1
|
Kim JN, Ryoo SU, Nam Y. Deciphering the role of SMU.1147 in peptide-mediated signaling and competence in Streptococcus mutans. Microbiol Spectr 2025; 13:e0291724. [PMID: 40042332 PMCID: PMC11960140 DOI: 10.1128/spectrum.02917-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/31/2025] [Indexed: 04/03/2025] Open
Abstract
Streptococcus mutans is a primary cariogenic pathogen involved in dental biofilm formation, a major virulence factor in the development of dental caries. In S. mutans, the competence-stimulating peptide (CSP), encoded by comC, plays a critical role in environmental stress response, growth regulation, and virulence expression. In this study, we performed transcriptome analysis to investigate the role of SMU.1147, a unique core gene in S. mutans, in biological pathways related to transport, defense responses, and environmental sensing. The deletion of SMU.1147 led to the upregulation of genes involved in carbohydrate uptake and metabolism, particularly phosphotransferase system (PTS) transporters, thereby enhancing the sugar transport capacity. However, despite increased sugar uptake, the mutant strain did not show significant changes in growth rate or ATP production and displayed slightly reduced organic acid production. Additionally, the mutant exhibited significantly reduced cell viability after an 8-h incubation compared to the parental strain. Notably, genes associated with CSP-dependent signal transduction and stress defense, such as comX, comR, htrA, scnRK, and ciaRH, were downregulated in the mutant strain. Furthermore, stress-related genes, including spxA2, clpP, and clpX, were significantly downregulated, suggesting compromised protein quality control and oxidative stress responses. Our findings suggest that SMU.1147 plays a critical role in regulating peptide-mediated signaling, metabolic coordination, and environmental adaptation in S. mutans, positioning it as a key integrator of the metabolic and stress response networks that are essential for pathogenicity and survival. IMPORTANCE Understanding the regulatory mechanisms that govern virulence and environmental adaptation in Streptococcus mutans is essential for developing strategies to mitigate dental caries. This study reveals the critical role of the SMU.1147 gene in S. mutans in metabolic regulation, stress response, and cell viability. Our results demonstrate how the deletion of this gene affects sugar uptake and organic acid production, leading to imbalances in carbon metabolism and reduced long-term survival. These findings provide valuable insights into the ability of S. mutans to adapt to stressed conditions and highlight the role of SMU.1147 in modulating biofilm formation and virulence, contributing to our understanding of regulatory pathways in dental pathogens.
Collapse
Affiliation(s)
- Jeong Nam Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Si-Uk Ryoo
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Yeuna Nam
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
2
|
Mah JC, Lohmueller KE, Garud NR. Inference of the Demographic Histories and Selective Effects of Human Gut Commensal Microbiota Over the Course of Human History. Mol Biol Evol 2025; 42:msaf010. [PMID: 39838923 PMCID: PMC11824422 DOI: 10.1093/molbev/msaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/07/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Despite the importance of gut commensal microbiota to human health, there is little knowledge about their evolutionary histories, including their demographic histories and distributions of fitness effects (DFEs) of mutations. Here, we infer the demographic histories and DFEs for amino acid-changing mutations of 39 of the most prevalent and abundant commensal gut microbial species found in Westernized individuals over timescales exceeding human generations. Some species display contractions in population size and others expansions, with several of these events coinciding with several key historical moments in human history. DFEs across species vary from highly to mildly deleterious, with differences between accessory and core gene DFEs largely driven by genetic drift. Within genera, DFEs tend to be more congruent, reflective of underlying phylogenetic relationships. Together, these findings suggest that gut microbes have distinct demographic and selective histories.
Collapse
Affiliation(s)
- Jonathan C Mah
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Department of Human Genetics, University of California, Los Angeles, USA
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Department of Human Genetics, University of California, Los Angeles, USA
| |
Collapse
|
3
|
Narwal E, Choudhary J, Kumar M, Amarowicz R, Kumar S, Radha, Chandran D, Dhumal S, Singh S, Senapathy M, Rajalingam S, Muthukumar M, Mekhemar M. Botanicals as promising antimicrobial agents for enhancing oral health: a comprehensive review. Crit Rev Microbiol 2025; 51:84-107. [PMID: 38546272 DOI: 10.1080/1040841x.2024.2321489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 01/28/2025]
Abstract
The mouth houses the second largest diversity of microorganisms in the body, harboring more than 700 bacterial species colonizing the soft mucosa and hard tooth surfaces. Microbes are the cause of several health-related problems, such as dental carries, gingivitis, periodontitis, etc., in the mouth across different age groups and socioeconomic/demographic groups. Oral infections are major health problems that affect the standard of living. Compromised oral health is related to chronic conditions and systemic disorders. Microbes responsible for dental caries are acid-producing and aciduric Gram-positive bacteria (Streptococci, Lactobacilli). Gram-negative bacteria (Porphyromonas, Prevotella, Actinobacillus, and Fusobacterium) capable of growing in anaerobic environments are responsible for periodontal diseases. Due to the high prevalence of oral diseases, negative effects associated with the use of antimicrobial agents and increased antibiotic resistance in oral pathogens, suitable alternative methods (effective, economical and safe) to suppress microbes disturbing oral health need to be adopted. Side effects associated with the chemical antimicrobial agents are vomiting, diarrhea and tooth staining. Several researchers have studied the antimicrobial properties of plant extracts and phytochemicals and have used them as indigenous practices to control several infections. Therefore, phytochemicals extracted from plants can be suitable alternatives. This review focuses on the various phytochemical/plant extracts suppressing the growth of oral pathogens either by preventing their attachment to the surfaces or by preventing biofilm formation or other mechanisms.
Collapse
Affiliation(s)
- Ekta Narwal
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Jairam Choudhary
- ICAR - Indian Institute of Farming Systems Research, New Delhi, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Sunil Kumar
- ICAR - Indian Institute of Farming Systems Research, New Delhi, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, SNNPR, Sodo, Ethiopia
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Muthamilselvan Muthukumar
- Department of Agricultural Entomology, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany
| |
Collapse
|
4
|
Venkatraman A, Davis R, Tseng WH, Thibeault SL. Microbiome and Communication Disorders: A Tutorial for Clinicians. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2025; 68:148-163. [PMID: 39572259 PMCID: PMC11842070 DOI: 10.1044/2024_jslhr-24-00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 01/03/2025]
Abstract
PURPOSE Emerging research in the field of microbiology has indicated that host-microbiota interactions play a significant role in regulating health and disease. Whereas the gut microbiome has received the most attention, distinct microbiota in other organs (mouth, larynx, and trachea) may undergo microbial shifts that impact disease states. A comprehensive understanding of microbial mechanisms and their role in communication and swallowing deficits may have downstream diagnostic and therapeutic implications. METHOD A literature review was completed to provide a broad overview of the microbiome, including differentiation of commensal versus pathogenic bacteria; cellular mechanisms by which bacteria interact with human cells; site-specific microbial compositional shifts in certain organs; and available reports of oral, laryngeal, and tracheal microbial dysbiosis in conditions that are associated with communication and swallowing deficits. RESULTS/CONCLUSIONS This review article is a valuable tutorial for clinicians, specifically introducing them to the concept of dysbiosis, with potential contributions to communication and swallowing deficits. Future research should delineate the role of specific pathogenic bacteria in disease pathogenesis to identify therapeutic targets.
Collapse
Affiliation(s)
- Anumitha Venkatraman
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin–Madison
| | - Ruth Davis
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin–Madison
| | - Wen-Hsuan Tseng
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin–Madison
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Susan L. Thibeault
- Division of Otolaryngology—Head & Neck Surgery, Department of Surgery, University of Wisconsin–Madison
| |
Collapse
|
5
|
Santonocito S, Polizzi A, Isola G. The Impact of Diet and Nutrition on the Oral Microbiome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:53-69. [PMID: 40111685 DOI: 10.1007/978-3-031-79146-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
At present, it is well known that oral health is essential for the well-being of the body as a whole, thanks to the increasing awareness of how various oral diseases, including periodontal disease, oral carcinomas, and other conditions, have a close connection with various systemic disorders. In recent decades, studies on the oral microbiome have increasingly emphasized how the balance between the host and the microbial species that coexist there is essential for oral health at all stages of life. However, there are many factors capable of interfering with that balance, and diet is precisely one of them. The real influence of diet on the oral microbiota, and consequently on oral health, has been much debated. In this context, the observation of two key periods in human history, the Neolithic and the Industrial Revolution, has proved to be diriment. The foods and processing techniques that emerged in these two historical periods, in association with changes in customs and habits, significantly altered the central constituents of the human diet, including macronutrient proportions, glycemic load, fatty acid composition, sodium and potassium levels, micronutrient levels, dietary pH, and fiber content taken in by human beings. The introduction of these foods into the daily human routine has been linked to a decline in oral health and an increase of several other diseases, including cardiovascular diseases, inflammatory bowel disease, rheumatic diseases, many cancers, and obesity. The aim of this chapter is to update the current knowledge and further discuss the role of diet and nutrition on oral health.
Collapse
Affiliation(s)
- Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy.
| |
Collapse
|
6
|
Wolff R, Garud NR. Pervasive selective sweeps across human gut microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573162. [PMID: 38187688 PMCID: PMC10769429 DOI: 10.1101/2023.12.22.573162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The human gut microbiome is composed of a highly diverse consortia of species which are continually evolving within and across hosts. The ability to identify adaptations common to many human gut microbiomes would not only reveal shared selection pressures across hosts, but also key drivers of functional differentiation of the microbiome that may affect community structure and host traits. However, to date there has not been a systematic scan for adaptations that have spread across human gut microbiomes. Here, we develop a novel selection scan statistic named the integrated Linkage Disequilibrium Score (iLDS) that can detect the spread of adaptive haplotypes across host microbiomes via migration and horizontal gene transfer. Specifically, iLDS leverages signals of hitchhiking of deleterious variants with the beneficial variant. Application of the statistic to ~30 of the most prevalent commensal gut species from 24 populations around the world revealed more than 300 selective sweeps across species. We find an enrichment for selective sweeps at loci involved in carbohydrate metabolism-potentially indicative of adaptation to features of host diet-and we find that the targets of selection significantly differ between Westernized and non-Westernized populations. Underscoring the potential role of diet in driving selection, we find a selective sweep absent from non-Westernized populations but ubiquitous in Westernized populations at a locus known to be involved in the metabolism of maltodextrin, a synthetic starch that has recently become a widespread component of Western diets. In summary, we demonstrate that selective sweeps across host microbiomes are a common feature of the evolution of the human gut microbiome, and that targets of selection may be strongly impacted by host diet.
Collapse
Affiliation(s)
- Richard Wolff
- Department of Ecology and Evolutionary Biology, UCLA
| | - Nandita R. Garud
- Department of Ecology and Evolutionary Biology, UCLA
- Department of Human Genetics, UCLA
| |
Collapse
|
7
|
Lee E, Priutt E, Woods S, Quick A, King S, McLellan LK, Shields RC. Genomic analysis of conjugative and chromosomally integrated mobile genetic elements in oral streptococci. Appl Environ Microbiol 2024; 90:e0136024. [PMID: 39254330 PMCID: PMC11497809 DOI: 10.1128/aem.01360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
This study aimed to investigate the diversity of conjugative and chromosomally integrated mobile genetic elements (cciMGEs) within six oral streptococci species. cciMGEs, including integrative and conjugative elements (ICEs) and integrative and mobilizable elements (IMEs), are stably maintained on the host cell chromosome; however, under certain conditions, they are able to excise, form extrachromosomal circles, and transfer via a conjugation apparatus. Many cciMGEs encode "cargo" functions that aid survival in new niches and evolve new antimicrobial resistance or virulence properties, whereas others have been shown to influence host bacterial physiology. Here, using a workflow employing preexisting bioinformatics tools, we analyzed 551 genomes for the presence of cciMGEs across six common health- and disease-associated oral streptococci. We identified 486 cciMGEs, 173 of which were ICEs and 233 of which were IMEs. The cciMGEs were diverse in size, cargo genes, and relaxase types. We identified several novel relaxase proteins and a widespread IME carrying a small multidrug resistance transporter. Additionally, we provide evidence that several of the bioinformatically predicted cciMGEs encoded within various Streptococcus mutans strains are capable of excision and circularization, a critical step for cciMGE conjugative transfer. These findings highlight the significance and potential impact of MGEs in shaping the genetic landscape, pathogenicity, and antimicrobial resistance profiles of the oral microbiota.IMPORTANCEOral streptococci are important players in the oral microbiome, influencing both health and disease states within dental bacterial communities. Evolutionary adaptation, shaped in a major part by the horizontal transfer of genes, is essential for their survival in the oral cavity and within new environments. Conjugation is a significant driver of horizontal gene transfer; however, there is limited information regarding this process in oral bacteria. This study utilizes publicly available genome sequences to identify conjugative and chromosomally integrated mobile genetic elements (cciMGEs) across several species of oral streptococci and presents the preliminary characterization of these elements. Our findings significantly enhance our understanding of the mobile genomic landscape of oral streptococci critical for human health, with valuable insights into how cciMGEs might influence the survival and pathogenesis of these bacteria in the oral microbiome.
Collapse
Affiliation(s)
- Erica Lee
- New York Institute of Technology College of Osteopathic Medicine, Jonesboro, Arkansas, USA
| | - Erin Priutt
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Seth Woods
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Allison Quick
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Shawn King
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Lisa K. McLellan
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Robert C. Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
8
|
Taylor ZA, Chen P, Noeparvar P, Pham DN, Walker AR, Kitten T, Zeng L. Glycerol metabolism contributes to competition by oral streptococci through production of hydrogen peroxide. J Bacteriol 2024; 206:e0022724. [PMID: 39171915 PMCID: PMC11411925 DOI: 10.1128/jb.00227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
As a biological byproduct from both humans and microbes, glycerol's contribution to microbial homeostasis in the oral cavity remains understudied. In this study, we examined glycerol metabolism by Streptococcus sanguinis, a commensal associated with oral health. Genetic mutants of glucose-PTS enzyme II (manL), glycerol metabolism (glp and dha pathways), and transcriptional regulators were characterized with regard to glycerol catabolism, growth, production of hydrogen peroxide (H2O2), transcription, and competition with Streptococcus mutans. Biochemical assays identified the glp pathway as a novel source for H2O2 production by S. sanguinis that is independent of pyruvate oxidase (SpxB). Genetic analysis indicated that the glp pathway requires glycerol and a transcriptional regulator, GlpR, for expression and is negatively regulated by PTS, but not the catabolite control protein, CcpA. Conversely, deletion of either manL or ccpA increased the expression of spxB and a second, H2O2-non-producing glycerol metabolic pathway (dha), indicative of a mode of regulation consistent with conventional carbon catabolite repression (CCR). In a plate-based antagonism assay and competition assays performed with planktonic and biofilm-grown cells, glycerol greatly benefited the competitive fitness of S. sanguinis against S. mutans. The glp pathway appears to be conserved in several commensal streptococci and actively expressed in caries-free plaque samples. Our study suggests that glycerol metabolism plays a more significant role in the ecology of the oral cavity than previously understood. Commensal streptococci, though not able to use glycerol as a sole carbohydrate source for growth, benefit from the catabolism of glycerol through production of both ATP and H2O2. IMPORTANCE Glycerol is an abundant carbohydrate in the oral cavity. However, little is understood regarding the metabolism of glycerol by commensal streptococci, some of the most abundant oral bacteria. This was in part because most streptococci cannot grow on glycerol as the sole carbon source. In this study, we show that Streptococcus sanguinis, a commensal associated with dental health, can degrade glycerol for persistence and competition through two pathways, one of which generates hydrogen peroxide at levels capable of inhibiting Streptococcus mutans. Preliminary studies suggest that several additional commensal streptococci are also able to catabolize glycerol, and glycerol-related genes are actively expressed in human dental plaque samples. Our findings reveal the potential of glycerol to significantly impact microbial homeostasis, which warrants further exploration.
Collapse
Affiliation(s)
- Zachary A. Taylor
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ping Chen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Payam Noeparvar
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Danniel N. Pham
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, Virginia, USA
| | - Lin Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
9
|
Momeni SS, Cao X, Xie B, Rainey K, Childers NK, Wu H. Intraspecies interactions of Streptococcus mutans impact biofilm architecture and virulence determinants in childhood dental caries. mSphere 2024; 9:e0077823. [PMID: 38990043 PMCID: PMC11288028 DOI: 10.1128/msphere.00778-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/11/2024] [Indexed: 07/12/2024] Open
Abstract
Early childhood dental caries (ECC) is the most common chronic disease among children, especially among low socioeconomic populations. Streptococcus mutans is most frequently associated with initiation of ECC. Although many studies report children with multiple S. mutans strains (i.e., genotypes) have greater odds of developing ECC, studies investigating intraspecies interactions in dental caries are lacking. This study investigates the impact of intraspecies interactions on cariogenic and fitness traits of clinical S. mutans isolates using in vitro and in vivo approaches. Association analysis evaluated if presence of multiple S. mutans genotypes within the first year of colonization was associated with caries. Initially, clinical S. mutans isolates from 10 children were evaluated. S. mutans strains (G09 and G18, most prevalent) isolated from one child were used for subsequent analysis. Biofilm analysis was performed for single and mixed cultures to assess cariogenic traits, including biofilm biomass, intra-polysaccharide, pH, and glucan. Confocal laser scanning microscopy (CLSM) and time-lapse imaging were used to evaluate spatial and temporal biofilm dynamics, respectively. A Drosophila model was used to assess colonization in vivo. Results showed the mean biofilm pH was significantly lower in co-cultured biofilms versus monoculture. Doubling of S. mutans biofilms was observed by CLSM and in vivo colonization in Drosophila for co-cultured S. mutans. Individual strains occupied specific domains in co-culture and G09 contributed most to increased co-culture biofilm thickness and colonization in Drosophila. Biofilm formation and acid production displayed distinct signatures in time-lapsed experiments. This study illuminates that intraspecies interactions of S. mutans significantly impacts biofilm acidity, architecture, and colonization.IMPORTANCEThis study sheds light on the complex dynamics of a key contributor to early childhood dental caries (ECC) by exploring intraspecies interactions of different S. mutans strains and their impact on cariogenic traits. Utilizing clinical isolates from children with ECC, the research highlights significant differences in biofilm architecture and acid production in mixed versus single genotype cultures. The findings reveal that co-cultured S. mutans strains exhibit increased cell density and acidity, with individual strains occupying distinct domains. These insights, enhanced by use of time-lapsed confocal laser scanning microscopy and a Drosophila model, offer a deeper understanding of ECC pathogenesis and potential avenues for targeted interventions.
Collapse
Affiliation(s)
- Stephanie S. Momeni
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Xixi Cao
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Baotong Xie
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Katherine Rainey
- Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Noel K. Childers
- Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hui Wu
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Taylor ZA, Chen P, Noeparvar P, Pham DN, Walker AR, Kitten T, Zeng L. Glycerol Metabolism Contributes to Competition by Oral Streptococci through Production of Hydrogen Peroxide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.598274. [PMID: 38979179 PMCID: PMC11230354 DOI: 10.1101/2024.06.28.598274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
As a biological byproduct from both humans and microbes, glycerol's contribution to microbial homeostasis in the oral cavity remains understudied. Here we examined glycerol metabolism by Streptococcus sanguinis, a commensal associated with oral health. Genetic mutants of glucose-PTS enzyme II ( manL ), glycerol metabolism ( glp and dha pathways), and transcriptional regulators were characterized with regard to glycerol catabolism, growth, production of hydrogen peroxide (H 2 O 2 ), transcription, and competition with Streptococcus mutans . Biochemical assays identified the glp pathway as a novel source of H 2 O 2 production by S. sanguinis that is independent of pyruvate oxidase (SpxB). Genetic analysis indicated that the glp pathway requires glycerol and a transcriptional regulator, GlpR, for expression and is negatively regulated by PTS, but not the catabolite control protein, CcpA. Conversely, deletion of either manL or ccpA increased expression of spxB and a second, H 2 O 2 -non-producing glycerol metabolic pathway ( dha ), indicative of a mode of regulation consistent with conventional carbon catabolite repression (CCR). In a plate-based antagonism assay and competition assays performed with planktonic and biofilm-grown cells, glycerol greatly benefited the competitive fitness of S. sanguinis against S. mutans. The glp pathway appears to be conserved in several commensal streptococci and actively expressed in caries-free plaque samples. Our study suggests that glycerol metabolism plays a more significant role in the ecology of the oral cavity than previously understood. Commensal streptococci, though not able to use glycerol as a sole carbohydrate for growth, benefit from catabolism of glycerol through production of both ATP and H 2 O 2 . Importance Glycerol is an abundant carbohydrate found in oral cavity, both due to biological activities of humans and microbes, and as a common ingredient of foods and health care products. However, very little is understood regarding the metabolism of glycerol by some of the most abundant oral bacteria, commensal streptococci. This was in part because most streptococci cannot grow on glycerol as the sole carbon source. Here we show that Streptococcus sanguinis , an oral commensal associated with dental health, can degrade glycerol for persistence and competition through two independent pathways, one of which generates hydrogen peroxide at levels capable of inhibiting a dental pathobiont, Streptococcus mutans . Preliminary studies suggest that several other commensal streptococci are also able to catabolize glycerol, and glycerol-related genes are being actively expressed in human dental plaque samples. Our findings reveal the potential of glycerol to significantly impact microbial homeostasis which warrants further exploration.
Collapse
|
11
|
Jackson I, Woodman P, Dowd M, Fibiger L, Cassidy LM. Ancient Genomes From Bronze Age Remains Reveal Deep Diversity and Recent Adaptive Episodes for Human Oral Pathobionts. Mol Biol Evol 2024; 41:msae017. [PMID: 38533900 PMCID: PMC10966897 DOI: 10.1093/molbev/msae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 03/28/2024] Open
Abstract
Ancient microbial genomes can illuminate pathobiont evolution across millenia, with teeth providing a rich substrate. However, the characterization of prehistoric oral pathobiont diversity is limited. In Europe, only preagricultural genomes have been subject to phylogenetic analysis, with none compared to more recent archaeological periods. Here, we report well-preserved microbiomes from two 4,000-year-old teeth from an Irish limestone cave. These contained bacteria implicated in periodontitis, as well as Streptococcus mutans, the major cause of caries and rare in the ancient genomic record. Despite deriving from the same individual, these teeth produced divergent Tannerella forsythia genomes, indicating higher levels of strain diversity in prehistoric populations. We find evidence of microbiome dysbiosis, with a disproportionate quantity of S. mutans sequences relative to other oral streptococci. This high abundance allowed for metagenomic assembly, resulting in its first reported ancient genome. Phylogenetic analysis indicates major postmedieval population expansions for both species, highlighting the inordinate impact of recent dietary changes. In T. forsythia, this expansion is associated with the replacement of older lineages, possibly reflecting a genome-wide selective sweep. Accordingly, we see dramatic changes in T. forsythia's virulence repertoire across this period. S. mutans shows a contrasting pattern, with deeply divergent lineages persisting in modern populations. This may be due to its highly recombining nature, allowing for maintenance of diversity through selective episodes. Nonetheless, an explosion in recent coalescences and significantly shorter branch lengths separating bacteriocin-carrying strains indicate major changes in S. mutans demography and function coinciding with sugar popularization during the industrial period.
Collapse
Affiliation(s)
- Iseult Jackson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- The SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway, Ireland
| | - Peter Woodman
- Department of Archaeology, University College Cork, Cork, Ireland
| | - Marion Dowd
- Faculty of Science, Atlantic Technological University, Sligo, Ireland
| | - Linda Fibiger
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Lara M Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
12
|
Cantin LJ, Dunning Hotopp JC, Foster JM. Improved metagenome assemblies through selective enrichment of bacterial genomic DNA from eukaryotic host genomic DNA using ATAC-seq. Front Microbiol 2024; 15:1352378. [PMID: 38426058 PMCID: PMC10902005 DOI: 10.3389/fmicb.2024.1352378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Genomics can be used to study the complex relationships between hosts and their microbiota. Many bacteria cannot be cultured in the laboratory, making it difficult to obtain adequate amounts of bacterial DNA and to limit host DNA contamination for the construction of metagenome-assembled genomes (MAGs). For example, Wolbachia is a genus of exclusively obligate intracellular bacteria that live in a wide range of arthropods and some nematodes. While Wolbachia endosymbionts are frequently described as facultative reproductive parasites in arthropods, the bacteria are obligate mutualistic endosymbionts of filarial worms. Here, we achieve 50-fold enrichment of bacterial sequences using ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) with Brugia malayi nematodes, containing Wolbachia (wBm). ATAC-seq uses the Tn5 transposase to cut and attach Illumina sequencing adapters to accessible DNA lacking histones, typically thought to be open chromatin. Bacterial and mitochondrial DNA in the lysates are also cut preferentially since they lack histones, leading to the enrichment of these sequences. The benefits of this include minimal tissue input (<1 mg of tissue), a quick protocol (<4 h), low sequencing costs, less bias, correct assembly of lateral gene transfers and no prior sequence knowledge required. We assembled the wBm genome with as few as 1 million Illumina short paired-end reads with >97% coverage of the published genome, compared to only 12% coverage with the standard gDNA libraries. We found significant bacterial sequence enrichment that facilitated genome assembly in previously published ATAC-seq data sets from human cells infected with Mycobacterium tuberculosis and C. elegans contaminated with their food source, the OP50 strain of E. coli. These results demonstrate the feasibility and benefits of using ATAC-seq to easily obtain bacterial genomes to aid in symbiosis, infectious disease, and microbiome research.
Collapse
Affiliation(s)
- Lindsey J. Cantin
- Biochemistry and Microbiology Division, New England BioLabs, Ipswich, MA, United States
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jeremy M. Foster
- Biochemistry and Microbiology Division, New England BioLabs, Ipswich, MA, United States
| |
Collapse
|
13
|
Dinis M, Tran NC. Oral immune system and microbes. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:147-228. [DOI: 10.1016/b978-0-323-90144-4.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Momeni SS, Cao X, Xie B, Rainey K, Childers NK, Wu H. Intraspecies interactions of Streptococcus mutans impact biofilm architecture and virulence determinants in childhood dental caries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571561. [PMID: 38168339 PMCID: PMC10760078 DOI: 10.1101/2023.12.13.571561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Early childhood dental caries (ECC) is the most common chronic disease among children with a heavy disease burden among low socioeconomic populations. Streptococcus mutans is most frequently associated with initiation of ECC. Many studies report children with multiple S. mutans strains (i.e., genotypes) having greater odds of developing ECC, studies investigating intraspecies interactions in dental caries are lacking. In this study, the impact of intraspecies interactions on cariogenic and fitness traits of clinical S. mutans isolates are investigated using in-vitro and in-vivo approaches. Initially clinical S. mutans isolates of 10 children from a longitudinal epidemiological study were evaluated. S. mutans strains (G09 and G18, most prevalent) isolated from one child were used for subsequent analysis. Association analysis was used to determine if presence of multiple S. mutans genotypes within the first-year of colonization was associated with caries. Biofilm analysis was performed for single and mixed cultures to assess cariogenic traits, including biofilm biomass, intra-polysaccharide, pH, and glucan. Confocal Laser Scanning Microscopy (CLSM) and time-lapse imaging were used to evaluate spatial and temporal biofilm dynamics, respectively. A Drosophila model was used to assess colonization in-vivo. Mean biofilm pH was significantly lower in co-cultured biofilms as compared with monoculture biofilms. Doubling of S. mutans in-vitro biofilms was observed by CLSM and in-vivo colonization in Drosophila for co-cultured S. mutans. Individual strains occupied specific domains in co-culture and G09 contributed most to increased co-culture biofilm thickness and colonization in Drosophila. Biofilm formation and acid production displayed distinct signatures in time-lapsed experiments.
Collapse
Affiliation(s)
- Stephanie S. Momeni
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Xixi Cao
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Baotong Xie
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Katherine Rainey
- Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Noel K. Childers
- Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui Wu
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
15
|
Choksket S, Sharma S, Harshvardhan, Pal V, Jain A, Patil PB, Korpole S, Grover V. Evaluation of Human Dental Plaque Lactic Acid Bacilli for Probiotic Potential and Functional Analysis in Relevance to Oral Health. Indian J Microbiol 2023; 63:520-532. [PMID: 38031619 PMCID: PMC10682319 DOI: 10.1007/s12088-023-01108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Members of the lactic acid bacillus group are well-known probiotics and primarily isolated from fermented food, dairy products, intestinal and gut environment of human. Since probiotics from the human source are preferred, there exists a huge repertoire of lactobacilli in the human oral cavity which could prove a much better niche to be exploited for these beneficial microorganisms. Therefore, in this study, four lactobacilli strains, including strain DISK7, reported earlier, isolated from dental plaque samples of a healthy humans were evaluated for their probiotic potential. Strains displayed 99.9% of 16S rRNA gene sequence identity with species of the genera Lactobacillus and Limosilactobacillus. All strains showed lactic acid production, tolerance to low pH and antibiotic sensitivity. Variations were observed among strains in their aggregation ability, biofilm formation, bile salt resistance and cholesterol degradation. Further, we analyzed the interaction of strains with other oral commensals and opportunistic pathogens in co-culture experiments. Isolates DISK7 and DISK26 exhibited high co-aggregation (> 70%) with secondary colonizers, Streptococcus pyogenes and Veillonella parvula, respectively, but their aggregation ability was decreased with opportunistic pathogens. Furthermore, strains showed a substantial increase in biofilm in co-culture with other Lactobacillus isolates, indicating their ability to proliferate commensal bacteria in the oral environment. These microbes continually evolve in terms of niche adaptation as evidenced in genome analysis. The highlight of the investigation is the isolation and evaluation of the probiotic lactobacilli from the human oral cavity, which could prove a much better niche to be exploited for the effective commercialization of these beneficial microbes. Taken together, probiotic properties and interaction with commensal bacteria, these isolates exhibit the huge potential to be developed as alternative bioresource agents for maintenance of oral health. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01108-2.
Collapse
Affiliation(s)
- Stanzin Choksket
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Shikha Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Harshvardhan
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Vijay Pal
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Ashish Jain
- Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Prabhu B. Patil
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Suresh Korpole
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Vishakha Grover
- Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Mah JC, Lohmueller KE, Garud N. Inference of the demographic histories and selective effects of human gut commensal microbiota over the course of human history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566454. [PMID: 38014007 PMCID: PMC10680615 DOI: 10.1101/2023.11.09.566454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Despite the importance of gut commensal microbiota to human health, there is little knowledge about their evolutionary histories, including their population demographic histories and their distributions of fitness effects (DFE) of new mutations. Here, we infer the demographic histories and DFEs of 27 of the most highly prevalent and abundant commensal gut microbial species in North Americans over timescales exceeding human generations using a collection of lineages inferred from a panel of healthy hosts. We find overall reductions in genetic variation among commensal gut microbes sampled from a Western population relative to an African rural population. Additionally, some species in North American microbiomes display contractions in population size and others expansions, potentially occurring at several key historical moments in human history. DFEs across species vary from highly to mildly deleterious, with accessory genes experiencing more drift compared to core genes. Within genera, DFEs tend to be more congruent, reflective of underlying phylogenetic relationships. Taken together, these findings suggest that human commensal gut microbes have distinct evolutionary histories, possibly reflecting the unique roles of individual members of the microbiome.
Collapse
Affiliation(s)
- Jonathan C. Mah
- Bioinformatics Interdepartmental Program, University of California, Los Angeles
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
- Department of Human Genetics, University of California, Los Angeles
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
- Department of Human Genetics, University of California, Los Angeles
| |
Collapse
|
17
|
Carletto-Körber FPM, Acosta-Jofré MS, Vera NS, Mourelle-Martínez MR, Jiménez MG, Martínez JE, Cornejo LS, González-Ittig RE. Genetic variation in the glucosyltransferase-B gene of Streptococcus mutans and its relationship with caries experience in children from Córdoba, Argentina, and with strains from other countries. Int J Paediatr Dent 2023; 33:615-624. [PMID: 37212709 DOI: 10.1111/ipd.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Caries is a worldwide distributed oral disease of multifactorial nature, with Streptococcus mutans being the most commonly isolated bacterial agent. The glycosyltransferases of this bacterium would play an essential role in the aetiology and pathogenesis of caries. AIM We explored how the glucosyltransferase-B (gtf-B) gene variability of S. mutans from children in central Argentina correlated with their caries experience and how these strains were genetically related to those of other countries. DESIGN Dental examinations were performed on 59 children; dmft and DMFT indexes were calculated. From stimulated saliva, S. mutans was grown and counted (CFU/mL). From bacterial DNA, the gtf-B gene was amplified and sequenced. Alleles were identified and their genealogical relationships established. Clinical, microbiological, and genetic variables were correlated with caries experience. Our sequences were included in a matrix with those from 16 countries (n = 358); genealogical relationships among alleles were obtained. Population genetic analyses were performed for countries with >20 sequences. RESULTS The mean dmft + DMFT was 6.45. Twenty-two gtf-B alleles were identified here, which showed low genetic differentiation in the network. Caries experience was correlated with CFU/mL, but not with allele variation. Low differentiation was found among the 70 alleles recovered from the 358 sequences and among the countries analyzed. CONCLUSION In this study, caries experience in children was correlated with the number of CFU/mL of S. mutans but not with the gtf-B gene variability. Combined genetic analyses of worldwide strains support the theory that this bacterium experienced population expansions, probably associated with agriculture development and/or food industrialization.
Collapse
Affiliation(s)
| | | | - Noelia Soledad Vera
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - María Graciela Jiménez
- Hospital Universitario de Maternidad y Neonatología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan Enrique Martínez
- Hospital Universitario de Maternidad y Neonatología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lila Susana Cornejo
- Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Raúl Enrique González-Ittig
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC, Córdoba, Argentina
| |
Collapse
|
18
|
Baker JL. Illuminating the oral microbiome and its host interactions: recent advancements in omics and bioinformatics technologies in the context of oral microbiome research. FEMS Microbiol Rev 2023; 47:fuad051. [PMID: 37667515 PMCID: PMC10503653 DOI: 10.1093/femsre/fuad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
The oral microbiota has an enormous impact on human health, with oral dysbiosis now linked to many oral and systemic diseases. Recent advancements in sequencing, mass spectrometry, bioinformatics, computational biology, and machine learning are revolutionizing oral microbiome research, enabling analysis at an unprecedented scale and level of resolution using omics approaches. This review contains a comprehensive perspective of the current state-of-the-art tools available to perform genomics, metagenomics, phylogenomics, pangenomics, transcriptomics, proteomics, metabolomics, lipidomics, and multi-omics analysis on (all) microbiomes, and then provides examples of how the techniques have been applied to research of the oral microbiome, specifically. Key findings of these studies and remaining challenges for the field are highlighted. Although the methods discussed here are placed in the context of their contributions to oral microbiome research specifically, they are pertinent to the study of any microbiome, and the intended audience of this includes researchers would simply like to get an introduction to microbial omics and/or an update on the latest omics methods. Continued research of the oral microbiota using omics approaches is crucial and will lead to dramatic improvements in human health, longevity, and quality of life.
Collapse
Affiliation(s)
- Jonathon L Baker
- Department of Oral Rehabilitation & Biosciences, School of Dentistry, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97202, United States
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA 92093, United States
| |
Collapse
|
19
|
Jiang M, Wang K, Huang Y, Zhang X, Yang T, Zhan K, Zhao G. Quercetin Alleviates Lipopolysaccharide-Induced Cell Oxidative Stress and Inflammatory Responses via Regulation of the TLR4-NF-κB Signaling Pathway in Bovine Rumen Epithelial Cells. Toxins (Basel) 2023; 15:512. [PMID: 37624269 PMCID: PMC10467142 DOI: 10.3390/toxins15080512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Subacute rumen acidosis (SARA) will cause an increase in endotoxin, which will have a negative effect on the bovine rumen epithelial cells (BREC). Flavonoids are effective in treating inflammation caused by endotoxin. Quercetin is a vital flavonoid widely occurring in fruits and vegetables and has received significant interest as a prospective anti-inflammatory antioxidant. Nonetheless, quercetin's protective machinery against such damage to BREC induced by lipopolysaccharide (LPS) remains unclear. A combined quercetin and LPS-induced BREC inflammation model was utilized to elucidate the effect of quercetin protecting BREC from LPS-induced injury. After treating BREC with different doses of LPS (1, 5, and 10 μg/mL) for 6 h or 24 h, the mRNA expression of inflammatory factors was detected. Our experimental results show the establishment of the BREC inflammation model via mRNA high expression of pro-inflammatory cytokines in BREC following 6 h treatment with 1 µg/mL LPS. The promotive effect of 80 μg/mL quercetin on BREC growth via the cell counting kit-8 (CCK8) assay was observed. The expression of pro-inflammatory cytokines and chemokines, notably tumor necrosis factor α (TNF-α), Interleukin 1β (IL-1β), IL-6, CC-motif chemokine ligand 2 (CCL2), CCL20, CCL28, and CXC motif chemokine 9 (CXCL9), etc., was significantly reduced by quercetin supplementation. We also analyzed the mRNA detection of related pathways by qRT-PCR. Our validation studies demonstrated that quercetin markedly curbed the mRNA expression of the toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein (MyD88) and the nuclear factor-κB (NF-κB) in LPS-treated BREC. In addition, western blot result outcomes confirmed, as expected, that LPS significantly activated phosphorylation of p44/42 extracellular regulated protein kinases (ERK1/2) and NF-κB. Unexpectedly, this effect was reversed by adding quercetin. To complement western blot results, we assessed p-ERK1/2 and p-p65 protein expression using immunofluorescence, which gave consistent results. Therefore, quercetin's capacity to bar the TLR4-mediated NF-κB and MAPK signaling pathways may be the cause of its anti-inflammatory effects on LPS-induced inflammatory reactions in BREC. According to these results, quercetin may be utilized as an anti-inflammatory medication to alleviate inflammation brought on by high-grain feed, and it also lays out a conceptual foundation regarding the development and utilization of quercetin in the later stage.
Collapse
Affiliation(s)
- Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kexin Wang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yinghao Huang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuelei Zhang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tianyu Yang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Liu Y, Daniel SG, Kim HE, Koo H, Korostoff J, Teles F, Bittinger K, Hwang G. Addition of cariogenic pathogens to complex oral microflora drives significant changes in biofilm compositions and functionalities. MICROBIOME 2023; 11:123. [PMID: 37264481 DOI: 10.1186/s40168-023-01561-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Dental caries is a microbe and sugar-mediated biofilm-dependent oral disease. Of particular significance, a virulent type of dental caries, known as severe early childhood caries (S-ECC), is characterized by the synergistic polymicrobial interaction between the cariogenic bacterium, Streptococcus mutans, and an opportunistic fungal pathogen, Candida albicans. Although cross-sectional studies reveal their important roles in caries development, these exhibit limitations in determining the significance of these microbial interactions in the pathogenesis of the disease. Thus, it remains unclear the mechanism(s) through which the cross-kingdom interaction modulates the composition of the plaque microbiome. Here, we employed a novel ex vivo saliva-derived microcosm biofilm model to assess how exogenous pathogens could impact the structural and functional characteristics of the indigenous native oral microbiota. RESULTS Through shotgun whole metagenome sequencing, we observed that saliva-derived biofilm has decreased richness and diversity but increased sugar-related metabolism relative to the planktonic phase. Addition of S. mutans and/or C. albicans to the native microbiome drove significant changes in its bacterial composition. In addition, the effect of the exogenous pathogens on microbiome diversity and taxonomic abundances varied depending on the sugar type. While the addition of S. mutans induced a broader effect on Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog abundances with glucose/fructose, S. mutans-C. albicans combination under sucrose conditions triggered unique and specific changes in microbiota composition/diversity as well as specific effects on KEGG pathways. Finally, we observed the presence of human epithelial cells within the biofilms via confocal microscopy imaging. CONCLUSIONS Our data revealed that the presence of S. mutans and C. albicans, alone or in combination, as well as the addition of different sugars, induced unique alterations in both the composition and functional attributes of the biofilms. In particular, the combination of S. mutans and C. albicans seemed to drive the development (and perhaps the severity) of a dysbiotic/cariogenic oral microbiome. Our work provides a unique and pragmatic biofilm model for investigating the functional microbiome in health and disease as well as developing strategies to modulate the microbiome. Video Abstract.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Scott G Daniel
- Department of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hye-Eun Kim
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyun Koo
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonathan Korostoff
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Flavia Teles
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyle Bittinger
- Department of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
21
|
Malviya J, Alameri AA, Al-Janabi SS, Fawzi OF, Azzawi AL, Obaid RF, Alsudani AA, Alkhayyat AS, Gupta J, Mustafa YF, Karampoor S, Mirzaei R. Metabolomic profiling of bacterial biofilm: trends, challenges, and an emerging antibiofilm target. World J Microbiol Biotechnol 2023; 39:212. [PMID: 37256458 DOI: 10.1007/s11274-023-03651-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Biofilm-related infections substantially contribute to bacterial illnesses, with estimates indicating that at least 80% of such diseases are linked to biofilms. Biofilms exhibit unique metabolic patterns that set them apart from their planktonic counterparts, resulting in significant metabolic reprogramming during biofilm formation. Differential glycolytic enzymes suggest that central metabolic processes are markedly different in biofilms and planktonic cells. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is highly expressed in Staphylococcus aureus biofilm progenitors, indicating that changes in glycolysis activity play a role in biofilm development. Notably, an important consideration is a correlation between elevated cyclic di-guanylate monophosphate (c-di-GMP) activity and biofilm formation in various bacteria. C-di-GMP plays a critical role in maintaining the persistence of Pseudomonas aeruginosa biofilms by regulating alginate production, a significant biofilm matrix component. Furthermore, it has been demonstrated that S. aureus biofilm development is initiated by several tricarboxylic acid (TCA) intermediates in a FnbA-dependent manner. Finally, Glucose 6-phosphatase (G6P) boosts the phosphorylation of histidine-containing protein (HPr) by increasing the activity of HPr kinase, enhancing its interaction with CcpA, and resulting in biofilm development through polysaccharide intercellular adhesion (PIA) accumulation and icaADBC transcription. Therefore, studying the metabolic changes associated with biofilm development is crucial for understanding the complex mechanisms involved in biofilm formation and identifying potential targets for intervention. Accordingly, this review aims to provide a comprehensive overview of recent advances in metabolomic profiling of biofilms, including emerging trends, prevailing challenges, and the identification of potential targets for anti-biofilm strategies.
Collapse
Affiliation(s)
- Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | - Saif S Al-Janabi
- Medical Laboratory Techniques Department, Al-Maarif University College, Ramadi, Iraq
| | | | | | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Ali A Alsudani
- College of Science, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Ameer S Alkhayyat
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U. P., India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
22
|
Zhang Y, Li Z, Xu X, Peng X. Transposon mutagenesis in oral streptococcus. J Oral Microbiol 2022; 14:2104951. [PMID: 35903085 PMCID: PMC9318214 DOI: 10.1080/20002297.2022.2104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oral streptococci are gram-positive facultative anaerobic bacteria that are normal inhabitants of the human oral cavity and play an important role in maintaining oral microecological balance and pathogenesis. Transposon mutagenesis is an effective genetic manipulation strategy for studying the function of genomic features. In order to study cariogenic related genes and crucial biological element genes of oral Streptococcus, transposon mutagenesis was widely used to identify functional genes. With the advent of next-generation sequencing (NGS) technology and the development of transposon random mutation library construction methods, transposon insertion sequencing (TIS) came into being. Benefiting from high-throughput advances in NGS, TIS was able to evaluate the fitness contribution and essentiality of genetic features in the bacterial genome. The application of transposon mutagenesis, including TIS, to oral streptococci provided a massive amount of valuable detailed linkage data between genetic fitness and genetic backgrounds, further clarify the processes of colonization, virulence, and persistence and provides a more reliable basis for investigating relationships with host ecology and disease status. This review focuses on transposon mutagenesis, including TIS, and its applicability in oral streptococci.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Exploiting Conserved Quorum Sensing Signals in Streptococcus mutans and Streptococcus pneumoniae. Microorganisms 2022; 10:microorganisms10122386. [PMID: 36557639 PMCID: PMC9785397 DOI: 10.3390/microorganisms10122386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Bacterial species of the Streptococcus genera are considered either commensal bacteria or potential pathogens, according to their metabolic evolution and production of quorum sensing (QS)-controlled virulence factors. S. mutans, in particular, has become one of the best-studied examples of bacteria that are able to get along or cheat commensal species, even of the same genera. S. mutans and S. pneumoniae share homolog QS pathways and a competence stimulating peptide (CSP) for regulating bacteriocin production. Intriguingly, the abundance of S. pneumoniae and S. mutans alternates in complex microbial communities, thus opening the role for the fratricide communication of homolog QS systems. Since the inhibition of the QS has been proposed in treating bacterial infections, in this study, we designed and synthesized analogs of S. pneumoniae CSP with precise residual modifications. We reported that S. pneumoniae CSP analogs reduced the expression of genes involved in the QS of S. mutans and biofilm formation without affecting bacterial growth. The CSP analogs inhibited bacteriocin production in S. mutans, as reported by co-cultures with commensal bacteria of the oral cavity. The peptide CSP1AA, bearing substitutions in the residues involved in QS receptor recognition and activation, reported the most significant quorum-quenching activities. Our findings provide new insights into specific chemical drivers in the CSP sequences controlling the interconnection between S. mutans and S. pneumoniae. We think that the results reported in this study open the way for new therapeutic interventions in controlling the virulence factors in complex microbial communities such as the oral microbiota.
Collapse
|
24
|
Otsugu M, Mikasa Y, Kitamura T, Suehiro Y, Matayoshi S, Nomura R, Nakano K. Clinical characteristics of children and guardians possessing CBP-positive Streptococcus mutans strains: a cross-sectional study. Sci Rep 2022; 12:17510. [PMID: 36266432 PMCID: PMC9585102 DOI: 10.1038/s41598-022-22378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023] Open
Abstract
Streptococcus mutans is a major etiological agent for dental caries. We previously demonstrated that S. mutans strains expressing collagen-binding proteins (CBPs) were related to the pathogenesis of systemic diseases. However, their acquisition and colonization remain unknown. Here, we investigated the detection rates of CBP-positive S. mutans strains in children and their guardians to clarify the background for the acquisition and colonization in children. Saliva samples were collected from children and their mothers, and detection of S. mutans and collagen-binding genes (cnm, cbm) was performed by PCR after DNA extraction. The oral status of each child was examined, and their mothers were asked to complete a questionnaire. The isolation rate of Cnm-positive S. mutans was significantly higher in mothers than in children. Notably, the possession rates of CBP-positive strains in children were significantly higher in children whose mothers had CBP-positive strains than in children whose mothers did not have these strains. Furthermore, children with CBP-positive strains had a significantly shorter breastfeeding period than children without these strains. The present results suggest that nutritional feeding habits in infancy are one of the factors involved in the acquisition and colonization of CBP-positive S. mutans strains.
Collapse
Affiliation(s)
- Masatoshi Otsugu
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Yusuke Mikasa
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Takahiro Kitamura
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Yuto Suehiro
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Saaya Matayoshi
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| | - Ryota Nomura
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan ,grid.257022.00000 0000 8711 3200Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuhiko Nakano
- grid.136593.b0000 0004 0373 3971Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
25
|
Brouwers MCGJ. Fructose 1-phosphate, an evolutionary signaling molecule of abundancy. Trends Endocrinol Metab 2022; 33:680-689. [PMID: 35995682 DOI: 10.1016/j.tem.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
Evidence is accumulating that specifically fructose exerts adverse cardiometabolic effects in humans. Recent experimental studies have shown that fructose not only serves as a substrate for, among others, intrahepatic lipid formation, but also has a signaling function. It is postulated that fructose 1-phosphate (F1-P) has evolved as a signaling molecule of abundancy that stimulates nutrient absorption, lipid storage, and reproduction. Such a role would provide an explanation for why fructose contributes to the pathogenesis of evolutionary mismatch diseases, including nonalcoholic fatty liver disease (NAFLD), cardiovascular disease, polycystic ovary syndrome (PCOS), and colorectal cancer, in the current era of nutritional abundance. It is anticipated that reducing F1-P, by either pharmacological inhibition of ketohexokinase (KHK) or societal measures, will mitigate the risk of these diseases.
Collapse
Affiliation(s)
- Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Centre, Maastricht, The Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
26
|
Optimization and Evaluation of the 30S-S11 rRNA Gene for Taxonomic Profiling of Oral Streptococci. Appl Environ Microbiol 2022; 88:e0045322. [PMID: 35730938 PMCID: PMC9275224 DOI: 10.1128/aem.00453-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dental caries is a multifactorial disease driven by interactions between the highly complex microbial biofilm community and host factors like diet, oral hygiene habits, and age. The oral streptococci are one of the most dominant members of the plaque biofilm and are implicated in disease but also in maintaining oral health. Current methods used for studying the supragingival plaque community commonly sequence portions of the16S rRNA gene, which often cannot taxonomically resolve members of the streptococcal community past the genus level due to their sequence similarity. The goal of this study was to design and evaluate a more reliable and cost-effective method to identify oral streptococci at the species level by applying a new locus, the 30S-S11 rRNA gene, for high-throughput amplicon sequencing. The study results demonstrate that the newly developed single-copy 30S-S11 gene locus resolved multiple amplicon sequence variants (ASVs) within numerous species, providing much improved taxonomic resolution over 16S rRNA V4. Moreover, the results reveal that different ASVs within a species were found to change in abundance at different stages of caries progression. These findings suggest that strains of a single species may perform distinct roles along a biochemical spectrum associated with health and disease. The improved identification of oral streptococcal species will provide a better understanding of the different ecological roles of oral streptococci and inform the design of novel oral probiotic formulations for prevention and treatment of dental caries. IMPORTANCE The microbiota associated with the initiation and progression of dental caries has yet to be fully characterized. Although much insight has been gained from 16S rRNA hypervariable region DNA sequencing, this approach has several limitations, including poor taxonomic resolution at the species level. This is particularly relevant for oral streptococci, which are abundant members of oral biofilm communities and major players in health and caries disease. Here, we develop a new method for taxonomic profiling of oral streptococci based on the 30S-S11 rRNA gene, which provides much improved resolution over 16S rRNA V4 (resolving 10 as opposed to 2 species). Importantly, 30S-S11 can resolve multiple amplicon sequence variants (ASVs) within species, providing an unprecedented insight into the ecological progression of caries. For example, our findings reveal multiple incidences of different ASVs within a species with contrasting associations with health or disease, a finding that has high relevance toward the informed design of prebiotic and probiotic therapy.
Collapse
|
27
|
Jin S, Wetzel D, Schirmer M. Deciphering mechanisms and implications of bacterial translocation in human health and disease. Curr Opin Microbiol 2022; 67:102147. [PMID: 35461008 DOI: 10.1016/j.mib.2022.102147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
Abstract
Significant increases in potential microbial translocation, especially along the oral-gut axis, have been identified in many immune-related and inflammatory diseases, such as inflammatory bowel disease, colorectal cancer, rheumatoid arthritis, and liver cirrhosis, for which we currently have no cure or long-term treatment options. Recent advances in computational and experimental omics approaches now enable strain tracking, functional profiling, and strain isolation in unprecedented detail, which has the potential to elucidate the causes and consequences of microbial translocation. In this review, we discuss current evidence for the detection of bacterial translocation, examine different translocation axes with a primary focus on the oral-gut axis, and outline currently known translocation mechanisms and how they adversely affect the host in disease. Finally, we conclude with an overview of state-of-the-art computational and experimental tools for strain tracking and highlight the required next steps to elucidate the role of bacterial translocation in human health.
Collapse
Affiliation(s)
- Shen Jin
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Daniela Wetzel
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Melanie Schirmer
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
28
|
Gomez A. Heritable oral microbes and their importance in microbiome research for public health. Cell Host Microbe 2022; 30:439-443. [PMID: 35421339 DOI: 10.1016/j.chom.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In 2016, I made part of an effort to characterize oral microbial communities in twins with dental caries. Here, I revisit the results published by me and my colleagues in Cell Host & Microbe in 2017, which shed light on plaque biofilm bacteria influenced by host genotype and their role in oral disease.
Collapse
Affiliation(s)
- Andres Gomez
- Department of Animal Science, University of Minnesota, Twin Cities, Minneapolis, MN, USA; Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
29
|
mucG, mucH, and mucI Modulate Production of Mutanocyclin and Reutericyclins in Streptococcus mutans B04Sm5. J Bacteriol 2022; 204:e0004222. [PMID: 35404110 PMCID: PMC9112991 DOI: 10.1128/jb.00042-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Streptococcus mutans is considered a primary etiologic agent of dental caries, which is the most common chronic infectious disease worldwide. S. mutans B04Sm5 was recently shown to produce reutericyclins and mutanocyclin through the muc biosynthetic gene cluster and to utilize reutericyclins to inhibit the growth of neighboring commensal streptococci. In this study, examination of S. mutans and muc phylogeny suggested evolution of an ancestral S. mutans muc into three lineages within one S. mutans clade and then horizontal transfer of muc to other S. mutans clades. The roles of the mucG and mucH transcriptional regulators and the mucI transporter were also examined. mucH was demonstrated to encode a transcriptional activator of muc. mucH deletion reduced production of mutanocyclin and reutericyclins and eliminated the impaired growth and inhibition of neighboring streptococci phenotypes, which are associated with reutericyclin production. ΔmucG had increased mutanocyclin and reutericyclin production, which impaired growth and increased the ability to inhibit neighboring streptococci. However, deletion of mucG also caused reduced expression of mucD, mucE, and mucI. Deletion of mucI reduced mutanocyclin and reutericylin production but enhanced growth, suggesting that mucI may not transport reutericyclin as its homolog does in Limosilactobacillus reuteri. Further research is needed to determine the roles of mucG and mucI and to identify any cofactors affecting the activity of the mucG and mucH regulators. Overall, this study provided pangenome and phylogenetic analyses that serve as a resource for S. mutans research and began elucidation of the regulation of reutericyclins and mutanocyclin production in S. mutans. IMPORTANCE S. mutans must be able to outcompete neighboring organisms in its ecological niche in order to cause dental caries. S. mutans B04Sm5 inhibited the growth of neighboring commensal streptococci through production of reutericyclins via the muc biosynthetic gene cluster. In this study, an S. mutans pangenome database and updated phylogenetic tree were generated that will serve as valuable resources for the S. mutans research community and that provide insights into the carriage and evolution of S. mutans muc. The MucG and MucH regulators, and the MucI transporter, were shown to modulate production of reutericyclins and mutanocyclin. These genes also affected the ability of S. mutans to inhibit neighboring commensals, suggesting that they may play a role in S. mutans virulence.
Collapse
|
30
|
Bacali C, Vulturar R, Buduru S, Cozma A, Fodor A, Chiș A, Lucaciu O, Damian L, Moldovan ML. Oral Microbiome: Getting to Know and Befriend Neighbors, a Biological Approach. Biomedicines 2022; 10:671. [PMID: 35327473 PMCID: PMC8945538 DOI: 10.3390/biomedicines10030671] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
The oral microbiome, forming a biofilm that covers the oral structures, contains a high number of microorganisms. Biofilm formation starts from the salivary pellicle that allows bacterial adhesion-colonization-proliferation, co-aggregation and biofilm maturation in a complex microbial community. There is a constant bidirectional crosstalk between human host and its oral microbiome. The paper presents the fundamentals regarding the oral microbiome and its relationship to modulator factors, oral and systemic health. The modern studies of oral microorganisms and relationships with the host benefits are based on genomics, transcriptomics, proteomics and metabolomics. Pharmaceuticals such as antimicrobials, prebiotics, probiotics, surface active or abrasive agents and plant-derived ingredients may influence the oral microbiome. Many studies found associations between oral dysbiosis and systemic disorders, including autoimmune diseases, cardiovascular, diabetes, cancers and neurodegenerative disorders. We outline the general and individual factors influencing the host-microbial balance and the possibility to use the analysis of the oral microbiome in prevention, diagnosis and treatment in personalized medicine. Future therapies should take in account the restoration of the normal symbiotic relation with the oral microbiome.
Collapse
Affiliation(s)
- Cecilia Bacali
- Department of Prosthodontics and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor St., 400006 Cluj-Napoca, Romania; (C.B.); (S.B.)
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Pasteur St., 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Smaranda Buduru
- Department of Prosthodontics and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor St., 400006 Cluj-Napoca, Romania; (C.B.); (S.B.)
| | - Angela Cozma
- 4th Medical Department, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, 18 Republicii St., 400015 Cluj-Napoca, Romania;
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2-4 Clinicilor St., 400012 Cluj-Napoca, Romania;
| | - Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Pasteur St., 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Health, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Laura Damian
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases, 2-4 Clinicilor St., 400006 Cluj-Napoca, Romania;
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior St., 400002 Cluj-Napoca, Romania
| | - Mirela Liliana Moldovan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12, I. Creanga St., 400010 Cluj-Napoca, Romania;
| |
Collapse
|
31
|
Oliveira LT, Alves LA, Harth-Chu EN, Nomura R, Nakano K, Mattos-Graner RO. VicRK and CovR polymorphisms in Streptococcus mutans strains associated with cardiovascular infections. J Med Microbiol 2021; 70. [PMID: 34939562 DOI: 10.1099/jmm.0.001457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction. Streptococcus mutans, a common species of the oral microbiome, expresses virulence genes promoting cariogenic dental biofilms, persistence in the bloodstream and cardiovascular infections.Gap statement. Virulence gene expression is variable among S. mutans strains and controlled by the transcription regulatory systems VicRK and CovR.Aim. This study investigates polymorphisms in the vicRK and covR loci in S. mutans strains isolated from the oral cavity or from the bloodstream, which were shown to differ in expression of covR, vicRK and downstream genes.Methodology. The transcriptional activities of covR, vicR and vicK were compared by RT-qPCR between blood and oral strains after exposure to human serum. PCR-amplified promoter and/or coding regions of covR and vicRK of 18 strains (11 oral and 7 blood) were sequenced and compared to the reference strain UA159.Results. Serum exposure significantly reduced covR and vicR/K transcript levels in most strains (P<0.05), but reductions were higher in oral than in blood strains. Single-nucleotide polymorphisms (SNPs) were detected in covR regulatory and coding regions, but SNPs affecting the CovR effector domain were only present in two blood strains. Although vicR was highly conserved, vicK showed several SNPs, and SNPs affecting VicK regions important for autokinase activity were found in three blood strains.Conclusions. This study reveals transcriptional and structural diversity in covR and vicR/K, and identifies polymorphisms of functional relevance in blood strains, indicating that covR and vicRK might be important loci for S. mutans adaptation to host selective pressures associated with virulence diversity.
Collapse
Affiliation(s)
- Letícia T Oliveira
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Lívia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
32
|
Towle I, Irish JD, Sabbi KH, Loch C. Dental caries in wild primates: Interproximal cavities on anterior teeth. Am J Primatol 2021; 84:e23349. [PMID: 34855230 DOI: 10.1002/ajp.23349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/13/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022]
Abstract
Dental caries has been reported in a variety of primates, although it is still considered rare in wild populations. In this study, 11 catarrhine primate taxa (n = 339 individuals; 7946 teeth) were studied for the presence of caries. A differential diagnosis of lesions in interproximal regions of anterior teeth was undertaken, since they had been previously described as both carious and non-carious in origin. Each permanent tooth was examined macroscopically, with severity and position of lesions recorded. Two specimens were examined further, using micro-CT scans to assess demineralization. Differential diagnosis confirmed the cariogenic nature of interproximal cavities on anterior teeth (ICATs). Overall results show 3.3% of all teeth (i.e., anterior and posterior teeth combined) were carious (n = 262), with prevalence varying among species from 0% to >7% of teeth affected. Those with the highest prevalence of ICATs include Pan troglodytes verus (9.8% of anterior teeth), Gorilla gorilla gorilla (2.6%), Cercopithecus denti (22.4%), Presbytis femoralis (19.5%), and Cercopithecus mitis (18.3%). ICATs make up 87.9% of carious lesions on anterior teeth. These results likely reflect dietary and food processing differences among species, but also between the sexes (e.g., 9.3% of all female P. troglodytes verus teeth were carious vs. 1.8% in males). Processing cariogenic fruits and seeds with the anterior dentition (e.g., wadging) likely contributes to ICAT formation. Further research is needed in living primate populations to ascertain behavioral/dietary influences on caries occurrence. Given the presence of ICATs in frugivorous primates, their diagnosis in archaeological and paleontological specimens may shed light on diet and food processing behaviors in fossil primates.
Collapse
Affiliation(s)
- Ian Towle
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Joel D Irish
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Kris H Sabbi
- Department of Anthropology and Department of Biology, Tufts University, Medford, MA, USA
| | - Carolina Loch
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Zhang Q, Li J, Lu W, Zhao J, Zhang H, Chen W. Multi-Omics Reveals the Inhibition of Lactiplantibacillus plantarum CCFM8724 in Streptococcus mutans- Candida albicans Mixed-Species Biofilms. Microorganisms 2021; 9:microorganisms9112368. [PMID: 34835493 PMCID: PMC8619341 DOI: 10.3390/microorganisms9112368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Lactiplantibacillus plantarum CCFM8724 is a probiotic with the potential to prevent dental caries in vitro and in vivo. To explore the effects of this probiotic at inhibiting Streptococcus mutans-Candida albicans mixed-species biofilm and preventing dental caries, multi-omics, including metabolomics and transcriptomics, was used to investigate the regulation of small-molecule metabolism during biofilm formation and the gene expression in the mixed-species biofilm. Metabolomic analysis revealed that some carbohydrates related to biofilm formation, such as sucrose, was detected at lower levels due to the treatment with the L. plantarum supernatant. Some sugar alcohols, such as xylitol and sorbitol, were detected at higher levels, which may have inhibited the growth of S. mutans. In transcriptomic analysis, the expression of the virulence genes of C. albicans, such as those that code agglutinin-like sequence (Als) proteins, was affected. In addition, metabolomics coupled with a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and RNA-seq revealed that the L. plantarum supernatant had an active role in sugar metabolism during the formation of the S. mutans-C. albicans mixed-species biofilm, and the L. plantarum supernatant was also related to carbohydrate utilization, glucan biosynthesis, and mycelium formation. Hence, L. plantarum CCFM8724 decreased the mixed-species biofilm mass from the perspective of gene expression and metabolic reprogramming. Our results provide a rationale for evaluating L. plantarum CCFM8724 as a potential oral probiotic for inhibiting cariogenic pathogen biofilm formation and improving dental caries.
Collapse
Affiliation(s)
- Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (J.L.); (W.L.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jiaxun Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (J.L.); (W.L.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (J.L.); (W.L.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (J.L.); (W.L.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (J.L.); (W.L.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (J.L.); (W.L.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85912155
| |
Collapse
|
34
|
Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol 2000 2021; 87:107-131. [PMID: 34463991 PMCID: PMC8457218 DOI: 10.1111/prd.12393] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
States of oral health and disease reflect the compositional and functional capacities of, as well as the interspecies interactions within, the oral microbiota. The oral cavity exists as a highly dynamic microbial environment that harbors many distinct substrata and microenvironments that house diverse microbial communities. Specific to the oral cavity, the nonshedding dental surfaces facilitate the development of highly complex polymicrobial biofilm communities, characterized not only by the distinct microbes comprising them, but cumulatively by their activities. Adding to this complexity, the oral cavity faces near-constant environmental challenges, including those from host diet, salivary flow, masticatory forces, and introduction of exogenous microbes. The composition of the oral microbiome is shaped throughout life by factors including host genetics, maternal transmission, as well as environmental factors, such as dietary habits, oral hygiene practice, medications, and systemic factors. This dynamic ecosystem presents opportunities for oral microbial dysbiosis and the development of dental and periodontal diseases. The application of both in vitro and culture-independent approaches has broadened the mechanistic understandings of complex polymicrobial communities within the oral cavity, as well as the environmental, local, and systemic underpinnings that influence the dynamics of the oral microbiome. Here, we review the present knowledge and current understanding of microbial communities within the oral cavity and the influences and challenges upon this system that encourage homeostasis or provoke microbiome perturbation, and thus contribute to states of oral health or disease.
Collapse
Affiliation(s)
- Lea Sedghi
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Vincent DiMassa
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anthony Harrington
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Susan V. Lynch
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yvonne L. Kapila
- Department of Orofacial SciencesSchool of DentistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
35
|
Adler CJ, Cao KAL, Hughes T, Kumar P, Austin C. How does the early life environment influence the oral microbiome and determine oral health outcomes in childhood? Bioessays 2021; 43:e2000314. [PMID: 34151446 PMCID: PMC9084494 DOI: 10.1002/bies.202000314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/11/2022]
Abstract
The first 1000 days of life, from conception to 2 years, are a critical window for the influence of environmental exposures on the assembly of the oral microbiome, which is the precursor to dental caries (decay), one of the most prevalent microbially induced disorders worldwide. While it is known that the human microbiome is susceptible to environmental exposures, there is limited understanding of the impact of prenatal and early childhood exposures on the oral microbiome trajectory and oral health. A barrier has been the lack of technology to directly measure the foetal "exposome", which includes nutritional and toxic exposures crossing the placenta. Another barrier has been the lack of statistical methods to account for the high dimensional data generated by-omic assays. Through identifying which early life exposures influence the oral microbiome and modify oral health, these findings can be translated into interventions to reduce dental decay prevalence.
Collapse
Affiliation(s)
- Christina Jane Adler
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Toby Hughes
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Piyush Kumar
- Department of Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, New York, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
36
|
Culp DJ, Robinson B, Cash MN. Murine Salivary Amylase Protects Against Streptococcus mutans-Induced Caries. Front Physiol 2021; 12:699104. [PMID: 34276419 PMCID: PMC8283412 DOI: 10.3389/fphys.2021.699104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Saliva protects dental surfaces against cavities (i. e., dental caries), a highly prevalent infectious disease frequently associated with acidogenic Streptococcus mutans. Substantial in vitro evidence supports amylase, a major constituent of saliva, as either protective against caries or supporting caries. We therefore produced mice with targeted deletion of salivary amylase (Amy1) and determined the impact on caries in mice challenged with S. mutans and fed a diet rich in sucrose to promote caries. Total smooth surface and sulcal caries were 2.35-fold and 1.79-fold greater in knockout mice, respectively, plus caries severities were twofold or greater on sulcal and smooth surfaces. In in vitro experiments with samples of whole stimulated saliva, amylase expression did not affect the adherence of S. mutans to saliva-coated hydroxyapatite and slightly increased its aggregation in solution (i.e., oral clearance). Conversely, S. mutans in biofilms formed in saliva with 1% glucose displayed no differences when cultured on polystyrene, but on hydroxyapatite was 40% less with amylase expression, suggesting that recognition by S. mutans of amylase bound to hydroxyapatite suppresses growth. However, this effect was overshadowed in vivo, as the recoveries of S. mutans from dental plaque were similar between both groups of mice, suggesting that amylase expression helps decrease plaque acids from S. mutans that dissolve dental enamel. With amylase deletion, commensal streptococcal species increased from ~75 to 90% of the total oral microbiota, suggesting that amylase may promote higher plaque pH by supporting colonization by base-producing oral commensals. Importantly, collective results indicate that amylase may serve as a biomarker of caries risk.
Collapse
Affiliation(s)
- David J. Culp
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | | |
Collapse
|
37
|
Li ZR, Sun J, Du Y, Pan A, Zeng L, Maboudian R, Burne RA, Qian PY, Zhang W. Mutanofactin promotes adhesion and biofilm formation of cariogenic Streptococcus mutans. Nat Chem Biol 2021; 17:576-584. [PMID: 33664521 DOI: 10.1038/s41589-021-00745-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Cariogenic Streptococcus mutans is known as a predominant etiological agent of dental caries due to its exceptional capacity to form biofilms. From strains of S. mutans isolated from dental plaque, we discovered, in the present study, a polyketide/nonribosomal peptide biosynthetic gene cluster, muf, which directly correlates with a strong biofilm-forming capability. We then identified the muf-associated bioactive product, mutanofactin-697, which contains a new molecular scaffold, along with its biosynthetic logic. Further mode-of-action studies revealed that mutanofactin-697 binds to S. mutans cells and also extracellular DNA, increases bacterial hydrophobicity, and promotes bacterial adhesion and subsequent biofilm formation. Our findings provided an example of a microbial secondary metabolite promoting biofilm formation via a physicochemical approach, highlighting the importance of secondary metabolism in mediating critical processes related to the development of dental caries.
Collapse
Affiliation(s)
- Zhong-Rui Li
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Jin Sun
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Aifei Pan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Lin Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Roya Maboudian
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
38
|
Towle I, Irish JD, De Groote I, Fernée C, Loch C. Dental caries in South African fossil hominins. S AFR J SCI 2021. [DOI: 10.17159/sajs.2021/8705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Once considered rare in fossil hominins, caries has recently been reported in several hominin species, requiring a new assessment of this condition during human evolution. Caries prevalence and location on the teeth of South African fossil hominins were observed and compared with published data from other hominin samples. Teeth were viewed macroscopically, with lesion position and severity noted and described. For all South African fossil hominin specimens studied to date, a total of 10 carious teeth (14 lesions), including 4 described for the first time here, have been observed. These carious teeth were found in a minimum of seven individuals, including five Paranthropus robustus, one early Homo, and one Homo naledi. All 14 lesions affected posterior teeth. The results suggest cariogenic biofilms and foods may have been present in the oral environment of a wide variety of hominins. Caries prevalence in studied fossil hominins is similar to those in pre-agricultural human groups, in which 1–5% of teeth are typically affected.
Collapse
Affiliation(s)
- Ian Towle
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Joel D. Irish
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, United Kingdom
- Evolutionary Studies Institute and Centre for Excellence in PaleoSciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Christianne Fernée
- Department of Anthropology and Archaeology, University of Bristol, Bristol, United Kingdom
- Department of Archaeology, University of Southampton, Southampton, United Kingdom
| | - Carolina Loch
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
39
|
Moorhouse AJ, Moreno-Lopez R, Gow NAR, Hijazi K. Clonal evolution of Candida albicans, Candida glabrata and Candida dubliniensis at oral niche level in health and disease. J Oral Microbiol 2021; 13:1894047. [PMID: 33796227 PMCID: PMC7971237 DOI: 10.1080/20002297.2021.1894047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background:Candida species have long been recognised as aetiological agents of opportunistic infections of the oral mucosa, and more recently, as players of polymicrobial interactions driving caries, periodontitis and oral carcinogenesis. Methods: We studied the clonal structure of Candida spp. at oral niche resolution in patients (n = 20) with a range of oral health profiles over 22 months. Colonies from oral micro-environments were examined with multilocus sequencing typing. Results:Candida spp. identified were C. albicans, C. glabrata and C. dubliniensis. Increased propensity for micro-variations giving rise to multiple diploid strain types (DST), as a result of loss of heterozygosity, was observed among C. albicans clade 1 isolates compared to other clades. Micro-variations among isolates were also observed in C. dubliniensis contra to expectations of stable population structures for this species. Multiple sequence types were retrieved from patients without clinical evidence of oral candidosis, while single sequence types were isolated from oral candidosis patients. Conclusion: This is the first study to describe the clonal population structure, persistence and stability of Candida spp. at oral niche level. Future research investigating links between Candida spp. clonality and oral disease should recognise the propensity to micro-variations amongst oral niches in C. albicans and C. dubliniensis identified here.
Collapse
Affiliation(s)
- Alexander J Moorhouse
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Rosa Moreno-Lopez
- Institute of Dentistry, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Neil A R Gow
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,Medical Research Council Centre for Medical Mycology at The University of Exeter, University of Exeter, UK
| | - Karolin Hijazi
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,Institute of Dentistry, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
40
|
Ben-Dor M, Sirtoli R, Barkai R. The evolution of the human trophic level during the Pleistocene. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175 Suppl 72:27-56. [PMID: 33675083 DOI: 10.1002/ajpa.24247] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
The human trophic level (HTL) during the Pleistocene and its degree of variability serve, explicitly or tacitly, as the basis of many explanations for human evolution, behavior, and culture. Previous attempts to reconstruct the HTL have relied heavily on an analogy with recent hunter-gatherer groups' diets. In addition to technological differences, recent findings of substantial ecological differences between the Pleistocene and the Anthropocene cast doubt regarding that analogy's validity. Surprisingly little systematic evolution-guided evidence served to reconstruct HTL. Here, we reconstruct the HTL during the Pleistocene by reviewing evidence for the impact of the HTL on the biological, ecological, and behavioral systems derived from various existing studies. We adapt a paleobiological and paleoecological approach, including evidence from human physiology and genetics, archaeology, paleontology, and zoology, and identified 25 sources of evidence in total. The evidence shows that the trophic level of the Homo lineage that most probably led to modern humans evolved from a low base to a high, carnivorous position during the Pleistocene, beginning with Homo habilis and peaking in Homo erectus. A reversal of that trend appears in the Upper Paleolithic, strengthening in the Mesolithic/Epipaleolithic and Neolithic, and culminating with the advent of agriculture. We conclude that it is possible to reach a credible reconstruction of the HTL without relying on a simple analogy with recent hunter-gatherers' diets. The memory of an adaptation to a trophic level that is embedded in modern humans' biology in the form of genetics, metabolism, and morphology is a fruitful line of investigation of past HTLs, whose potential we have only started to explore.
Collapse
Affiliation(s)
- Miki Ben-Dor
- Department of Archaeology, Tel Aviv University, Tel Aviv, Israel
| | | | - Ran Barkai
- Department of Archaeology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
41
|
Lee K, Kaspar JR, Rojas-Carreño G, Walker AR, Burne RA. A single system detects and protects the beneficial oral bacterium Streptococcus sp. A12 from a spectrum of antimicrobial peptides. Mol Microbiol 2021; 116:211-230. [PMID: 33590560 DOI: 10.1111/mmi.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The commensal bacterium Streptococcus sp. A12 has multiple properties that may promote the stability of health-associated oral biofilms, including overt antagonism of the dental caries pathogen Streptococcus mutans. A LanFEG-type ABC transporter, PcfFEG, confers tolerance to the lantibiotic nisin and enhances the ability of A12 to compete against S. mutans. Here, we investigated the regulation of pcfFEG and adjacent genes for a two-component system, pcfRK, to better understand antimicrobial peptide resistance by A12. Induction of pcfFEG-pcfRK was the primary mechanism to respond rapidly to nisin. In addition to nisin, PcfFEG conferred tolerance by A12 to a spectrum of lantibiotic and non-lantibiotic antimicrobial peptides produced by a diverse collection of S. mutans isolates. Loss of PcfFEG resulted in the altered spatio-temporal arrangement of A12 and S. mutans in a dual-species biofilm model. Deletion of PcfFEG or PcfK resulted in constitutive activation of pcfFEG and expression of pcfFEG was inhibited by small peptides in the pcfK mutant. Transcriptional profiling of pcfR or pcfK mutants combined with functional genomics revealed peculiarities in PcfK function and a novel panel of genes responsive to nisin. Collectively, the results provide fundamental insights that strengthen the foundation for the design of microbial-based therapeutics to control oral infectious diseases.
Collapse
Affiliation(s)
- Kyulim Lee
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Justin R Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| | - Gisela Rojas-Carreño
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Alejandro R Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
42
|
Davidovich NV, Galieva AS, Davydova NG, Malygina OG, Kukalevskaya NN, Simonova GV, Bazhukova TA. Spectrum and resistance determinants of oral streptococci clinical isolates. Klin Lab Diagn 2021; 65:632-637. [PMID: 33245653 DOI: 10.18821/0869-2084-2020-65-10-632-637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The profiles of oral streptococci sensitivity to antibacterial drugs may reflect information about the presence of macroorganism resistance determinants. The aim of the work was to isolate the spectrum of oral streptococci from the microbiota of the oral cavity of patients and to determine their sensitivity to a wide range of antibiotics. A total of 342 microbial streptococcal isolates were isolated from saliva samples and a periodontal pocket and tested for antibiotic sensitivity. Species identification of streptococci was carried out using biochemical API test systems. Evaluation of antibiotic resistance was performed using E-tests. Real-time PCR was used to identify the presence of tetracycline and macrolide resistance genes. The study identified six types of oral streptococci: S. oralis, S. salivarius, S. mitis, S. sanguinis, S. anginosus and S. mutans. All streptococci were sensitive to linezolid and meropenem. The proportion of penicillin-resistant streptococci in the subgroup S. oralis / mitis / mutans was 47,8% versus 23,5% in the subgroup S. salivarius / sanguinis / anginosus (p = 0.020). Significant levels of resistance were revealed to macrolides (erythromycin) - 47,9%, tetracyclines (tetracycline) - 44,4% and quinolones (ofloxacin) - 41%. Multiple drug resistance (MDR) was detected in 31,9% of oral streptococcal isolates, a combination of erythromycin, tetracycline and ofloxacin resistance was prevalent in 79 isolates (23,1%). The most common genotypes of macrolides and tetracycline resistant oral streptococci (in 127 streptococcal isolates with combined resistance) were ermB-mefE + and tetM + tetQ-, respectively. Thus, S. oralis / mitis / mutans group streptococci predominated in the structure of antibiotic-resistant oral streptococci, including MDR. So, being in one of the most densely populated biotopes of a macroorganism, oral streptococci can mediate the transfer of resistance determinants to more pathogenic and clinically significant microorganisms, which requires careful monitoring of their level of susceptibility to antimicrobial agents.
Collapse
Affiliation(s)
| | - A S Galieva
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - N G Davydova
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - O G Malygina
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - N N Kukalevskaya
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - G V Simonova
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| | - T A Bazhukova
- FSBEI HE Northern State Medical University (Arkhangelsk) of the Ministry of Health of the Russian Federation
| |
Collapse
|
43
|
Kaspar JR, Lee K, Richard B, Walker AR, Burne RA. Direct interactions with commensal streptococci modify intercellular communication behaviors of Streptococcus mutans. THE ISME JOURNAL 2021; 15:473-488. [PMID: 32999420 PMCID: PMC8027600 DOI: 10.1038/s41396-020-00789-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
The formation of dental caries is a complex process that ultimately leads to damage of the tooth enamel from acids produced by microbes in attached biofilms. The bacterial interactions occurring within these biofilms between cariogenic bacteria, such as the mutans streptococci, and health-associated commensal streptococci, are thought to be critical determinants of health and disease. To better understand these interactions, a Streptococcus mutans reporter strain that actively monitors cell-cell communication via peptide signaling was cocultured with different commensal streptococci. Signaling by S. mutans, normally highly active in monoculture, was completely inhibited by several species of commensals, but only when the bacteria were in direct contact with S. mutans. We identified a novel gene expression pattern that occurred in S. mutans when cultured directly with these commensals. Finally, mutant derivatives of commensals lacking previously shown antagonistic gene products displayed wild-type levels of signal inhibition in cocultures. Collectively, these results reveal a novel pathway(s) in multiple health-associated commensal streptococci that blocks peptide signaling and induces a common contact-dependent pattern of differential gene expression in S. mutans. Understanding the molecular basis for this inhibition will assist in the rational design of new risk assessments, diagnostics, and treatments for the most pervasive oral infectious diseases.
Collapse
Affiliation(s)
- Justin R Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA.
| | - Kyulim Lee
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Brook Richard
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Alejandro R Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
44
|
Schnurr E, Paqué PN, Attin T, Nanni P, Grossmann J, Holtfreter S, Bröker BM, Kohler C, Diep BA, Ribeiro ADA, Thurnheer T. Staphylococcus aureus Interferes with Streptococci Spatial Distribution and with Protein Expression of Species within a Polymicrobial Oral Biofilm. Antibiotics (Basel) 2021; 10:116. [PMID: 33530340 PMCID: PMC7911025 DOI: 10.3390/antibiotics10020116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
We asked whether transient Staphylococcus aureus in the oral environment synergistically interacts with orally associated bacterial species such as Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus mutans, and Veillonella dispar (six-species control biofilm 6S). For this purpose, four modified biofilms with seven species that contain either the wild type strain of the S. aureus genotype (USA300-MRSA WT), its isogenic mutant with MSCRAMM deficiency (USA300-MRSA ΔMSCRAMM), a methicillin-sensitive S. aureus (ST72-MSSA-) or a methicillin-resistant S. aureus (USA800-MRSA) grown on hydroxyapatite disks were examined. Culture analyses, confocal-laser-scanning microscopy and proteome analyses were performed. S. aureus strains affected the amount of supragingival biofilm-associated species differently. The deletion of MSCRAMM genes disrupted the growth of S. aureus and the distribution of S. mutans and S. oralis within the biofilms. In addition, S. aureus caused shifts in the number of detectable proteins of other species in the 6S biofilm. S. aureus (USA300-MRSA WT), aggregated together with early colonizers such as Actinomyces and streptococci, influenced the number of secondary colonizers such as Fusobacterium nucleatum and was involved in structuring the biofilm architecture that triggered the change from a homeostatic biofilm to a dysbiotic biofilm to the development of oral diseases.
Collapse
Affiliation(s)
- Etyene Schnurr
- Instituto de Saúde de Nova Friburgo, Federal Fluminense University, 28625-650 Nova Friburgo, Brazil
| | - Pune N. Paqué
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (T.T.)
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (T.T.)
| | - Paolo Nanni
- Functional Genomics Center, ETH Zürich and University of Zurich, 8057 Zurich, Switzerland; (P.N.); (J.G.)
| | - Jonas Grossmann
- Functional Genomics Center, ETH Zürich and University of Zurich, 8057 Zurich, Switzerland; (P.N.); (J.G.)
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Silva Holtfreter
- Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.H.); (B.M.B.)
| | - Barbara M. Bröker
- Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.H.); (B.M.B.)
| | - Christian Kohler
- Friedrich-Loeffler Institute for Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Binh An Diep
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA;
| | | | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (T.T.)
| |
Collapse
|
45
|
Utter DR, Borisy GG, Eren AM, Cavanaugh CM, Mark Welch JL. Metapangenomics of the oral microbiome provides insights into habitat adaptation and cultivar diversity. Genome Biol 2020; 21:293. [PMID: 33323129 PMCID: PMC7739467 DOI: 10.1186/s13059-020-02200-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The increasing availability of microbial genomes and environmental shotgun metagenomes provides unprecedented access to the genomic differences within related bacteria. The human oral microbiome with its diverse habitats and abundant, relatively well-characterized microbial inhabitants presents an opportunity to investigate bacterial population structures at an ecosystem scale. RESULTS Here, we employ a metapangenomic approach that combines public genomes with Human Microbiome Project (HMP) metagenomes to study the diversity of microbial residents of three oral habitats: tongue dorsum, buccal mucosa, and supragingival plaque. For two exemplar taxa, Haemophilus parainfluenzae and the genus Rothia, metapangenomes reveal distinct genomic groups based on shared genome content. H. parainfluenzae genomes separate into three distinct subgroups with differential abundance between oral habitats. Functional enrichment analyses identify an operon encoding oxaloacetate decarboxylase as diagnostic for the tongue-abundant subgroup. For the genus Rothia, grouping by shared genome content recapitulates species-level taxonomy and habitat preferences. However, while most R. mucilaginosa are restricted to the tongue as expected, two genomes represent a cryptic population of R. mucilaginosa in many buccal mucosa samples. For both H. parainfluenzae and the genus Rothia, we identify not only limitations in the ability of cultivated organisms to represent populations in their native environment, but also specifically which cultivar gene sequences are absent or ubiquitous. CONCLUSIONS Our findings provide insights into population structure and biogeography in the mouth and form specific hypotheses about habitat adaptation. These results illustrate the power of combining metagenomes and pangenomes to investigate the ecology and evolution of bacteria across analytical scales.
Collapse
Affiliation(s)
- Daniel R Utter
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | | | - A Murat Eren
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Colleen M Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Jessica L Mark Welch
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|
46
|
Weyrich LS. The evolutionary history of the human oral microbiota and its implications for modern health. Periodontol 2000 2020; 85:90-100. [PMID: 33226710 DOI: 10.1111/prd.12353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous biological and cultural factors influence the microbial communities (microbiota) that inhabit the human mouth, including diet, environment, hygiene, physiology, health status, genetics, and lifestyle. As oral microbiota can underpin oral and systemic diseases, tracing the evolutionary history of oral microbiota and the factors that shape its origins will unlock information to mitigate disease today. Despite this, the origins of many oral microbes remain unknown, and the key factors in the past that shaped our oral microbiota are only now emerging. High throughput DNA sequencing of oral microbiota using ancient DNA and comparative anthropological methodologies has been employed to investigate oral microbiota origins, revealing a complex, rich history. Here, I review the current literature on the factors that shaped and guided oral microbiota evolution, both in Europe and globally. In Europe, oral microbiota evolution was shaped by interactions with Neandertals, the adaptation of farming, widespread integration of industrialization, and postindustrial lifestyles that emerged after World War II. Globally, evidence for a multitude of different oral microbiota histories is emerging, likely supporting dissimilarities in modern oral health across discrete human populations. I highlight how these evolutionary changes are linked to the development of modern oral diseases and discuss the remaining factors that need to be addressed to improve this embryonic field of research. I argue that understanding the evolutionary history of our oral microbiota is necessary to identify new treatment and prevention options to improve oral and systemic health in the future.
Collapse
Affiliation(s)
- Laura S Weyrich
- Department of Anthropology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
47
|
Achtman M, Zhou Z. Metagenomics of the modern and historical human oral microbiome with phylogenetic studies on Streptococcus mutans and Streptococcus sobrinus. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190573. [PMID: 33012228 PMCID: PMC7702799 DOI: 10.1098/rstb.2019.0573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
We have recently developed bioinformatic tools to accurately assign metagenomic sequence reads to microbial taxa: SPARSE for probabilistic, taxonomic classification of sequence reads; EToKi for assembling and polishing genomes from short-read sequences; and GrapeTree, a graphic visualizer of genetic distances between large numbers of genomes. Together, these methods support comparative analyses of genomes from ancient skeletons and modern humans. Here, we illustrate these capabilities with 784 samples from historical dental calculus, modern saliva and modern dental plaque. The analyses revealed 1591 microbial species within the oral microbiome. We anticipated that the oral complexes of Socransky et al., which were defined in 1998, would predominate among taxa whose frequencies differed by source. However, although some species discriminated between sources, we could not confirm the existence of the complexes. The results also illustrate further functionality of our pipelines with two species that are associated with dental caries, Streptococcus mutans and Streptococcus sobrinus. They were rare in historical dental calculus but common in modern plaque, and even more common in saliva. Reconstructed draft genomes of these two species from metagenomic samples in which they were abundant were combined with modern public genomes to provide a detailed overview of their core genomic diversity. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.
Collapse
Affiliation(s)
- Mark Achtman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
48
|
Thamadilok S, Choi KS, Ruhl L, Schulte F, Kazim AL, Hardt M, Gokcumen O, Ruhl S. Human and Nonhuman Primate Lineage-Specific Footprints in the Salivary Proteome. Mol Biol Evol 2020; 37:395-405. [PMID: 31614365 PMCID: PMC6993864 DOI: 10.1093/molbev/msz223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proteins in saliva are needed for preprocessing food in the mouth, maintenance of tooth mineralization, and protection from microbial pathogens. Novel insights into human lineage-specific functions of salivary proteins and clues to their involvement in human disease can be gained through evolutionary studies, as recently shown for salivary amylase AMY1 and salivary agglutinin DMBT1/gp340. However, the entirety of proteins in saliva, the salivary proteome, has not yet been investigated from an evolutionary perspective. Here, we compared the proteomes of human saliva and the saliva of our closest extant evolutionary relatives, chimpanzees and gorillas, using macaques as an outgroup, with the aim to uncover features in saliva protein composition that are unique to each species. We found that humans produce a waterier saliva, containing less than half total protein than great apes and Old World monkeys. For all major salivary proteins in humans, we could identify counterparts in chimpanzee and gorilla saliva. However, we discovered unique protein profiles in saliva of humans that were distinct from those of nonhuman primates. These findings open up the possibility that dietary differences and pathogenic pressures may have shaped a distinct salivary proteome in the human lineage.
Collapse
Affiliation(s)
- Supaporn Thamadilok
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| | - Kyoung-Soo Choi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Lorenz Ruhl
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Fabian Schulte
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA
| | - A Latif Kazim
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, NY
| | - Markus Hardt
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA
| | - Omer Gokcumen
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, Buffalo, NY
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| |
Collapse
|
49
|
Zeng L, Burne RA. Molecular mechanisms controlling fructose-specific memory and catabolite repression in lactose metabolism by Streptococcus mutans. Mol Microbiol 2020; 115:70-83. [PMID: 32881130 DOI: 10.1111/mmi.14597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/26/2023]
Abstract
Lactose is an abundant dietary carbohydrate metabolized by the dental pathogen Streptococcus mutans. Lactose metabolism presents both classic diauxic behaviors and long-term memory, where the bacteria can pause for >11 h before initiating growth on lactose. Here, we explored mechanisms contributing to unusual aspects of regulation of the lac operon. The fructose-phosphate metabolites, F-1-P and F-6-P, could modulate the DNA-binding activities of the lactose repressor. Recombinant LacR proteins bound upstream of lacA and Gal-6-P induced the formation of different LacR-DNA complexes. Deletion of lacR resulted in strain-specific growth phenotypes on lactose, but also on a number of mono- and di-saccharides that involve the glucose-PTS or glucokinase in their catabolism. The phenotypes were consistent with the novel findings that loss of LacR altered glucose-PTS activity and expression of the gene for glucokinase. CcpA was also shown to affect lactose metabolism in vivo and to bind to the lacA promoter region in vitro. Collectively, our study reveals complex molecular circuits controlling lactose metabolism in S. mutans, where LacR and CcpA integrate cellular and environmental cues to regulate metabolism of a variety of carbohydrates that are critical to persistence and pathogenicity of S. mutans.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
50
|
Abstract
Streptococcus mutans is one of the primary pathogens responsible for the development of dental caries. Recent whole-genome sequencing (WGS)-based core genome multilocus sequence typing (cgMLST) approaches have been employed in epidemiological studies of specific human pathogens. However, this approach has not been reported in studies of S. mutans Here, we therefore developed a cgMLST scheme for S. mutans We surveyed 199 available S. mutans genomes as a means of identifying cgMLST targets, developing a scheme that incorporated 594 targets from the S. mutans UA159 reference genome. Sixty-eight sequence types (STs) were identified in this cgMLST scheme (cgSTs) in 80 S. mutans isolates from 40 children that were sequenced in this study, compared to 35 STs identified by multilocus sequence typing (MLST). Fifty-six cgSTs (82.35%) were associated with a single isolate based on our cgMLST scheme, which is significantly higher than in the MLST scheme (11.43%). In addition, 58.06% of all MLST profiles with ≥2 isolates were further differentiated by our cgMLST scheme. Topological analyses of the maximum likelihood phylogenetic trees revealed that our cgMLST scheme was more reliable than the MLST scheme. A minimum spanning tree of 145 S. mutans isolates from 10 countries developed based upon the cgMLST scheme highlighted the diverse population structure of S. mutans This cgMLST scheme thus offers a new molecular typing method suitable for evaluating the epidemiological distribution of this pathogen and has the potential to serve as a benchmark for future global studies of the epidemiological nature of dental caries.IMPORTANCE Streptococcus mutans is regarded as a major pathogen responsible for the onset of dental caries. S. mutans can transmit among people, especially within families. In this study, we established a new epidemiological approach to S. mutans classification. This approach can effectively differentiate among closely related isolates and offers superior reliability relative to that of the traditional MLST molecular typing method. As such, it has the potential to better support effective public health strategies centered around this bacterium that are aimed at preventing and treating dental caries.
Collapse
|