor evolution. Mol Phylogenet Evol 2025; 206:108322. [PMID: 40049262 DOI: 10.1016/j.ympev.2025.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/12/2025]
Abstract
The insect olfactory system has evolved while guiding species to specific mating partners, different food sources, and oviposition sites. How species repertoires of odorant receptors (ORs), responsible for the detection of volatile cues, have been shaped by ecologically driven forces remains poorly understood. Due to several host switches back and forth throughout their evolutionary history, fruit flies of the Tephritidae family (Diptera) show highly diverse host preferences, making them good models to address this question. For instance, a comparative analysis of genomic and transcriptomic resources on a large variety of fruit fly species could provide statistical conclusions. Here, we used a RNAseq approach to identify the OR repertoires of thirteen Tephritidae species with different host ranges, namely Bactrocera curvipennis, Bactrocera dorsalis, Bactrocera psidii, Bactrocera tryoni, Bactrocera umbrosa, Bactrocera zonata, Ceratitis capitata, Ceratitis catoirii, Ceratitis quilicii, Dacus ciliatus, Dacus demmerezi, Neoceratitis cyanescens, and Zeugodacus cucurbitae. Manual curation allowed us to annotate 60-80 OR transcripts per species, including the obligatory coreceptor Orco. In total, we reported 698 new OR sequences. Differential expression analyses between antennae and maxillary palps and between the two sexes, performed in three species, revealed some organ- and sex-biased OR expression. Moreover, after adjusting for phylogenetic distance, we found significant correlations between some characteristics of the OR repertoire and species host range: sequences and relative expression level of several ORs were more conserved in polyphagous than in oligophagous species and, in addition, other ORs were found specifically in polyphagous species. Our results provide molecular insights into the ecological driving forces behind Tephritidae OR evolution.
Collapse
Affiliation(s)
- Emma Persyn
- CIRAD, Université de la Réunion, UMR PVBMT, 7, ch. de l'IRAT, F-97410 Saint-Pierre, La Réunion, France; INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France
| | - Pierre-François Duyck
- IAC, Institut Agronomique néo-Calédonien, Équipe ARBOREAL, Laboratoire d'Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, F-98880, La Foa, New Caledonia; CIRAD, UMR PVBMT, F-98488 Nouméa, New Caledonia
| | - Marie-Christine François
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France
| | - Christian Mille
- IAC, Institut Agronomique néo-Calédonien, Équipe ARBOREAL, Laboratoire d'Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, F-98880, La Foa, New Caledonia
| | - Vincent Jacob
- CIRAD, Université de la Réunion, UMR PVBMT, 7, ch. de l'IRAT, F-97410 Saint-Pierre, La Réunion, France.
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France.
| |
Collapse
|
2
|
Morinaga G, Balcazar D, Badolo A, Iyaloo D, Tantely L, Mouillaud T, Sharakhova M, Geib SM, Paupy C, Ayala D, Powell JR, Gloria-Soria A, Soghigian J. From macro to micro: De novo genomes of Aedes mosquitoes enable comparative genomics among close and distant relatives. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632753. [PMID: 39868221 PMCID: PMC11760778 DOI: 10.1101/2025.01.13.632753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The yellow fever mosquito (Aedes aegypti) is an organism of high medical importance because it is the primary vector for diseases such as yellow fever, Zika, dengue, and chikungunya. Its medical importance has made it a subject of numerous efforts to understand their biology. One such effort, was the development of a high-quality reference genome (AaegL5). However, this reference genome was sourced from a highly inbred laboratory strain with unknown geographic origin. Thus, the reference is not representative of a wild mosquito, let alone one from its native range in sub-Saharan Africa. To better understand the genetic architecture of Ae. aegypti and their sister species, we developed two de novo chromosome-scale genomes with sequences sourced from single individuals: one of Ae. aegypti formosus (Aaf) from Burkina Faso and one of Ae. mascarensis (Am) from Mauritius. Both genomes exhibit high contiguity and gene completeness, comparable to AaegL5. While Aaf exhibits high degree of synteny to AaegL5, it also exhibits several large inversions. We further conducted comparative genomic analyses using our genomes and other publicly available culicid reference genomes to find extensive chromosomal rearrangements between major lineages. Overrepresentation analysis of expanded genes in Aaf, AaegL5, and Am revealed that while the overarching category of genes that have expanded are similar, the specific genes that have expanded differ. Our findings elucidate novel insights into chromosome evolution at both microevolutionary and macroevolutionary scales. The genomic resources we present are additions to the arsenal of biologists in understanding mosquito biology and genome evolution.
Collapse
Affiliation(s)
- Gen Morinaga
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Darío Balcazar
- Department of Ecology & Evolution, Yale University, New Haven, CT, USA
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Diana Iyaloo
- Vector Biology & Control Division, Ministry of Health & Quality of Life, Curepipe, Mauritius
| | - Luciano Tantely
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Theo Mouillaud
- L'Institut de recherche pour le développment, UMR MIVEGEC, Montpellier, France
| | - Maria Sharakhova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Scott M Geib
- USDA-ARS Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI, USA
| | - Christophe Paupy
- L'Institut de recherche pour le développment, UMR MIVEGEC, Montpellier, France
| | - Diego Ayala
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- L'Institut de recherche pour le développment, UMR MIVEGEC, Montpellier, France
| | - Jeffrey R Powell
- Department of Ecology & Evolution, Yale University, New Haven, CT, USA
| | - Andrea Gloria-Soria
- Department of Ecology & Evolution, Yale University, New Haven, CT, USA
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - John Soghigian
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Li Y, Chai Q, Chen Y, Ma Y, Wang Y, Zhao J. Genome-wide investigation of the OR gene family in Helicoverpa armigera and functional analysis of OR48 and OR75 in metamorphosis development. Int J Biol Macromol 2024; 278:134646. [PMID: 39128738 DOI: 10.1016/j.ijbiomac.2024.134646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The cotton bollworm, Helicoverpa armigera, is a significant global agricultural pest, particularly detrimental during its larval feeding period. Insects' odorant receptors (ORs) are crucial for their crop-feeding activities, yet a comprehensive analysis of H. armigera ORs has been lacking, and the influence of hormones on ORs remain understudied. Herein, we conducted a genome-wide study and identified 81 ORs, categorized into 15 distinct groups. Analyses of protein motifs and gene structures revealed both conservation within groups and divergence among them. Comparative gene duplication analysis between H. armigera and Bombyx mori highlighted different duplication patterns. We further investigated subcellular localization and protein interactions within the odorant receptor family, providing valuable insights for future functional and interaction studies of ORs. Specifically, we identified that OR48 and OR75 were abundantly expressed during molting/metamorphosis and feeding stages, respectively. We demonstrated that 20E induced the upregulation of OR48 via EcR, while insulin upregulated OR75 expression through InR. Moreover, 20E induced the translocation of OR48 to the cell membrane, mediating its effects. Functional studies involving the knockdown of OR48 and OR75 revealed their roles in metamorphosis development, with OR48 knockdown resulting in delayed pupation and OR75 knockdown leading to premature pupation. OR48 can promote autophagy and apoptosis in fat body, while OR75 can significantly inhibit apoptosis and autophagy. These findings significantly contribute to our understanding of OR function in H. armigera and shed light on potential avenues for pest control strategies.
Collapse
Affiliation(s)
- Yanli Li
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Qichao Chai
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Ying Chen
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Yujia Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, Shandong, China
| | - Yongcui Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Junsheng Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| |
Collapse
|
4
|
Fonseca PM, Robe LJ, Carvalho TL, Loreto ELS. Characterization of the chemoreceptor repertoire of a highly specialized fly with comparisons to other Drosophila species. Genet Mol Biol 2024; 47:e20220383. [PMID: 38885260 PMCID: PMC11182316 DOI: 10.1590/1678-4685-gmb-2022-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
To explore the diversity of scenarios in nature, animals have evolved tools to interact with different environmental conditions. Chemoreceptors are an important interface component and among them, olfactory receptors (ORs) and gustatory receptors (GRs) can be used to find food and detect healthy resources. Drosophila is a model organism in many scientific fields, in part due to the diversity of species and niches they occupy. The contrast between generalists and specialists Drosophila species provides an important model for studying the evolution of chemoreception. Here, we compare the repertoire of chemoreceptors of different species of Drosophila with that of D. incompta, a highly specialized species whose ecology is restricted to Cestrum flowers, after reporting the preferences of D. incompta to the odor of Cestrum flowers in olfactory tests. We found evidence that the chemoreceptor repertoire in D. incompta is smaller than that presented by species in the Sophophora subgenus. Similar patterns were found in other non-Sophophora species, suggesting the presence of underlying phylogenetic trends. Nevertheless, we also found autapomorphic gene losses and detected some genes that appear to be under positive selection in D. incompta, suggesting that the specific lifestyle of these flies may have shaped the evolution of individual genes in each of these gene families.
Collapse
Affiliation(s)
- Pedro Mesquita Fonseca
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Lizandra Jaqueline Robe
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Biodiversidade Animal, Santa Maria, RS, Brazil
| | - Tuane Letícia Carvalho
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Biodiversidade Animal, Santa Maria, RS, Brazil
| | - Elgion Lucio Silva Loreto
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Santa Maria, RS, Brazil
| |
Collapse
|
5
|
Antony B, Montagné N, Comte A, Mfarrej S, Jakše J, Capoduro R, Shelke R, Cali K, AlSaleh MA, Persaud K, Pain A, Jacquin-Joly E. Deorphanizing an odorant receptor tuned to palm tree volatile esters in the Asian palm weevil sheds light on the mechanisms of palm tree selection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 169:104129. [PMID: 38704126 DOI: 10.1016/j.ibmb.2024.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.
Collapse
Affiliation(s)
- Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Sara Mfarrej
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, SI-1000, Ljubljana, Slovenia
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Rajan Shelke
- Don Bosco College of Agriculture, Agricultural Entomology Department, Sulcorna, Goa, 403705, India
| | - Khasim Cali
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Mohammed Ali AlSaleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia
| | - Krishna Persaud
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| |
Collapse
|
6
|
Ferreira JS, Bruschi DP. Tracking the Diversity and Chromosomal Distribution of the Olfactory Receptor Gene Repertoires of Three Anurans Species. J Mol Evol 2023; 91:793-805. [PMID: 37906255 DOI: 10.1007/s00239-023-10135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Olfaction is a crucial capability for most vertebrates and is realized through olfactory receptors in the nasal cavity. The enormous diversity of olfactory receptors has been created by gene duplication, following a birth-and-death model of evolution. The olfactory receptor genes of the amphibians have received relatively little attention up to now, although recent studies have increased the number of species for which data are available. This study analyzed the diversity and chromosomal distribution of the OR genes of three anuran species (Engystomops pustulosus, Bufo bufo and Hymenochirus boettgeri). The OR genes were identified through searches for homologies, and sequence filtering and alignment using bioinformatic tools and scripts. A high diversity of OR genes was found in all three species, ranging from 917 in B. bufo to 1194 in H. boettgeri, and a total of 2076 OR genes in E. pustulosus. Six OR groups were recognized using an evolutionary gene tree analysis. While E. pustulosus has one of the highest numbers of genes of the gamma group (which detect airborne odorants) yet recorded in an anuran, B. bufo presented the smallest number of pseudogene sequences ever identified, with no pseudogenes in either the beta or epsilon groups. Although H. boettgeri shares many morphological adaptations for an aquatic lifestyle with Xenopus, and presented a similar number of genes related to the detection of water-soluble odorants, it had comparatively far fewer genes related to the detection of airborne odorants. This study is the first to describe the complete OR repertoire of the three study species and represents an important contribution to the understanding of the evolution and function of the sense of smell in vertebrates.
Collapse
Affiliation(s)
- Johnny Sousa Ferreira
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil
| | - Daniel Pacheco Bruschi
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil.
| |
Collapse
|
7
|
Depetris-Chauvin A, Galagovsky D, Keesey IW, Hansson BS, Sachse S, Knaden M. Evolution at multiple processing levels underlies odor-guided behavior in the genus Drosophila. Curr Biol 2023; 33:4771-4785.e7. [PMID: 37804828 DOI: 10.1016/j.cub.2023.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023]
Abstract
Olfaction is a fundamental sense guiding animals to their food. How the olfactory system evolves and influences behavior is still poorly understood. Here, we selected five drosophilid species, including Drosophila melanogaster, inhabiting different ecological niches to compare their olfactory systems at multiple levels. We first identified ecologically relevant natural food odorants from every species and established species-specific odorant preferences. To compare odor coding in sensory neurons, we analyzed the antennal lobe (AL) structure, generated glomerular atlases, and developed GCaMP transgenic lines for all species. Although subsets of glomeruli showed distinct tuning profiles, odorants inducing species-specific preferences were coded generally similarly. Species distantly related or occupying different habitats showed more evident differences in odor coding, and further analysis revealed that changes in olfactory receptor (OR) sequences partially explain these differences. Our results demonstrate that genetic distance in phylogeny and ecological niche occupancy are key determinants in the evolution of ORs, AL structures, odor coding, and behavior. Interestingly, changes in odor coding among species could not be explained by evolutionary changes at a single olfactory processing level but rather are a complex phenomenon based on changes at multiple levels.
Collapse
Affiliation(s)
- Ana Depetris-Chauvin
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, 07745 Jena, Germany; Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Diego Galagovsky
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, 07745 Jena, Germany
| | - Ian W Keesey
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, 07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, 07745 Jena, Germany
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, 07745 Jena, Germany.
| |
Collapse
|
8
|
Zhang Z, Bao J, Chen Q, He J, Li X, Zhang J, Liu Z, Wu Y, Wang Y, Lu Y. The Chromosome-Level Genome Assembly of Bean Blossom Thrips ( Megalurothrips usitatus) Reveals an Expansion of Protein Digestion-Related Genes in Adaption to High-Protein Host Plants. Int J Mol Sci 2023; 24:11268. [PMID: 37511029 PMCID: PMC10379191 DOI: 10.3390/ijms241411268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Megalurothrips usitatus (Bagnall) is a destructive pest of legumes, such as cowpea. The biology, population dynamics and control strategies of this pest have been well studied. However, the lack of a high-quality reference genome for M. usitatus has hindered the understanding of key biological questions, such as the mechanism of adaptation to feed preferentially on high-protein host plants and the resistance to proteinase inhibitors (PIs). In this study, we generated a high-resolution chromosome-level reference genome assembly (247.82 Mb, 16 chromosomes) of M. usitatus by combining Oxford Nanopore Technologies (ONT) and Hi-C sequencing. The genome assembly showed higher proportions of GC and repeat content compared to other Thripinae species. Genome annotation revealed 18,624 protein-coding genes, including 4613 paralogs that were preferentially located in TE-rich regions. GO and KEGG enrichment analyses of the paralogs revealed significant enrichment in digestion-related genes. Genome-wide identification uncovered 506 putative digestion-related enzymes; of those, proteases, especially their subgroup serine proteases (SPs), are significantly enriched in paralogs. We hypothesized that the diversity and expansion of the digestion-related genes, especially SPs, could be driven by mobile elements (TEs), which promote the adaptive evolution of M. usitatus to high-protein host plants with high serine protease inhibitors (SPIs). The current study provides a valuable genomic resource for understanding the genetic variation among different pest species adapting to different plant hosts.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qizhang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianyun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiahui Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410125, China
| | - Zhixing Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yixuan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yunsheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410125, China
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
9
|
Zhang B, Yang RR, Jiang XC, Xu XX, Wang B, Wang GR. Genome-Wide Analysis of the Odorant Receptor Gene Family in Solenopsis invicta, Ooceraea biroi, and Monomorium pharaonis (Hymenoptera: Formicidae). Int J Mol Sci 2023; 24:ijms24076624. [PMID: 37047591 PMCID: PMC10095046 DOI: 10.3390/ijms24076624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Olfactory systems in eusocial insects play a vital role in the discrimination of various chemical cues. Odorant receptors (ORs) are critical for odorant detection, and this family has undergone extensive expansion in ants. In this study, we re-annotated the OR genes from the most destructive invasive ant species Solenopsis invicta and 2 other Formicidae species, Ooceraea biroi and Monomorium pharaonis, with the aim of systematically comparing and analyzing the evolution and the functions of the ORs in ant species, identifying 356, 298, and 306 potential functional ORs, respectively. The evolutionary analysis of these ORs showed that ants had undergone chromosomal rearrangements and that tandem duplication may be the main contributor to the expansion of the OR gene family in S. invicta. Our further analysis revealed that 9-exon ORs had biased chromosome localization patterns in all three ant species and that a 9-exon OR cluster (SinvOR4–8) in S. invicta was under strong positive selection (Ka/Ks = 1.32). Moreover, we identified 5 S. invicta OR genes, namely SinvOR89, SinvOR102, SinvOR352, SinvOR327, and SinvOR135, with high sequence similarity (>70%) to the orthologs in O. biroi and M. pharaonis. An RT-PCR analysis was used to verify the antennal expression levels of these ORs, which showed caste-specific expression. The subsequent analysis of the antennal expression profiles of the ORs of the S. invicta workers from the polygyne and monogyne social forms indicated that SinvOR35 and SinvOR252 were expressed at much higher levels in the monogyne workers than in the polygyne workers and that SinvOR21 was expressed at higher levels in polygyne workers. Our study has contributed to the identification and analysis of the OR gene family in ants and expanded the understanding of the evolution and functions of the ORs in Formicidae species.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Rong-Rong Yang
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Chuan Jiang
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Xia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
10
|
Hu Y, Ewen-Campen B, Comjean A, Rodiger J, Mohr SE, Perrimon N. Paralog Explorer: A resource for mining information about paralogs in common research organisms. Comput Struct Biotechnol J 2022; 20:6570-6577. [PMID: 36467589 PMCID: PMC9712503 DOI: 10.1016/j.csbj.2022.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Paralogs are genes which arose via gene duplication, and when such paralogs retain overlapping or redundant function, this poses a challenge to functional genetics research. Recent technological advancements have made it possible to systematically probe gene function for redundant genes using dual or multiplex gene perturbation, and there is a need for a simple bioinformatic tool to identify putative paralogs of a gene(s) of interest. We have developed Paralog Explorer (https://www.flyrnai.org/tools/paralogs/), an online resource that allows researchers to quickly and accurately identify candidate paralogous genes in the genomes of the model organisms D. melanogaster, C. elegans, D. rerio, M. musculus, and H. sapiens. Paralog Explorer deploys an effective between-species ortholog prediction software, DIOPT, to analyze within-species paralogs. Paralog Explorer allows users to identify candidate paralogs, and to navigate relevant databases regarding gene co-expression, protein-protein and genetic interaction, as well as gene ontology and phenotype annotations. Altogether, this tool extends the value of current ortholog prediction resources by providing sophisticated features useful for identification and study of paralogous genes.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ben Ewen-Campen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Stephanie E. Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02138, USA
| |
Collapse
|
11
|
Copy number changes in co-expressed odorant receptor genes enable selection for sensory differences in drosophilid species. Nat Ecol Evol 2022; 6:1343-1353. [PMID: 35864227 DOI: 10.1038/s41559-022-01830-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Despite numerous examples of chemoreceptor gene family expansions and contractions, how these relate to modifications in the sensory neuron populations in which they are expressed remains unclear. Drosophila melanogaster's odorant receptor (Or) family is ideal for addressing this question because most Ors are expressed in distinct olfactory sensory neuron (OSN) types. Between-species changes in Or copy number may therefore indicate increases or reductions in the number of OSN populations. Here we investigated the Or67a subfamily, which exhibits copy number variation in D. melanogaster and its closest relatives: D. simulans, D. sechellia and D. mauritiana. These species' common ancestor had three Or67a paralogues that had already diverged adaptively. Following speciation, two Or67a paralogues were lost independently in D. melanogaster and D. sechellia, with ongoing positive selection shaping the intact genes. Unexpectedly, the functionally diverged Or67a paralogues in D. simulans are co-expressed in a single neuron population, which projects to a glomerulus homologous to that innervated by Or67a neurons in D. melanogaster. Thus, while sensory pathway neuroanatomy is conserved, independent selection on co-expressed receptors has contributed to species-specific peripheral coding. This work reveals a type of adaptive change largely overlooked for olfactory evolution, raising the possibility that similar processes influence other cases of insect Or co-expression.
Collapse
|
12
|
Diversity and Molecular Evolution of Odorant Receptor in Hemipteran Insects. INSECTS 2022; 13:insects13020214. [PMID: 35206787 PMCID: PMC8878081 DOI: 10.3390/insects13020214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Insects’ behavior and ecology are closely related to their chemosensory systems, during which odorant receptors (ORs) play an essential role in host recognition. Although OR gene evolution has been studied in many insect orders, a comprehensive evolutionary analysis and expression of OR gene gain and loss events among diverse hemipteran species are still needed. In this study, we identified and analyzed the OR genes from hemipteran species systematically. The number of OR genes discovered in each species ranged from less than ten to hundreds. Gene gain and loss events of OR have occurred in several species in the seven major clades classified through phylogenetic analysis. Then, we discovered the amino acid differences between species to understand the molecular evolution of OR in the order Hemiptera through positive selection. This study lays a foundation for subsequent investigations into the molecular mechanisms of Hemiptera olfactory receptors involved in host recognition. Abstract Olfaction is a critical physiologic process for insects to interact with the environment, especially plant-emitted volatiles, during which odorant receptors (ORs) play an essential role in host recognition. Although OR gene evolution has been studied in many insect orders, a comprehensive evolutionary analysis and expression of OR gene gain and loss events among diverse hemipteran species are still required. In this study, we identified and analyzed 887 OR genes from 11 hemipteran species. The number of OR genes discovered in each species ranged from less than ten to hundreds. Phylogenetic analysis revealed that all identified Hemiptera OR genes were classified into seven major clades. Gene gain and loss events of OR have occurred in several species. Then, by positive selection, we discovered the amino acid differences between species to understand the molecular evolution of OR in the order Hemiptera. Additionally, we discussed how evolutionary analysis can aid the study of insect–plant communication. This study lays a foundation for subsequent investigations into the molecular mechanisms of Hemiptera olfactory receptors involved in host recognition.
Collapse
|
13
|
Matsunaga T, Reisenman CE, Goldman-Huertas B, Brand P, Miao K, Suzuki HC, Verster KI, Ramírez SR, Whiteman NK. Evolution of Olfactory Receptors Tuned to Mustard Oils in Herbivorous Drosophilidae. Mol Biol Evol 2022; 39:msab362. [PMID: 34963012 PMCID: PMC8826531 DOI: 10.1093/molbev/msab362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The diversity of herbivorous insects is attributed to their propensity to specialize on toxic plants. In an evolutionary twist, toxins betray the identity of their bearers when herbivores coopt them as cues for host-plant finding, but the evolutionary mechanisms underlying this phenomenon are poorly understood. We focused on Scaptomyza flava, an herbivorous drosophilid specialized on isothiocyanate (ITC)-producing (Brassicales) plants, and identified Or67b paralogs that were triplicated as mustard-specific herbivory evolved. Using in vivo heterologous systems for the expression of olfactory receptors, we found that S. flava Or67bs, but not the homologs from microbe-feeding relatives, responded selectively to ITCs, each paralog detecting different ITC subsets. Consistent with this, S. flava was attracted to ITCs, as was Drosophila melanogaster expressing S. flava Or67b3 in the homologous Or67b olfactory circuit. ITCs were likely coopted as olfactory attractants through gene duplication and functional specialization (neofunctionalization and subfunctionalization) in S. flava, a recently derived herbivore.
Collapse
Affiliation(s)
- Teruyuki Matsunaga
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Carolina E Reisenman
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Benjamin Goldman-Huertas
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Philipp Brand
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Kevin Miao
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Hiromu C Suzuki
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Kirsten I Verster
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Santiago R Ramírez
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Noah K Whiteman
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
14
|
Drosophila melanogaster Chemosensory Pathways as Potential Targets to Curb the Insect Menace. INSECTS 2022; 13:insects13020142. [PMID: 35206716 PMCID: PMC8874460 DOI: 10.3390/insects13020142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The perception and processing of chemosensory stimuli are indispensable to the survival of living organisms. In insects, olfaction and gustation play a critical role in seeking food, finding mates and avoiding signs of danger. This review aims to present updated information about olfactory and gustatory signaling in the fruit fly Drosophila melanogaster. We have described the mechanisms involved in olfactory and gustatory perceptions at the molecular level, the receptors along with the allied molecules involved, and their signaling pathways in the fruit fly. Due to the magnifying problems of disease-causing insect vectors and crop pests, the applications of chemosensory signaling in controlling pests and insect vectors are also discussed. Abstract From a unicellular bacterium to a more complex human, smell and taste form an integral part of the basic sensory system. In fruit flies Drosophila melanogaster, the behavioral responses to odorants and tastants are simple, though quite sensitive, and robust. They explain the organization and elementary functioning of the chemosensory system. Molecular and functional analyses of the receptors and other critical molecules involved in olfaction and gustation are not yet completely understood. Hence, a better understanding of chemosensory cue-dependent fruit flies, playing a major role in deciphering the host-seeking behavior of pathogen transmitting insect vectors (mosquitoes, sandflies, ticks) and crop pests (Drosophila suzukii, Queensland fruit fly), is needed. Using D. melanogaster as a model organism, the knowledge gained may be implemented to design new means of controlling insects as well as in analyzing current batches of insect and pest repellents. In this review, the complete mechanisms of olfactory and gustatory perception, along with their implementation in controlling the global threat of disease-transmitting insect vectors and crop-damaging pests, are explained in fruit flies.
Collapse
|
15
|
Ruel DM, Vainer Y, Yakir E, Bohbot JD. Identification and functional characterization of olfactory indolergic receptors in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103651. [PMID: 34582989 DOI: 10.1016/j.ibmb.2021.103651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Indole-sensitive odorant receptors or indolORs belong to a mosquito-specific expansion as ancient as the Culicidae lineage. Brachyceran flies appeared to lack representative members of this group despite the importance of indolics in this important group of dipterans. To explore whether indolORs occur in other brachyceran species, we searched for candidate indolORs in Drosophila melanogaster. Using phylogenetic tools, we show that D. melanogaster OR30a, OR43a, and OR49b form a distinct monophyletic lineage with mosquito indolORs. To explore a potential functional orthology with indolORs, we expressed these three Drosophila ORs in Xenopus laevis oocytes and measured their responses to a panel of indolic compounds. We provide evidence that OR30a, OR43a, and OR49b exhibit high sensitivity to indoles. Along with the recent discovery of indolORs in the housefly Musca domestica, our findings suggest that indolORs are a widespread feature of the peripheral olfactory systems of Diptera.
Collapse
Affiliation(s)
- David M Ruel
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H Smith Faculty of Agriculture, Food and Environment, Rehovot, 76100, Israel.
| | - Yuri Vainer
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H Smith Faculty of Agriculture, Food and Environment, Rehovot, 76100, Israel.
| | - Esther Yakir
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H Smith Faculty of Agriculture, Food and Environment, Rehovot, 76100, Israel.
| | - Jonathan D Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H Smith Faculty of Agriculture, Food and Environment, Rehovot, 76100, Israel.
| |
Collapse
|
16
|
Auer TO, Shahandeh MP, Benton R. Drosophila sechellia: A Genetic Model for Behavioral Evolution and Neuroecology. Annu Rev Genet 2021; 55:527-554. [PMID: 34530638 DOI: 10.1146/annurev-genet-071719-020719] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Defining the mechanisms by which animals adapt to their ecological niche is an important problem bridging evolution, genetics, and neurobiology. We review the establishment of a powerful genetic model for comparative behavioral analysis and neuroecology, Drosophila sechellia. This island-endemic fly species is closely related to several cosmopolitan generalists, including Drosophila melanogaster, but has evolved extreme specialism, feeding and reproducing exclusively on the noni fruit of the tropical shrub Morinda citrifolia. We first describe the development and use of genetic approaches to facilitate genotype/phenotype associations in these drosophilids. Next, we survey the behavioral, physiological, and morphological adaptations of D. sechellia throughout its life cycle and outline our current understanding of the genetic and cellular basis of these traits. Finally, we discuss the principles this knowledge begins to establish in the context of host specialization, speciation, and the neurobiology of behavioral evolution and consider open questions and challenges in the field.
Collapse
Affiliation(s)
- Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| | - Michael P Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; , ,
| |
Collapse
|
17
|
Komarov N, Sprecher SG. The chemosensory system of the Drosophila larva: an overview of current understanding. Fly (Austin) 2021; 16:1-12. [PMID: 34612150 PMCID: PMC8496535 DOI: 10.1080/19336934.2021.1953364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals must sense their surroundings and be able to distinguish between relevant and irrelevant cues. An enticing area of research aims to uncover the mechanisms by which animals respond to chemical signals that constitute critical sensory input. In this review, we describe the principles of a model chemosensory system: the Drosophila larva. While distinct in many ways, larval behaviour is reminiscent of the dogmatic goals of life: to reach a stage of reproductive potential. It takes into account a number of distinct and identifiable parameters to ultimately provoke or modulate appropriate behavioural output. In this light, we describe current knowledge of chemosensory anatomy, genetic components, and the processing logic of chemical cues. We outline recent advancements and summarize the hypothesized neural circuits of sensory systems. Furthermore, we note yet-unanswered questions to create a basis for further investigation of molecular and systemic mechanisms of chemosensation in Drosophila and beyond.
Collapse
Affiliation(s)
- Nikita Komarov
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
18
|
Marchant A, Mougel F, Jacquin-Joly E, Almeida CE, Blanchet D, Bérenger JM, da Rosa JA, Harry M. Chemosensory Gene Expression for Two Closely Relative Species Rhodnius robustus and R. prolixus (Hemiptera, Reduviidade, Triatominae) Vectors of Chagas Disease. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.725504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two closely related species, Rhodnius prolixus and Rhodnius robustus, are the vectors of Trypanosoma cruzi, which is the causative agent of Chagas disease, but clearly exhibit clear-cut differences in their ecological behavior. R. prolixus is considered as a domiciliated species, whereas R. robustus only sporadically visits human houses in Amazonia. We performed a chemosensory gene expression study via RNA-sequencing (RNA-seq) for the two species and also included a laboratory introgressed R. robustus strain. We built an assembled transcriptome for each sample and for both sexes and compiled all in a reference transcriptome for a differential gene expression study. Because the genes specifically expressed in one condition and not expressed in another may also reflect differences in the adaptation of organisms, a comparative study of the presence/absence of transcripts was also performed for the chemosensory transcripts, namely chemosensory proteins (CSPs), odorant-binding proteins (OBPs), odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs), as well as takeout (TO) transcripts because TO proteins have been proposed to be associated with chemosensory perception in both olfactory and taste systems. In this study, 12 novel TO transcripts from the R. prolixus genome were annotated. Among the 199 transcripts, out of interest, annotated in this study, 93% were conserved between R. prolixus and the sylvatic R. robustus. Moreover, 10 transcripts out of interest were specifically expressed in one sex and absent in another. Three chemosensory transcripts were found to be expressed only in the reared R. prolixus (CSP19, OBP9, and OR89) and only one in sylvatic R. robustus (OR22). A large set of transcripts were found to be differentially expressed (DE) between males and females (1,630), with a majority of them (83%) overexpressed in males. Between environmental conditions, 8,596 transcripts were DE, with most (67%) overexpressed in the sylvatic R. robustus samples, including 17 chemosensory transcripts (4 CSPs, 1 OBP, 5 ORs, 1 GR, 4 IR, and 2 TO), but 4 genes (OBP19, OR13, OR40, and OR79) were overexpressed in the reared samples.
Collapse
|
19
|
Legan AW, Jernigan CM, Miller SE, Fuchs MF, Sheehan MJ. Expansion and Accelerated Evolution of 9-Exon Odorant Receptors in Polistes Paper Wasps. Mol Biol Evol 2021; 38:3832-3846. [PMID: 34151983 PMCID: PMC8383895 DOI: 10.1093/molbev/msab023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here, we describe OR gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (dN/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (relaxed purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence.
Collapse
Affiliation(s)
- Andrew W Legan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Christopher M Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Sara E Miller
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Matthieu F Fuchs
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Latorre-Estivalis JM, Almeida FC, Pontes G, Dopazo H, Barrozo RB, Lorenzo MG. Evolution of the insect PPK gene family. Genome Biol Evol 2021; 13:6352500. [PMID: 34390578 PMCID: PMC8438182 DOI: 10.1093/gbe/evab185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/12/2022] Open
Abstract
Insect pickpocket (PPK) receptors mediate diverse functions, among them the detection of mechano- and chemo-sensory stimuli. Notwithstanding their relevance, studies on their evolution only focused on Drosophila. We have analyzed the genomes of 26 species of 8 orders including holometabolous and hemimetabolous insects (Blattodea, Orthoptera, Hemiptera, Phthiraptera, Hymenoptera, Lepidoptera, Coleoptera, and Diptera), to characterize the evolution of this gene family. PPKs were detected in all genomes analyzed, with 578 genes distributed in 7 subfamilies. According to our phylogeny ppk17 is the most divergent member, composing the new subfamily VII. PPKs evolved under a gene birth-and-death model that generated lineage-specific expansions usually located in clusters, while purifying selection affected several orthogroups. Subfamily V was the largest, including a mosquito-specific expansion that can be considered a new target for pest control. PPKs present a high gene turnover generating considerable variation. On one hand, Musca domestica (59), Aedes albopictus (51), Culex quinquefasciatus (48), and Blattella germanica (41) presented the largest PPK repertoires. On the other hand, Pediculus humanus (only ppk17), bees and ants (6-9) had the smallest PPK sets. A subset of prevalent PPKs was identified, indicating very conserved functions for these receptors. Finally, at least twenty percent of the sequences presented calmodulin-binding motifs, suggesting that these PPKs may amplify sensory responses similarly as proposed for D. melanogaster ppk25. Overall, this work characterized the evolutionary history of these receptors revealing relevant unknown gene sequence features and clade-specific expansions.
Collapse
Affiliation(s)
- Jose Manuel Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Francisca C Almeida
- Laboratorio de Genética Evolutiva, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gina Pontes
- Laboratorio de Eco-Fisiología de Insectos del Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hernán Dopazo
- Laboratorio de Genómica de Poblaciones y Evolución. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA). CONICET. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Argentina
| | - Romina B Barrozo
- Grupo de Neuroetología de Insectos Vectores, Laboratorio de Fisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA - UBA - CONICET), Departamento de Biología y Biodiversidad Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Gustavo Lorenzo
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
21
|
Durkin SM, Chakraborty M, Abrieux A, Lewald KM, Gadau A, Svetec N, Peng J, Kopyto M, Langer CB, Chiu JC, Emerson JJ, Zhao L. Behavioral and Genomic Sensory Adaptations Underlying the Pest Activity of Drosophila suzukii. Mol Biol Evol 2021; 38:2532-2546. [PMID: 33586767 PMCID: PMC8136512 DOI: 10.1093/molbev/msab048] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studying how novel phenotypes originate and evolve is fundamental to the field of evolutionary biology as it allows us to understand how organismal diversity is generated and maintained. However, determining the basis of novel phenotypes is challenging as it involves orchestrated changes at multiple biological levels. Here, we aim to overcome this challenge by using a comparative species framework combining behavioral, gene expression, and genomic analyses to understand the evolutionary novel egg-laying substrate-choice behavior of the invasive pest species Drosophila suzukii. First, we used egg-laying behavioral assays to understand the evolution of ripe fruit oviposition preference in D. suzukii compared with closely related species D. subpulchrella and D. biarmipes as well as D. melanogaster. We show that D. subpulchrella and D. biarmipes lay eggs on both ripe and rotten fruits, suggesting that the transition to ripe fruit preference was gradual. Second, using two-choice oviposition assays, we studied how D. suzukii, D. subpulchrella, D. biarmipes, and D. melanogaster differentially process key sensory cues distinguishing ripe from rotten fruit during egg-laying. We found that D. suzukii's preference for ripe fruit is in part mediated through a species-specific preference for stiff substrates. Last, we sequenced and annotated a high-quality genome for D. subpulchrella. Using comparative genomic approaches, we identified candidate genes involved in D. suzukii's ability to seek out and target ripe fruits. Our results provide detail to the stepwise evolution of pest activity in D. suzukii, indicating important cues used by this species when finding a host, and the molecular mechanisms potentially underlying their adaptation to a new ecological niche.
Collapse
Affiliation(s)
- Sylvia M Durkin
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
| | - Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Antoine Abrieux
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Kyle M Lewald
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Alice Gadau
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Miriam Kopyto
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Christopher B Langer
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
22
|
Khallaf MA, Auer TO, Grabe V, Depetris-Chauvin A, Ammagarahalli B, Zhang DD, Lavista-Llanos S, Kaftan F, Weißflog J, Matzkin LM, Rollmann SM, Löfstedt C, Svatoš A, Dweck HKM, Sachse S, Benton R, Hansson BS, Knaden M. Mate discrimination among subspecies through a conserved olfactory pathway. SCIENCE ADVANCES 2020; 6:eaba5279. [PMID: 32704542 PMCID: PMC7360436 DOI: 10.1126/sciadv.aba5279] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/07/2020] [Indexed: 05/22/2023]
Abstract
Communication mechanisms underlying the sexual isolation of species are poorly understood. Using four subspecies of Drosophila mojavensis as a model, we identify two behaviorally active, male-specific pheromones. One functions as a conserved male antiaphrodisiac in all subspecies and acts via gustation. The second induces female receptivity via olfaction exclusively in the two subspecies that produce it. Genetic analysis of the cognate receptor for the olfactory pheromone indicates an important role for this sensory pathway in promoting sexual isolation of subspecies, in combination with auditory signals. Unexpectedly, the peripheral sensory pathway detecting this pheromone is conserved molecularly, physiologically, and anatomically across subspecies. These observations imply that subspecies-specific behaviors arise from differential interpretation of the same peripheral cue, reminiscent of sexually conserved detection but dimorphic interpretation of male pheromones in Drosophila melanogaster. Our results reveal that, during incipient speciation, pheromone production, detection, and interpretation do not necessarily evolve in a coordinated manner.
Collapse
Affiliation(s)
- Mohammed A. Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Thomas O. Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Ana Depetris-Chauvin
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Byrappa Ammagarahalli
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Dan-Dan Zhang
- Department of Biology, Lund University, SE-22362 Lund, Sweden
| | - Sofía Lavista-Llanos
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Filip Kaftan
- Group of Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Jerrit Weißflog
- Group of Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Luciano M. Matzkin
- Department of Entomology, University of Arizona, 1140 E. South Campus Drive, Tucson, AZ 85721, USA
| | - Stephanie M. Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | - Aleš Svatoš
- Group of Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Hany K. M. Dweck
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
23
|
Crowley-Gall A, Shaw M, Rollmann SM. Host Preference and Olfaction in Drosophila mojavensis. J Hered 2020; 110:68-79. [PMID: 30299456 DOI: 10.1093/jhered/esy052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/24/2018] [Indexed: 11/12/2022] Open
Abstract
Many organisms live in complex environments that vary geographically in resource availability. This environmental heterogeneity can lead to changes within species in their phenotypic traits. For example, in many herbivorous insects, variation in host plant availability has been shown to influence insect host preference behavior. This behavior can be mediated in part through the insect olfactory system and the odor-evoked responses of olfactory sensory neurons (OSNs), which are in turn mediated by their corresponding odorant receptor genes. The desert dwelling fly Drosophila mojavensis is a model species for understanding the mechanisms underlying host preference in a heterogeneous environment. Depending on geographic region, one to multiple host plant species are available. Here, we conducted electrophysiological studies and found variation in responses of ORNs to host plant volatiles both within and between 2 populations-particularly to the odorant 4-methylphenol. Flies from select localities within each population were found to lack a response to 4-methylphenol. Experiments then assessed the extent to which these electrophysiological differences were associated with differences in several odor-mediated behavioral responses. No association between the presence/absence of these odor-evoked responses and short range olfactory behavior or oviposition behavior was observed. However, differences in odor-induced feeding behavior in response to 4-methylphenol were found. Localities that exhibit an odor-evoked response to the odorant had increased feeding behavior in the presence of the odorant. This study sets the stage for future work examining the functional genetics underlying variation in odor perception.
Collapse
Affiliation(s)
- Amber Crowley-Gall
- Department of Biological Sciences, University of Cincinnati, Clifton Court, Cincinnati, OH
| | - Mary Shaw
- Department of Biological Sciences, University of Cincinnati, Clifton Court, Cincinnati, OH
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Clifton Court, Cincinnati, OH
| |
Collapse
|
24
|
Zhao HX, Xiao WY, Ji CH, Ren Q, Xia XS, Zhang XF, Huang WZ. Candidate chemosensory genes identified from the greater wax moth, Galleria mellonella, through a transcriptomic analysis. Sci Rep 2019; 9:10032. [PMID: 31296896 PMCID: PMC6624281 DOI: 10.1038/s41598-019-46532-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/27/2019] [Indexed: 11/09/2022] Open
Abstract
The greater wax moth, Galleria mellonella Linnaeus (Lepidoptera: Galleriinae), is a ubiquitous pest of the honeybee, and poses a serious threat to the global honeybee industry. G. mellonella pheromone system is unusual compared to other lepidopterans and provides a unique olfactory model for pheromone perception. To better understand the olfactory mechanisms in G. mellonella, we conducted a transcriptomic analysis on the antennae of both male and female adults of G. mellonella using high-throughput sequencing and annotated gene families potentially involved in chemoreception. We annotated 46 unigenes coding for odorant receptors, 25 for ionotropic receptors, two for sensory neuron membrane proteins, 22 for odorant binding proteins and 20 for chemosensory proteins. Expressed primarily in antennae were all the 46 odorant receptor unigenes, nine of the 14 ionotropic receptor unigenes, and two of the 22 unigenes coding for odorant binding proteins, suggesting their putative roles in olfaction. The expression of some of the identified unigenes were sex-specific, suggesting that they may have important functions in the reproductive behavior of the insect. Identification of the candidate unigenes and initial analyses on their expression profiles should facilitate functional studies in the future on chemoreception mechanisms in this species and related lepidopteran moths.
Collapse
Affiliation(s)
- Hong-Xia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, PR China
| | - Wan-Yu Xiao
- Guangzhou Academy of Agricultural Sciences, Guangzhou, 510308, PR China
| | - Cong-Hui Ji
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, PR China
| | - Qin Ren
- Chongqing Academy of Animal Science, Chongqing, 402460, PR China
| | - Xiao-Shan Xia
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, PR China
| | - Xue-Feng Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, PR China.
| | - Wen-Zhong Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, PR China.
| |
Collapse
|
25
|
Shaw KH, Johnson TK, Anderson A, de Bruyne M, Warr CG. Molecular and Functional Evolution at the Odorant Receptor Or22 Locus in Drosophila melanogaster. Mol Biol Evol 2019; 36:919-929. [PMID: 30768139 PMCID: PMC6502086 DOI: 10.1093/molbev/msz018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insect odorant receptor (Or) genes determine the responses of sensory neurons that mediate critical behaviors. The Drosophila melanogaster Or22 locus represents an interesting example of molecular evolution, with high levels of sequence divergence and copy number variation between D. melanogaster and other Drosophila species, and a corresponding high level of variability in the responses of the neuron it controls, ab3A. However, the link between Or22 molecular and functional diversity has not been established. Here, we show that several naturally occurring Or22 variants generate major shifts in neuronal response properties. We determine the molecular changes that underpin these response shifts, one of which represents a chimeric gene variant previously suggested to be under natural selection. In addition, we show that several alternative molecular genetic mechanisms have evolved for ensuring that where there is more than one gene copy at this locus, only one functional receptor is generated. Our data thus provide a causal link between the striking levels of phenotypic neuronal response variation found in natural populations of D. melanogaster and genetic variation at the Or22 locus. Since neuronal responses govern animal behavior, we predict that Or22 may be a key player in underlying one or more olfactory-driven behaviors of significant adaptive importance.
Collapse
Affiliation(s)
- Katherine H Shaw
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | | | - Marien de Bruyne
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Coral G Warr
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.,School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
26
|
Parker DJ, Djordjevic J, Schwander T. Olfactory Proteins in Timema Stick Insects. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Markow TA. Host use and host shifts in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 31:139-145. [PMID: 31109667 DOI: 10.1016/j.cois.2019.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 05/28/2023]
Abstract
Over a thousand Drosophila species have radiated onto a wide range of feeding and breeding sites. These radiations involve adaptations for locating, accepting, and growing in hosts with highly differing characteristics. In a number of species, owing to the availability of sequenced genomes, particular steps in host specialization and genes that control them, are being identified. Many cases of specialization involve the ability to detoxify some component of the host. Examples include Drosophila sechellia and the octanoic acid in Morinda citrifolia, alpha-amanitin in mycophagous drosophilids, and the alkaloids in cactophilic species. Owing to the known ecologies of many species for which genomes exist, the Drosophila model system provides an unprecedented opportunity to simultaneously examine the genes underlying HOST LOCATION, HOST ACCEPTANCE and HOST USE, the types of selection acting upon them and any coevolutionary interactions among the genes underlying these steps.
Collapse
Affiliation(s)
- Therese Ann Markow
- National Laboratory for the Genomics of Biodiversity, CINVESTAV, Irapuato, Mexico; Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Robertson HM. Molecular Evolution of the Major Arthropod Chemoreceptor Gene Families. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:227-242. [PMID: 30312552 DOI: 10.1146/annurev-ento-020117-043322] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The evolutionary origins of the three major families of chemoreceptors in arthropods-the odorant receptor (OR), gustatory receptor (GR), and ionotropic receptor (IR) families-occurred at the base of the Insecta, Animalia, and Protostomia, respectively. Comparison of receptor family sizes across arthropods reveals a generally positive correlation with their widely disparate complexity of chemical ecology. Closely related species reveal the ongoing processes of gene family evolution, including gene duplication, divergence, pseudogenization, and loss, that mediate these larger patterns. Sets of paralogous receptors within species reveal positive selection on amino acids in regions likely to contribute to ligand binding and specificity. Ligands of many ORs and some GRs and IRs have been identified; however, ligand identification for many more chemoreceptors is needed, as are structures for the OR/GR superfamily, to improve our understanding of the molecular evolution of these ecologically important receptors in arthropods.
Collapse
Affiliation(s)
- Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| |
Collapse
|
29
|
McKenzie SK, Kronauer DJC. The genomic architecture and molecular evolution of ant odorant receptors. Genome Res 2018; 28:1757-1765. [PMID: 30249741 PMCID: PMC6211649 DOI: 10.1101/gr.237123.118] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023]
Abstract
The massive expansions of odorant receptor (OR) genes in ant genomes are notable examples of rapid genome evolution and adaptive gene duplication. However, the molecular mechanisms leading to gene family expansion remain poorly understood, partly because available ant genomes are fragmentary. Here, we present a highly contiguous, chromosome-level assembly of the clonal raider ant genome, revealing the largest known OR repertoire in an insect. While most ant ORs originate via local tandem duplication, we also observe several cases of dispersed duplication followed by tandem duplication in the most rapidly evolving OR clades. We found that areas of unusually high transposable element density (TE islands) were depauperate in ORs in the clonal raider ant, and found no evidence for retrotransposition of ORs. However, OR loci were enriched for transposons relative to the genome as a whole, potentially facilitating tandem duplication by unequal crossing over. We also found that ant OR genes are highly AT-rich compared to other genes. In contrast, in flies, OR genes are dispersed and largely isolated within the genome, and we find that fly ORs are not AT-rich. The genomic architecture and composition of ant ORs thus show convergence with the unrelated vertebrate ORs rather than the related fly ORs. This might be related to the greater gene numbers and/or potential similarities in gene regulation between ants and vertebrates as compared to flies.
Collapse
Affiliation(s)
- Sean K McKenzie
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
30
|
Diaz F, Allan CW, Matzkin LM. Positive selection at sites of chemosensory genes is associated with the recent divergence and local ecological adaptation in cactophilic Drosophila. BMC Evol Biol 2018; 18:144. [PMID: 30236055 PMCID: PMC6148956 DOI: 10.1186/s12862-018-1250-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/20/2018] [Indexed: 11/25/2022] Open
Abstract
Background Adaptation to new hosts in phytophagous insects often involves mechanisms of host recognition by genes of sensory pathways. Most often the molecular evolution of sensory genes has been explained in the context of the birth-and-death model. The role of positive selection is less understood, especially associated with host adaptation and specialization. Here we aim to contribute evidence for this latter hypothesis by considering the case of Drosophila mojavensis, a species with an evolutionary history shaped by multiple host shifts in a relatively short time scale, and its generalist sister species, D. arizonae. Results We used a phylogenetic and population genetic analysis framework to test for positive selection in a subset of four chemoreceptor genes, one gustatory receptor (Gr) and three odorant receptors (Or), for which their expression has been previously associated with host shifts. We found strong evidence of positive selection at several amino acid sites in all genes investigated, most of which exhibited changes predicted to cause functional effects in these transmembrane proteins. A significant portion of the sites identified as evolving positively were largely found in the cytoplasmic region, although a few were also present in the extracellular domains. Conclusions The pattern of substitution observed suggests that some of these changes likely had an effect on signal transduction as well as odorant recognition and protein-protein interactions. These findings support the role of positive selection in shaping the pattern of variation at chemosensory receptors, both during the specialization onto one or a few related hosts, but as well as during the evolution and adaptation of generalist species into utilizing several hosts. Electronic supplementary material The online version of this article (10.1186/s12862-018-1250-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando Diaz
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA. .,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA. .,BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
31
|
Yohe LR, Brand P. Evolutionary ecology of chemosensation and its role in sensory drive. Curr Zool 2018; 64:525-533. [PMID: 30108633 PMCID: PMC6084603 DOI: 10.1093/cz/zoy048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/20/2018] [Indexed: 11/14/2022] Open
Abstract
All behaviors of an organism are rooted in sensory processing of signals from its environment, and natural selection shapes sensory adaptations to ensure successful detection of cues that maximize fitness. Sensory drive, or divergent selection for efficient signal transmission among heterogeneous environments, has been a useful hypothesis for describing sensory adaptations, but its current scope has primarily focused on visual and acoustic sensory modalities. Chemosensation, the most widespread sensory modality in animals that includes the senses of smell and taste, is characterized by rapid evolution and has been linked to sensory adaptations to new environments in numerous lineages. Yet, olfaction and gustation have been largely underappreciated in light of the sensory drive hypothesis. Here, we examine why chemosensory systems have been overlooked and discuss the potential of chemosensation to shed new insight on the sensory drive hypothesis and vice versa. We provide suggestions for developing a framework to better incorporate studies of chemosensory adaptation that have the potential to shape a more complete, coherent, and holistic interpretation of the sensory drive.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Department of Geology & Geophysics, Yale University, New Haven, CT, USA
| | - Philipp Brand
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
32
|
Brand P, Ramírez SR. The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees. Genome Biol Evol 2018; 9:2023-2036. [PMID: 28854688 PMCID: PMC5597890 DOI: 10.1093/gbe/evx149] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2017] [Indexed: 12/24/2022] Open
Abstract
Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects.
Collapse
Affiliation(s)
- Philipp Brand
- Department for Evolution and Ecology, Center for Population Biology, University of California, Davis.,Population Biology Graduate Group, Center for Population Biology, University of California, Davis
| | - Santiago R Ramírez
- Department for Evolution and Ecology, Center for Population Biology, University of California, Davis
| |
Collapse
|
33
|
Jacob V, Scolari F, Delatte H, Gasperi G, Jacquin-Joly E, Malacrida AR, Duyck PF. Current source density mapping of antennal sensory selectivity reveals conserved olfactory systems between tephritids and Drosophila. Sci Rep 2017; 7:15304. [PMID: 29127313 PMCID: PMC5681579 DOI: 10.1038/s41598-017-15431-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Ecological specialization of insects involves the functional and morphological reshaping of olfactory systems. Little is known about the degree to which insect sensitivity to odorant compounds is conserved between genera, tribes, or families. Here we compared the olfactory systems of six tephritid fruit fly species spanning two tribes and the distantly related Drosophila melanogaster at molecular, functional, and morphological levels. Olfaction in these flies is mediated by a set of olfactory receptors (ORs) expressed in different functional classes of neurons located in distinct antennal regions. We performed a phylogenetic analysis that revealed both family-specific OR genes and putative orthologous OR genes between tephritids and Drosophila. With respect to function, we then used a current source density (CSD) analysis to map activity across antennae. Functional maps mirrored the intrinsic structure of antennae observed with scanning electron microscopy. Together, the results revealed partial conservation of the olfactory systems between tephritids and Drosophila. We also demonstrate that the mapping of olfactory responses is necessary to decipher antennal sensory selectivity to olfactory compounds. CSD analysis can be easily applied to map antennae of other species and therefore enables the rapid deriving of olfactory maps and the reconstructing of the target organisms' history of evolution.
Collapse
Affiliation(s)
- Vincent Jacob
- UMR PVBMT, Université de la Réunion, Saint Pierre, La Réunion, France.
- UMR PVBMT, CIRAD, Saint Pierre, La Réunion, France.
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
34
|
Barish S, Li Q, Pan JW, Soeder C, Jones C, Volkan PC. Transcriptional profiling of olfactory system development identifies distal antenna as a regulator of subset of neuronal fates. Sci Rep 2017; 7:40873. [PMID: 28102318 PMCID: PMC5244397 DOI: 10.1038/srep40873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/13/2016] [Indexed: 01/22/2023] Open
Abstract
Drosophila uses 50 different olfactory receptor neuron (ORN) classes that are clustered within distinct sensilla subtypes to decipher their chemical environment. Each sensilla subtype houses 1-4 ORN identities that arise through asymmetric divisions of a single sensory organ precursor (SOP). Despite a number of mutational studies investigating the regulation of ORN development, a majority of the transcriptional programs that lead to the different ORN classes in the developing olfactory system are unknown. Here we use transcriptional profiling across the time series of antennal development to identify novel transcriptional programs governing the differentiation of ORNs. We surveyed four critical developmental stages of the olfactory system: 3rd instar larval (prepatterning), 8 hours after puparium formation (APF, SOP selection), 40 hrs APF (neurogenesis), and adult antennae. We focused on the expression profiles of olfactory receptor genes and transcription factors-the two main classes of genes that regulate the sensory identity of ORNs. We identify distinct clusters of genes that have overlapping temporal expression profiles suggesting they have a key role during olfactory system development. We show that the expression of the transcription factor distal antenna (dan) is highly similar to other prepatterning factors and is required for the expression of a subset of ORs.
Collapse
Affiliation(s)
- Scott Barish
- Duke University, Department of Biology, Durham, NC, USA
| | - Qingyun Li
- Duke University, Department of Biology, Durham, NC, USA
| | - Jia W. Pan
- Duke University, Department of Biology, Durham, NC, USA
| | - Charlie Soeder
- University of North Carolina- Chapel Hill, Integrative Program for Biological & Genome Sciences, Chapel Hill, NC, USA
| | - Corbin Jones
- University of North Carolina- Chapel Hill, Integrative Program for Biological & Genome Sciences, Chapel Hill, NC, USA
- University of North Carolina- Chapel Hill, Department of Biology, Chapel Hill, NC, USA
| | - Pelin C. Volkan
- Duke University, Department of Biology, Durham, NC, USA
- Duke Institute for Brain Sciences, Durham, NC, USA
| |
Collapse
|
35
|
Evolutionary Insights into Taste Perception of the Invasive Pest Drosophila suzukii. G3-GENES GENOMES GENETICS 2016; 6:4185-4196. [PMID: 27760794 PMCID: PMC5144986 DOI: 10.1534/g3.116.036467] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemosensory perception allows insects to interact with the environment by perceiving odorant or tastant molecules; genes encoding chemoreceptors are the molecular interface between the environment and the insect, and play a central role in mediating its chemosensory behavior. Here, we explore how the evolution of these genes in the emerging pest Drosophila suzukii correlates with the peculiar ecology of this species. We annotated approximately 130 genes coding for gustatory receptors (GRs) and divergent ionotropic receptors (dIRs) in D. suzukii and in its close relative D. biarmipes. We then analyzed the evolution, in terms of size, of each gene family as well of the molecular evolution of the genes in a 14 Drosophila species phylogenetic framework. We show that the overall evolution of GRs parallels that of dIRs not only in D. suzukii, but also in all other analyzed Drosophila. Our results reveal an unprecedented burst of gene family size in the lineage leading to the suzukii subgroup, as well as genomic changes that characterize D. suzukii, particularly duplications and strong signs of positive selection in the putative bitter-taste receptor GR59d. Expression studies of duplicate genes in D. suzukii support a spatio-temporal subfunctionalization of the duplicate isoforms. Our results suggest that D. suzukii is not characterized by gene loss, as observed in other specialist Drosophila species, but rather by a dramatic acceleration of gene gains, compatible with a highly generalist feeding behavior. Overall, our analyses provide candidate taste receptors specific for D. suzukii that may correlate with its specific behavior, and which may be tested in functional studies to ultimately enhance its control in the field.
Collapse
|
36
|
Marchant A, Mougel F, Jacquin-Joly E, Costa J, Almeida CE, Harry M. Under-Expression of Chemosensory Genes in Domiciliary Bugs of the Chagas Disease Vector Triatoma brasiliensis. PLoS Negl Trop Dis 2016; 10:e0005067. [PMID: 27792774 PMCID: PMC5085048 DOI: 10.1371/journal.pntd.0005067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/22/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In Latin America, the bloodsucking bugs Triatominae are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical elimination programs have been launched to control Chagas disease vectors. However, the disease persists because native vectors from sylvatic habitats are able to (re)colonize houses-a process called domiciliation. Triatoma brasiliensis is one example. Because the chemosensory system allows insects to interact with their environment and plays a key role in insect adaption, we conducted a descriptive and comparative study of the chemosensory transcriptome of T. brasiliensis samples from different ecotopes. METHODOLOGY/PRINCIPAL FINDING In a reference transcriptome built using de novo assembly, we found transcripts encoding 27 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), 3 odorant receptors (ORs), 5 transient receptor potential channel (TRPs), 1 sensory neuron membrane protein (SNMPs), 25 takeout proteins, 72 cytochrome P450s, 5 gluthatione S-transferases, and 49 cuticular proteins. Using protein phylogenies, we showed that most of the OBPs and CSPs for T. brasiliensis had well supported orthologs in the kissing bug Rhodnius prolixus. We also showed a higher number of these genes within the bloodsucking bugs and more generally within all Hemipterans compared to the other species in the super-order Paraneoptera. Using both DESeq2 and EdgeR software, we performed differential expression analyses between samples of T. brasiliensis, taking into account their environment (sylvatic, peridomiciliary and domiciliary) and sex. We also searched clusters of co-expressed contigs using HTSCluster. Among differentially expressed (DE) contigs, most were under-expressed in the chemosensory organs of the domiciliary bugs compared to the other samples and in females compared to males. We clearly identified DE genes that play a role in the chemosensory system. CONCLUSION/SIGNIFICANCE Chemosensory genes could be good candidates for genes that contribute to adaptation or plastic rearrangement to an anthropogenic system. The domiciliary environment probably includes less diversity of xenobiotics and probably has more stable abiotic parameters than do sylvatic and peridomiciliary environments. This could explain why both detoxification and cuticle protein genes are less expressed in domiciliary bugs. Understanding the molecular basis for how vectors adapt to human dwellings may reveal new tools to control disease vectors; for example, by disrupting chemical communication.
Collapse
Affiliation(s)
- Axelle Marchant
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS-IRD- Univ. Paris-Sud, Université Paris Saclay, Campus CNRS, Gif-sur-Yvette – France
- UFR Sciences, Université Paris Sud, Orsay, France
| | - Florence Mougel
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS-IRD- Univ. Paris-Sud, Université Paris Saclay, Campus CNRS, Gif-sur-Yvette – France
- UFR Sciences, Université Paris Sud, Orsay, France
| | - Emmanuelle Jacquin-Joly
- INRA, UMR 1392, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Route de Saint Cyr, Versailles, France
| | - Jane Costa
- Laboratório de Biodiversidade Entomológica; Instituto Oswaldo Cruz - Fiocruz; Rio de Janeiro; Brasil Instituto Oswaldo Cruz, Fiocruz – Brazil
| | - Carlos Eduardo Almeida
- Universidade Estadual de Campinas (Uncamp), Campinas São Paulo – Brazil
- Universidade Federal da Paraíba (UFPB), Paraíba – Brazil
| | - Myriam Harry
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS-IRD- Univ. Paris-Sud, Université Paris Saclay, Campus CNRS, Gif-sur-Yvette – France
- UFR Sciences, Université Paris Sud, Orsay, France
| |
Collapse
|
37
|
Karpe SD, Jain R, Brockmann A, Sowdhamini R. Identification of Complete Repertoire of Apis florea Odorant Receptors Reveals Complex Orthologous Relationships with Apis mellifera. Genome Biol Evol 2016; 8:2879-2895. [PMID: 27540087 PMCID: PMC5630852 DOI: 10.1093/gbe/evw202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We developed a computational pipeline for homology based identification of the complete repertoire of olfactory receptor (OR) genes in the Asian honey bee species, Apis florea. Apis florea is phylogenetically the most basal honey bee species and also the most distant sister species to the Western honey bee Apis mellifera, for which all OR genes had been identified before. Using our pipeline, we identified 180 OR genes in A. florea, which is very similar to the number of ORs identified in A. mellifera (177 ORs). Many characteristics of the ORs including gene structure, synteny of tandemly repeated ORs and basic phylogenetic clustering are highly conserved. The composite phylogenetic tree of A. florea and A. mellifera ORs could be divided into 21 clades which are in harmony with the existing Hymenopteran tree. However, we found a few nonorthologous OR relationships between both species as well as independent pseudogenization of ORs suggesting separate evolutionary changes. Particularly, a subgroup of the OR gene clade XI, which had been hypothesized to code cuticular hydrocarbon receptors showed a high number of species-specific ORs. RNAseq analysis detected a total number of 145 OR transcripts in male and 162 in female antennae. Most of the OR genes were highly expressed on the female antennae. However, we detected five distinct male-biased OR genes, out of which three genes (AfOr11, AfOr18, AfOr170P) were shown to be male-biased in A. mellifera, too, thus corroborating a behavioral function in sex-pheromone communication.
Collapse
Affiliation(s)
- Snehal D Karpe
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, India
| | - Rikesh Jain
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, India SASTRA University, Thanjavur, India
| | - Axel Brockmann
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, India
| |
Collapse
|
38
|
Crowley-Gall A, Date P, Han C, Rhodes N, Andolfatto P, Layne JE, Rollmann SM. Population differences in olfaction accompany host shift in Drosophila mojavensis. Proc Biol Sci 2016; 283:20161562. [PMID: 27581882 PMCID: PMC5013806 DOI: 10.1098/rspb.2016.1562] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022] Open
Abstract
Evolutionary shifts in plant-herbivore interactions provide a model for understanding the link among the evolution of behaviour, ecological specialization and incipient speciation. Drosophila mojavensis uses different host cacti across its range, and volatile chemicals emitted by the host are the primary cue for host plant identification. In this study, we show that changes in host plant use between distinct D. mojavensis populations are accompanied by changes in the olfactory system. Specifically, we observe differences in olfactory receptor neuron specificity and sensitivity, as well as changes in sensillar subtype abundance, between populations. Additionally, RNA-seq analyses reveal differential gene expression between populations for members of the odorant receptor gene family. Hence, alterations in host preference are associated with changes in development, regulation and function at the olfactory periphery.
Collapse
Affiliation(s)
- Amber Crowley-Gall
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Priya Date
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clair Han
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Nicole Rhodes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Peter Andolfatto
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - John E Layne
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
39
|
Hickner PV, Rivaldi CL, Johnson CM, Siddappaji M, Raster GJ, Syed Z. The making of a pest: Insights from the evolution of chemosensory receptor families in a pestiferous and invasive fly, Drosophila suzukii. BMC Genomics 2016; 17:648. [PMID: 27530109 PMCID: PMC4988008 DOI: 10.1186/s12864-016-2983-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/29/2016] [Indexed: 01/07/2023] Open
Abstract
Background Drosophila suzukii differs from other melanogaster group members in their proclivity for laying eggs in fresh fruit rather than in fermenting fruits. Olfaction and gustation play a critical role during insect niche formation, and these senses are largely mediated by two important receptor families: olfactory and gustatory receptors (Ors and Grs). Earlier work from our laboratory has revealed how the olfactory landscape of D. suzukii is dominated by volatiles derived from its unique niche. Signaling and reception evolve in synchrony, since the interaction of ligands and receptors together mediate the chemosensory behavior. Here, we manually annotated the Ors and Grs in D. suzukii and two close relatives, D. biarmipes and D. takahashii, and compared these repertoires to those in other melanogaster group drosophilids to identify candidate chemoreceptors associated with D. suzukii’s unusual niche utilization. Results Our comprehensive annotations of the chemosensory genomes in three species, and comparative analysis with other melanogaster group members provide insights into the evolution of chemosensation in the pestiferous D. suzukii. We annotated a total of 71 Or genes in D. suzukii, with nine of those being pseudogenes (12.7 %). Alternative splicing of two genes brings the total to 62 genes encoding 66 Ors. Duplications of Or23a and Or67a expanded D. suzukii’s Or repertoire, while pseudogenization of Or74a, Or85a, and Or98b reduced the number of functional Ors to roughly the same as other annotated species in the melanogaster group. Seventy-one intact Gr genes and three pseudogenes were annotated in D. suzukii. Alternative splicing in three genes brings the total number of Grs to 81. We identified signatures of positive selection in two Ors and three Grs at nodes leading to D. suzukii, while three copies in the largest expanded Or lineage, Or67a, also showed signs of positive selection at the external nodes. Conclusion Our analysis of D. suzukii’s chemoreceptor repertoires in the context of nine melanogaster group drosophilids, including two of its closest relatives (D. biarmipes and D. takahashii), revealed several candidate receptors associated with the adaptation of D. suzukii to its unique ecological niche. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2983-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul V Hickner
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Chissa L Rivaldi
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Cole M Johnson
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Madhura Siddappaji
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gregory J Raster
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zainulabeuddin Syed
- Department of Biological Sciences & Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
40
|
Ramasamy S, Ometto L, Crava CM, Revadi S, Kaur R, Horner DS, Pisani D, Dekker T, Anfora G, Rota-Stabelli O. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii. Genome Biol Evol 2016; 8:2297-311. [PMID: 27435796 PMCID: PMC5010897 DOI: 10.1093/gbe/evw160] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors-Or85a and Or22a-are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii.
Collapse
Affiliation(s)
- Sukanya Ramasamy
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy Diparimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Lino Ometto
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Cristina M Crava
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Santosh Revadi
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy Chemical Ecology Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Rupinder Kaur
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - David S Horner
- Diparimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Davide Pisani
- School of Biological Sciences and School of Earth Sciences, University of Bristol, Bristol, UK
| | - Teun Dekker
- Chemical Ecology Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Gianfranco Anfora
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Omar Rota-Stabelli
- Agricultural Entomology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
41
|
Dweck HK, Ebrahim SA, Khallaf MA, Koenig C, Farhan A, Stieber R, Weißflog J, Svatoš A, Grosse-Wilde E, Knaden M, Hansson BS. Olfactory channels associated with the Drosophila maxillary palp mediate short- and long-range attraction. eLife 2016; 5. [PMID: 27213519 PMCID: PMC4927298 DOI: 10.7554/elife.14925] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/21/2016] [Indexed: 01/07/2023] Open
Abstract
The vinegar fly Drosophila melanogaster is equipped with two peripheral olfactory organs, antenna and maxillary palp. The antenna is involved in finding food, oviposition sites and mates. However, the functional significance of the maxillary palp remained unknown. Here, we screened the olfactory sensory neurons of the maxillary palp (MP-OSNs) using a large number of natural odor extracts to identify novel ligands for each MP-OSN type. We found that each type is the sole or the primary detector for a specific compound, and detects these compounds with high sensitivity. We next dissected the contribution of MP-OSNs to behaviors evoked by their key ligands and found that MP-OSNs mediate short- and long-range attraction. Furthermore, the organization, detection and olfactory receptor (Or) genes of MP-OSNs are conserved in the agricultural pest D. suzukii. The novel short and long-range attractants could potentially be used in integrated pest management (IPM) programs of this pest species. DOI:http://dx.doi.org/10.7554/eLife.14925.001
Collapse
Affiliation(s)
- Hany Km Dweck
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Shimaa Am Ebrahim
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Mohammed A Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Christopher Koenig
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Abu Farhan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Regina Stieber
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jerrit Weißflog
- Mass Spectrometry Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Aleš Svatoš
- Mass Spectrometry Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
42
|
Haverkamp A, Bing J, Badeke E, Hansson BS, Knaden M. Innate olfactory preferences for flowers matching proboscis length ensure optimal energy gain in a hawkmoth. Nat Commun 2016; 7:11644. [PMID: 27173441 PMCID: PMC4869250 DOI: 10.1038/ncomms11644] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/18/2016] [Indexed: 11/28/2022] Open
Abstract
Cost efficient foraging is of especial importance for animals like hawkmoths or hummingbirds that are feeding 'on the wing', making their foraging energetically demanding. The economic decisions made by these animals have a strong influence on the plants they pollinate and floral volatiles are often guiding these decisions. Here we show that the hawkmoth Manduca sexta exhibits an innate preference for volatiles of those Nicotiana flowers, which match the length of the moth's proboscis. This preference becomes apparent already at the initial inflight encounter, with the odour plume. Free-flight respiration analyses combined with nectar calorimetry revealed a significant caloric gain per invested flight energy only for preferred-matching-flowers. Our data therefore support Darwin's initial hypothesis on the coevolution of flower length and moth proboscis. We demonstrate that this interaction is mediated by an adaptive and hardwired olfactory preference of the moth for flowers offering the highest net-energy reward.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Julia Bing
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Elisa Badeke
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| |
Collapse
|
43
|
Steinwender B, Thrimawithana AH, Crowhurst R, Newcomb RD. Odorant Receptors of the New Zealand Endemic Leafroller Moth Species Planotortrix octo and P. excessana. PLoS One 2016; 11:e0152147. [PMID: 27003722 PMCID: PMC4803216 DOI: 10.1371/journal.pone.0152147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/09/2016] [Indexed: 12/04/2022] Open
Abstract
Moths use their sense of smell to find food sources, mating partners and oviposition sites. For this they possess a family of odorant receptors (ORs). Some ORs are used by both sexes whereas others have sex-specific roles. For example, male moths possess ORs specifically tuned to sex pheromones produced by conspecific females. Here we identify sets of ORs from the antennae of New Zealand endemic leafroller moths Planotortrix octo (48 ORs) and P. excessana (47 ORs) using an RNA-Seq approach. Two orthologous ORs show male-biased expression in the adult antennae of both species (OR7 and OR30) and one other OR in each species was female-biased in its expression (PoctOR25, PexcOR14) by qPCR. PAML analysis conducted on male-biased ORs indicated positive selection acting on the male-biased OR7. The fact that OR7 is likely under positive selection, that it is male-biased in its expression and that its orthologue in C. obliquana, CoblOR7, responds to sex pheromone components also utilised by Planotortrix species, suggests that this receptor may also be important in sex pheromone reception in Planotortrix species.
Collapse
Affiliation(s)
- Bernd Steinwender
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| | | | - Ross Crowhurst
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Richard D. Newcomb
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
44
|
Elfekih S, Chen CY, Hsu JC, Belcaid M, Haymer D. Identification and preliminary characterization of chemosensory perception-associated proteins in the melon fly Bactrocera cucurbitae using RNA-seq. Sci Rep 2016; 6:19112. [PMID: 26752702 PMCID: PMC4707516 DOI: 10.1038/srep19112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/26/2015] [Indexed: 11/09/2022] Open
Abstract
An investigation into proteins involved in chemosensory perception in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae) is described here using a newly generated transcriptome dataset. The melon fly is a major agricultural pest, widely distributed in the Asia-Pacific region and some parts of Africa. For this study, a transcriptome dataset was generated using RNA extracted from 4-day-old adult specimens of the melon fly. The dataset was assembled and annotated via Gene Ontology (GO) analysis. Based on this and similarity searches to data from other species, a number of protein sequences putatively involved in chemosensory reception were identified and characterized in the melon fly. This included the highly conserved "Orco" along with a number of other less conserved odorant binding protein sequences. In addition, several sequences representing putative ionotropic and gustatory receptors were also identified. This study provides a foundation for future functional studies of chemosensory proteins in the melon fly and for making more detailed comparisons to other species. In the long term, this will ultimately help in the development of improved tools for pest management.
Collapse
Affiliation(s)
- Samia Elfekih
- Commonwealth Science and Industry Organization (CSIRO), Biosecurity flagship, P.O. BOX 1700, Canberra, ACT 2601, Australia
| | - Chien-Yu Chen
- National Taiwan University, Department of Bio-industrial Mechatronics and Engineering, Taipei, Taiwan
| | - Ju-Chun Hsu
- National Taiwan University, Department of Entomology, Taipei, Taiwan
| | - Mahdi Belcaid
- Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - David Haymer
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
45
|
Li Q, Barish S, Okuwa S, Maciejewski A, Brandt AT, Reinhold D, Jones CD, Volkan PC. A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity. PLoS Genet 2016; 12:e1005780. [PMID: 26765103 PMCID: PMC4713227 DOI: 10.1371/journal.pgen.1005780] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Scott Barish
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Abigail Maciejewski
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Alicia T. Brandt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dominik Reinhold
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Mathematics and Computer Science, Clark University, Worcester, Massachusetts, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
46
|
The chemical ecology of the fly. Curr Opin Neurobiol 2015; 34:95-102. [DOI: 10.1016/j.conb.2015.02.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 02/01/2023]
|
47
|
Glaser N, Gallot A, Legeai F, Harry M, Kaiser L, Le Ru B, Calatayud PA, Jacquin-Joly E. Differential expression of the chemosensory transcriptome in two populations of the stemborer Sesamia nonagrioides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:28-34. [PMID: 26316282 DOI: 10.1016/j.ibmb.2015.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
Among the proposed mechanisms of local adaptation to different ecological environments, transcriptional changes may play an important role. In this study, we investigated whether such variability occurred within the chemosensory organs of a herbivorous insect, for which chemosensation guides most of its host preferences. A European and an African population of the noctuid Sesamia nonagrioides that display significant differences in their ecological preferences were collected on Zea mays and Typha domingensis, respectively. RNAseq were used between the two populations for digital expression profiling of chemosensory organs from larval antennae and palps. Preliminary data on adult female antennae and ovipositors were also collected. We found 6,550 differentially expressed transcripts in larval antennae and palps. Gene ontology enrichment analyses suggested that transcriptional activity was overrepresented in the French population and that virus and defense activities were overrepresented in the Kenyan population. In addition, we found differential expression of a variety of cytochrome P450s, which may be linked to the different host-plant diets. Looking at olfactory genes, we observed differential expression of numerous candidate odorant-binding proteins, chemosensory proteins, and one olfactory receptor, suggesting that differences in olfactory sensitivity participate in insect adaptation.
Collapse
Affiliation(s)
- Nicolas Glaser
- INRA, UMR 1392, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France; UMR Evolution, Génomes, Comportement et Ecologie, IRD, CNRS, Université Paris Sud, Campus CNRS, 91198 Gif-sur-Yvette Cedex, France
| | - Aurore Gallot
- INRA, UMR 1392, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France; IRISA, équipe GenScale, Campus universitaire de Beaulieu, 35042 Rennes Cedex, France
| | - Fabrice Legeai
- IRISA, équipe GenScale, Campus universitaire de Beaulieu, 35042 Rennes Cedex, France
| | - Myriam Harry
- UMR Evolution, Génomes, Comportement et Ecologie, IRD, CNRS, Université Paris Sud, Campus CNRS, 91198 Gif-sur-Yvette Cedex, France; Université Paris-Sud 11, 91405 Orsay Cedex, France
| | - Laure Kaiser
- UMR Evolution, Génomes, Comportement et Ecologie, IRD, CNRS, Université Paris Sud, Campus CNRS, 91198 Gif-sur-Yvette Cedex, France
| | - Bruno Le Ru
- UMR Evolution, Génomes, Comportement et Ecologie, IRD, CNRS, Université Paris Sud, Campus CNRS, 91198 Gif-sur-Yvette Cedex, France; UMR Evolution, Génomes, Comportement et Ecologie IRD, CNRS, Université Paris Sud, c/o icipe, NSBB Project, PO Box 30772-00100, Nairobi, Kenya
| | - Paul-André Calatayud
- UMR Evolution, Génomes, Comportement et Ecologie, IRD, CNRS, Université Paris Sud, Campus CNRS, 91198 Gif-sur-Yvette Cedex, France; UMR Evolution, Génomes, Comportement et Ecologie IRD, CNRS, Université Paris Sud, c/o icipe, NSBB Project, PO Box 30772-00100, Nairobi, Kenya
| | - Emmanuelle Jacquin-Joly
- INRA, UMR 1392, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France.
| |
Collapse
|
48
|
Brand P, Ramírez SR, Leese F, Quezada-Euan JJG, Tollrian R, Eltz T. Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini). BMC Evol Biol 2015; 15:176. [PMID: 26314297 PMCID: PMC4552289 DOI: 10.1186/s12862-015-0451-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
Background Insects rely more on chemical signals (semiochemicals) than on any other sensory modality to find, identify, and choose mates. In most insects, pheromone production is typically regulated through biosynthetic pathways, whereas pheromone sensory detection is controlled by the olfactory system. Orchid bees are exceptional in that their semiochemicals are not produced metabolically, but instead male bees collect odoriferous compounds (perfumes) from the environment and store them in specialized hind-leg pockets to subsequently expose during courtship display. Thus, the olfactory sensory system of orchid bees simultaneously controls male perfume traits (sender components) and female preferences (receiver components). This functional linkage increases the opportunities for parallel evolution of male traits and female preferences, particularly in response to genetic changes of chemosensory detection (e.g. Odorant Receptor genes). To identify whether shifts in pheromone composition among related lineages of orchid bees are associated with divergence in chemosensory genes of the olfactory periphery, we searched for patterns of divergent selection across the antennal transcriptomes of two recently diverged sibling species Euglossa dilemma and E. viridissima. Results We identified 3185 orthologous genes including 94 chemosensory loci from five different gene families (Odorant Receptors, Ionotropic Receptors, Gustatory Receptors, Odorant Binding Proteins, and Chemosensory Proteins). Our results revealed that orthologs with signatures of divergent selection between E. dilemma and E. viridissima were significantly enriched for chemosensory genes. Notably, elevated signals of divergent selection were almost exclusively observed among chemosensory receptors (i.e. Odorant Receptors). Conclusions Our results suggest that rapid changes in the chemosensory gene family occurred among closely related species of orchid bees. These findings are consistent with the hypothesis that strong divergent selection acting on chemosensory receptor genes plays an important role in the evolution and diversification of insect pheromone systems. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0451-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp Brand
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany. .,Department for Evolution and Ecology, Center for Population Biology, University of California Davis, One Shields Avenue, 95616, Davis, USA.
| | - Santiago R Ramírez
- Department for Evolution and Ecology, Center for Population Biology, University of California Davis, One Shields Avenue, 95616, Davis, USA.
| | - Florian Leese
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany. .,Present address: Faculty of Biology, Aquatic Ecosystems Research, University of Duisburg and Essen, Universitätsstrasse 5, D-45141, Essen, Germany.
| | | | - Ralph Tollrian
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany.
| | - Thomas Eltz
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany.
| |
Collapse
|
49
|
Engsontia P, Sangket U, Robertson HM, Satasook C. Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors. BMC Res Notes 2015; 8:380. [PMID: 26306879 PMCID: PMC4549895 DOI: 10.1186/s13104-015-1371-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/18/2015] [Indexed: 01/14/2023] Open
Abstract
Background Chemical communication plays important roles in the social behavior of ants making them one of the most successful groups of animals on earth. However, the molecular evolutionary process responsible for their chemosensory adaptation is still elusive. Recent advances in genomic studies have led to the identification of large odorant receptor (Or) gene repertoires from ant genomes providing fruitful materials for molecular evolution analysis. The aim of this study was to test the hypothesis that diversification of this gene family is involved in olfactory adaptation of each species. Results We annotated the Or genes from the genome sequences of two leaf-cutter ants, Acromyrmex echinatior and Atta cephalotes (385 and 376 putative functional genes, respectively). These were used, together with Or genes from Camponotus floridanus, Harpegnathos saltator, Pogonomyrmex barbatus, Linepithema humile, Cerapachys biroi, Solenopsis invicta and Apis mellifera, in molecular evolution analysis. Like the Or family in other insects, ant Or genes evolve by the birth-and-death model of gene family evolution. Large gene family expansions involving tandem gene duplications, and gene gains outnumbering losses, are observed. Codon analysis of genes in lineage-specific expansion clades revealed signatures of positive selection on the candidate cuticular hydrocarbon receptor genes (9-exon subfamily) of Cerapachys biroi, Camponotus floridanus, Acromyrmex echinatior and Atta cephalotes. Positively selected amino acid positions are primarily in transmembrane domains 3 and 6, which are hypothesized to contribute to the odor-binding pocket, presumably mediating changing ligand specificity. Conclusions This study provides support for the hypothesis that some ant lineage-specific Or genes have evolved under positive selection. Newly duplicated genes particularly in the candidate cuticular hydrocarbon receptor clade that have evolved under positive selection may contribute to the highly sophisticated lineage-specific chemical communication in each ant species. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1371-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patamarerk Engsontia
- Molecular Ecology and Evolution Research Unit, Prince of Songkla University, Songkla, 90112, Thailand. .,Department of Biology, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand.
| | - Unitsa Sangket
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, The Center for Genomics and Bioinformatics Research, Prince of Songkla University, Songkla, 90112, Thailand.
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL, 61801, USA.
| | - Chutamas Satasook
- Department of Biology, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand.
| |
Collapse
|
50
|
de Fouchier A, Sun X, Monsempes C, Mirabeau O, Jacquin-Joly E, Montagné N. Evolution of two receptors detecting the same pheromone compound in crop pest moths of the genus Spodoptera. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00095] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|