1
|
Nandakumar M, Lundberg M, Carlsson F, Råberg L. Positive Selection on Mammalian Immune Genes-Effects of Gene Function and Selective Constraint. Mol Biol Evol 2025; 42:msaf016. [PMID: 39834162 PMCID: PMC11783303 DOI: 10.1093/molbev/msaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Genome-wide analyses of various taxa have repeatedly shown that immune genes are important targets of positive selection. However, little is known about what factors determine which immune genes are under positive selection. To address this question, we here focus on the mammalian immune system and investigate the importance of gene function and other factors such as gene expression, protein-protein interactions, and overall selective constraint as determinants of positive selection. We compiled a list of >1,100 immune genes that were divided into six functional categories and analyzed using data from rodents. Genes encoding proteins that are in direct interactions with pathogens, such as pattern recognition receptors (PRRs), are often expected to be key targets of positive selection. We found that categories containing cytokines, cytokine receptors, and other cell surface proteins involved in, for example, cell-cell interactions were at least as important targets as PRRs, with three times higher rate of positive selection than nonimmune genes. The higher rate of positive selection on cytokines and cell surface proteins was partly an effect of these categories having lower selective constraint. Nonetheless, cytokines had a higher rate of positive selection than nonimmune genes even at a given level of selective constraint, indicating that gene function per se can also be a determinant of positive selection. These results have broad implications for understanding the causes of positive selection on immune genes, specifically the relative importance of host-pathogen coevolution versus other processes.
Collapse
Affiliation(s)
| | - Max Lundberg
- Department of Biology, Lund University, Lund 223 62, Sweden
| | | | - Lars Råberg
- Department of Biology, Lund University, Lund 223 62, Sweden
| |
Collapse
|
2
|
Zhang J, Zhao R, Bi H, He J, Guo Y, Liu D, Yang G, Chen X, Chen Z. Positive Selection of TLR2 and MyD88 Genes Provides Insights Into the Molecular Basis of Immunological Adaptation in Amphibians. Ecol Evol 2024; 14:e70723. [PMID: 39691440 PMCID: PMC11650749 DOI: 10.1002/ece3.70723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024] Open
Abstract
The transition from water to land of amphibians is evolutionarily significant in the history of vertebrates, and immunological adaptation is an important challenge for amphibians to respond to the dramatic changes of the environmental pathogens during their origin and diversification. Toll-like receptors (TLRs) are important pattern recognition receptors for the innate immune response and TLRs signaling pathway play essential roles in the immune responses to pathogens and inflammatory reaction. However, the evolutionary patterns and molecular mechanisms underlying their adaptation in amphibians are poorly documented to date. Here, we determined the coding regions, expression patterns of TLR2 and Myeloid differentiation factor 88 (MyD88) in the large treefrog (Zhangixalus dennysi), and explored the evolutionary patterns of these two genes in amphibians. Quantitative Real-time PCR analyses showed that the TLR2 and MyD88 mRNA were expressed in all the organs/tissues examined, both with the highest levels in the heart and the lowest levels in the body fat for TLR2 and lung for MyD88. The highly conservation and functional significance of these two genes in amphibians were supported based on the sequence characteristics and evolutionary analyses. Significantly positive selection was found to be acting on TLR2 and MyD88 in amphibians based on different site models. Strong signal of positive selection among different amphibian lineages for these two genes was also detected and a series of positively selected sites were identified based on the branch-site analysis. Our results suggest that amphibians have adapted to different pathogenic microorganisms during their transition from the aquatic to terrestrial environment and diversification into various habitats. The present study will provide new insights into the evolutionary process and molecular basis underlying the immunological adaptation in vertebrates.
Collapse
Affiliation(s)
- Jie Zhang
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
- College of FisheriesHenan Normal UniversityXinxiangChina
| | - Ruinan Zhao
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Hongyan Bi
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Jiaoying He
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Yang Guo
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Dian Liu
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Ganggang Yang
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Xiaohong Chen
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Zhuo Chen
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, College of Life SciencesHenan Normal UniversityXinxiangChina
| |
Collapse
|
3
|
Kaliappan A, Ramakrishnan S, Thomas P, Verma SK, Panwar K, Singh M, Dey S, Mohan Chellappa M. Polymorphism in the leucine-rich repeats of TLR7 in different breeds of chicken and in silico analysis of its effect on TLR7 structure and function. Gene 2024; 912:148373. [PMID: 38490513 DOI: 10.1016/j.gene.2024.148373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Chicken toll-like receptor 7 (chTLR7) is a viral sensing pattern recognition receptor and detects ssRNA. The ligand binding site comprises leucine-rich repeats (LRRs) located in the ectodomain of chTLR7. Hence, any polymorphism in the binding site would modify its functional interaction with the ligand, resulting in varied strength of immune response. This study first aimed to compare the single nucleotide polymorphisms (SNPs) associated with the ligand binding site of TLR7 in three indigenous chicken breeds namely Aseel, Kadaknath, Nicobari along with an exotic breed White Leghorn. Four synonymous SNPs (P123P, I171I, N339N and L421L) and four non-synonymous SNPs (I121V, S135T, F356S and S447G) were identified among various breeds. We employed in silico tools to screen the pathogenic nsSNPs and one nsSNP was identified as having potential impact on chTLR7 protein. Moreover, sequence and structure-based methods were used to determine the effect of nsSNPs on protein stability. It revealed I121V, F356S, and S447G as decreasing the stability while S135T increasing the stability of chTLR7. Additionally, docking analysis confirmed that I121V and F356S reduced the binding affinity of ligands (R-848 and polyU) to chTLR7 protein. The results suggest that the nsSNPs found in this study could alter the ligand binding of chTLR7 and modify the immune response between different breeds further contributing to disease susceptibility or resistance. Further, in vitro and in vivo studies are needed to analyze the effect of these SNPs on susceptibility or resistance against various viral diseases in poultry.
Collapse
Affiliation(s)
- Abinaya Kaliappan
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Saravanan Ramakrishnan
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India.
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Surya Kant Verma
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Khushboo Panwar
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Mithilesh Singh
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Sohini Dey
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Madhan Mohan Chellappa
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| |
Collapse
|
4
|
Melepat B, Li T, Vinkler M. Natural selection directing molecular evolution in vertebrate viral sensors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105147. [PMID: 38325501 DOI: 10.1016/j.dci.2024.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/30/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Diseases caused by pathogens contribute to molecular adaptations in host immunity. Variety of viral pathogens challenging animal immunity can drive positive selection diversifying receptors recognising the infections. However, whether distinct virus sensing systems differ across animals in their evolutionary modes remains unclear. Our review provides a comparative overview of natural selection shaping molecular evolution in vertebrate viral-binding pattern recognition receptors (PRRs). Despite prevailing negative selection arising from the functional constraints, multiple lines of evidence now suggest diversifying selection in the Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs) and oligoadenylate synthetases (OASs). In several cases, location of the positively selected sites in the ligand-binding regions suggests effects on viral detection although experimental support is lacking. Unfortunately, in most other PRR families including the AIM2-like receptor family, C-type lectin receptors (CLRs), and cyclic GMP-AMP synthetase studies characterising their molecular evolution are rare, preventing comparative insight. We indicate shared characteristics of the viral sensor evolution and highlight priorities for future research.
Collapse
Affiliation(s)
- Balraj Melepat
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic
| | - Tao Li
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic.
| |
Collapse
|
5
|
Su Q, Chen Y, He H. Molecular evolution of Toll-like receptors in rodents. Integr Zool 2024; 19:371-386. [PMID: 37403417 DOI: 10.1111/1749-4877.12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Toll-like receptors (TLRs), the key sensor molecules in vertebrates, trigger the innate immunity and prime the adaptive immune system. The TLR family of rodents, the largest order of mammals, typically contains 13 TLR genes. However, a clear picture of the evolution of the rodent TLR family has not yet emerged and the TLR evolutionary patterns are unclear in rodent clades. Here, we analyzed the natural variation and the evolutionary processes acting on the TLR family in rodents at both the interspecific and population levels. Our results showed that rodent TLRs were dominated by purifying selection, but a series of positively selected sites (PSSs) primarily located in the ligand-binding domain was also identified. The numbers of PSSs differed among TLRs, and nonviral-sensing TLRs had more PSSs than those in viral-sensing TLRs. Gene-conversion events were found between TLR1 and TLR6 in most rodent species. Population genetic analyses showed that TLR2, TLR8, and TLR12 were under positive selection in Rattus norvegicus and R. tanezumi, whereas positive selection also acted on TLR5 and TLR9 in the former species, as well as TLR1 and TLR7 in the latter species. Moreover, we found that the proportion of polymorphisms with potentially functional change was much lower in viral-sensing TLRs than in nonviral-sensing TLRs in both of these rat species. Our findings revealed the first thorough insight into the evolution of the rodent TLR genetic variability and provided important novel insights into the evolutionary history of TLRs over long and short timescales.
Collapse
Affiliation(s)
- Qianqian Su
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Meißner R, Mokgokong P, Pretorius C, Winter S, Labuschagne K, Kotze A, Prost S, Horin P, Dalton D, Burger PA. Diversity of selected toll-like receptor genes in cheetahs (Acinonyx jubatus) and African leopards (Panthera pardus pardus). Sci Rep 2024; 14:3756. [PMID: 38355905 PMCID: PMC10866938 DOI: 10.1038/s41598-024-54076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
The anthropogenic impact on wildlife is ever increasing. With shrinking habitats, wild populations are being pushed to co-exist in proximity to humans leading to an increased threat of infectious diseases. Therefore, understanding the immune system of a species is key to assess its resilience in a changing environment. The innate immune system (IIS) is the body's first line of defense against pathogens. High variability in IIS genes, like toll-like receptor (TLR) genes, appears to be associated with resistance to infectious diseases. However, few studies have investigated diversity in TLR genes in vulnerable species for conservation. Large predators are threatened globally including leopards and cheetahs, both listed as 'vulnerable' by IUCN. To examine IIS diversity in these sympatric species, we used next-generation-sequencing to compare selected TLR genes in African leopards and cheetahs. Despite differences, both species show some TLR haplotype similarity. Historic cheetahs from all subspecies exhibit greater genetic diversity than modern Southern African cheetahs. The diversity in investigated TLR genes is lower in modern Southern African cheetahs than in African leopards. Compared to historic cheetah data and other subspecies, a more recent population decline might explain the observed genetic impoverishment of TLR genes in modern Southern African cheetahs. However, this may not yet impact the health of this cheetah subspecies.
Collapse
Affiliation(s)
- René Meißner
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
| | - Prudent Mokgokong
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
| | - Chantelle Pretorius
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
- WWF South African, Bridge House, Boundary Terraces, Mariendahl Ave, Newlands, 7725, Capetown, South Africa
| | - Sven Winter
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
| | - Kim Labuschagne
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
| | - Antoinette Kotze
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
- University of the Free State, Bloemfontein Campus, Bloemfontein, 9300, South Africa
| | - Stefan Prost
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
- University of Oulu, Pentti Kaiteran Katu 1, 90570, Oulu, Finland
| | - Petr Horin
- Department of Animal Genetics, University of Veterinary Sciences, Brno, Czech Republic
- Central European Institute of Technology, University of Veterinary Sciences Brno (CEITEC Vetuni), Brno, Czech Republic
| | - Desire Dalton
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa.
- School of Health and Life Science, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK.
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria.
| |
Collapse
|
7
|
Włodarczyk R, Těšický M, Vinkler M, Novotný M, Remisiewicz M, Janiszewski T, Minias P. Divergent evolution drives high diversity of toll-like receptors (TLRs) in passerine birds: Buntings and finches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104704. [PMID: 37019350 DOI: 10.1016/j.dci.2023.104704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 06/05/2023]
Abstract
Toll-like receptors (TLRs) form a key component of animal innate immunity, being responsible for recognition of conserved microbial structures. As such, TLRs may be subject to diversifying and balancing selection, which maintains allelic variation both within and between populations. However, most research on TLRs in non-model avian species is focused on bottlenecked populations with depleted genetic variation. Here, we assessed variation at the extracellular domains of three TLR genes (TLR1LA, TLR3, TLR4) across eleven species from two passerine families of buntings (Emberizidae) and finches (Fringillidae), all having large breeding population sizes (millions of individuals). We found extraordinary TLR polymorphism in our study taxa, with >100 alleles detected at TLR1LA and TLR4 across species and high haplotype diversity (>0.75) in several species. Despite recent species divergence, no nucleotide allelic variants were shared between species, suggesting rapid TLR evolution. Higher variation at TLR1LA and TLR4 than TLR3 was associated with a stronger signal of diversifying selection, as measured with nucleotide substitutions rates and the number of positively selected sites (PSS). Structural protein modelling of TLRs showed that some PSS detected within TLR1LA and TLR4 were previously recognized as functionally important sites or were located in their proximity, possibly affecting ligand recognition. Furthermore, we identified PSS responsible for major surface electrostatic charge clustering, which may indicate their adaptive importance. Our study provides compelling evidence for the divergent evolution of TLR genes in buntings and finches and indicates that high TLR variation may be adaptively maintained via diversifying selection acting on functional ligand binding sites.
Collapse
Affiliation(s)
- Radosław Włodarczyk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Martin Těšický
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic
| | - Marian Novotný
- Charles University, Faculty of Science, Department of Cell Biology, Viničná 7, 128 43, Prague, Czech Republic
| | - Magdalena Remisiewicz
- Bird Migration Research Station, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Tomasz Janiszewski
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| |
Collapse
|
8
|
Wu X, Chen J, Wang X, Shang Y, Wei Q, Zhang H. Evolutionary Impacts of Pattern Recognition Receptor Genes on Carnivora Complex Habitat Stress Adaptation. Animals (Basel) 2022; 12:ani12233331. [PMID: 36496853 PMCID: PMC9739989 DOI: 10.3390/ani12233331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Many mammals develop specific immune responses owing to the changes in their ecological niche and diet that are essential for animal survival. However, pattern recognition receptors (PRRs) serve as the first line of defense in innate immunity and generate immune responses in the host. However, the evolutionary impacts on PRR genes in Carnivora are not well studied. Herein, we explored the evolution of 946 PRR gene sequences in 43 Carnivora species to elucidate the molecular mechanisms of carnivore adaptation to complex habitats. We found that the PRRs were relatively conserved, and different gene families showed different evolutionary patterns. PRRs were highly purified based on their overall roles in Carnivora species but interspersed with positive-selection patterns during evolution. Different niche types may have jointly driven the evolution of PRR genes. In particular, the selection pressure of toll-like receptor (TLR) 10 was relaxed in seven species with pseudogenes, which may have emerged during recent evolutionary events. We speculated that a "functional compensation" mechanism may exist for genes with overlapping functions in the TLR gene family. Additionally, TLR2, TLR4, NLRC5, and DECTIN1 were subject to positive selection in semi-aquatic species, and the adaptive evolution of these genes may have been related to the adaptation to semi-aquatic environments. In summary, our findings offer valuable insights into the molecular and functional evolution of PRR genes, which are important for immune adaptations in Carnivora.
Collapse
Affiliation(s)
- Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
- Correspondence:
| |
Collapse
|
9
|
Shuler G, Hagai T. Rapidly evolving viral motifs mostly target biophysically constrained binding pockets of host proteins. Cell Rep 2022; 40:111212. [PMID: 35977510 DOI: 10.1016/j.celrep.2022.111212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/11/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022] Open
Abstract
Evolutionary changes in host-virus interactions can alter the course of infection, but the biophysical and regulatory constraints that shape interface evolution remain largely unexplored. Here, we focus on viral mimicry of host-like motifs that allow binding to host domains and modulation of cellular pathways. We observe that motifs from unrelated viruses preferentially target conserved, widely expressed, and highly connected host proteins, enriched with regulatory and essential functions. The interface residues within these host domains are more conserved and bind a larger number of cellular proteins than similar motif-binding domains that are not known to interact with viruses. In contrast, rapidly evolving viral-binding human proteins form few interactions with other cellular proteins and display high tissue specificity, and their interfaces have few inter-residue contacts. Our results distinguish between conserved and rapidly evolving host-virus interfaces and show how various factors limit host capacity to evolve, allowing for efficient viral subversion of host machineries.
Collapse
Affiliation(s)
- Gal Shuler
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
10
|
Sharp C, Foster KR. Host control and the evolution of cooperation in host microbiomes. Nat Commun 2022; 13:3567. [PMID: 35732630 PMCID: PMC9218092 DOI: 10.1038/s41467-022-30971-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Humans, and many other species, are host to diverse symbionts. It is often suggested that the mutual benefits of host-microbe relationships can alone explain cooperative evolution. Here, we evaluate this hypothesis with evolutionary modelling. Our model predicts that mutual benefits are insufficient to drive cooperation in systems like the human microbiome, because of competition between symbionts. However, cooperation can emerge if hosts can exert control over symbionts, so long as there are constraints that limit symbiont counter evolution. We test our model with genomic data of two bacterial traits monitored by animal immune systems. In both cases, bacteria have evolved as predicted under host control, tending to lose flagella and maintain butyrate production when host-associated. Moreover, an analysis of bacteria that retain flagella supports the evolution of host control, via toll-like receptor 5, which limits symbiont counter evolution. Our work puts host control mechanisms, including the immune system, at the centre of microbiome evolution.
Collapse
Affiliation(s)
- Connor Sharp
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Zhang L, Liu G, Xia T, Yang X, Sun G, Zhao C, Xu C, Zhang H. Evolution of toll-like receptor gene family in amphibians. Int J Biol Macromol 2022; 208:463-474. [PMID: 35337917 DOI: 10.1016/j.ijbiomac.2022.03.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
Abstract
The evolutionary position and lifestyle of amphibians highlights the important roles of the immune system in adaptive radiation and their adaptation to a complex pathogenic environment. Toll-like receptors (TLRs) are membrane-like sensors that recognize and bind conserved molecular motifs in pathogens to initiate downstream immune responses. To understand the evolutionary patterns of TLRs in amphibians, we analyzed TLR genes from the genomes and transcriptomes of 102 amphibian species. Phylogenetic results showed that 578 intact amphibian TLR sequences belonged to 16 TLR genes and were divided into seven subfamilies. The TLR4 subfamily was only identified in the Anura. Purification selection plays a leading role in amphibian TLR evolution and mean ω (dN/dS) values ranged from 0.252 for TLR7 to 0.381 for TLR19. Furthermore, the ω values of different domains were significantly different. We found positive selection patterns for 141 of 12,690 codons (1.1%) in all amphibian TLRs, most of which were located in leucine-rich repeats (LRRs). We also observed low to moderate levels of single-nucleotide polymorphisms (SNPs) in Pelophylax nigromaculatus and Bombina orientalis. This study provided critical primers, meaningful information regarding TLR gene family evolution in amphibians, and insights into the complex evolutionary patterns and implications of TLR polymorphisms.
Collapse
Affiliation(s)
- Lei Zhang
- College of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Guangshuai Liu
- College of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Tian Xia
- College of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiufeng Yang
- College of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Guolei Sun
- College of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Chao Zhao
- College of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Chunzhu Xu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu, Shandong 273165, China.
| |
Collapse
|
12
|
Juhász A, Lawton SP. Toll like receptors and their evolution in the lymnaeid freshwater snail species Radix auricularia and Lymnaea stagnalis, key intermediate hosts for zoonotic trematodes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104297. [PMID: 34662684 DOI: 10.1016/j.dci.2021.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
One of the major evolutionarily conserved pathways in innate immunity of invertebrates is the toll-like receptor (TLR) pathway. However, little is known of the TLR protein family in gastropod molluscs despite their role in the transmission of human diseases, especially the common lymnaeid freshwater snail species Radix auricularia and Lymnaea stagnalis, key intermediate hosts of zoonotic trematodes. Using comparative genomics and gene prediction approaches utilising the freshwater snail Biomphalaria glabrata genome as a reference ten putative TLR proteins were identified in both R. auricularia and L. stagnalis. Phylogenetic analyses revealed that unlike other molluscs the lymnaeid species also possessed class 1 TLRs, previously thought to be unique to B. glabrata. Gene duplication events were also seen across the TLR classes in the lymnaeids with several of the genes appearing to exist as potential tandem elements in R. auricularia. Each predicted TLR was shown to possess the typical the leucine-rich repeat extracellular and TIR intracellular domains and both single cysteine clusters and multiple cysteine clusters TLRs were identified in both lymnaeid species. Principle component analyses of 3D models of the predicted TLRs showed that class 1 and 5 proteins did not cluster based on similarity of structure, suggested to be potential adaptation to a range of pathogens. This study provides the first detailed account of TLRs in lymnaeids and affords a platform for further research into the role of these proteins into susceptibility and compatibility of these snails with trematodes and their role in transmission.
Collapse
Affiliation(s)
- Alexandra Juhász
- Institute of Medical Microbiology, Semmelweis University, H-1089, Budapest, Hungary; Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Scott P Lawton
- Epidemiology Research Unit (ERU) Department of Veterinary and Animal Sciences, Northern Faculty, Scotland's Rural College (SRUC), An Lòchran, 10 Inverness Campus, Inverness, IV2 5NA, UK.
| |
Collapse
|
13
|
Fiddaman SR, Vinkler M, Spiro SG, Levy H, Emerling CA, Boyd AC, Dimopoulos EA, Vianna JA, Cole TL, Pan H, Fang M, Zhang G, Hart T, Frantz LAF, Smith AL. Adaptation and cryptic pseudogenization in penguin Toll-like Receptors. Mol Biol Evol 2021; 39:6460345. [PMID: 34897511 PMCID: PMC8788240 DOI: 10.1093/molbev/msab354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Penguins (Sphenisciformes) are an iconic order of flightless, diving seabirds distributed across a large latitudinal range in the Southern Hemisphere. The extensive area over which penguins are endemic is likely to have fostered variation in pathogen pressure, which in turn will have imposed differential selective pressures on the penguin immune system. At the front line of pathogen detection and response, the Toll-like receptors (TLRs) provide insight into host evolution in the face of microbial challenge. TLRs respond to conserved pathogen-associated molecular patterns and are frequently found to be under positive selection, despite retaining specificity for defined agonist classes. We undertook a comparative immunogenetics analysis of TLRs for all penguin species and found evidence of adaptive evolution that was largely restricted to the cell surface-expressed TLRs, with evidence of positive selection at, or near, key agonist-binding sites in TLR1B, TLR4, and TLR5. Intriguingly, TLR15, which is activated by fungal products, appeared to have been pseudogenized multiple times in the Eudyptes spp., but a full-length form was present as a rare haplotype at the population level. However, in vitro analysis revealed that even the full-length form of Eudyptes TLR15 was nonfunctional, indicating an ancestral cryptic pseudogenization prior to its eventual disruption multiple times in the Eudyptes lineage. This unusual pseudogenization event could provide an insight into immune adaptation to fungal pathogens such as Aspergillus, which is responsible for significant mortality in wild and captive bird populations.
Collapse
Affiliation(s)
- Steven R Fiddaman
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University Prague, Czech Republic
| | - Simon G Spiro
- Wildlife Health Services, Zoological Society of London Regent's Park, London, UK
| | - Hila Levy
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | | | - Amy C Boyd
- Jenner Institute, University of Oxford Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford Oxford, UK
| | - Juliana A Vianna
- Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ecosistemas y Medio Ambiente Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Theresa L Cole
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen DK2100, Copenhagen, Denmark
| | - Hailin Pan
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China
| | - Miaoquan Fang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen DK2100, Copenhagen, Denmark.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Tom Hart
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Fogg Building, Queen Mary University of London Mile End Rd, Bethnal Green, London E1 4DQ, UK.,Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Germany
| | - Adrian L Smith
- Department of Zoology, University of Oxford South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
14
|
Yiu JHC, Cheung SWM, Cai J, Chan KS, Chen J, Cheong LY, Chau HT, Xu A, Li RHW, Woo CW. TLR5 Supports Development of Placental Labyrinthine Zone in Mice. Front Cell Dev Biol 2021; 9:711253. [PMID: 34395439 PMCID: PMC8356041 DOI: 10.3389/fcell.2021.711253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Toll plays an important role in innate immunity and embryonic development in lower-ranked animals, but in mammals, the homolog toll-like receptors (TLR) are reported to facilitate postnatal development of immunity only. Here, we discovered a role of TLR5 in placental development. Tlr5 was highly transcribed during the placenta-forming and functional phases. TLR5 deletion led to a smaller placental labyrinthine zone and lower embryo weight, and the smaller size of embryo was overcorrected, resulting in a higher postnatal body weight. Examination of TLR5-deficient conceptus revealed a decrease in nuclear cAMP-response element-binding protein (CREB), mechanistic target of rapamycin (mTOR) and insulin growth factor-1 receptor (IGF1R) abundances in the placenta-forming phase. Non-flagellin-based TLR5 ligands were detected in serum of female mice and the overexpression of TLR5 alone was sufficient to induce CREB nuclear translocation and mTOR transcriptional activation in trophoblasts. Taken together, we uncovered the participation of TLR5 in the early placental formation in mice, unveiling a role of TLR in embryonic development in higher-ranked animals.
Collapse
Affiliation(s)
- Jensen H C Yiu
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Samson W M Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jieling Cai
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kam-Suen Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hau-Tak Chau
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Raymond H W Li
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Connie W Woo
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Yang J, Zhou M, Zhong Y, Xu L, Zeng C, Zhao X, Zhang M. Gene duplication and adaptive evolution of Toll-like receptor genes in birds. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:103990. [PMID: 33422554 DOI: 10.1016/j.dci.2020.103990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/27/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Toll-like receptors (TLRs) play an important role in innate immune through recognizes pathogens. In order to reveal the evolutionary patterns and adaptive evolution of avian TLRs, we examined 66 representative bird species in 26 orders. Phylogenetic results indicated that TLR1A and TLR1B may have differentiated functionally. Evolutionary analysis showed that the TLR genes in birds under strong Purification selection (0.165-0.4265). A total of 126 common positively selected codons were identified in 10 TLR genes of avian, and most sites were located in the extracellular leucine-rich repeat (LRR) functional domains, and both environment and feeding habits were external factors driving the evolution of avian TLR genes. Environmental pressures had a greater effect on TLR1B, TLR2B, TLR3 and TLR4, while feeding habits were active in affecting TLR2A, TLR2B, TLR15 and TLR21. Our data suggested that TLR genes have been subjected to different selective pressures in the diversification of birds and that these changes enabled them to respond differently to pathogens from diverse sources.
Collapse
Affiliation(s)
- Jiandong Yang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Southwest China Wildlife Rsources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, PR China.
| | - Ming Zhou
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yun Zhong
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liqun Xu
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changjun Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoling Zhao
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
16
|
Su Q, Chen Y, Wang B, Zhang Q, He H. Genetic characterizations of Toll-like receptors in the brown rat and their associations with pathogen infections. Integr Zool 2021; 17:879-889. [PMID: 34003606 DOI: 10.1111/1749-4877.12555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toll-like receptors (TLRs) are important initiators of innate immune responses that target host-pathogen interactions. However, further research into the molecular characteristics of TLRs in wild populations is required, as well as how TLRs genetically influenced pathogen infections in the brown rat (Rattus norvegicus). Here, we explored the genetic characterization and evolution of 2 sensing nucleic acid TLRs (TLR7 and TLR8) and 2 sensing non-nucleic acid TLRs (TLR2 and TLR4) in the wild brown rat, and assessed their associations with 2 RNA viruses (Seoul hantavirus and rat hepatitis E virus (HEV)) and 2 bacteria (Leptospira and Bartonella). In these 4 TLRs, we discovered a total of 16 variants. Furthermore, TLR8 had high genetic diversity among 7 variants, while TLR2 had low genetic diversity with only 1 variant. According to selective pressure analyses, TLR4, TLR7, and TLR8 genes evolved under purifying selection. Interestingly, significant associations were found between 3 TLR8 variants and HEV infection, as well as 1 TLR2 variant and Bartonella infection. Overall, our findings provided a glimpse into the genetic characterization of TLRs in the brown rat, and further demonstrated that TLR2 and TLR8 genetic variations were related to Bartonella and HEV infection, respectively. Especially, TLR8 may be a good candidate immune gene for future research on molecular ecology and functional adaptation in wild populations.
Collapse
Affiliation(s)
- Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Chinese Academy of Sciences, Institute of Zoology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Bo Wang
- National Research Center for Wildlife-Borne Diseases, Chinese Academy of Sciences, Institute of Zoology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qingxun Zhang
- National Research Center for Wildlife-Borne Diseases, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| |
Collapse
|
17
|
Judd EN, Gilchrist AR, Meyerson NR, Sawyer SL. Positive natural selection in primate genes of the type I interferon response. BMC Ecol Evol 2021; 21:65. [PMID: 33902453 PMCID: PMC8074226 DOI: 10.1186/s12862-021-01783-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background The Type I interferon response is an important first-line defense against viruses. In turn, viruses antagonize (i.e., degrade, mis-localize, etc.) many proteins in interferon pathways. Thus, hosts and viruses are locked in an evolutionary arms race for dominance of the Type I interferon pathway. As a result, many genes in interferon pathways have experienced positive natural selection in favor of new allelic forms that can better recognize viruses or escape viral antagonists. Here, we performed a holistic analysis of selective pressures acting on genes in the Type I interferon family. We initially hypothesized that the genes responsible for inducing the production of interferon would be antagonized more heavily by viruses than genes that are turned on as a result of interferon. Our logic was that viruses would have greater effect if they worked upstream of the production of interferon molecules because, once interferon is produced, hundreds of interferon-stimulated proteins would activate and the virus would need to counteract them one-by-one.
Results We curated multiple sequence alignments of primate orthologs for 131 genes active in interferon production and signaling (herein, “induction” genes), 100 interferon-stimulated genes, and 100 randomly chosen genes. We analyzed each multiple sequence alignment for the signatures of recurrent positive selection. Counter to our hypothesis, we found the interferon-stimulated genes, and not interferon induction genes, are evolving significantly more rapidly than a random set of genes. Interferon induction genes evolve in a way that is indistinguishable from a matched set of random genes (22% and 18% of genes bear signatures of positive selection, respectively). In contrast, interferon-stimulated genes evolve differently, with 33% of genes evolving under positive selection and containing a significantly higher fraction of codons that have experienced selection for recurrent replacement of the encoded amino acid. Conclusion Viruses may antagonize individual products of the interferon response more often than trying to neutralize the system altogether.
Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01783-z.
Collapse
Affiliation(s)
- Elena N Judd
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Alison R Gilchrist
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Nicholas R Meyerson
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Sara L Sawyer
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA.
| |
Collapse
|
18
|
Oliveira TMD, Burlamaqui TCT, Sá ALAD, Breaux B, Luna FDO, Attademo FLN, Klautau AGCDM, Oliveira JM, Sena L, Criscitiello MF, Schneider MPC. TLR4 and TLR8 variability in Amazonian and West Indian manatee species from Brazil. Genet Mol Biol 2021; 44:e20190252. [PMID: 33847701 PMCID: PMC8042642 DOI: 10.1590/1678-4685-gmb-2019-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/29/2021] [Indexed: 11/22/2022] Open
Abstract
Amazonian (Trichechus inunguis) and West Indian (Trichechus manatus) manatees are aquatic mammals vulnerable to extinction found in the Amazon basin and the coastal western Atlantic. Toll-like receptors (TLR) play a key role in recognizing pathogen-associated molecular patterns using leucine-rich repeats (LRRs). We described the diversity of TLR4 and TLR8 genes in these two species of manatee. Amazonian manatee showed seven SNPs in TLR4 and the eight in TLR8, while West Indian manatee shared four and six of those SNPs, respectively. In our analysis, TLR4 showed one non-conservative amino acid replacement substitution in LRR7 and LRR8, on the other hand, TLR8 was less variable and showed only conserved amino acid substitutions. Selection analysis showed that only one TLR4 site was subjected to positive selection and none in TLR8. TLR4 in manatees did not show any evidence of convergent evolution compared to species of the cetacean lineage. Differences in TLR4 and TLR8 polymorphism may be related to distinct selection by pathogens, population reduction of West Indian manatees, or an expected consequence of population expansion in Amazonian manatees. Future studies combining pathogen association and TLR polymorphism may clarify possible roles of these genes and be used for conservation purposes of manatee species.
Collapse
Affiliation(s)
| | | | - André Luiz Alves de Sá
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil.,Universidade Federal Rural da Amazônia, Instituto Socioambiental e dos Recursos Hídricos, Laboratório de Genética Aplicada, Belém, PA, Brazil
| | - Breanna Breaux
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Veterinary Pathobiology, Comparative Immunogenetics Laboratory, College Station, TX, USA
| | - Fábia de Oliveira Luna
- Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos (CMA), Santos, SP, Brazil
| | - Fernanda Löffler Niemeyer Attademo
- Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos (CMA), Itamaracá, PE, Brazil.,Centro de Estudos e Monitoramento Ambiental (CEMAM), Areia Branca, RN, Brazil
| | - Alex Garcia Cavalleiro de Macedo Klautau
- Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha do Norte (CEPNOR), Belém, PA, Brazil
| | - Jairo Moura Oliveira
- Universidade da Amazônia, Parque Zoológico da UNAMA (ZOOUNAMA), Santarém, PA, Brazil
| | - Leonardo Sena
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil
| | - Michael F Criscitiello
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Veterinary Pathobiology, Comparative Immunogenetics Laboratory, College Station, TX, USA.,Texas A&M University, Texas A&M Health Science Center, College of Medicine, Department of Microbial Pathogenesis and Immunology, College Station, TX, USA
| | | |
Collapse
|
19
|
Primate innate immune responses to bacterial and viral pathogens reveals an evolutionary trade-off between strength and specificity. Proc Natl Acad Sci U S A 2021; 118:2015855118. [PMID: 33771921 PMCID: PMC8020666 DOI: 10.1073/pnas.2015855118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Humans and our close evolutionary relatives respond differently to a large number of infections. Such differences are thought to result, at least in part, from interspecies differences in immune function. Here, we report on the whole-genome expression of blood leukocytes from four primate species responding to bacterial and viral stimulation. We show that apes mount a markedly stronger early transcriptional response to both viral and bacterial stimulation when compared to African and Asian monkeys. In addition, our findings suggest that apes activate a broader array of defense molecules that may be beneficial for early pathogen killing at the potential cost of increased energy expenditure and tissue damage. Our results provide insight into the evolution of immune responses in primates. Despite their close genetic relatedness, apes and African and Asian monkeys (AAMs) differ in their susceptibility to severe bacterial and viral infections that are important causes of human disease. Such differences between humans and other primates are thought to be a result, at least in part, of interspecies differences in immune response to infection. However, because of the lack of comparative functional data across species, it remains unclear in what ways the immune systems of humans and other primates differ. Here, we report the whole-genome transcriptomic responses of ape species (human and chimpanzee) and AAMs (rhesus macaque and baboon) to bacterial and viral stimulation. We find stark differences in the responsiveness of these groups, with apes mounting a markedly stronger early transcriptional response to both viral and bacterial stimulation, altering the transcription of ∼40% more genes than AAMs. Additionally, we find that genes involved in the regulation of inflammatory and interferon responses show the most divergent early transcriptional responses across primates and that this divergence is attenuated over time. Finally, we find that relative to AAMs, apes engage a much less specific immune response to different classes of pathogens during the early hours of infection, up-regulating genes typical of anti-viral and anti-bacterial responses regardless of the nature of the stimulus. Overall, these findings suggest apes exhibit increased sensitivity to bacterial and viral immune stimulation, activating a broader array of defense molecules that may be beneficial for early pathogen killing at the potential cost of increased energy expenditure and tissue damage.
Collapse
|
20
|
Brinkworth JF, Valizadegan N. Sepsis and the evolution of human increased sensitivity to lipopolysaccharide. Evol Anthropol 2021; 30:141-157. [PMID: 33689211 DOI: 10.1002/evan.21887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/29/2020] [Accepted: 01/30/2021] [Indexed: 01/03/2023]
Abstract
Among mammals, humans are exquisitely sensitive to lipopolysaccharide (LPS), an environmentally pervasive bacterial cell membrane component. Very small doses of LPS trigger powerful immune responses in humans and can even initiate symptoms of sepsis. Close evolutionary relatives such as African and Asian monkeys require doses that are an order of magnitude higher to do the same. Why humans have evolved such an energetically expensive antimicrobial strategy is a question that biological anthropologists are positioned to help address. Here we compare LPS sensitivity in primate/mammalian models and propose that human high sensitivity to LPS is adaptive, linked to multiple immune tactics against pathogens, and part of multi-faceted anti-microbial strategy that strongly overlaps with that of other mammals. We support a notion that LPS sensitivity in humans has been driven by microorganisms that constitutively live on us, and has been informed by human behavioral changes over our species' evolution (e.g., meat eating, agricultural practices, and smoking).
Collapse
Affiliation(s)
- Jessica F Brinkworth
- Evolutionary Immunology and Genomics Laboratory, Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.,Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Animal Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Negin Valizadegan
- Evolutionary Immunology and Genomics Laboratory, Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.,Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
21
|
Matos MC, Pinheiro A, Melo-Ferreira J, Davis RS, Esteves PJ. Evolution of Fc Receptor-Like Scavenger in Mammals. Front Immunol 2021; 11:590280. [PMID: 33708190 PMCID: PMC7940838 DOI: 10.3389/fimmu.2020.590280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Fc receptor-like (FCRL) molecules comprise a large family of receptors, homologous to the receptors for the Fc portion of immunoglobulins (FCR). Within this family, an unusual gene known to exist in mice, rats and dogs, termed FCRLS, encodes a chimeric protein with both Ig-like FCRL and type B scavenger-receptor cysteine-rich (SRCR)-like domains. In mice, FCRLS is located next to the CD5L and KIRREL1 genes. Here, we show that the curious FCRLS gene is actually present across major mammalian groups, but its annotation is generally incorrect or absent. Anchored on mouse FCRLS and FCRL2 genomic sequence alignments, phylogenetic analyses demonstrated that many mammalian sequences currently annotated as FCRL2 cluster with FCRLS, supported by a conserved genetic synteny among organisms. This analysis shows that FCRLS is present in Rodentia, some Carnivora (Canidae and Ursidae), Chiroptera, Arctiodactyla, Proboscidae, and some Primata. Thus, the FCRLS most likely originated in a eutherian mammal ancestor since it is not present in Monotremata or Marsupialia. FCRLS has a peculiar distribution pattern across mammalian lineages, being present in some species, but absent in others from the same family, as in carnivores for example. The most parsimonious hypothesis to explain this FCRLS evolution is that it was convergently lost in several independent mammalian lineages. Analyses of branch-specific nucleotide evolutionary rates, show that FCRL2 and FCRLS have similar ranges of rates across mammals, suggesting that both genes have crucial, but separate functions in the immune system. Bayesian estimates of evolutionary rates for FCRLS in mammalian lineages revealed that carnivores display the highest mutation rate after rodents. Additionally, positive diversifying selection was detected for both FCRL2 and FCRLS. Our results show that the presence of the FCRLS gene is older and more widespread across mammals than previously thought and appears to be functional, being under positive selection. Its precise physiologic role should thus be investigated.
Collapse
Affiliation(s)
- Maria Carolina Matos
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-UP), Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ana Pinheiro
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-UP), Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - José Melo-Ferreira
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-UP), Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Randall S Davis
- Departments of Medicine, Microbiology, and Biochemistry & Molecular Genetics and the Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pedro José Esteves
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-UP), Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,CITS - Centro de Investigação em Tecnologias de Saúde, Cooperativa de Ensino Superior Politécnico e Universitário, CRL (CESPU), Gandra, Portugal
| |
Collapse
|
22
|
Li X, Liu T, Li A, Zhang L, Dai W, Jin L, Sun K, Feng J. Genetic polymorphisms and the independent evolution of major histocompatibility complex class II‐
DRB
in sibling bat species
Rhinolophus episcopus
and
Rhinolophus siamensis. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaolin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Lin Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- Key Laboratory of Vegetation Ecology Ministry of Education Changchun China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- College of Life Science Jilin Agricultural University Changchun China
| |
Collapse
|
23
|
Zhong X, Lundberg M, Råberg L. Divergence in Coding Sequence and Expression of Different Functional Categories of Immune Genes between Two Wild Rodent Species. Genome Biol Evol 2021; 13:6132239. [PMID: 33565592 PMCID: PMC7936018 DOI: 10.1093/gbe/evab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Differences in immune function between species could be a result of interspecific divergence in coding sequence and/or expression of immune genes. Here, we investigate how the degree of divergence in coding sequence and expression differs between functional categories of immune genes, and if differences between categories occur independently of other factors (expression level, pleiotropy). To this end, we compared spleen transcriptomes of wild-caught yellow-necked mice and bank voles. Immune genes expressed in the spleen were divided into four categories depending on the function of the encoded protein: pattern recognition receptors (PRR); signal transduction proteins; transcription factors; and cyto- and chemokines and their receptors. Genes encoding PRR and cyto-/chemokines had higher sequence divergence than genes encoding signal transduction proteins and transcription factors, even when controlling for potentially confounding factors. Genes encoding PRR also had higher expression divergence than genes encoding signal transduction proteins and transcription factors. There was a positive correlation between expression divergence and coding sequence divergence, in particular for PRR genes. We propose that this is a result of that divergence in PRR coding sequence leads to divergence in PRR expression through positive feedback of PRR ligand binding on PRR expression. When controlling for sequence divergence, expression divergence of PRR genes did not differ from other categories. Taken together, the results indicate that coding sequence divergence of PRR genes is a major cause of differences in immune function between species.
Collapse
Affiliation(s)
| | | | - Lars Råberg
- Department of Biology, Lund University, Sweden
| |
Collapse
|
24
|
Perrin A, Khimoun A, Faivre B, Ollivier A, de Pracontal N, Théron F, Loubon M, Leblond G, Duron O, Garnier S. Habitat fragmentation differentially shapes neutral and immune gene variation in a tropical bird species. Heredity (Edinb) 2021; 126:148-162. [PMID: 32934360 PMCID: PMC7853120 DOI: 10.1038/s41437-020-00366-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/30/2020] [Accepted: 08/30/2020] [Indexed: 01/11/2023] Open
Abstract
Habitat fragmentation is a major cause of biodiversity loss, responsible for an alteration of intraspecific patterns of neutral genetic diversity and structure. Although neutral genetic variation can be informative for demographic inferences, it may be a poor predictor of adaptive genetic diversity and thus of the consequences of habitat fragmentation on selective evolutionary processes. In this context, we contrasted patterns of genetic diversity and structure of neutral loci (microsatellites) and immune genes (i.e., toll-like receptors) in an understorey bird species, the wedge-billed woodcreeper Glyphorynchus spirurus. The objectives were (1) to investigate forest fragmentation effects on population genetic diversity, (2) to disentangle the relative role of demography (genetic drift and migration) and selection, and (3) to assess whether immunogenetic patterns could be associated with variation of ectoparasite (i.e., ticks) pressures. Our results revealed an erosion of neutral genetic diversity and a substantial genetic differentiation among fragmented populations, resulting from a decrease in landscape connectivity and leading to the divergence of distinct genetic pools at a small spatial scale. Patterns of genetic diversity observed for TLR4 and TLR5 were concordant with neutral genetic patterns, whereas those observed for TLR3 and TLR21 were discordant. This result underlines that the dominant evolutionary force shaping immunogenetic diversity (genetic drift vs. selection) may be different depending on loci considered. Finally, tick prevalence was higher in fragmented environments. We discussed the hypothesis that pathogen selective pressures may contribute to maintain adaptive genetic diversity despite the negative demographic effect of habitat fragmentation on neutral genetic diversity.
Collapse
Affiliation(s)
- Antoine Perrin
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France.
| | - Aurélie Khimoun
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Bruno Faivre
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Anthony Ollivier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Nyls de Pracontal
- Groupe d'Etude et de Protection des Oiseaux en Guyane, 431 route d'Attila Cabassou, 97354, Rémire-Montjoly, France
| | - Franck Théron
- Groupe d'Etude et de Protection des Oiseaux en Guyane, 431 route d'Attila Cabassou, 97354, Rémire-Montjoly, France
| | - Maxime Loubon
- Groupe d'Etude et de Protection des Oiseaux en Guyane, 431 route d'Attila Cabassou, 97354, Rémire-Montjoly, France
| | - Gilles Leblond
- SARL BIOS, Route de Davidon, Duzer, 97115, Sainte-Rose, France
| | - Olivier Duron
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), Montpellier, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| |
Collapse
|
25
|
Priyam M, Gupta SK, Sarkar B, Sharma TR, Pattanayak A. Variation in selection constraints on teleost TLRs with emphasis on their repertoire in the Walking catfish, Clarias batrachus. Sci Rep 2020; 10:21394. [PMID: 33288798 PMCID: PMC7721727 DOI: 10.1038/s41598-020-78347-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/24/2020] [Indexed: 11/10/2022] Open
Abstract
The high degree of conservation of toll-like receptors (TLRs), and yet their subtle variations for better adaptation of species in the host–pathogen arms race make them worthy candidates for understanding evolution. We have attempted to track the trend of TLR evolution in the most diverse vertebrate group—teleosts, where Clarias batrachus was given emphasis, considering its traits for terrestrial adaptation. Eleven C. batrachus TLRs (TLR1, 2, 3, 5, 7, 8 9, 13, 22, 25, 26) were identified in this study which clustered in proximity to its Siluriformes relative orthologues in the phylogenetic analysis of 228 TLRs from 25 teleosts. Ten TLRs (TLR1, 2, 3, 5, 7, 8 9, 13, 21, 22) with at least 15 member orthologues for each alignment were processed for selection pressure and coevolutionary analysis. TLR1, 7, 8 and 9 were found to be under positive selection in the alignment-wide test. TLR1 also showed maximum episodic diversification in its clades while the teleost group Eupercaria showed the maximum divergence in their TLR repertoire. Episodic diversification was evident in C. batrachus TLR1 and 7 alignments. These results present a strong evidence of a divergent TLR repertoire in teleosts which may be contributing towards species-specific variation in TLR functions.
Collapse
Affiliation(s)
- Manisha Priyam
- School of Molecular Diagnostics and Prophylactics, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 010, India
| | - Sanjay K Gupta
- School of Molecular Diagnostics and Prophylactics, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 010, India.
| | - Biplab Sarkar
- School of Molecular Diagnostics and Prophylactics, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 010, India
| | - T R Sharma
- School of Molecular Diagnostics and Prophylactics, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 010, India
| | - A Pattanayak
- School of Molecular Diagnostics and Prophylactics, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 010, India
| |
Collapse
|
26
|
Zapata D, Rivera-Gutierrez HF, Parra JL, Gonzalez-Quevedo C. Low adaptive and neutral genetic diversity in the endangered Antioquia wren (Thryophilus sernai). CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Liu G, Zhang H, Zhao C, Zhang H. Evolutionary History of the Toll-Like Receptor Gene Family across Vertebrates. Genome Biol Evol 2020; 12:3615-3634. [PMID: 31800025 PMCID: PMC6946030 DOI: 10.1093/gbe/evz266] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Adaptation to a wide range of pathogenic environments is a major aspect of the ecological adaptations of vertebrates during evolution. Toll-like receptors (TLRs) are ancient membrane-bound sensors in animals and are best known for their roles in detecting and defense against invading pathogenic microorganisms. To understand the evolutionary history of the vertebrate TLR gene family, we first traced the origin of single-cysteine cluster TLRs that share the same protein architecture with vertebrate TLRs in early-branching animals and then analyzed all members of the TLR family in over 200 species covering all major vertebrate clades. Our results indicate that although the emergence of single-cysteine cluster TLRs predates the separation of bilaterians and cnidarians, most vertebrate TLR members originated shortly after vertebrate emergence. Phylogenetic analyses divided 1,726 vertebrate TLRs into 8 subfamilies, and TLR3 may represent the most ancient subfamily that emerged before the branching of deuterostomes. Our analysis reveals that purifying selection predominated in the evolution of all vertebrate TLRs, with mean dN/dS (ω) values ranging from 0.082 for TLR21 in birds to 0.434 for TLR11 in mammals. However, we did observe patterns of positive selection acting on specific codons (527 of 60,294 codons across all vertebrate TLRs, 8.7‰), which are significantly concentrated in ligand-binding extracellular domains and suggest host–pathogen coevolutionary interactions. Additionally, we found stronger positive selection acting on nonviral compared with viral TLRs, indicating the more essential nonredundant function of viral TLRs in host immunity. Taken together, our findings provide comprehensive insight into the complex evolutionary processes of the vertebrate TLR gene family, involving gene duplication, pseudogenization, purification, and positive selection.
Collapse
Affiliation(s)
- Guangshuai Liu
- College of Life Science, Qufu Normal University, Shandong, China
| | - Huanxin Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, China
| | - Chao Zhao
- College of Life Science, Qufu Normal University, Shandong, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Shandong, China
| |
Collapse
|
28
|
Torosin NS, Argibay H, Webster TH, Corneli PS, Knapp LA. Comparing the selective landscape of TLR7 and TLR8 across primates reveals unique sites under positive selection in Alouatta. Mol Phylogenet Evol 2020; 152:106920. [PMID: 32768453 DOI: 10.1016/j.ympev.2020.106920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 03/06/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022]
Abstract
Among primates, susceptibility to yellow fever (YFV), a single-stranded (ss) RNA virus, ranges from complete resistance to high susceptibility. Howler monkeys (genus Alouatta) are the most susceptible to YFV. In order to identify Alouatta-specific genetic factors that may be responsible for their susceptibility, we collected skin samples from howler monkey museum specimens of the species A. caraya and A. guariba clamitans. We compared the rate of nonsynonymous to synonymous (dN/dS) changes of Toll-like receptor (TLR) 7 and TLR8, the two genes responsible for detecting all ssRNA viruses, across the Primate order. Overall, we found that the TLR7 gene is under stronger purifying selection in howler monkeys compared to other New World and Old World primates, but TLR8 is under the same selective pressure. When we evaluated dN/dS at each codon, we found six codons under positive selection in Alouatta TLR8 and two codons under positive selection in TLR7. The changes in TLR7 are unique to A. guariba clamitans and are found in functionally important regions likely to affect detection of ssRNA viruses by TLR7/TLR8, as well as downstream signaling. These amino acid differences in A. guariba clamitans may play a role in YFV susceptibility. These results have implications for identifying genetic factors affecting YFV susceptibility in primates.
Collapse
Affiliation(s)
- Nicole S Torosin
- Department of Anthropology, University of Utah, 260 S. Central Campus Dr., Salt Lake City, UT 84112, United States.
| | - Hernan Argibay
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET), Intendente Güiraldes 2160 - Ciudad Universitaria (C1428EGA) Ciudad Autónoma de Buenos Aires, Argentina
| | - Timothy H Webster
- Department of Anthropology, University of Utah, 260 S. Central Campus Dr., Salt Lake City, UT 84112, United States
| | - Patrice Showers Corneli
- Department of Biology, University of Utah, 257 S. 1400 E., Salt Lake City, UT 84112, United States
| | - Leslie A Knapp
- Department of Anthropology, University of Utah, 260 S. Central Campus Dr., Salt Lake City, UT 84112, United States
| |
Collapse
|
29
|
He D, Hu J, Yang R, Zeng B, Yang D, Li D, Zhang M, Yang M, Ni Q, Ning R, Fan X, Li X, Mao X, Li Y. Evolutionary analysis of chemokine CXCL16 and its receptor CXCR6 in murine rodents. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103718. [PMID: 32360411 DOI: 10.1016/j.dci.2020.103718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
The chemokine CXCL16 and its receptor CXCR6 are implicated in various physiological and pathological processes in cooperative and/or stand-alone fashions. Despite the significance of rodent animal models in elucidating the function and clinical relevance of the chemokine and its receptor, the evolutionary characterization of these molecules remains deficient for this taxon to a certain extent. In this study, we implemented a comparison of synonymous and nonsynonymous variation rates in combination with the maximum likelihood (ML) analysis and Tajima's test to evaluate the interspecific and intraspecific evolutions of CXCL16 and CXCR6 in murine rodents. Our results indicate that adaptive selection has frequently contributed to genetic diversity of both CXCL16 and CXCR6 in the murine lineage that is asynchronous with a relative dependence between these genes. This signature is radically different from the lineage-specific and concordant adaptive diversity of the primate homologues of these genes, which was reported in a previous study. The diversity identified in the present study shed further light on molecular strategies against the challenges towards CXCL16 and CXCR6.
Collapse
Affiliation(s)
- Dan He
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Jia Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Rongrong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Diyan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Ruihong Ning
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Xiaoyan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Xueping Mao
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China.
| |
Collapse
|
30
|
Cao M, Yan X, Yang N, Fu Q, Xue T, Zhao S, Hu J, Li Q, Song L, Zhang X, Su B, Li C. Genome-wide characterization of Toll-like receptors in black rockfish Sebastes schlegelii: Evolution and response mechanisms following Edwardsiella tarda infection. Int J Biol Macromol 2020; 164:949-962. [PMID: 32679322 DOI: 10.1016/j.ijbiomac.2020.07.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022]
Abstract
As one of the key components of pattern recognition receptors, Toll-like receptors (TLRs) play pivotal roles in the innate immune system. However, little information is available about the TLR genes in Sebastes schlegelii. In the present study, 17 TLR genes were identified and classified based on the whole genome database. Tandem duplication events in TLR1, TLR2, TLR5 and TLR13 played major role in the expansion of S. schlegelii TLR genes; both TLR2-3 and TLR2-4 had the same largest number of introns/exons, 11 exons and 10 introns. The syntenic analysis showed neighboring genes of TLR genes were most conserved in S. schlegelii and in L. crocea. Phylogenetic and evolutionary analysis showed that these TLR genes were divided into five subfamilies and exhibited different selection pressures. Meanwhile, the expression patterns of TLR genes in the intestine after E. tarda infection were investigated by qRT-PCR. Finally, protein and protein interaction (PPI) network analysis indicated that TLR genes interacted with IFN-inducible genes, inflammatory cytokines, and participated in MyD88-dependent pathway. In summary, this study provided valuable information for further functional characterization of TLR genes in S. schlegelii.
Collapse
Affiliation(s)
- Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xu Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266011, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jie Hu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qi Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266011, China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
31
|
Těšický M, Velová H, Novotný M, Kreisinger J, Beneš V, Vinkler M. Positive selection and convergent evolution shape molecular phenotypic traits of innate immunity receptors in tits (Paridae). Mol Ecol 2020; 29:3056-3070. [PMID: 32652716 DOI: 10.1111/mec.15547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023]
Abstract
Despite widespread variability and redundancy abounding animal immunity, little is currently known about the rate of evolutionary convergence (functionally analogous traits not inherited from a common ancestor) in host molecular adaptations to parasite selective pressures. Toll-like receptors (TLRs) provide the molecular interface allowing hosts to recognize pathogenic structures and trigger early danger signals initiating an immune response. Using a novel combination of bioinformatic approaches, here we explore genetic variation in ligand-binding regions of bacteria-sensing TLR4 and TLR5 in 29 species belonging to the tit family of passerine birds (Aves: Paridae). Three out of the four consensual positively selected sites in TLR4 and six out of 14 positively selected positions in TLR5 were located on the receptor surface near the functionally important sites, and based on the phylogenetic pattern evolved in a convergent (parallel) manner. This type of evolution was also seen at one N-glycosylation site and two positively selected phosphorylation sites, providing the first evidence of convergence in post-translational modifications in evolutionary immunology. Finally, the overall mismatch between phylogeny and the clustering of surface charge distribution demonstrates that convergence is common in overall TLR4 and TLR5 molecular phenotypes involved in ligand binding. Our analysis did not reveal any broad ecological traits explaining the convergence observed in electrostatic potentials, suggesting that information on microbial symbionts may be needed to explain TLR evolution. Adopting state-of-the-art predictive structural bionformatics, we have outlined a new broadly applicable methodological approach to estimate the functional significance of positively selected variation and test for the adaptive molecular convergence in protein-coding polymorphisms.
Collapse
Affiliation(s)
- Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hana Velová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Beneš
- European Molecular Laboratory Heidelberg, Heidelberg, Germany
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
32
|
Pathogen-associated selection on innate immunity genes (TLR4, TLR7) in a neotropical rodent in landscapes differing in anthropogenic disturbance. Heredity (Edinb) 2020; 125:184-199. [PMID: 32616896 PMCID: PMC7490709 DOI: 10.1038/s41437-020-0331-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/10/2023] Open
Abstract
Toll-like receptors (TLRs) form part of the innate immune system and can recognize structurally conserved pathogen-associated molecular pattern (PAMP) molecules. Their functional importance in the resistance to pathogens has been documented in laboratory experimental settings and in humans. TLR diversity, however, has been rarely investigated in wildlife species. How the genetic diversity of TLRs is associated with various pathogens and how it is shaped by habitat disturbance are understudied. Therefore, we investigated the role of genetic diversity in the functionally important parts of TLR4 and TLR7 genes in resistance towards gastrointestinal nematodes and Hepacivirus infection. We chose a generalist study species, the rodent Proechimys semispinosus, because it is highly abundant in three Panamanian landscapes that differ in their degree of anthropogenic modification. We detected only two TLR7 haplotypes that differed by one synonymous single-nucleotide polymorphism (SNP) position. The TLR4 variability was higher, and we detected four TLR4 haplotypes that differed at one synonymous SNP and at three amino acid positions within the leucine-rich repeat region. Only TLR4 haplotypes had different frequencies in each landscape. Using generalized linear models, we found evidence that nematode loads and virus prevalence were influenced by both specific TLR4 haplotypes and landscape. Here, the variable “landscape” served as a surrogate for the important influential ecological factors distinguishing landscapes in our study, i.e. species diversity and host population density. Individuals carrying the common TLR4_Ht1 haplotype were less intensely infected by the most abundant strongyle nematode. Individuals carrying the rare TLR4_Ht3 haplotype were all Hepacivirus-positive, where those carrying the rare haplotype TLR4_Ht4 were less often infected by Hepacivirus than individuals with other haplotypes. Our study highlights the role of TLR diversity in pathogen resistance and the importance of considering immune genetic as well as ecological factors in order to understand the effects of anthropogenic changes on wildlife health.
Collapse
|
33
|
Lundberg M, Zhong X, Konrad A, Olsen RA, Råberg L. Balancing selection in Pattern Recognition Receptor signalling pathways is associated with gene function and pleiotropy in a wild rodent. Mol Ecol 2020; 29:1990-2003. [PMID: 32374503 DOI: 10.1111/mec.15459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Pathogen-mediated balancing selection is commonly considered to play an important role in the maintenance of genetic diversity, in particular in immune genes. However, the factors that may influence which immune genes are the targets of such selection are largely unknown. To address this, here we focus on Pattern Recognition Receptor (PRR) signalling pathways, which play a key role in innate immunity. We used whole-genome resequencing data from a population of bank voles (Myodes glareolus) to test for associations between balancing selection, pleiotropy and gene function in a set of 123 PRR signalling pathway genes. To investigate the effect of gene function, we compared genes encoding (a) receptors for microbial ligands versus downstream signalling proteins, and (b) receptors recognizing components of microbial cell walls, flagella and capsids versus receptors recognizing features of microbial nucleic acids. Analyses based on the nucleotide diversity of full coding sequences showed that balancing selection primarily targeted receptor genes with a low degree of pleiotropy. Moreover, genes encoding receptors recognizing components of microbial cell walls etc. were more important targets of balancing selection than receptors recognizing nucleic acids. Tests for localized signatures of balancing selection in coding and noncoding sequences showed that such signatures were mostly located in introns, and more evenly distributed among different functional categories of PRR pathway genes. The finding that signatures of balancing selection in full coding sequences primarily occur in receptor genes, in particular those encoding receptors for components of microbial cell walls etc., is consistent with the idea that coevolution between hosts and pathogens is an important cause of balancing selection on immune genes.
Collapse
Affiliation(s)
- Max Lundberg
- Department of Biology, Lund University, Lund, Sweden
| | - Xiuqin Zhong
- Department of Biology, Lund University, Lund, Sweden
| | - Anna Konrad
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Lars Råberg
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
34
|
Levy H, Fiddaman SR, Vianna JA, Noll D, Clucas GV, Sidhu JKH, Polito MJ, Bost CA, Phillips RA, Crofts S, Miller GD, Pistorius P, Bonnadonna F, Le Bohec C, Barbosa A, Trathan P, Raya Rey A, Frantz LAF, Hart T, Smith AL. Evidence of Pathogen-Induced Immunogenetic Selection across the Large Geographic Range of a Wild Seabird. Mol Biol Evol 2020; 37:1708-1726. [PMID: 32096861 PMCID: PMC7253215 DOI: 10.1093/molbev/msaa040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Over evolutionary time, pathogen challenge shapes the immune phenotype of the host to better respond to an incipient threat. The extent and direction of this selection pressure depend on the local pathogen composition, which is in turn determined by biotic and abiotic features of the environment. However, little is known about adaptation to local pathogen threats in wild animals. The Gentoo penguin (Pygoscelis papua) is a species complex that lends itself to the study of immune adaptation because of its circumpolar distribution over a large latitudinal range, with little or no admixture between different clades. In this study, we examine the diversity in a key family of innate immune genes-the Toll-like receptors (TLRs)-across the range of the Gentoo penguin. The three TLRs that we investigated present varying levels of diversity, with TLR4 and TLR5 greatly exceeding the diversity of TLR7. We present evidence of positive selection in TLR4 and TLR5, which points to pathogen-driven adaptation to the local pathogen milieu. Finally, we demonstrate that two positively selected cosegregating sites in TLR5 are sufficient to alter the responsiveness of the receptor to its bacterial ligand, flagellin. Taken together, these results suggest that Gentoo penguins have experienced distinct pathogen-driven selection pressures in different environments, which may be important given the role of the Gentoo penguin as a sentinel species in some of the world's most rapidly changing environments.
Collapse
Affiliation(s)
- Hila Levy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Juliana A Vianna
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
| | - Daly Noll
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
- Departamento de Ciencias Ecológicas, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - Gemma V Clucas
- Cornell Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY
| | | | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA
| | - Charles A Bost
- Centre d’Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS‐Université de La Rochelle, Villiers‐en‐Bois, France
| | | | - Sarah Crofts
- Falklands Conservation, Stanley, Falkland Islands, United Kingdom
| | - Gary D Miller
- Microbiology and Immunology, PALM, University of Western Australia, Crawley, Western Australia, Australia
| | - Pierre Pistorius
- DST/NRF Centre of Excellence at the Percy FitzPatrick Institute for African Ornithology, Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Francesco Bonnadonna
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Montpellier, France
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Andrés Barbosa
- Museo Nacional de Ciencias Naturales, Departamento de Ecología Evolutiva, CSIC, Madrid, Spain
| | - Phil Trathan
- British Antarctic Survey, Cambridge, United Kingdom
| | - Andrea Raya Rey
- Centro Austral de Investigaciones Científicas – Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET), Ushuaia, Tierra del Fuego, Argentina
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
- Wildlife Conservation Society, Buenos Aires, Argentina
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Tom Hart
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Adrian L Smith
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Kloch A, Biedrzycka A. Post-glacial phylogeography and variation in innate immunity loci in a sylvatic rodent, bank vole Myodes glareolus. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00016-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractIn the northern hemisphere, the spatial structure of many taxa has been shaped by migration patterns after the last glaciation, and phylogeography based on mtDNA variation may reflect the post-glacial demography. The mtDNA lineages are expected to differ in their adaptations to local conditions but little is known about the impact of these conditions on functional genetic variation. Here, we answer this question through an analysis of geographic variation and selection patterns in seven innate immunity genes in free-living bank voles Myodes glareolus from 10 localities across species range assigned to different lineages based on mtDNA. We found clear discrepancies between population structure in mtDNA and each of the studied innate immunity genes. There was no uniform pattern of spatial variation at immunity loci, they differed in the levels of polymorphism, and the results of neutrality tests were not consistent over loci. Each locus comprised a few common haplotypes shared between mitochondrial lineages and studied locations, plus numerous haplotypes unique for each studied site. Our results suggest that the diversity of innate immunity genes cannot be explained solely in terms of demographic processes, and that the observed polymorphism may be attributed to local selection. The strength and direction of selection differed between loci, even within the same gene family, which underlines how crucial it is to take a complex approach while studying the selection patterns acting on immune-related genes.
Collapse
|
36
|
Pinheiro A, Águeda-Pinto A, Melo-Ferreira J, Neves F, Abrantes J, Esteves PJ. Analysis of substitution rates showed that TLR5 is evolving at different rates among mammalian groups. BMC Evol Biol 2019; 19:221. [PMID: 31791244 PMCID: PMC6889247 DOI: 10.1186/s12862-019-1547-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023] Open
Abstract
Background Toll-like receptors (TLRs) are the most widely studied innate immunity receptors responsible for recognition of invading pathogens. Among the TLR family, TLR5 is the only that senses and recognizes flagellin, the major protein of bacterial flagella. TLR5 has been reported to be under overall purifying selection in mammals, with a small proportion of codons under positive selection. However, the variation of substitution rates among major mammalian groups has been neglected. Here, we studied the evolution of TLR5 in mammals, comparing the substitution rates among groups. Results In this study we analysed the TLR5 substitution rates in Euungulata, Carnivora, Chiroptera, Primata, Rodentia and Lagomorpha, groups. For that, Tajima’s relative rate test, Bayesian inference of evolutionary rates and genetic distances were estimated with CODEML’s branch model and RELAX. The combined results showed that in the Lagomorpha, Rodentia, Carnivora and Chiroptera lineages TLR5 is evolving at a higher substitution rate. The RELAX analysis further suggested a significant relaxation of selective pressures for the Lagomorpha (K = 0.22, p < 0.01), Rodentia (K = 0.58, p < 0.01) and Chiroptera (K = 0.65, p < 0.01) lineages and for the Carnivora ancestral branches (K = 0.13, p < 0.01). Conclusions Our results show that the TLR5 substitution rate is not uniform among mammals. In fact, among the different mammal groups studied, the Lagomorpha, Rodentia, Carnivora and Chiroptera are evolving faster. This evolutionary pattern could be explained by 1) the acquisition of new functions of TLR5 in the groups with higher substitution rate, i.e. TLR5 neofunctionalization, 2) by the beginning of a TLR5 pseudogenization in these groups due to some redundancy between the TLRs genes, or 3) an arms race between TLR5 and species-specific parasites.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| | - Ana Águeda-Pinto
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.,Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - José Melo-Ferreira
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Fabiana Neves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Joana Abrantes
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Pedro J Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.,CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, 4585-116, Gandra, Portugal
| |
Collapse
|
37
|
Episodic positive diversifying selection on key immune system genes in major avian lineages. Genetica 2019; 147:337-350. [PMID: 31782071 DOI: 10.1007/s10709-019-00081-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023]
Abstract
The major histocompatibility complex (MHC) of the adaptive immune system and the toll-like receptor (TLR) family of the innate immune system are involved in the detection of foreign invaders, and thus are subject to parasite-driven molecular evolution. Herein, we tested for macroevolutionary signatures of selection in these gene families within and among all three major clades of birds (Paleognathae, Galloanserae, and Neoaves). We characterized evolutionary relationships of representative immune genes (Mhc1 and Tlr2b) and a control gene (ubiquitin, Ubb), using a relatively large and phylogenetically diverse set of species with complete coding sequences (34 orthologous loci for Mhc1, 29 for Tlr2b, and 37 for Ubb). Episodic positive diversifying selection was found in the gene-wide phylogenies of the two immune genes, as well as at specific sites within each gene (8.5% of codon sites in Mhc1 and 2.7% in Tlr2b), but not in the control gene (Ubb). We found 20% of lineages under episodic diversifying selection in Mhc1 versus 9.1% in Tlr2b. For Mhc1, selection was relaxed in the Galloanserae and intensified in the Neoaves relative to the other clades, but no differences were detected among clades in the Tlr2b gene. In summary, we provide evidence of episodic positive diversifying selection in key immune genes and demonstrate differential strengths of selection within Class Aves, with the adaptive gene showing an increased divergence and evolutionary rate over the innate gene, contributing to the growing understanding of vertebrate immune gene evolution.
Collapse
|
38
|
Analyses of RAG1 and RAG2 genes suggest different evolutionary rates in the Cetacea lineage. Mol Immunol 2019; 117:131-138. [PMID: 31770676 DOI: 10.1016/j.molimm.2019.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023]
Abstract
V(D)J recombination is a process of somatic recombination catalyzed by proteins encoded by RAG1 and RAG2 genes, both restricted to the genome of jawed vertebrates. Their proteins constitute the enzymatic core of V(D)J recombination machinery and are crucial for jawed vertebrate adaptive immunity. Mammals possess great ecological diversity, and their complex evolutionary history associated with radiation to different environments presented many distinct pathogenic challenges from these different habitats. Cetaceans comprise a mammalian order of fully aquatic mammals that have arisen from a complete terrestrial ancestor and, accordingly, was confronted with challenges from changing environmental pathogens while they transitioned from land to sea. In this study we undertook molecular evolutionary analyses of RAG1 and RAG2 genes, exploring the possible role of natural selection acting on these genes focusing on the cetacean lineage. We performed phylogenetic reconstructions on IQ-TREE, together with selection analyses in the codeml program of the PAML package, and in the FITMODEL program for codon evolution and switching on both the RAG1 and RAG2 genes. Our findings demonstrate that RAG1 and RAG2 remained fairly conserved among tetrapods, with purifying selection acting on both genes, with evidence for a few punctuated shifts in nucleotide substitution rates of both genes along tetrapod evolution. We demonstrate differential evolution in the closely linked genes RAG1 and RAG2 specifically in cetaceans.
Collapse
|
39
|
Armstrong C, Davies RG, González‐Quevedo C, Dunne M, Spurgin LG, Richardson DS. Adaptive landscape genetics and malaria across divergent island bird populations. Ecol Evol 2019; 9:12482-12502. [PMID: 31788192 PMCID: PMC6875583 DOI: 10.1002/ece3.5700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
Environmental conditions play a major role in shaping the spatial distributions of pathogens, which in turn can drive local adaptation and divergence in host genetic diversity. Haemosporidians, such as Plasmodium (malaria), are a strong selective force, impacting survival and fitness of hosts, with geographic distributions largely determined by habitat suitability for their insect vectors. Here, we have tested whether patterns of fine-scale local adaptation to malaria are replicated across discrete, ecologically differing island populations of Berthelot's pipits Anthus berthelotii. We sequenced TLR4, an innate immunity gene that is potentially under positive selection in Berthelot's pipits, and two SNPs previously identified as being associated with malaria infection in a genome-wide association study (GWAS) in Berthelot's pipits in the Canary Islands. We determined the environmental predictors of malaria infection, using these to estimate variation in malaria risk on Porto Santo, and found some congruence with previously identified environmental risk factors on Tenerife. We also found a negative association between malaria infection and a TLR4 variant in Tenerife. In contrast, one of the GWAS SNPs showed an association with malaria risk in Porto Santo, but in the opposite direction to that found in the Canary Islands GWAS. Together, these findings suggest that disease-driven local adaptation may be an important factor in shaping variation among island populations.
Collapse
Affiliation(s)
| | | | - Catalina González‐Quevedo
- School of Biological SciencesUniversity of East AngliaNorwichUK
- Grupo Ecología y Evolución de VertebradosInstituto de BiologíaFacultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
| | - Molly Dunne
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
40
|
Coetzer WG, Grobler JP. Genetic variation among different springbok (Antidorcas marsupialis) colour variants. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2019.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Gaska JM, Parsons L, Balev M, Cirincione A, Wang W, Schwartz RE, Ploss A. Conservation of cell-intrinsic immune responses in diverse nonhuman primate species. Life Sci Alliance 2019; 2:2/5/e201900495. [PMID: 31649152 PMCID: PMC6814850 DOI: 10.26508/lsa.201900495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/03/2023] Open
Abstract
The transcriptomic response of diverse nonhuman primate (NHP) species to poly(I:C) is highly conserved, and this novel RNA sequencing dataset will help improve NHP genome annotations. Differences in immune responses across species can contribute to the varying permissivity of species to the same viral pathogen. Understanding how our closest evolutionary relatives, nonhuman primates (NHPs), confront pathogens and how these responses have evolved over time could shed light on host range barriers, especially for zoonotic infections. Here, we analyzed cell-intrinsic immunity of primary cells from the broadest panel of NHP species interrogated to date, including humans, great apes, and Old and New World monkeys. Our analysis of their transcriptomes after poly(I:C) transfection revealed conservation in the functional consequences of their response. In mapping reads to either the human or the species-specific genomes, we observed that with the current state of NHP annotations, the percent of reads assigned to a genetic feature was largely similar regardless of the method. Together, these data provide a baseline for the cell-intrinsic responses elicited by a potent immune stimulus across multiple NHP donors, including endangered species, and serve as a resource for refining and furthering the existing annotations of NHP genomes.
Collapse
Affiliation(s)
- Jenna M Gaska
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Lance Parsons
- Carl Icahn Laboratory, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Metodi Balev
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ann Cirincione
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Wei Wang
- Carl Icahn Laboratory, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Robert E Schwartz
- Weill Cornell Medical College, Belfer Research Building, New York, NY, USA
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
42
|
Tian R, Seim I, Zhang Z, Yang Y, Ren W, Xu S, Yang G. Distinct evolution of toll-like receptor signaling pathway genes in cetaceans. Genes Genomics 2019; 41:1417-1430. [PMID: 31535317 DOI: 10.1007/s13258-019-00861-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The relatively rapid spread and diversity of marine pathogens posed an initial and ongoing challenge for cetaceans (whales, dolphins, and porpoises), descendants of terrestrial mammals that transitioned from land to sea approximately 56 million years ago. Toll-like receptors (TLRs) play important roles in regulating immunity against pathogen infections by detecting specific molecular patterns and activating a wide range of downstream signaling pathways. The ever-increasing catalogue of mammalian genomes offers unprecedented opportunities to reveal genetic changes associated with evolutionary and ecological processes. OBJECTIVE This study aimed to explore the molecular evolution of TLR signaling pathway genes in cetaceans. METHODS Genes involved in the TLR signaling pathway were retrieved by BLAST searches using human coding sequences as queries. We tested each gene for positive selection along the cetacean branches using PAML and Hyphy. Physicochemical property changes of amino acids at all positively selected residues were assessed by TreeSAAP and visualized with WebLogo. Bovine and dolphin TLR4 was assessed using human embryonic kidney cell line HEK293, which lacks TLR4 and its co-receptor MD-2. RESULTS We demonstrate that eight TLR signaling pathway genes are under positive selection in cetaceans. These include key genes in the response to Gram-negative bacteria: TLR4, CD14, and LY96 (MD-2). Moreover, 41 out of 65 positively selected sites were inferred to harbor substitution that dramatically changes the physicochemical properties of amino acids, with most of them situated in or adjacent to functional regions. We also found strong evidence that positive selection occurred in the lineage of the Yangtze finless porpoise, likely reflecting relatively recent adaptions to a freshwater milieu. Species-specific differences in TLR4 response were observed between cetacean and terrestrial species. Cetacean TLR4 was significantly less responsive to lipopolysaccharides from a terrestrial E. coli strain, possibly a reflection of the arms race of host-pathogen co-evolution faced by cetaceans in an aquatic environment. CONCLUSION This study provides further impetus for studies on the evolution and function of the cetacean immune system.
Collapse
Affiliation(s)
- Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.,Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.,Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Zepeng Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ying Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
43
|
Xu F, He D, Ning R, Zeng B, Thompson CW, Li Y, Wang D, Li Y. Genetic diversity of chemokine XCL1 and its receptor XCR1 in murine rodents. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:80-88. [PMID: 31026469 DOI: 10.1016/j.dci.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/21/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
The chemokine ligand XCL1 plays critical roles in immune responses with diverse physiological and pathological implications through interactions with a cognate G protein-coupled receptor XCR1. To shed insight into their versatile nature, we analyzed genetic variations of XCL1 and XCR1 in murine rodents, including commonly-used model organisms Mus musculus (house mouse) and Rattus norvegicus (Norway rat). Our results showed that adaptive selection has contributed to the genetic diversification of these proteins in murine lineage. Moreover, in both M. musculus and R. norvegicus, the chemokine and its receptor exhibit similar signs of selective sweeps resulting from positive selection. In light of currently available structural and interaction information for chemokines and their receptors, the similarity of XCL1/XCR1 evolutionary patterns among murine species and the parallels of their evolutionary footprints within individual species suggest that interplay could exist between the adaptively selected changes, or between the domains on which the identified changes are located, and consequently preserve the physiological interaction of XCL1 and XCR1.
Collapse
Affiliation(s)
- Feifei Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Dan He
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Ruihong Ning
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Cody W Thompson
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, USA
| | - Ying Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China.
| |
Collapse
|
44
|
The Vertebrate TLR Supergene Family Evolved Dynamically by Gene Gain/Loss and Positive Selection Revealing a Host–Pathogen Arms Race in Birds. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11080131] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The vertebrate toll-like receptor (TLRs) supergene family is a first-line immune defense against viral and non-viral pathogens. Here, comparative evolutionary-genomics of 79 vertebrate species (8 mammals, 48 birds, 11 reptiles, 1 amphibian, and 11 fishes) revealed differential gain/loss of 26 TLRs, including 6 (TLR3, TLR7, TLR8, TLR14, TLR21, and TLR22) that originated early in vertebrate evolution before the diversification of Agnatha and Gnathostomata. Subsequent dynamic gene gain/loss led to lineage-specific diversification with TLR repertoires ranging from 8 subfamilies in birds to 20 in fishes. Lineage-specific loss of TLR8-9 and TLR13 in birds and gains of TLR6 and TLR10-12 in mammals and TLR19-20 and TLR23-27 in fishes. Among avian species, 5–10% of the sites were under positive selection (PS) (omega 1.5–2.5) with radical amino-acid changes likely affecting TLR structure/functionality. In non-viral TLR4 the 20 PS sites (posterior probability PP > 0.99) likely increased ability to cope with diversified ligands (e.g., lipopolysaccharide and lipoteichoic). For viral TLR7, 23 PS sites (PP > 0.99) possibly improved recognition of highly variable viral ssRNAs. Rapid evolution of the TLR supergene family reflects the host–pathogen arms race and the coevolution of ligands/receptors, which follows the premise that birds have been important vectors of zoonotic pathogens and reservoirs for viruses.
Collapse
|
45
|
Neves F, Águeda-Pinto A, Pinheiro A, Abrantes J, Esteves PJ. Strong selection of the TLR2 coding region among the Lagomorpha suggests an evolutionary history that differs from other mammals. Immunogenetics 2019; 71:437-443. [PMID: 30874861 DOI: 10.1007/s00251-019-01110-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) are one of the first lines of defense against pathogens and are crucial for triggering an appropriate immune response. Among TLRs, TLR2 is functional in all vertebrates and has high ability in detecting bacterial and viral pathogen ligands. The mammals' phylogenetic tree of TLR2 showed longer branches for the Lagomorpha clade, raising the hypothesis that lagomorphs experienced an acceleration of the mutation rate. This hypothesis was confirmed by (i) Tajima's test of neutrality that revealed different evolutionary rates between lagomorphs and the remaining mammals with lagomorphs presenting higher nucleotide diversity; (ii) genetic distances were similar among lagomorphs and between lagomorphs and other mammals; and (iii) branch models reinforced the existence of an acceleration of the mutation rate in lagomorphs. These results suggest that the lagomorph TLR2 has been strongly involved in pathogen recognition, which probably caused a host-pathogen arms race that led to the observed acceleration of the mutation rate.
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr.7, 4485-661, Vairão, Portugal
| | - Ana Águeda-Pinto
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr.7, 4485-661, Vairão, Portugal
| | - Ana Pinheiro
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr.7, 4485-661, Vairão, Portugal
| | - Joana Abrantes
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr.7, 4485-661, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr.7, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal. .,CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
46
|
Dhar D, Dey D, Basu S. Insights into the evolution of extracellular leucine-rich repeats in metazoans with special reference to Toll-like receptor 4. J Biosci 2019; 44:18. [PMID: 30837369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The importance of the widely spread leucine-rich repeat (LRR) motif was studied considering TLRs, the LRR-containing protein involved in animal immune response. The protein connects intracellular signalling with a chain of molecular interactions through the presence of LRRs in the ectodomain and TIR in the endodomain. Domain analyses with human TLR1-9 reported ectodomain with tandem repeats, transmembrane domain and TIR domain. The repeat number varied across members of TLR and remained characteristic to a particular member. Analysis of gene structure revealed absence of codon interruption with TLR3 and TLR4 as exceptions. Extensive study with TLR4 from metazoans confirmed the presence of 23 LRRs in tandem. Distinct clade formation using coding and amino acid sequence of individual repeats illustrated independent evolution. Although ectodomain and endodomain exhibited differential selection pressure, within the ectodomain, however, the individual repeats displayed positive, negative and neutral selection pressure depending on their structural and functional significance.
Collapse
Affiliation(s)
- Dipanjana Dhar
- Department of Microbiology, University of Calcutta, Kolkata 700 019, India
| | | | | |
Collapse
|
47
|
Insights into the evolution of extracellular leucine-rich repeats in metazoans with special reference to Toll-like receptor 4. J Biosci 2019. [DOI: 10.1007/s12038-018-9821-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Xu S, Tian R, Lin Y, Yu Z, Zhang Z, Niu X, Wang X, Yang G. Widespread positive selection on cetacean TLR extracellular domain. Mol Immunol 2018; 106:135-142. [PMID: 30597475 DOI: 10.1016/j.molimm.2018.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
Toll like receptors (TLRs), key members of innate immune system, can recognize a wide diversity of pathogens and initiate both innate and adaptive immune responses in vertebrate. Cetaceans must have faced new challenges of pathogens when their terrestrial relatives transitioned from the terrestrial to aquatic environment. Here, we sequenced the extracellular domain (ECD) of 10 TLRs in cetacean lineages because this region involved in the recognition of pathogens. A total of 148 sites ranging between 5-26 codons (0.01%-4.83%) were identified to be robust candidates of positive selection at the ECD of 10 TLRs. In addition, the majority (90.54%) of these positively selected codons were found to have radical amino acid changes, which strengthen the evidence of positive selection. Importantly, more radical amino acid changes in selected sites were enriched in the period of early evolutionary transition from land to semi-aquatic and from semi-aquatic to full-aquatic habitat, which might endow cetaceans with a faster adaptation to new pathogens as they transitioned into novel habitat. Interestingly, similar selective intensity was detected in both viral and non-viral TLRs in cetaceans, which was not in line with previous studies on primates and birds that reported stronger positive selection in non-viral TLRs than in viral TLRs. This result may be explained by the fact that cetaceans might have faced diversity of bacteria and viruses during its transitions from terrestrial to aquatic environment whereas both primates and birds probably being affected by only a restricted number of related viruses due to their homogeneous habitat.
Collapse
Affiliation(s)
- Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Yurui Lin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Zhenpeng Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Zepeng Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Xu Niu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Xiaohong Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
49
|
Nagpal R, Wang S, Solberg Woods LC, Seshie O, Chung ST, Shively CA, Register TC, Craft S, McClain DA, Yadav H. Comparative Microbiome Signatures and Short-Chain Fatty Acids in Mouse, Rat, Non-human Primate, and Human Feces. Front Microbiol 2018; 9:2897. [PMID: 30555441 PMCID: PMC6283898 DOI: 10.3389/fmicb.2018.02897] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Gut microbiome plays a fundamental role in several aspects of host health and diseases. There has been an exponential surge in the use of animal models that can mimic different phenotypes of the human intestinal ecosystem. However, data on host species-specific signatures of gut microbiome and its metabolites like short-chain fatty acids (SCFAs; i.e., acetate, propionate, and butyrate) and lactate in these models and their similarities/differences from humans remain limited, due to high variability in protocols and analyses. Here, we analyze the fecal microbiota composition and the fecal levels of SCFAs and lactate in three of the most-widely used animal models, i.e., mice, rats, and non-human primates (NHPs) and compare them with human subjects, using data generated on a single platform with same protocols. The data show several species-specific similarities and differences in the gut microbiota and fecal organic acids between these species groups. Based on β-diversity, the gut microbiota in humans seems to be closer to NHPs than to mice and rats; however, among rodents, mice microbiota appears to be closer to humans than rats. The phylum-level analyses demonstrate higher Firmicutes-Bacteroidetes ratio in humans and NHPs vs. mice and rats. Human microbiota is dominated by Bacteroides followed by Ruminococcaceae and Clostridiales. Mouse gut is predominated by members of the family S24-7 followed by those from the order Clostridiales, whereas rats and NHPs have higher abundance of Prevotella compared with mice and humans. Also, fecal levels of lactate are higher in mice and rats vs. NHPs and humans, while acetate is highest in human feces. These data of host species-specific gut microbiota signatures in some of the most widely used animal models in context to the human microbiota might reflect disparities in host factors, e.g., diets, genetic origin, gender and age, and hence call for prospective studies investigating the features of gut microbiome in such animal models by controlling for these host elements.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States
| | - Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States
| | - Leah C Solberg Woods
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States.,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Osborne Seshie
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States
| | - Stephanie T Chung
- Diabetes, Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Carol A Shively
- Department of Pathology-Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas C Register
- Department of Pathology-Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Donald A McClain
- Department of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Center for Diabetes, Obesity and Metabolism, Winston-Salem, NC, United States
| |
Collapse
|
50
|
Bagheri M, Zahmatkesh A. Evolution and species-specific conservation of toll-like receptors in terrestrial vertebrates. Int Rev Immunol 2018; 37:217-228. [DOI: 10.1080/08830185.2018.1506780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masoumeh Bagheri
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azadeh Zahmatkesh
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|