1
|
Dort H, van der Bijl W, Wahlberg N, Nylin S, Wheat CW. Genome-Wide Gene Birth-Death Dynamics Are Associated with Diet Breadth Variation in Lepidoptera. Genome Biol Evol 2024; 16:evae095. [PMID: 38976568 PMCID: PMC11229701 DOI: 10.1093/gbe/evae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 07/10/2024] Open
Abstract
Comparative analyses of gene birth-death dynamics have the potential to reveal gene families that played an important role in the evolution of morphological, behavioral, or physiological variation. Here, we used whole genomes of 30 species of butterflies and moths to identify gene birth-death dynamics among the Lepidoptera that are associated with specialist or generalist feeding strategies. Our work advances this field using a uniform set of annotated proteins for all genomes, investigating associations while correcting for phylogeny, and assessing all gene families rather than a priori subsets. We discovered that the sizes of several important gene families (e.g. those associated with pesticide resistance, xenobiotic detoxification, and/or protein digestion) are significantly correlated with diet breadth. We also found 22 gene families showing significant shifts in gene birth-death dynamics at the butterfly (Papilionoidea) crown node, the most notable of which was a family of pheromone receptors that underwent a contraction potentially linked with a shift to visual-based mate recognition. Our findings highlight the importance of uniform annotations, phylogenetic corrections, and unbiased gene family analyses in generating a list of candidate genes that warrant further exploration.
Collapse
Affiliation(s)
- Hanna Dort
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Wouter van der Bijl
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | | | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
2
|
Okamura Y, Vogel H. De Novo Genome Assembly and Annotation of Leptosia nina Provide New Insights into the Evolutionary Dynamics of Genes Involved in Host-Plant Adaptation of Pierinae Butterflies. Genome Biol Evol 2024; 16:evae105. [PMID: 38778773 PMCID: PMC11135640 DOI: 10.1093/gbe/evae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
In interactions between plants and herbivorous insects, the traits enabling phytophagous insects to overcome chemical defenses of their host plants have evolved multiple times. A prominent example of such adaptive key innovations in herbivorous insects is nitrile specifier proteins (NSPs) that enabled Pierinae butterflies to colonize Brassicales host plants that have a glucosinolate-myrosinase defense system. Although the evolutionary aspects of NSP-encoding genes have been studied in some Pierinae taxa (especially among Pieris butterflies), the ancestral evolutionary state of NSPs is unclear due to the limited genomic information available for species within Pierinae. Here, we generate a high-quality genome assembly and annotation of Leptosia nina, a member of a small tribe, Leptosiaini. L. nina uses as its main host Capparaceae plants, one of the ancestral hosts within Pierinae. By using ∼90-fold coverage of Oxford Nanopore long reads and Illumina short reads for subsequent polishing and error correction, we constructed a final genome assembly that consisted of 286 contigs with a total of 225.8 Mb and an N50 of 10.7 Mb. Genome annotation with transcriptome hints predicted 16,574 genes and covered 98.3% of BUSCO genes. A typical NSP gene is composed of three tandem domains found in Pierinae butterflies; unexpectedly, we found a new NSP-like gene in Pierinae composed of only two tandem domains. This newly found NSP-like gene in L. nina provides important insights into the evolutionary dynamics of domain and gene duplication events relating to host-plant adaptation in Pierinae butterflies.
Collapse
Affiliation(s)
- Yu Okamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena 07745, Germany
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena 07745, Germany
| |
Collapse
|
3
|
Yamabe T, Kajitani R, Toyoda A, Itoh T. Chromosomal-level Genome Assembly of the Coffee Bee Hawk Moth Reveals the Evolution of Chromosomes and the Molecular Basis of Distinct Phenotypes. Genome Biol Evol 2023; 15:evad141. [PMID: 37494061 PMCID: PMC10476703 DOI: 10.1093/gbe/evad141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023] Open
Abstract
Cephonodes hylas, the coffee bee hawk moth is a hawk moth species with unique characteristics, such as larvae feeding on gardenia, overcoming the toxicity of its iridoid glycosides, diurnal adults, and transparent wings. Although C. hylas is a fascinating model for molecular biological research, genome sequence analysis-based genetic approaches to elucidate these peculiarities have not yet been undertaken. We successfully achieved de novo genome assembly at the chromosome level of C. hylas comparable to the Lepidoptera model organism, silkworm. Additionally, 16,854 protein-coding genes were annotated, and the constructed genome sequence and annotated genes were of the highest quality BUSCO completion compared to closely related species. Comparative genome analysis revealed the process of chromosomal evolution from the Bombycoidea ancestral (n = 31) genome and changes in turnover at the chromosome level associated with chromosomal fusion events, such as the rate of repetitive sequence insertion. These analyses were only possible because the genome was constructed at the chromosome level. Additionally, increased the nonsynonymous/synonymous rate (dN/dS) ratios were observed in multiple photoreceptor-related genes that were strongly associated with the acquisition of diurnal activity. Furthermore, tandemly duplicated expanded genes containing many digestive and other enzymes and larval midgut-specific expression were also confirmed. These genes may be involved in the metabolism of genipin, a toxin found in gardenias. Using the genome sequence of C. hylas determined at the chromosome level, we have successfully identified new insights into the chromosomal evolution of Bombycoidea, as well as the relationship between the genome sequence and its characteristic traits.
Collapse
Affiliation(s)
- Takahiro Yamabe
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
4
|
Van Lommel J, Holtof M, Tilleman L, Cools D, Vansteenkiste S, Polgun D, Verdonck R, Van Nieuwerburgh F, Vanden Broeck J. Post-feeding transcriptomics reveals essential genes expressed in the midgut of the desert locust. Front Physiol 2023; 14:1232545. [PMID: 37692997 PMCID: PMC10484617 DOI: 10.3389/fphys.2023.1232545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
The digestive tract constitutes an important interface between an animal's internal and external environment. In insects, available gut transcriptome studies are mostly exploratory or look at changes upon infection or upon exposure to xenobiotics, mainly performed in species belonging to holometabolan orders, such as Diptera, Lepidoptera or Coleoptera. By contrast, studies focusing on gene expression changes after food uptake and during digestion are underrepresented. We have therefore compared the gene expression profiles in the midgut of the desert locust, Schistocerca gregaria, between three different time points after feeding, i.e., 24 h (no active digestion), 10 min (the initial stage of feeding), and 2 h (active food digestion). The observed gene expression profiles were consistent with the polyphagous herbivorous lifestyle of this hemimetabolan (orthopteran) species. Our study reveals the upregulation of 576 genes 2 h post-feeding. These are mostly predicted to be associated with digestive physiology, such as genes encoding putative digestive enzymes or nutrient transporters, as well as genes putatively involved in immunity or in xenobiotic metabolism. The 10 min time point represented an intermediate condition, suggesting that the S. gregaria midgut can react rapidly at the transcriptional level to the presence of food. Additionally, our study demonstrated the critical importance of two transcripts that exhibited a significant upregulation 2 h post-feeding: the vacuolar-type H(+)-ATPase and the sterol transporter Niemann-Pick 1b protein, which upon RNAi-induced knockdown resulted in a marked increase in mortality. Their vital role and accessibility via the midgut lumen may make the encoded proteins promising insecticidal target candidates, considering that the desert locust is infamous for its huge migrating swarms that can devastate the agricultural production in large areas of Northern Africa, the Middle East, and South Asia. In conclusion, the transcriptome datasets presented here will provide a useful and promising resource for studying the midgut physiology of S. gregaria, a socio-economically important pest species.
Collapse
Affiliation(s)
- Joachim Van Lommel
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Michiel Holtof
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | | | - Dorien Cools
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Seppe Vansteenkiste
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Daria Polgun
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Peláez JN, Gloss AD, Goldman-Huertas B, Kim B, Lapoint RT, Pimentel-Solorio G, Verster KI, Aguilar JM, Nelson Dittrich AC, Singhal M, Suzuki HC, Matsunaga T, Armstrong EE, Charboneau JLM, Groen SC, Hembry DH, Ochoa CJ, O’Connor TK, Prost S, Zaaijer S, Nabity PD, Wang J, Rodas E, Liang I, Whiteman NK. Evolution of chemosensory and detoxification gene families across herbivorous Drosophilidae. G3 (BETHESDA, MD.) 2023; 13:jkad133. [PMID: 37317982 PMCID: PMC10411586 DOI: 10.1093/g3journal/jkad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/19/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genomic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families-genes directly mediating interactions with plant chemical defenses-underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many insect lineages are ancient (>150 million years ago (mya)), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several nonherbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza has among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant-binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on living plants (bitter or electrophilic phytotoxins) or their ancestral diet (fermenting plant volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight gene candidates that have also been linked to other dietary transitions in Drosophila.
Collapse
Affiliation(s)
- Julianne N Peláez
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Andrew D Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Benjamin Goldman-Huertas
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Bernard Kim
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Richard T Lapoint
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Kirsten I Verster
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Jessica M Aguilar
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Anna C Nelson Dittrich
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Malvika Singhal
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Hiromu C Suzuki
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Teruyuki Matsunaga
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ellie E Armstrong
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Simon C Groen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - David H Hembry
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, University of Texas Permian Basin, Odessa, TX 79762, USA
| | - Christopher J Ochoa
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy K O’Connor
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Stefan Prost
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Sophie Zaaijer
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Jacobs Institute, Cornell Tech, New York, NY 10044, USA
- FIND Genomics, New York, NY 10044, USA
| | - Paul D Nabity
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Jiarui Wang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Esteban Rodas
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Irene Liang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Noah K Whiteman
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Luo M, Li B, Jander G, Zhou S. Non-volatile metabolites mediate plant interactions with insect herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1164-1177. [PMID: 36891808 DOI: 10.1111/tpj.16180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Non-volatile metabolites constitute the bulk of plant biomass. From the perspective of plant-insect interactions, these structurally diverse compounds include nutritious core metabolites and defensive specialized metabolites. In this review, we synthesize the current literature on multiple scales of plant-insect interactions mediated by non-volatile metabolites. At the molecular level, functional genetics studies have revealed a large collection of receptors targeting plant non-volatile metabolites in model insect species and agricultural pests. By contrast, examples of plant receptors of insect-derived molecules remain sparse. For insect herbivores, plant non-volatile metabolites function beyond the dichotomy of core metabolites, classed as nutrients, and specialized metabolites, classed as defensive compounds. Insect feeding tends to elicit evolutionarily conserved changes in plant specialized metabolism, whereas its effect on plant core metabolism varies widely based the interacting species. Finally, several recent studies have demonstrated that non-volatile metabolites can mediate tripartite communication on the community scale, facilitated by physical connections established through direct root-to-root communication, parasitic plants, arbuscular mycorrhizae and the rhizosphere microbiome. Recent advances in both plant and insect molecular biology will facilitate further research on the role of non-volatile metabolites in mediating plant-insect interactions.
Collapse
Affiliation(s)
- Mei Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bin Li
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Entomology, China Agricultural University, Beijing, 100091, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
7
|
Fiteni E, Durand K, Gimenez S, Meagher RL, Legeai F, Kergoat GJ, Nègre N, d’Alençon E, Nam K. Host-plant adaptation as a driver of incipient speciation in the fall armyworm (Spodoptera frugiperda). BMC Ecol Evol 2022; 22:133. [DOI: 10.1186/s12862-022-02090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Divergent selection on host-plants is one of the main evolutionary forces driving ecological speciation in phytophagous insects. The ecological speciation might be challenging in the presence of gene flow and assortative mating because the direction of divergence is not necessarily the same between ecological selection (through host-plant adaptation) and assortative mating. The fall armyworm (FAW), a major lepidopteran pest species, is composed of two sympatric strains, corn and rice strains, named after two of their preferred host-plants. These two strains have been hypothesized to undergo incipient speciation, based on (i) several lines of evidence encompassing both pre- and post-zygotic reproductive isolation, and (ii) the presence of a substantial level of genetic differentiation. Even though the status of these two strains has been established a long time ago, it is still yet to be found whether these two strains indeed exhibit a marked level of genetic differentiation from a large number of genomic loci. Here, we analyzed whole genome sequences from 56 FAW individuals either collected from pasture grasses (a part of the favored host range of the rice strain) or corn to assess the role of host-plant adaptation in incipient speciation.
Results
Principal component analysis of whole genome data shows that the pattern of divergence in the fall armyworm is predominantly explained by the genetic differentiation associated with host-plants. The level of genetic differentiation between corn and rice strains is particularly marked in the Z chromosome. We identified one autosomal locus and two Z chromosome loci targeted by selective sweeps specific to rice strain and corn strain, respectively. The autosomal locus has both increased DXY and FST while the Z chromosome loci had decreased DXY and increased FST.
Conclusion
These results show that the FAW population structure is dominated by the genetic differentiation between corn and rice strains. This differentiation involves divergent selection targeting at least three loci, which include a locus potentially causing reproductive isolation. Taken together, these results suggest the evolutionary scenario that host-plant speciation is a driver of incipient speciation in the fall armyworm.
Collapse
|
8
|
Breeschoten T, Schranz ME, Poelman EH, Simon S. Family dinner: Transcriptional plasticity of five Noctuidae (Lepidoptera) feeding on three host plant species. Ecol Evol 2022; 12:e9258. [PMID: 36091341 PMCID: PMC9448971 DOI: 10.1002/ece3.9258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Polyphagous insects often show specialization in feeding on different host plants in terms of survival and growth and, therefore, can be considered minor or major pests of particular hosts. Whether polyphagous insects employ a common transcriptional response to cope with defenses from diverse host plants is under-studied. We focused on patterns of transcriptional plasticity in polyphagous moths (Noctuidae), of which many species are notorious pests, in relation to herbivore performance on different host plants. We compared the transcriptional plasticity of five polyphagous moth species feeding and developing on three different host plant species. Using a comparative phylogenetic framework, we evaluated if successful herbivory, as measured by larval performance, is determined by a shared or lineage-specific transcriptional response. The upregulated transcriptional activity, or gene expression pattern, of larvae feeding on the different host plants and artificial control diet was highly plastic and moth species-specific. Specialization, defined as high herbivore success for specific host plants, was not generally linked to a lower number of induced genes. Moths that were more distantly related and showing high herbivore success for certain host plants showed shared expression of multiple homologous genes, indicating convergence. We further observed specific transcriptional responses within phylogenetic lineages. These expression patterns for specific host plant species are likely caused by shared evolutionary histories, for example, symplesiomorphic patterns, and could therefore not be associated with herbivore success alone. Multiple gene families, with roles in plant digestion and detoxification, were widely expressed in response to host plant feeding but again showed highly moth species-specific. Consequently, high herbivore success for specific host plants is also driven by species-specific transcriptional plasticity. Thus, potential pest moths display a complex and species-specific transcriptional plasticity.
Collapse
Affiliation(s)
- Thijmen Breeschoten
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| | - M. Eric Schranz
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
9
|
Bidoli C, Miccoli A, Buonocore F, Fausto AM, Gerdol M, Picchietti S, Scapigliati G. Transcriptome Analysis Reveals Early Hemocyte Responses upon In Vivo Stimulation with LPS in the Stick Insect Bacillus rossius (Rossi, 1788). INSECTS 2022; 13:insects13070645. [PMID: 35886821 PMCID: PMC9316843 DOI: 10.3390/insects13070645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Non-model insect species such as B. rossius suffer from a profound gap of knowledge regarding the temporal progression of physiological responses following the challenge with bacterial pathogens or cell wall components thereof. The reason for this mostly lies in the lack of genomic/transcriptomic resources, which would provide an unparalleled in-depth capacity in the analysis of molecular, biochemical, and metabolic mechanisms. We present a high-quality transcriptome obtained from high-coverage sequencing of hemocytes harvested from adult stick insect specimens both pre- and post-LPS stimulation. Such a resource served as the basis for a stringent differential gene expression and functional enrichment analyses, the results of which were characterized and discussed in depth. Selected transcripts encoding for C-type lectins and ML-domain containing proteins were further investigated from a phylogenetic perspective. Overall, these findings shed light on the physiological responses driven by a short-term LPS stimulation in the European stick insect. Abstract Despite a growing number of non-model insect species is being investigated in recent years, a greater understanding of their physiology is prevented by the lack of genomic resources. This is the case of the common European stick insect Bacillus rossius (Rossi, 1788): in this species, some knowledge is available on hemocyte-related defenses, but little is known about the physiological changes occurring in response to natural or experimental challenges. Here, the transcriptional signatures of adult B. rossius hemocytes were investigated after a short-term (2 h) LPS stimulation in vivo: a total of 2191 differentially expressed genes, mostly involved in proteolysis and carbohydrate and lipid metabolic processes, were identified in the de novo assembled transcriptome and in-depth discussed. Overall, the significant modulation of immune signals—such as C-type lectins, ML domain-containing proteins, serpins, as well as Toll signaling-related molecules—provide novel information on the early progression of LPS-induced responses in B. rossius.
Collapse
Affiliation(s)
- Carlotta Bidoli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.B.); (M.G.)
| | - Andrea Miccoli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
- Correspondence:
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.B.); (M.G.)
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| |
Collapse
|
10
|
Okamura Y, Sato A, Kawaguchi L, Nagano AJ, Murakami M, Vogel H, Kroymann J. Microevolution of Pieris butterfly genes involved in host-plant adaptation along a host-plant community cline. Mol Ecol 2022; 31:3083-3097. [PMID: 35364616 DOI: 10.1111/mec.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/01/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Abstract
Herbivorous insects have evolved counteradaptations to overcome the chemical defenses of their host plants. Several of these counteradaptations have been elucidated at the molecular level, in particular for insects specialized on cruciferous host plants. While the importance of these counteradaptations for host plant colonization is well established, little is known about their microevolutionary dynamics in the field. In particular, it is not known whether and how host plant diversity shapes diversity in insect counteradaptations. In this study, we examine patterns of host plant use and insect counteradaptation in three Pieris butterfly species across Japan. The larvae of these butterflies express nitrile-specifier protein (NSP) and its paralog major allergen (MA) in their gut to overcome the highly diversified glucosinolate-myrosinase defense system of their cruciferous host plants. Pieris napi and Pieris melete colonize wild Brassicaceae whereas Pieris rapae typically uses cultivated Brassica as a host, regardless of the local composition of wild crucifers. As expected, NSP and MA diversity was independent of the local composition of wild Brassicaceae in P. rapae. In contrast, NSP diversity correlated with local host plant diversity in both species that preferred wild Brassicaceae. P. melete and P. napi both revealed two distinct major NSP alleles, which shaped diversity among local populations, albeit with different evolutionary trajectories. In comparison, MA showed no indication for local adaptation. Altogether, MA appeared to be evolutionary more conserved than NSP, suggesting that both genes play different roles in diverting host plant chemical defense.
Collapse
Affiliation(s)
- Yu Okamura
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany.,Community Ecology Lab, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| | - Ai Sato
- Community Ecology Lab, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| | - Lina Kawaguchi
- Research Administration Office, Kyoto University, Kyoto, 606-8501, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Shiga, 520-2194, Japan.,Institute for Advanced Biosciences, Keio University, Yamagata, 997-0017, Japan
| | - Masashi Murakami
- Community Ecology Lab, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Juergen Kroymann
- Université Paris-Saclay, CNRS, Ecologie Systématique et Evolution, AgroParisTech, Orsay, 91405, France
| |
Collapse
|
11
|
Breeschoten T, van der Linden CFH, Ros VID, Schranz ME, Simon S. Expanding the Menu: Are Polyphagy and Gene Family Expansions Linked across Lepidoptera? Genome Biol Evol 2022; 14:6482744. [PMID: 34951642 PMCID: PMC8725640 DOI: 10.1093/gbe/evab283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/31/2022] Open
Abstract
Evolutionary expansions and contractions of gene families are often correlated with key innovations and/or ecological characteristics. In butterflies and moths (Lepidoptera), expansions of gene families involved in detoxification of plant specialized metabolites are hypothesized to facilitate a polyphagous feeding style. However, analyses supporting this hypothesis are mostly based on a limited number of lepidopteran species. We applied a phylogenomics approach, using 37 lepidopteran genomes, to analyze if gene family evolution (gene gain and loss) is associated with the evolution of polyphagy. Specifically, we compared gene counts and evolutionary gene gain and loss rates of gene families involved in adaptations with plant feeding. We correlated gene evolution to host plant family range (phylogenetic diversity) and specialized metabolite content of plant families (functional metabolite diversity). We found a higher rate for gene loss than gene gain in Lepidoptera, a potential consequence of genomic rearrangements and deletions after (potentially small-scale) duplication events. Gene family expansions and contractions varied across lepidopteran families, and were associated to host plant use and specialization levels. Within the family Noctuidae, a higher expansion rate for gene families involved in detoxification can be related to the large number of polyphagous species. However, gene family expansions are observed in both polyphagous and monophagous lepidopteran species and thus seem to be species-specific in the taxa sampled. Nevertheless, a significant positive correlation of gene counts of the carboxyl- and choline esterase and glutathione-S-transferase detoxification gene families with the level of polyphagy was identified across Lepidoptera.
Collapse
Affiliation(s)
| | | | - Vera I D Ros
- Laboratory of Virology, Wageningen University & Research, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, The Netherlands
| | - Sabrina Simon
- Biosystematics Group, Wageningen University & Research, The Netherlands
| |
Collapse
|
12
|
Agrawal AA, Zhang X. The evolution of coevolution in the study of species interactions. Evolution 2021; 75:1594-1606. [PMID: 34166533 DOI: 10.1111/evo.14293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 01/05/2023]
Abstract
The study of reciprocal adaptation in interacting species has been an active and inspiring area of evolutionary research for nearly 60 years. Perhaps owing to its great natural history and potential consequences spanning population divergence to species diversification, coevolution continues to capture the imagination of biologists. Here we trace developments following Ehrlich and Raven's classic paper, with a particular focus on the modern influence of two studies by Dr. May Berenbaum in the 1980s. This series of classic work presented a compelling example exhibiting the macroevolutionary patterns predicted by Ehrlich and Raven and also formalized a microevolutionary approach to measuring selection, functional traits, and understanding reciprocal adaptation between plants and their herbivores. Following this breakthrough was a wave of research focusing on diversifying macroevolutionary patterns, mechanistic chemical ecology, and natural selection on populations within and across community types. Accordingly, we breakdown coevolutionary theory into specific hypotheses at different scales: reciprocal adaptation between populations within a community, differential coevolution among communities, lineage divergence, and phylogenetic patterns. We highlight progress as well as persistent gaps, especially the link between reciprocal adaptation and diversification.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| | - Xuening Zhang
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| |
Collapse
|
13
|
Sato A, Okamura Y, Murakami M. Diversification and selection pattern of CYP6B genes in Japanese Papilio butterflies and their association with host plant spectra. PeerJ 2021; 8:e10625. [PMID: 33391886 PMCID: PMC7761194 DOI: 10.7717/peerj.10625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
Herbivorous insects are thought to have evolved counteradaptations to conquer chemical defenses in their host plants in a stepwise co-evolutionary process. Papilio butterflies use CYP6B gene family members to metabolize furanocoumarins in their Rutaceae or Apiaceae host plants. CYP6Bs have functionally diverged among Papilio species to be able to metabolite diverse types of furanocoumarins in their host plants. In this study, we examined the diversification and selection patterns of CYP6B among nine Papilio species in Japan (eight Rutaceae specialists and one Apiaceae specialist) and their association with host plant spectra and furanocoumarin profiles. We compared host plant spectrum of eight Rutaceae feeding Papilio species and also performed a furanocoumarin profiling of their host plants. In addition, we reconstructed CYP6B gene phylogeny and performed selection analysis based on the transcriptome data of those nine Papilio species. Among Rutaceae-feeding Papilio species, host plant spectrum differences were correlated with their furanocoumarin profiles. However, all tested Papilio species had similar duplicated sets of CYP6B, with no apparent lineage-specific or host plant-specific pattern of CYP6B diversification. Selection analysis showed a signature of positive selection on a CYP6B branch. The positively selected sites located at predicted substrate recognition sites and we also found that these CYP6B genes were observed only in Rutaceae-feeding species. These findings indicate that most CYP6B diversification occurred in ancestral species of these Papilio species, possibly in association with specific host plant chemical defenses and subsequent gene loss due to host specialization. These processes would have shaped the complex diversification patterns of the CYP6B gene family in Papilio butterflies. Our results also show potentially important CYP6B clades among Papilio species which likely to have diverged functions and associated with host plant phytochemicals in ancestral Papilio species.
Collapse
Affiliation(s)
- Ai Sato
- Community Ecology Lab, Faculty of Science, Chiba University, Chiba, Japan
| | - Yu Okamura
- Community Ecology Lab, Faculty of Science, Chiba University, Chiba, Japan.,Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Masashi Murakami
- Community Ecology Lab, Faculty of Science, Chiba University, Chiba, Japan
| |
Collapse
|
14
|
Sun Z, Lin Y, Wang R, Li Q, Shi Q, Baerson SR, Chen L, Zeng R, Song Y. Olfactory perception of herbivore‐induced plant volatiles elicits counter‐defences in larvae of the tobacco cutworm. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhongxiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
| | - Yibin Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
| | - Rumeng Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
| | - Qilin Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
| | - Qi Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
| | - Scott R. Baerson
- United States Department of Agriculture‐Agricultural Research Service Natural Products Utilization Research Unit, University Oxford MS USA
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing P. R. China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops College of Agriculture Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
15
|
Luo M, Finet C, Cong H, Wei HY, Chung H. The evolution of insect metallothioneins. Proc Biol Sci 2020; 287:20202189. [PMID: 33109013 DOI: 10.1098/rspb.2020.2189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metallothioneins (MTs) are a family of cysteine-rich metal-binding proteins that are important in the chelating and detoxification of toxic heavy metals. Until now, the short length and the low sequence complexity of MTs have hindered the inference of robust phylogenies, hampering the study of their evolution. To address this longstanding question, we applied an iterative BLAST search pipeline that allowed us to build a unique dataset of more than 300 MT sequences in insects. By combining phylogenetics and synteny analysis, we reconstructed the evolutionary history of MTs in insects. We show that the MT content in insects has been shaped by lineage-specific tandem duplications from a single ancestral MT. Strikingly, we also uncovered a sixth MT, MtnF, in the model organism Drosophila melanogaster. MtnF evolves faster than other MTs and is characterized by a non-canonical length and higher cysteine content. Our methodological framework not only paves the way for future studies on heavy metal detoxification but can also allow us to identify other previously unidentified genes and other low complexity genomic features.
Collapse
Affiliation(s)
- Mei Luo
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.,College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Cédric Finet
- Yale-NUS College, 16 College Avenue West, Singapore 138527, Republic of Singapore
| | - Haosu Cong
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Hong-Yi Wei
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Henry Chung
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Ferreira PG, Tesla B, Horácio ECA, Nahum LA, Brindley MA, de Oliveira Mendes TA, Murdock CC. Temperature Dramatically Shapes Mosquito Gene Expression With Consequences for Mosquito-Zika Virus Interactions. Front Microbiol 2020; 11:901. [PMID: 32595607 PMCID: PMC7303344 DOI: 10.3389/fmicb.2020.00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Vector-borne flaviviruses are emerging threats to human health. For successful transmission, the virus needs to efficiently enter mosquito cells and replicate within and escape several tissue barriers while mosquitoes elicit major transcriptional responses to flavivirus infection. This process will be affected not only by the specific mosquito-pathogen pairing but also by variation in key environmental variables such as temperature. Thus far, few studies have examined the molecular responses triggered by temperature and how these responses modify infection outcomes, despite substantial evidence showing strong relationships between temperature and transmission in a diversity of systems. To define the host transcriptional changes associated with temperature variation during the early infection process, we compared the transcriptome of mosquito midgut samples from mosquitoes exposed to Zika virus (ZIKV) and non-exposed mosquitoes housed at three different temperatures (20, 28, and 36°C). While the high-temperature samples did not show significant changes from those with standard rearing conditions (28°C) 48 h post-exposure, the transcriptome profile of mosquitoes housed at 20°C was dramatically different. The expression of genes most altered by the cooler temperature involved aspects of blood-meal digestion, ROS metabolism, and mosquito innate immunity. Further, we did not find significant differences in the viral RNA copy number between 24 and 48 h post-exposure at 20°C, suggesting that ZIKV replication is limited by cold-induced changes to the mosquito midgut environment. In ZIKV-exposed mosquitoes, vitellogenin, a lipid carrier protein, was most up-regulated at 20°C. Our results provide a deeper understanding of the temperature-triggered transcriptional changes in Aedes aegypti and can be used to further define the molecular mechanisms driven by environmental temperature variation.
Collapse
Affiliation(s)
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Elvira Cynthia Alves Horácio
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laila Alves Nahum
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Promove College of Technology, Belo Horizonte, Brazil
| | - Melinda Ann Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | - Courtney Cuinn Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Odum School of Ecology, University of Georgia, Athens, GA, United States.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States.,Center for Emerging and Global Tropical Diseases, University of Georgia, Athens, GA, United States.,River Basin Center, University of Georgia, Athens, GA, United States.,Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
17
|
Paniagua Voirol LR, Weinhold A, Johnston PR, Fatouros NE, Hilker M. Legacy of a Butterfly's Parental Microbiome in Offspring Performance. Appl Environ Microbiol 2020; 86:e00596-20. [PMID: 32276976 PMCID: PMC7267186 DOI: 10.1128/aem.00596-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022] Open
Abstract
An insect's phenotype can be influenced by the experiences of the parental generation. However, the effects of the parental symbiotic microbiome and host plant use on the offspring are unclear. We addressed this gap of knowledge by studying Pieris brassicae, a multivoltine butterfly species feeding on different brassicaceous plants across generations. We investigated how disturbance of the parental bacterial community by antibiotic treatment affects F1 larval traits. We tested the effects depending on whether F1 larvae are feeding on the same plant species as their parents or on a different one. The parental treatment alone had no impact on the biomass of F1 larvae feeding on the parental plant species. However, the parental treatment had a detrimental effect on F1 larval biomass when F1 larvae had a different host plant than their parents. This effect was linked to higher larval prophenoloxidase activity and greater downregulation of the major allergen gene (MA), a glucosinolate detoxification gene of P. brassicae Bacterial abundance in untreated adult parents was high, while it was very low in F1 larvae from either parental type, and thus unlikely to directly influence larval traits. Our results suggest that transgenerational effects of the parental microbiome on the offspring's phenotype become evident when the offspring is exposed to a transgenerational host plant shift.IMPORTANCE Resident bacterial communities are almost absent in larvae of butterflies and thus are unlikely to affect their host. In contrast, adult butterflies contain conspicuous amounts of bacteria. While the host plant and immune state of adult parental butterflies are known to affect offspring traits, it has been unclear whether also the parental microbiome imposes direct effects on the offspring. Here, we show that disturbance of the bacterial community in parental butterflies by an antibiotic treatment has a detrimental effect on those offspring larvae feeding on a different host plant than their parents. Hence, the study indicates that disturbance of an insect's parental microbiome by an antibiotic treatment shapes how the offspring individuals can adjust themselves to a novel host plant.
Collapse
Affiliation(s)
- Luis R Paniagua Voirol
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Arne Weinhold
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Nina E Fatouros
- Department of Plant Sciences, Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Monika Hilker
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
18
|
Drug Repurposing of Bromodomain Inhibitors as Potential Novel Therapeutic Leads for Lymphatic Filariasis Guided by Multispecies Transcriptomics. mSystems 2019; 4:4/6/e00596-19. [PMID: 31796568 PMCID: PMC6890932 DOI: 10.1128/msystems.00596-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi. To better understand the transcriptomic interplay of organisms associated with lymphatic filariasis, we conducted multispecies transcriptome sequencing (RNA-Seq) on the filarial nematode Brugia malayi, its Wolbachia endosymbiont wBm, and its laboratory vector Aedes aegypti across the entire B. malayi life cycle. In wBm, transcription of the noncoding 6S RNA suggests that it may be a regulator of bacterial cell growth, as its transcript levels correlate with bacterial replication rates. For A. aegypti, the transcriptional response reflects the stress that B. malayi infection exerts on the mosquito with indicators of increased energy demand. In B. malayi, expression modules associated with adult female samples consistently contained an overrepresentation of genes involved in chromatin remodeling, such as the bromodomain-containing proteins. All bromodomain-containing proteins encoded by B. malayi were observed to be upregulated in the adult female, embryo, and microfilaria life stages, including 2 members of the bromodomain and extraterminal (BET) protein family. The BET inhibitor JQ1(+), originally developed as a cancer therapeutic, caused lethality of adult worms in vitro, suggesting that it may be a potential therapeutic that can be repurposed for treating lymphatic filariasis. IMPORTANCE The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi.
Collapse
|
19
|
Gene Expression and Diet Breadth in Plant-Feeding Insects: Summarizing Trends. Trends Ecol Evol 2019; 35:259-277. [PMID: 31791830 DOI: 10.1016/j.tree.2019.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022]
Abstract
Transcriptomic studies lend insights into the role of transcriptional plasticity in adaptation and specialization. Recently, there has been growing interest in understanding the relationship between variation in herbivorous insect gene expression and the evolution of diet breadth. We review the studies that have emerged on insect gene expression and host plant use, and outline the questions and approaches in the field. Many candidate genes underlying herbivory and specialization have been identified, and a few key studies demonstrate increased transcriptional plasticity associated with generalist compared with specialist species. Addressing the roles that transcriptional variation plays in insect diet breadth will have important implications for our understanding of the evolution of specialization and the genetic and environmental factors that govern insect-plant interactions.
Collapse
|
20
|
Okamura Y, Sato A, Tsuzuki N, Murakami M, Heidel‐Fischer H, Vogel H. Molecular signatures of selection associated with host plant differences in
Pieris
butterflies. Mol Ecol 2019; 28:4958-4970. [DOI: 10.1111/mec.15268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Okamura
- Department of Entomology Max Planck Institute for Chemical Ecology Jena Germany
- Community Ecology Lab Faculty of Science Chiba University Chiba Japan
| | - Ai Sato
- Community Ecology Lab Faculty of Science Chiba University Chiba Japan
| | - Natsumi Tsuzuki
- Community Ecology Lab Faculty of Science Chiba University Chiba Japan
| | - Masashi Murakami
- Community Ecology Lab Faculty of Science Chiba University Chiba Japan
| | - Hanna Heidel‐Fischer
- Department of Entomology Max Planck Institute for Chemical Ecology Jena Germany
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI) Jena Germany
| | - Heiko Vogel
- Department of Entomology Max Planck Institute for Chemical Ecology Jena Germany
| |
Collapse
|
21
|
Okamura Y, Sato A, Tsuzuki N, Sawada Y, Hirai MY, Heidel-Fischer H, Reichelt M, Murakami M, Vogel H. Differential regulation of host plant adaptive genes in Pieris butterflies exposed to a range of glucosinolate profiles in their host plants. Sci Rep 2019; 9:7256. [PMID: 31076616 PMCID: PMC6510735 DOI: 10.1038/s41598-019-43703-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/27/2019] [Indexed: 11/15/2022] Open
Abstract
Specialist herbivores have often evolved highly sophisticated mechanisms to counteract defenses mediated by major plant secondary-metabolites. Plant species of the herbivore host range often display high chemical diversity and it is not well understood how specialist herbivores respond to this chemical diversity. Pieris larvae overcome toxic products from glucosinolate hydrolysis, the major chemical defense of their Brassicaceae hosts, by expressing nitrile-specifier proteins (NSP) in their gut. Furthermore, Pieris butterflies possess so-called major allergen (MA) proteins, which are multi-domain variants of a single domain major allergen (SDMA) protein expressed in the guts of Lepidopteran larvae. Here we show that Pieris larvae fine-tune NSP and MA gene expression depending on the glucosinolate profiles of their Brassicaceae hosts. Although the role of MA is not yet fully understood, the expression levels of NSP and MA in larvae that fed on plants whose glucosinolate composition varied was dramatically changed, whereas levels of SDMA expression remained unchanged. In addition, we found a similar regulation pattern among these genes in larvae feeding on Arabidopsis mutants with different glucosinolate profiles. Our results demonstrate that Pieris larvae appear to use different host plant adaptive genes to overcome a wide range of glucosinolate profiles in their host plants.
Collapse
Affiliation(s)
- Yu Okamura
- Community Ecology Lab., Faculty of Science, Chiba University, 263-8522, Chiba, Japan.
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany.
| | - Ai Sato
- Community Ecology Lab., Faculty of Science, Chiba University, 263-8522, Chiba, Japan
| | - Natsumi Tsuzuki
- Community Ecology Lab., Faculty of Science, Chiba University, 263-8522, Chiba, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI), Beutenberg-Str. 11a, 07745, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Masashi Murakami
- Community Ecology Lab., Faculty of Science, Chiba University, 263-8522, Chiba, Japan
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| |
Collapse
|
22
|
Barco B, Clay NK. Evolution of Glucosinolate Diversity via Whole-Genome Duplications, Gene Rearrangements, and Substrate Promiscuity. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:585-604. [PMID: 31035830 DOI: 10.1146/annurev-arplant-050718-100152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Over several decades, glucosinolates have become a model system for the study of specialized metabolic diversity in plants. The near-complete identification of biosynthetic enzymes, regulators, and transporters has provided support for the role of gene duplication and subsequent changes in gene expression, protein function, and substrate specificity as the evolutionary bases of glucosinolate diversity. Here, we provide examples of how whole-genome duplications, gene rearrangements, and substrate promiscuity potentiated the evolution of glucosinolate biosynthetic enzymes, regulators, and transporters by natural selection. This in turn may have led to the repeated evolution of glucosinolate metabolism and diversity in higher plants.
Collapse
Affiliation(s)
- Brenden Barco
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut 06511, USA; ,
| | - Nicole K Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut 06511, USA; ,
| |
Collapse
|
23
|
High Duty Cycle Echolocation May Constrain the Evolution of Diversity within Horseshoe Bats (Family: Rhinolophidae). DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The phenotype of organisms is the net result of various evolutionary forces acting upon their lineages over time. When an innovative trait arises that confers a substantial advantage in terms of survival and reproduction, the evolution of adaptive complexes between such an innovation and other traits may constrain diversification of that lineage. The specialized echolocation system of the Rhinolophidae may represent such an innovation which affects other parts of the phenotype. We investigated a potential constraint on the diversity of phenotypes of several species of horseshoe bats within a phylogenetic framework. If phenotypic convergence stems from stasis as a result of the specialized echolocation system, phenotypes should converge not only among members of the same species and between sexes but also among species. We analyzed the phenotypic diversity of >800 individuals of 13–16 species. The phenotypes in the horseshoe bats did indeed converge. There was no sexual size dimorphism in mass, forearm length and wingspan within species and there was marked interspecific similarity in both wing and echolocation variables but marked variability in body mass. Furthermore, correlations of wing and echolocation variables with mass suggest that variability within horseshoe bats was largely the result of selection on body size with allometric responses in wing and echolocation parameters, a potential consequence of constraints imposed by their specialized echolocation.
Collapse
|
24
|
Klasberg S, Bitard-Feildel T, Callebaut I, Bornberg-Bauer E. Origins and structural properties of novel and de novo protein domains during insect evolution. FEBS J 2018; 285:2605-2625. [PMID: 29802682 DOI: 10.1111/febs.14504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 04/12/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022]
Abstract
Over long time scales, protein evolution is characterized by modular rearrangements of protein domains. Such rearrangements are mainly caused by gene duplication, fusion and terminal losses. To better understand domain emergence mechanisms we investigated 32 insect genomes covering a speciation gradient ranging from ~ 2 to ~ 390 mya. We use established domain models and foldable domains delineated by hydrophobic cluster analysis (HCA), which does not require homologous sequences, to also identify domains which have likely arisen de novo, that is, from previously noncoding DNA. Our results indicate that most novel domains emerge terminally as they originate from ORF extensions while fewer arise in middle arrangements, resulting from exonization of intronic or intergenic regions. Many novel domains rapidly migrate between terminal or middle positions and single- and multidomain arrangements. Young domains, such as most HCA-defined domains, are under strong selection pressure as they show signals of purifying selection. De novo domains, linked to ancient domains or defined by HCA, have higher degrees of intrinsic disorder and disorder-to-order transition upon binding than ancient domains. However, the corresponding DNA sequences of the novel domains of de novo origins could only rarely be found in sister genomes. We conclude that novel domains are often recruited by other proteins and undergo important structural modifications shortly after their emergence, but evolve too fast to be characterized by cross-species comparisons alone.
Collapse
Affiliation(s)
- Steffen Klasberg
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Germany
| | - Tristan Bitard-Feildel
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Germany
| |
Collapse
|
25
|
Li X, Shi L, Dai X, Chen Y, Xie H, Feng M, Chen Y, Wang H. Expression plasticity and evolutionary changes extensively shape the sugar-mimic alkaloid adaptation of nondigestive glucosidase in lepidopteran mulberry-specialist insects. Mol Ecol 2018; 27:2858-2870. [PMID: 29752760 DOI: 10.1111/mec.14720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/28/2023]
Abstract
During the co-evolutionary arms race between plants and herbivores, insects evolved systematic adaptive plasticity to minimize the chemical defence effects of their host plants. Previous studies mainly focused on the expressional plasticity of enzymes in detoxification and digestion. However, the expressional response and adaptive evolution of other fundamental regulators against host phytochemicals are largely unknown. Glucosidase II (GII), which is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit, is an evolutionarily conserved enzyme that regulates glycoprotein folding. In this study, we found that GIIα expression of the mulberry-specialist insect was significantly induced by mulberry leaf extract, 1-deoxynojirimycin (1-DNJ), whereas GIIβ transcripts were not significantly changed. Moreover, positive selection was detected in GIIα when the mulberry-specialist insects diverged from the lepidopteran order, whereas GIIβ was mainly subjected to purifying selection, thus indicating an asymmetrically selective pressure of GII subunits. In addition, positively selected sites were enriched in the GIIα of mulberry-specialist insects and located around the 1-DNJ-binding sites and in the C-terminal region, which could result in conformational changes that affect catalytic activity and substrate-binding efficiency. These results show that expression plasticity and evolutionary changes extensively shape sugar-mimic alkaloids adaptation of nondigestive glucosidase in lepidopteran mulberry-specialist insects. Our study provides novel insights into a deep understanding of the sequestration and adaptation of phytophagous specialists to host defensive compounds.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Liangen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiangping Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yajie Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongqing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min Feng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuyin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Dermauw W, Pym A, Bass C, Van Leeuwen T, Feyereisen R. Does host plant adaptation lead to pesticide resistance in generalist herbivores? CURRENT OPINION IN INSECT SCIENCE 2018; 26:25-33. [PMID: 29764657 DOI: 10.1016/j.cois.2018.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 05/09/2023]
Abstract
Most herbivorous arthropods feed on one or a few closely related plant species; however, certain insect and mite species have a greatly expanded host range. Several of these generalists also show a remarkable propensity to evolve resistance to chemical pesticides. In this review, we ask if the evolution of mechanisms to tolerate the diversity of plant secondary metabolites that generalist herbivores encounter, has pre-adapted them to resist synthetic pesticides. Critical examination of the evidence suggests that a generalist life-style per se is not a predictor of rapid resistance evolution to pesticides. Rather the prevalence of pesticide resistance in generalist herbivores probably reflects their economic importance as pests and thus the strong selection imposed by intensive pesticide use.
Collapse
Affiliation(s)
- Wannes Dermauw
- Department or Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Adam Pym
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Thomas Van Leeuwen
- Department or Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - René Feyereisen
- Department or Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Mueller GA. Contributions and Future Directions for Structural Biology in the Study of Allergens. Int Arch Allergy Immunol 2017; 174:57-66. [PMID: 28992615 DOI: 10.1159/000481078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allergy is defined as an inappropriate immune response to something normally considered harmless. The symptomatic immune response is driven by IgE antibodies directed against allergens. The study of allergens has contributed significantly to our understanding of allergic disease in 3 main areas. First, identifying allergens as the cause of symptoms and developing allergen standards has led to many advances in exposure assessment and patient diagnostics. Second, a biochemical understanding of allergens has suggested a number of hypotheses related to the mechanisms of allergic sensitization. And finally, studies of allergen-antibody interactions have contributed to understanding the cross-reactivity of allergens, mapping patient epitopes, and the development of hypoallergens. In this review, a few select cases are highlighted where structural biology, in particular, has contributed significantly to allergen research and provided new avenues for investigation.
Collapse
Affiliation(s)
- Geoffrey A Mueller
- Department of Health and Human Services, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
28
|
Pomés A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Curr Allergy Asthma Rep 2017; 17:25. [PMID: 28421512 DOI: 10.1007/s11882-017-0694-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This review addresses the most recent developments on cockroach allergen research in relation to allergic diseases, especially asthma. RECENT FINDINGS The number of allergens relevant to cockroach allergy has recently expanded considerably up to 12 groups. New X-ray crystal structures of allergens from groups 1, 2, and 5 revealed interesting features with implications for allergen standardization, sensitization, diagnosis, and therapy. Cockroach allergy is strongly associated with asthma particularly among children and young adults living in inner-city environments, posing challenges for disease control. Environmental interventions targeted at reducing cockroach allergen exposure have provided conflicting results. Immunotherapy may be a way to modify the natural history of cockroach allergy and decrease symptoms and asthma severity among sensitized and exposed individuals. The new information on cockroach allergens is important for the assessment of allergen markers of exposure and disease, and for the design of immunotherapy trials.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA.
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, Intramural Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, MD-MR01, Research Triangle Park, NC, 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, MD-MR01, Research Triangle Park, NC, 27709, USA
| | - Martin D Chapman
- Indoor Biotechnologies, Inc., 700 Harris Street, Charlottesville, VA, 22903, USA
| | - L Karla Arruda
- Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP, 14049-900, Brazil
| |
Collapse
|
29
|
Shen J, Cong Q, Kinch LN, Borek D, Otwinowski Z, Grishin NV. Complete genome of Pieris rapae, a resilient alien, a cabbage pest, and a source of anti-cancer proteins. F1000Res 2016; 5:2631. [PMID: 28163896 PMCID: PMC5247789 DOI: 10.12688/f1000research.9765.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2016] [Indexed: 11/20/2022] Open
Abstract
The Small Cabbage White ( Pieris rapae) is originally a Eurasian butterfly. Being accidentally introduced into North America, Australia, and New Zealand a century or more ago, it spread throughout the continents and rapidly established as one of the most abundant butterfly species. Although it is a serious pest of cabbage and other mustard family plants with its caterpillars reducing crops to stems, it is also a source of pierisin, a protein unique to the Whites that shows cytotoxicity to cancer cells. To better understand the unusual biology of this omnipresent agriculturally and medically important butterfly, we sequenced and annotated the complete genome from USA specimens. At 246 Mbp, it is among the smallest Lepidoptera genomes reported to date. While 1.5% positions in the genome are heterozygous, they are distributed highly non-randomly along the scaffolds, and nearly 20% of longer than 1000 base-pair segments are SNP-free (median length: 38000 bp). Computational simulations of population evolutionary history suggest that American populations started from a very small number of introduced individuals, possibly a single fertilized female, which is in agreement with historical literature. Comparison to other Lepidoptera genomes reveals several unique families of proteins that may contribute to the unusual resilience of Pieris. The nitrile-specifier proteins divert the plant defense chemicals to non-toxic products. The apoptosis-inducing pierisins could offer a defense mechanism against parasitic wasps. While only two pierisins from Pieris rapae were characterized before, the genome sequence revealed eight, offering additional candidates as anti-cancer drugs. The reference genome we obtained lays the foundation for future studies of the Cabbage White and other Pieridae species.
Collapse
Affiliation(s)
- Jinhui Shen
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, USA
| | - Qian Cong
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, USA
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, USA
| | - Dominika Borek
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, USA
| | - Zbyszek Otwinowski
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, USA
| | - Nick V Grishin
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
30
|
Dalla S, Dobler S. Gene duplications circumvent trade-offs in enzyme function: Insect adaptation to toxic host plants. Evolution 2016; 70:2767-2777. [DOI: 10.1111/evo.13077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Safaa Dalla
- Molecular Evolutionary Biology, Zoological Institute, Biocenter Grindel; University of Hamburg; 20146 Hamburg Germany
| | - Susanne Dobler
- Molecular Evolutionary Biology, Zoological Institute, Biocenter Grindel; University of Hamburg; 20146 Hamburg Germany
| |
Collapse
|
31
|
Ohlen MV, Herfurth AM, Kerbstadt H, Wittstock U. Cyanide detoxification in an insect herbivore: Molecular identification of β-cyanoalanine synthases from Pieris rapae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:99-110. [PMID: 26714205 DOI: 10.1016/j.ibmb.2015.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 05/10/2023]
|
32
|
Heidel-Fischer HM, Vogel H. Molecular mechanisms of insect adaptation to plant secondary compounds. CURRENT OPINION IN INSECT SCIENCE 2015; 8:8-14. [PMID: 32846688 DOI: 10.1016/j.cois.2015.02.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/22/2015] [Accepted: 02/04/2015] [Indexed: 05/13/2023]
Abstract
During feeding, herbivorous insects are exposed to an array of plant defensive compounds. In this review, we examine molecular mechanisms of insect adaptation to these toxic metabolites. We discuss both the importance of evolutionary variation of existing detoxification gene families, as well as the evolution of novel mechanisms through gene recruitment, neofunctionalization and horizontal gene transfer. The ability of insects to cope with the chemical diversity of their host plants and the different mechanisms that insects use to resist these toxins open new avenues for understanding fundamental aspects of insect-plant coevolutionary adaptation.
Collapse
Affiliation(s)
- Hanna M Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany.
| |
Collapse
|
33
|
Randall TA, Perera L, London RE, Mueller GA. Genomic, RNAseq, and molecular modeling evidence suggests that the major allergen domain in insects evolved from a homodimeric origin. Genome Biol Evol 2014; 5:2344-58. [PMID: 24253356 PMCID: PMC3879970 DOI: 10.1093/gbe/evt182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The major allergen domain (MA) is widely distributed in insects. The crystal structure of a single Bla g 1 MA revealed a novel protein fold in which the fundamental structure was a duplex of two subsequences (monomers), which had diverged over time. This suggested that the evolutionary origin of the MA structure may have been a homodimer of this smaller subsequence. Using publicly available genomic data, the distribution of the basic unit of this class of proteins was determined to better understand its evolutionary history. The duplication and divergence is examined at three distinct levels of resolution: 1) within the orders Diptera and Hymenoptera, 2) within one genus Drosophila, and 3) within one species Aedes aegypti. Within the family Culicidae, we have found two separate occurrences of monomers as independent genes. The organization of the gene family in A. aegypti shows a common evolutionary origin for its monomer and several closely related MAs. Molecular modeling of the A. aegypti monomer with the unique Bla g 1 fold confirms the distant evolutionary relationship and supports the feasibility of homodimer formation from a single monomer. RNAseq data for A. aegypti confirms that the monomer is expressed in the mosquito similar to other A. aegypti MAs after a blood meal. Together, these data support the contention that the detected monomer shares similar functional characteristics to related MAs in other insects. An extensive search for this domain outside of Insecta confirms that the MAs are restricted to insects.
Collapse
Affiliation(s)
- Thomas A Randall
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | | | | | | |
Collapse
|
34
|
Machado HE, Jui G, Joyce DA, Reilly CRL, Lunt DH, Renn SCP. Gene duplication in an African cichlid adaptive radiation. BMC Genomics 2014; 15:161. [PMID: 24571567 PMCID: PMC3944005 DOI: 10.1186/1471-2164-15-161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene duplication is a source of evolutionary innovation and can contribute to the divergence of lineages; however, the relative importance of this process remains to be determined. The explosive divergence of the African cichlid adaptive radiations provides both a model for studying the general role of gene duplication in the divergence of lineages and also an exciting foray into the identification of genomic features that underlie the dramatic phenotypic and ecological diversification in this particular lineage. We present the first genome-wide study of gene duplication in African cichlid fishes, identifying gene duplicates in three species belonging to the Lake Malawi adaptive radiation (Metriaclima estherae, Protomelas similis, Rhamphochromis "chilingali") and one closely related species from a non-radiated riverine lineage (Astatotilapia tweddlei). RESULTS Using Astatotilapia burtoni as reference, microarray comparative genomic hybridization analysis of 5689 genes reveals 134 duplicated genes among the four cichlid species tested. Between 51 and 55 genes were identified as duplicated in each of the three species from the Lake Malawi radiation, representing a 38%-49% increase in number of duplicated genes relative to the non-radiated lineage (37 genes). Duplicated genes include several that are involved in immune response, ATP metabolism and detoxification. CONCLUSIONS These results contribute to our understanding of the abundance and type of gene duplicates present in cichlid fish lineages. The duplicated genes identified in this study provide candidates for the analysis of functional relevance with regard to phenotype and divergence. Comparative sequence analysis of gene duplicates can address the role of positive selection and adaptive evolution by gene duplication, while further study across the phylogenetic range of cichlid radiations (and more generally in other adaptive radiations) will determine whether the patterns of gene duplication seen in this study consistently accompany rapid radiation.
Collapse
Affiliation(s)
| | | | | | | | | | - Suzy C P Renn
- Department of Biology, Reed College, Portland, OR 97202, USA.
| |
Collapse
|
35
|
Ecological Interactions of the Host-Insect System Quercus robur and Tortrix viridana. CHALLENGES AND OPPORTUNITIES FOR THE WORLD'S FORESTS IN THE 21ST CENTURY 2014. [DOI: 10.1007/978-94-007-7076-8_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Testing for coevolutionary diversification: linking pattern with process. Trends Ecol Evol 2013; 29:82-9. [PMID: 24314843 DOI: 10.1016/j.tree.2013.11.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 11/24/2022]
Abstract
Coevolutionary diversification is cited as a major mechanism driving the evolution of diversity, particularly in plants and insects. However, tests of coevolutionary diversification have focused on elucidating macroevolutionary patterns rather than the processes giving rise to such patterns. Hence, there is weak evidence that coevolution promotes diversification. This is in part due to a lack of understanding about the mechanisms by which coevolution can cause speciation and the difficulty of integrating results across micro- and macroevolutionary scales. In this review, we highlight potential mechanisms of coevolutionary diversification, outline approaches to examine this process across temporal scales, and propose a set of minimal requirements for demonstrating coevolutionary diversification. Our aim is to stimulate research that tests more rigorously for coevolutionary diversification.
Collapse
|
37
|
High-throughput sequencing of a single chromosome: a moth W chromosome. Chromosome Res 2013; 21:491-505. [PMID: 23949445 DOI: 10.1007/s10577-013-9376-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
Y and W chromosomes have mostly been excluded from whole genome sequencing projects. Due to the high amount of repetitive sequences they are 'difficult' to assemble and therefore need special treatment in the form of, e.g. adapted assembly programs, a range of different libraries, and accurate maps, if possible. A minimum requirement for these approaches is pure template DNA. We therefore microdissected the W chromatin of highly polyploid cells from the flour moth, Ephestia kuehniella, and used Roche/454 and Sanger sequencing to generate 72.6 Mbp of DNA sequence. Nominal coverage was 4.3× of the 16.7 Mbp of W chromosomal DNA. We used these data to assess the genetic content of the W chromosome. This approach allowed us to determine constituent families of transposable elements, microsatellites, and recent insertion sites of mitochondrial DNA. However, no conventional protein-coding gene has yet been found. The sequence collection is a rich source for the definition of W-specific PCR markers and the reconstruction of W chromosome loci, as a step towards full reconstruction of the chromosome.
Collapse
|
38
|
Mueller GA, Pedersen LC, Lih FB, Glesner J, Moon AF, Chapman MD, Tomer KB, London RE, Pomés A. The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment. J Allergy Clin Immunol 2013; 132:1420-6. [PMID: 23915714 DOI: 10.1016/j.jaci.2013.06.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/28/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Sensitization to cockroach allergens is a major risk factor for asthma. The cockroach allergen Bla g 1 has multiple repeats of approximately 100 amino acids, but the fold of the protein and its biological function are unknown. OBJECTIVE We sought to determine the structure of Bla g 1, investigate the implications for allergic disease, and standardize cockroach exposure assays. METHODS nBla g 1 and recombinant constructs were compared by using ELISA with specific murine IgG and human IgE. The structure of Bla g 1 was determined by x-ray crystallography. Mass spectrometry and nuclear magnetic resonance spectroscopy were used to examine the ligand-binding properties of the allergen. RESULTS The structure of an rBla g 1 construct with comparable IgE and IgG reactivity to the natural allergen was solved by x-ray crystallography. The Bla g 1 repeat forms a novel fold with 6 helices. Two repeats encapsulate a large and nearly spherical hydrophobic cavity, defining the basic structural unit. Lipids in the cavity varied depending on the allergen origin. Palmitic, oleic, and stearic acids were associated with nBla g 1 from cockroach frass. One unit of Bla g 1 was equivalent to 104 ng of allergen. CONCLUSIONS Bla g 1 has a novel fold with a capacity to bind various lipids, which suggests a digestive function associated with nonspecific transport of lipid molecules in cockroaches. Defining the basic structural unit of Bla g 1 facilitates the standardization of assays in absolute units for the assessment of environmental allergen exposure.
Collapse
Affiliation(s)
- Geoffrey A Mueller
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions. PLoS Negl Trop Dis 2013; 7:e2295. [PMID: 23861987 PMCID: PMC3701703 DOI: 10.1371/journal.pntd.0002295] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/21/2013] [Indexed: 01/23/2023] Open
Abstract
Genetic variation among Aedes aegypti populations can greatly influence their vector competence for human pathogens such as the dengue virus (DENV). While intra-species transcriptome differences remain relatively unstudied when compared to coding sequence polymorphisms, they also affect numerous aspects of mosquito biology. Comparative molecular profiling of mosquito strain transcriptomes can therefore provide valuable insight into the regulation of vector competence. We established a panel of A. aegypti strains with varying levels of susceptibility to DENV, comprising both laboratory-maintained strains and field-derived colonies collected from geographically distinct dengue-endemic regions spanning South America, the Caribbean, and Southeast Asia. A comparative genome-wide gene expression microarray-based analysis revealed higher basal levels of numerous immunity-related gene transcripts in DENV-refractory mosquito strains than in susceptible strains, and RNA interference assays further showed different degrees of immune pathway contribution to refractoriness in different strains. By correlating transcript abundance patterns with DENV susceptibility across our panel, we also identified new candidate modulators of DENV infection in the mosquito, and we provide functional evidence for two potential DENV host factors and one potential restriction factor. Our comparative transcriptome dataset thus not only provides valuable information about immune gene regulation and usage in natural refractoriness of mosquito populations to dengue virus but also allows us to identify new molecular interactions between the virus and its mosquito vector. Genetic variations among Aedes aegypti mosquito populations can greatly influence their ability to transmit human pathogens such as the dengue virus (DENV). Some of these variations between mosquito populations are represented by differences in the expression of specific genes that control susceptibility to a pathogen. We have compared susceptibilities to dengue virus infection and the genome-wide gene expression patterns between laboratory-maintained Aedes aegypti strains as well as field-derived colonies collected from geographically-distinct dengue-endemic regions spanning South America, the Caribbean, and Southeast Asia. These analyses in conjunction with functional gene silencing assays showed that the basal immune activity is a likely determinant of resistance to the dengue virus, along with other novel factors. Our study also identified two potential DENV host factors and one potential restriction factor, thereby elucidating novel aspects of dengue virus – mosquito interactions.
Collapse
|
40
|
Cornette R, Hayashi Y, Koshikawa S, Miura T. Differential gene expression in response to juvenile hormone analog treatment in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Archotermopsidae). JOURNAL OF INSECT PHYSIOLOGY 2013; 59:509-518. [PMID: 23481672 DOI: 10.1016/j.jinsphys.2013.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/29/2013] [Accepted: 02/07/2013] [Indexed: 06/01/2023]
Abstract
Termite societies are characterized by a highly organized division of labor among conspicuous castes, groups of individuals with various morphological specializations. Termite caste differentiation is under control of juvenile hormone (JH), but the molecular mechanism underlying the response to JH and early events triggering caste differentiation are still poorly understood. In order to profile candidate gene expression during early soldier caste differentiation of the damp-wood termite, Hodotermopsis sjostedti, we treated pseudergates (workers) with a juvenile hormone analog (JHA) to induce soldier caste differentiation. We then used Suppressive Subtractive Hybridization to create two cDNA libraries enriched for transcripts that were either up- or downregulated at 24h after treatment. Finally, we used quantitative PCR to confirm temporal expression patterns. Hexamerins represent a large proportion of the genes upregulated following JHA treatment and have an expression pattern that shows roughly an inverse correlation to intrinsic JH titers. This data is consistent with the role of a JH "sink", which was demonstrated for hexamerins in another termite, Reticulitermes flavipes. A putative nuclear protein was also upregulated a few hours after JHA treatment, which suggests a role in the early response to JH and subsequent regulation of transcriptional events associated with soldier caste differentiation. Some digestive enzymes, such as endogenous beta-endoglucanase and chymotrypsin, as well as a protein associated to digestion were identified among genes downregulated after JHA treatment. This suggests that JH may directly influence the pseudergate-specific digestive system.
Collapse
Affiliation(s)
- Richard Cornette
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | | | | | | |
Collapse
|
41
|
Agerbirk N, Olsen CE. Glucosinolate structures in evolution. PHYTOCHEMISTRY 2012; 77:16-45. [PMID: 22405332 DOI: 10.1016/j.phytochem.2012.02.005] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 05/19/2023]
Abstract
By 2000, around 106 natural glucosinolates (GSLs) were probably documented. In the past decade, 26 additional natural GSL structures have been elucidated and documented. Hence, the total number of documented GSLs from nature by 2011 can be estimated to around 132. A considerable number of additional suggested structures are concluded not to be sufficiently documented. In many cases, NMR spectroscopy would have provided the missing structural information. Of the GSLs documented in the past decade, several are of previously unexpected structures and occur at considerable levels. Most originate from just four species: Barbarea vulgaris, Arabidopsis thaliana, Eruca sativa and Isatis tinctoria. Acyl derivatives of known GSLs comprised 15 of the 26 newly documented structures, while the remaining exhibited new substitution patterns or chain length, or contained a mercapto group or related thio-functionality. GSL identification methods are reviewed, and the importance of using authentic references and structure-sensitive detection methods such as MS and NMR is stressed, especially when species with relatively unknown chemistry are analyzed. An example of qualitative GSL analysis is presented with experimental details (group separation and HPLC of both intact and desulfated GSLs, detection and structure determination by UV, MS, NMR and susceptibility to myrosinase) with emphasis on the use of NMR for structure elucidation of even minor GSLs and GSL hydrolysis products. The example includes identification of a novel GSL, (R)-2-hydroxy-2-(3-hydroxyphenyl)ethylglucosinolate. Recent investigations of GSL evolution, based on investigations of species with well established phylogeny, are reviewed. From the relatively few such investigations, it is already clear that GSL profiles are regularly subject to evolution. This result is compatible with natural selection for specific GSL side chains. The probable existence of structure-specific GSL catabolism in intact plants suggests that biochemical evolution of GSLs has more complex implications than the mere liberation of a different hydrolysis product upon tissue disruption.
Collapse
Affiliation(s)
- Niels Agerbirk
- Section for Plant Biochemistry, Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | | |
Collapse
|
42
|
Oppert B, Dowd SE, Bouffard P, Li L, Conesa A, Lorenzen MD, Toutges M, Marshall J, Huestis DL, Fabrick J, Oppert C, Jurat-Fuentes JL. Transcriptome profiling of the intoxication response of Tenebrio molitor larvae to Bacillus thuringiensis Cry3Aa protoxin. PLoS One 2012; 7:e34624. [PMID: 22558093 PMCID: PMC3338813 DOI: 10.1371/journal.pone.0034624] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/02/2012] [Indexed: 12/22/2022] Open
Abstract
Bacillus thuringiensis (Bt) crystal (Cry) proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence dataset for T. molitor to date. Furthermore, the methods in this study are useful for comparative analyses in organisms lacking a sequenced genome.
Collapse
Affiliation(s)
- Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, Kansas, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Extensive and Continuous Duplication Facilitates Rapid Evolution and Diversification of Gene Families. Mol Biol Evol 2012; 29:2019-29. [DOI: 10.1093/molbev/mss068] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
44
|
Celorio-Mancera MDLP, Ahn SJ, Vogel H, Heckel DG. Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera. BMC Genomics 2011; 12:575. [PMID: 22111916 PMCID: PMC3235194 DOI: 10.1186/1471-2164-12-575] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hormesis is a biphasic biological response characterized by the stimulatory effect at relatively low amounts of chemical compounds which are otherwise detrimental at higher concentrations. A hormetic response in larval growth rates has been observed in cotton-feeding insects in response to increasing concentrations of gossypol, a toxic metabolite found in the pigment glands of some plants in the family Malvaceae. We investigated the developmental effect of gossypol in the cotton bollworm, Helicoverpa armigera, an important heliothine pest species, by exposing larvae to different doses of this metabolite in their diet. In addition, we sought to determine the underlying transcriptional responses to different gossypol doses. RESULTS Larval weight gain, pupal weight and larval development time were measured in feeding experiments and a hormetic response was seen for the first two characters. On the basis of net larval weight gain responses to gossypol, three concentrations (0%, 0.016% and 0.16%) were selected for transcript profiling in the gut and the rest of the body in a two-color double reference design microarray experiment. Hormesis could be observed at the transcript level, since at the low gossypol dose, genes involved in energy acquisition such as β-fructofuranosidases were up-regulated in the gut, and genes involved in cell adhesion were down-regulated in the body. Genes with products predicted to be integral to the membrane or associated with the proteasome core complex were significantly affected by the detrimental dose treatment in the body. Oxidoreductase activity-related genes were observed to be significantly altered in both tissues at the highest gossypol dose. CONCLUSIONS This study represents the first transcriptional profiling approach investigating the effects of different concentrations of gossypol in a lepidopteran species. H. armigera's transcriptional response to gossypol feeding is tissue- and dose-dependent and involves diverse detoxifying mechanisms not only to alleviate direct effects of gossypol but also indirect damage such as pH disturbance and oxygen radical formation. Genes discovered through this transcriptional approach may be additional candidates for understanding gossypol detoxification and coping with gossypol-induced stress. In a generalist herbivore that has evolved transcriptionally-regulated responses to a variety of different plant compounds, hormesis may be due to a lower induction threshold of growth-promoting, stress-coping responses and a higher induction threshold of detoxification pathways that are costly and cause collateral damage to the cell.
Collapse
Affiliation(s)
- Maria de la Paz Celorio-Mancera
- Max Planck Institute for Chemical Ecology, Department of Entomology, Beutenberg Campus, Hans-Knöll-Straβe 8, 07745, Jena, Germany
| | | | | | | |
Collapse
|
45
|
Winde I, Wittstock U. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. PHYTOCHEMISTRY 2011; 72:1566-75. [PMID: 21316065 DOI: 10.1016/j.phytochem.2011.01.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/03/2011] [Accepted: 01/12/2011] [Indexed: 05/18/2023]
Abstract
The glucosinolate-myrosinase system found in plants of the Brassicales order is one of the best studied plant chemical defenses. Glucosinolates and their hydrolytic enzymes, myrosinases, are stored in separate compartments in the intact plant tissue. Upon tissue disruption, bioactivation of glucosinolates is initiated, i.e. myrosinases get access to their glucosinolate substrates, and glucosinolate hydrolysis results in the formation of toxic isothiocyanates and other biologically active products. The defensive function of the glucosinolate-myrosinase system has been demonstrated in a variety of studies with different insect herbivores. However, a number of generalist as well as specialist herbivores uses glucosinolate-containing plants as hosts causing large agronomical losses in oil seed rape and other crops of the Brassicaceae. While our knowledge of counteradaptations in generalist insect herbivores is still very limited, considerable progress has been made in understanding how specialist insect herbivores overcome the glucosinolate-myrosinase system and even exploit it for their own defense. All mechanisms of counteradaptation identified to date in insect herbivores specialized on glucosinolate-containing plants ensure that glucosinolate breakdown to toxic isothiocyanates is avoided. This is accomplished in many different ways including avoidance of cell disruption, rapid absorption of intact glucosinolates, rapid metabolic conversion of glucosinolates to harmless compounds that are not substrates for myrosinases, and diversion of plant myrosinase-catalyzed glucosinolate hydrolysis. One of these counteradaptations, the nitrile-specifier protein identified in Pierid species, has been used to demonstrate mechanisms of coevolution of plants and their insect herbivores.
Collapse
Affiliation(s)
- Inis Winde
- Institut für Pharmazeutische Biologie, Technische Universität Braunschweig, Mendelssohnstr. 1, D-38106 Braunschweig, Germany
| | | |
Collapse
|
46
|
Courtiade J, Pauchet Y, Vogel H, Heckel DG. A comprehensive characterization of the caspase gene family in insects from the order Lepidoptera. BMC Genomics 2011; 12:357. [PMID: 21740565 PMCID: PMC3141678 DOI: 10.1186/1471-2164-12-357] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/08/2011] [Indexed: 11/22/2022] Open
Abstract
Background The cell suicide pathway of apoptosis is a necessary event in the life of multicellular organisms. It is involved in many biological processes ranging from development to the immune response. Evolutionarily conserved proteases, called caspases, play a central role in regulating apoptosis. Reception of death stimuli triggers the activation of initiator caspases, which in turn activate the effector caspases. In Lepidoptera, apoptosis is crucial in processes such as metamorphosis or defending against baculovirus infection. The discovery of p35, a baculovirus protein inhibiting caspase activity, has led to the characterization of the first lepidopteran caspase, Sf-Caspase-1. Studies on Sf-Caspase-1 mode of activation suggested that apoptosis in Lepidoptera requires a cascade of caspase activation, as demonstrated in many other species. Results In order to get insights into this gene family in Lepidoptera, we performed an extensive survey of lepidopteran-derived EST datasets. We identified 66 sequences distributed among 27 species encoding putative caspases. Phylogenetic analyses showed that Lepidoptera possess at least 5 caspases, for which we propose a unified nomenclature. According to homology to their Drosophila counterparts and their primary structure, we determined that Lep-Caspase-1, -2 and -3 are putative effector caspases, whereas Lep-Caspase-5 and -6 are putative initiators. The likely function of Lep-Caspase-4 remains unclear. Lep-Caspase-2 is absent from the silkworm genome and appears to be noctuid-specific, and to have arisen from a tandem duplication of the Caspase-1 gene. In the tobacco hawkmoth, 3 distinct transcripts encoding putative Caspase-4 were identified, suggesting at least 2 duplication events in this species. Conclusions The basic repertoire of five major types of caspases shared among Lepidoptera seems to be smaller than for most other groups studied to date, but gene duplication still plays a role in lineage-specific increases in diversity, just as in Diptera and mammals.
Collapse
Affiliation(s)
- Juliette Courtiade
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
47
|
Dostálová A, Votýpka J, Favreau AJ, Barbian KD, Volf P, Valenzuela JG, Jochim RC. The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: comparison of sugar fed and blood fed sand flies. BMC Genomics 2011; 12:223. [PMID: 21569254 PMCID: PMC3107814 DOI: 10.1186/1471-2164-12-223] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/10/2011] [Indexed: 11/30/2022] Open
Abstract
Background Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. Leishmania development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. In this work we sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female Phlebotomus perniciosus and compared the transcript expression profiles. Results A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. These molecules were evaluated relative to other published sand fly transcripts. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (PperPer1), two chymotrypsin-like proteins (PperChym1 and PperChym2), a putative trypsin (PperTryp3) and four putative microvillar proteins (PperMVP1, 2, 4 and 5). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (PperTryp1 and PperTryp2), a chymotrypsin (PperChym3) and a microvillar protein (PperMVP3). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in Leishmania infantum-infected and uninfected sand flies, which identified the L. infantum-induced down regulation of PperTryp3 at 24 hours post-blood meal. Conclusion This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of P. perniciosus, an important vector of visceral leishmaniasis in the Old World. Through the comparative analysis of the libraries we identified molecules differentially expressed during blood meal digestion. Additionally, this study provides a detailed comparison to transcripts of other sand flies. Moreover, our analysis of putative trypsins demonstrated that L. infantum infection can reduce the transcript abundance of trypsin PperTryp3 in the midgut of P. perniciosus.
Collapse
Affiliation(s)
- Anna Dostálová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Praha 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
48
|
Pfalz M, Mikkelsen MD, Bednarek P, Olsen CE, Halkier BA, Kroymann J. Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification. THE PLANT CELL 2011; 23:716-29. [PMID: 21317374 PMCID: PMC3077789 DOI: 10.1105/tpc.110.081711] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/04/2011] [Accepted: 01/23/2011] [Indexed: 05/18/2023]
Abstract
Indole glucosinolates, derived from the amino acid Trp, are plant secondary metabolites that mediate numerous biological interactions between cruciferous plants and their natural enemies, such as herbivorous insects, pathogens, and other pests. While the genes and enzymes involved in the Arabidopsis thaliana core biosynthetic pathway, leading to indol-3-yl-methyl glucosinolate (I3M), have been identified and characterized, the genes and gene products responsible for modification reactions of the indole ring are largely unknown. Here, we combine the analysis of Arabidopsis mutant lines with a bioengineering approach to clarify which genes are involved in the remaining biosynthetic steps in indole glucosinolate modification. We engineered the indole glucosinolate biosynthesis pathway into Nicotiana benthamiana, showing that it is possible to produce indole glucosinolates in a noncruciferous plant. Building upon this setup, we demonstrate that all members of a small gene subfamily of cytochrome P450 monooxygenases, CYP81Fs, are capable of carrying out hydroxylation reactions of the glucosinolate indole ring, leading from I3M to 4-hydroxy-indol-3-yl-methyl and/or 1-hydroxy-indol-3-yl-methyl glucosinolate intermediates, and that these hydroxy intermediates are converted to 4-methoxy-indol-3-yl-methyl and 1-methoxy-indol-3-yl-methyl glucosinolates by either of two family 2 O-methyltransferases, termed indole glucosinolate methyltransferase 1 (IGMT1) and IGMT2.
Collapse
Affiliation(s)
- Marina Pfalz
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
- Laboratoire d’Ecologie, Systématique et Evolution, Université Paris-Sud/Centre National de la Recherche Scientifique, F-91405 Orsay, France
| | - Michael Dalgaard Mikkelsen
- University of Copenhagen, Faculty of Life Sciences, Department of Plant Biology, VKR Research Centre for Pro-Active Plants, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Paweł Bednarek
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Carl Erik Olsen
- University of Copenhagen, Faculty of Life Sciences, Department of Basic Sciences and Environment/Bioorganic Chemistry, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Barbara Ann Halkier
- University of Copenhagen, Faculty of Life Sciences, Department of Plant Biology, VKR Research Centre for Pro-Active Plants, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Juergen Kroymann
- Laboratoire d’Ecologie, Systématique et Evolution, Université Paris-Sud/Centre National de la Recherche Scientifique, F-91405 Orsay, France
| |
Collapse
|
49
|
Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Dimon MT, Marinotti O, James AA. RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti. BMC Genomics 2011; 12:82. [PMID: 21276245 PMCID: PMC3042412 DOI: 10.1186/1471-2164-12-82] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/28/2011] [Indexed: 11/29/2022] Open
Abstract
Background Hematophagy is a common trait of insect vectors of disease. Extensive genome-wide transcriptional changes occur in mosquitoes after blood meals, and these are related to digestive and reproductive processes, among others. Studies of these changes are expected to reveal molecular targets for novel vector control and pathogen transmission-blocking strategies. The mosquito Aedes aegypti (Diptera, Culicidae), a vector of Dengue viruses, Yellow Fever Virus (YFV) and Chikungunya virus (CV), is the subject of this study to look at genome-wide changes in gene expression following a blood meal. Results Transcriptional changes that follow a blood meal in Ae. aegypti females were explored using RNA-seq technology. Over 30% of more than 18,000 investigated transcripts accumulate differentially in mosquitoes at five hours after a blood meal when compared to those fed only on sugar. Forty transcripts accumulate only in blood-fed mosquitoes. The list of regulated transcripts correlates with an enhancement of digestive activity and a suppression of environmental stimuli perception and innate immunity. The alignment of more than 65 million high-quality short reads to the Ae. aegypti reference genome permitted the refinement of the current annotation of transcript boundaries, as well as the discovery of novel transcripts, exons and splicing variants. Cis-regulatory elements (CRE) and cis-regulatory modules (CRM) enriched significantly at the 5'end flanking sequences of blood meal-regulated genes were identified. Conclusions This study provides the first global view of the changes in transcript accumulation elicited by a blood meal in Ae. aegypti females. This information permitted the identification of classes of potentially co-regulated genes and a description of biochemical and physiological events that occur immediately after blood feeding. The data presented here serve as a basis for novel vector control and pathogen transmission-blocking strategies including those in which the vectors are modified genetically to express anti-pathogen effector molecules.
Collapse
Affiliation(s)
- Mariangela Bonizzoni
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Heidel-Fischer HM, Vogel H, Heckel DG, Wheat CW. Microevolutionary dynamics of a macroevolutionary key innovation in a Lepidopteran herbivore. BMC Evol Biol 2010; 10:60. [PMID: 20181249 PMCID: PMC2841170 DOI: 10.1186/1471-2148-10-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 02/24/2010] [Indexed: 01/23/2023] Open
Abstract
Background A molecular population genetics understanding is central to the study of ecological and evolutionary functional genomics. Population genetics identifies genetic variation and its distribution within and among populations, it reveals the demographic history of the populations studied, and can provide indirect insights into historical selection dynamics. Here we use this approach to examine the demographic and selective dynamics acting of a candidate gene involved in plant-insect interactions. Previous work documents the macroevolutionary and historical ecological importance of the nitrile-specifier protein (Nsp), which facilitated the host shift of Pieridae butterflies onto Brassicales host plants ~80 Myr ago. Results Here we assess the microevolutionary dynamics of the Nsp gene by studying the within and among-population variation at Nsp and reference genes in the butterfly Pieris rapae (Small Cabbage White). Nsp exhibits unexpectedly high amounts of amino acid polymorphism, unequally distributed across the gene. The vast majority of genetic variation exists within populations, with little to no genetic differentiation among four populations on two continents. A comparison of synonymous and nonsynonymous substitutions in 70 randomly chosen genes among P. rapae and its close relative Pieris brassicae (Large Cabbage White) finds Nsp to have a significantly relaxed functional constraint compared to housekeeping genes. We find strong evidence for a recent population expansion and no role for strong purifying or directional selection upon the Nsp gene. Conclusions The microevolutionary dynamics of the Nsp gene in P. rapae are dominated by recent population expansion and variation in functional constraint across the repeated domains of the Nsp gene. While the high amounts of amino acid diversity suggest there may be significant functional differences among allelic variants segregating within populations, indirect tests of selection could not conclusively identify a signature of historical selection. The importance of using this information for planning future studies of potential performance and fitness consequences of the observed variation is discussed.
Collapse
|