1
|
Chen J, Bartoš J, Boudichevskaia A, Voigt A, Rabanus-Wallace MT, Dreissig S, Tulpová Z, Šimková H, Macas J, Kim G, Buhl J, Bürstenbinder K, Blattner FR, Fuchs J, Schmutzer T, Himmelbach A, Schubert V, Houben A. The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly. Nat Commun 2024; 15:9686. [PMID: 39516474 PMCID: PMC11549084 DOI: 10.1038/s41467-024-53799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The genomes of many plants, animals, and fungi frequently comprise dispensable B chromosomes that rely upon various chromosomal drive mechanisms to counteract the tendency of non-essential genetic elements to be purged over time. The B chromosome of rye - a model system for nearly a century - undergoes targeted nondisjunction during first pollen mitosis, favouring segregation into the generative nucleus, thus increasing their numbers over generations. However, the genetic mechanisms underlying this process are poorly understood. Here, using a newly-assembled, ~430 Mb-long rye B chromosome pseudomolecule, we identify five candidate genes whose role as trans-acting moderators of the chromosomal drive is supported by karyotyping, chromosome drive analysis and comparative RNA-seq. Among them, we identify DCR28, coding a microtubule-associated protein related to cell division, and detect this gene also in the B chromosome of Aegilops speltoides. The DCR28 gene family is neo-functionalised and serially-duplicated with 15 B chromosome-located copies that are uniquely highly expressed in the first pollen mitosis of rye.
Collapse
Affiliation(s)
- Jianyong Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Anastassia Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Anna Voigt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Mark Timothy Rabanus-Wallace
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- School of Agriculture, Forestry, and Ecosystem Science (SAFES), The University of Melbourne, Parkville, VIC, Australia
| | - Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Gihwan Kim
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jonas Buhl
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Institute of Biology, Department of Plant Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Institute of Biology, Department of Plant Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| |
Collapse
|
2
|
Hughes JJ, Lagunas-Robles G, Campbell P. The role of conflict in the formation and maintenance of variant sex chromosome systems in mammals. J Hered 2024; 115:601-624. [PMID: 38833450 DOI: 10.1093/jhered/esae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 06/01/2024] [Indexed: 06/06/2024] Open
Abstract
The XX/XY sex chromosome system is deeply conserved in therian mammals, as is the role of Sry in testis determination, giving the impression of stasis relative to other taxa. However, the long tradition of cytogenetic studies in mammals documents sex chromosome karyotypes that break this norm in myriad ways, ranging from fusions between sex chromosomes and autosomes to Y chromosome loss. Evolutionary conflict, in the form of sexual antagonism or meiotic drive, is the primary predicted driver of sex chromosome transformation and turnover. Yet conflict-based hypotheses are less considered in mammals, perhaps because of the perceived stability of the sex chromosome system. To address this gap, we catalog and characterize all described sex chromosome variants in mammals, test for family-specific rates of accumulation, and consider the role of conflict between the sexes or within the genome in the evolution of these systems. We identify 152 species with sex chromosomes that differ from the ancestral state and find evidence for different rates of ancestral to derived transitions among families. Sex chromosome-autosome fusions account for 79% of all variants whereas documented sex chromosome fissions are limited to three species. We propose that meiotic drive and drive suppression provide viable explanations for the evolution of many of these variant systems, particularly those involving autosomal fusions. We highlight taxa particularly worthy of further study and provide experimental predictions for testing the role of conflict and its alternatives in generating observed sex chromosome diversity.
Collapse
Affiliation(s)
- Jonathan J Hughes
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - German Lagunas-Robles
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - Polly Campbell
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
3
|
Clark FE, Greenberg NL, Silva DMZA, Trimm E, Skinner M, Walton RZ, Rosin LF, Lampson MA, Akera T. An egg-sabotaging mechanism drives non-Mendelian transmission in mice. Curr Biol 2024; 34:3845-3854.e4. [PMID: 39067449 PMCID: PMC11387149 DOI: 10.1016/j.cub.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Selfish genetic elements drive in meiosis to distort their transmission ratio and increase their representation in gametes, violating Mendel's law of segregation. The two established paradigms for meiotic drive, gamete killing and biased segregation, are fundamentally different. In gamete killing, typically observed with male meiosis, selfish elements sabotage gametes that do not contain them. By contrast, killing is predetermined in female meiosis, and selfish elements bias their segregation to the single surviving gamete (i.e., the egg in animal meiosis). Here, we show that a selfish element on mouse chromosome 2, Responder to drive 2 (R2d2), drives using a hybrid mechanism in female meiosis, incorporating elements of both killing and biased segregation. We propose that if R2d2 is destined for the polar body, it manipulates segregation to sabotage the egg by causing aneuploidy, which is subsequently lethal in the embryo, ensuring that surviving progeny preferentially contain R2d2. In heterozygous females, R2d2 orients randomly on the metaphase spindle but lags during anaphase and preferentially remains in the egg, regardless of its initial orientation. Thus, the egg genotype is either euploid with R2d2 or aneuploid with both homologs of chromosome 2, with only the former generating viable embryos. Consistent with this model, R2d2 heterozygous females produce eggs with increased aneuploidy for chromosome 2, increased embryonic lethality, and increased transmission of R2d2. In contrast to typical gamete killing of sisters produced as daughter cells in a single meiosis, R2d2 prevents production of any viable gametes from meiotic divisions in which it should have been excluded from the egg.
Collapse
Affiliation(s)
- Frances E Clark
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Naomi L Greenberg
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Duilio M Z A Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Morgan Skinner
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - R Zaak Walton
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Leah F Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
4
|
Hillis DA, Yadgary L, Weinstock GM, de Villena FPM, Pomp D, Garland T. Large changes in detected selection signatures after a selection limit in mice bred for voluntary wheel-running behavior. PLoS One 2024; 19:e0306397. [PMID: 39088483 PMCID: PMC11293672 DOI: 10.1371/journal.pone.0306397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/14/2024] [Indexed: 08/03/2024] Open
Abstract
In various organisms, sequencing of selectively bred lines at apparent selection limits has demonstrated that genetic variation can remain at many loci, implying that evolution at the genetic level may continue even if the population mean phenotype remains constant. We compared selection signatures at generations 22 and 61 of the "High Runner" mouse experiment, which includes 4 replicate lines bred for voluntary wheel-running behavior (HR) and 4 non-selected control (C) lines. Previously, we reported multiple regions of differentiation between the HR and C lines, based on whole-genome sequence data for 10 mice from each line at generation 61, which was >31 generations after selection limits had been reached in all HR lines. Here, we analyzed pooled sequencing data from ~20 mice for each of the 8 lines at generation 22, around when HR lines were reaching limits. Differentiation analyses of allele frequencies at ~4.4 million SNP loci used the regularized T-test and detected 258 differentiated regions with FDR = 0.01. Comparable analyses involving pooling generation 61 individual mouse genotypes into allele frequencies by line produced only 11 such regions, with almost no overlap among the largest and most statistically significant peaks between the two generations. These results implicate a sort of "genetic churn" that continues at loci relevant for running. Simulations indicate that loss of statistical power due to random genetic drift and sampling error are insufficient to explain the differences in selection signatures. The 13 differentiated regions at generation 22 with strict culling measures include 79 genes related to a wide variety of functions. Gene ontology identified pathways related to olfaction and vomeronasal pathways as being overrepresented, consistent with generation 61 analyses, despite those specific regions differing between generations. Genes Dspp and Rbm24 are also identified as potentially explaining known bone and skeletal muscle differences, respectively, between the linetypes.
Collapse
Affiliation(s)
- David A. Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, California, United States of America
| | - Liran Yadgary
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - George M. Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
- Department of Genetics and Genome Science, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | | | - Daniel Pomp
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, United States of America
| |
Collapse
|
5
|
Clark FE, Greenberg NL, Silva DM, Trimm E, Skinner M, Walton RZ, Rosin LF, Lampson MA, Akera T. An egg sabotaging mechanism drives non-Mendelian transmission in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581453. [PMID: 38903120 PMCID: PMC11188085 DOI: 10.1101/2024.02.22.581453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
During meiosis, homologous chromosomes segregate so that alleles are transmitted equally to haploid gametes, following Mendel's Law of Segregation. However, some selfish genetic elements drive in meiosis to distort the transmission ratio and increase their representation in gametes. The established paradigms for drive are fundamentally different for female vs male meiosis. In male meiosis, selfish elements typically kill gametes that do not contain them. In female meiosis, killing is predetermined, and selfish elements bias their segregation to the single surviving gamete (i.e., the egg in animal meiosis). Here we show that a selfish element on mouse chromosome 2, R2d2, drives using a hybrid mechanism in female meiosis, incorporating elements of both male and female drivers. If R2d2 is destined for the polar body, it manipulates segregation to sabotage the egg by causing aneuploidy that is subsequently lethal in the embryo, so that surviving progeny preferentially contain R2d2. In heterozygous females, R2d2 orients randomly on the metaphase spindle but lags during anaphase and preferentially remains in the egg, regardless of its initial orientation. Thus, the egg genotype is either euploid with R2d2 or aneuploid with both homologs of chromosome 2, with only the former generating viable embryos. Consistent with this model, R2d2 heterozygous females produce eggs with increased aneuploidy for chromosome 2, increased embryonic lethality, and increased transmission of R2d2. In contrast to a male meiotic driver, which kills its sister gametes produced as daughter cells in the same meiosis, R2d2 eliminates "cousins" produced from meioses in which it should have been excluded from the egg.
Collapse
Affiliation(s)
- Frances E. Clark
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Naomi L. Greenberg
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Duilio M.Z.A. Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Morgan Skinner
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - R Zaak Walton
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Leah F. Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20894 USA
| | - Michael A. Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| |
Collapse
|
6
|
Cornes BK, Paisie C, Swanzey E, Fields PD, Schile A, Brackett K, Reinholdt LG, Srivastava A. Protein coding variation in the J:ARC and J:DO outbred laboratory mouse stocks provides a molecular basis for distinct research applications. G3 (BETHESDA, MD.) 2023; 13:jkad015. [PMID: 36649207 PMCID: PMC10085793 DOI: 10.1093/g3journal/jkad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/02/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Outbred laboratory mice (Mus musculus) are readily available and have high fecundity, making them a popular choice in biomedical research, especially toxicological and pharmacological applications. Direct high throughput genome sequencing (HTS) of these widely used research animals is an important genetic quality control measure that enhances research reproducibility. HTS data have been used to confirm the common origin of outbred stocks and to molecularly define distinct outbred populations. But these data have also revealed unexpected population structure and homozygosity in some populations; genetic features that emerge when outbred stocks are not properly maintained. We used exome sequencing to discover and interrogate protein-coding variation in a newly established population of Swiss-derived outbred stock (J:ARC) that is closely related to other, commonly used CD-1 outbred populations. We used these data to describe the genetic architecture of the J:ARC population including heterozygosity, minor allele frequency, LD decay, and we defined novel, protein-coding sequence variation. These data reveal the expected genetic architecture for a properly maintained outbred stock and provide a basis for the on-going genetic quality control. We also compared these data to protein-coding variation found in a multiparent outbred stock, the Diversity Outbred (J:DO). We found that the more recently derived, multiparent outbred stock has significantly higher interindividual variability, greater overall genetic variation, higher heterozygosity, and fewer novel variants than the Swiss-derived J:ARC stock. However, among the novel variants found in the J:DO stock, significantly more are predicted to be protein-damaging. The fact that individuals from this population can tolerate a higher load of potentially damaging variants highlights the buffering effects of allelic diversity and the differing selective pressures in these stocks. While both outbred stocks offer significant individual heterozygosity, our data provide a molecular basis for their intended applications, where the J:DO are best suited for studies requiring maximum, population-level genetic diversity and power for mapping, while the J:ARC are best suited as a general-purpose outbred stock with robust fecundity, relatively low allelic diversity, and less potential for extreme phenotypic variability.
Collapse
Affiliation(s)
- Belinda K Cornes
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Carolyn Paisie
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Emily Swanzey
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Peter D Fields
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Andrew Schile
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | - Kelly Brackett
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| | | | - Anuj Srivastava
- Mammalian Genetics, The Jackson Laboratory, 600 Main Street, USA
| |
Collapse
|
7
|
Bypassing Mendel's First Law: Transmission Ratio Distortion in Mammals. Int J Mol Sci 2023; 24:ijms24021600. [PMID: 36675116 PMCID: PMC9863905 DOI: 10.3390/ijms24021600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Mendel's law of segregation states that the two alleles at a diploid locus should be transmitted equally to the progeny. A genetic segregation distortion, also referred to as transmission ratio distortion (TRD), is a statistically significant deviation from this rule. TRD has been observed in several mammal species and may be due to different biological mechanisms occurring at diverse time points ranging from gamete formation to lethality at post-natal stages. In this review, we describe examples of TRD and their possible mechanisms in mammals based on current knowledge. We first focus on the differences between TRD in male and female gametogenesis in the house mouse, in which some of the most well studied TRD systems have been characterized. We then describe known TRD in other mammals, with a special focus on the farmed species and in the peculiar common shrew species. Finally, we discuss TRD in human diseases. Thus far, to our knowledge, this is the first time that such description is proposed. This review will help better comprehend the processes involved in TRD. A better understanding of these molecular mechanisms will imply a better comprehension of their impact on fertility and on genome evolution. In turn, this should allow for better genetic counseling and lead to better care for human families.
Collapse
|
8
|
Hillis DA, Garland T. Multiple solutions at the genomic level in response to selective breeding for high locomotor activity. Genetics 2023; 223:iyac165. [PMID: 36305689 PMCID: PMC9836024 DOI: 10.1093/genetics/iyac165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 01/19/2023] Open
Abstract
Replicate lines under uniform selection often evolve in different ways. Previously, analyses using whole-genome sequence data for individual mice (Mus musculus) from 4 replicate High Runner lines and 4 nonselected control lines demonstrated genomic regions that have responded consistently to selection for voluntary wheel-running behavior. Here, we ask whether the High Runner lines have evolved differently from each other, even though they reached selection limits at similar levels. We focus on 1 High Runner line (HR3) that became fixed for a mutation at a gene of major effect (Myh4Minimsc) that, in the homozygous condition, causes a 50% reduction in hindlimb muscle mass and many pleiotropic effects. We excluded HR3 from SNP analyses and identified 19 regions not consistently identified in analyses with all 4 lines. Repeating analyses while dropping each of the other High Runner lines identified 12, 8, and 6 such regions. (Of these 45 regions, 37 were unique.) These results suggest that each High Runner line indeed responded to selection somewhat uniquely, but also that HR3 is the most distinct. We then applied 2 additional analytical approaches when dropping HR3 only (based on haplotypes and nonstatistical tests involving fixation patterns). All 3 approaches identified 7 new regions (as compared with analyses using all 4 High Runner lines) that include genes associated with activity levels, dopamine signaling, hippocampus morphology, heart size, and body size, all of which differ between High Runner and control lines. Our results illustrate how multiple solutions and "private" alleles can obscure general signatures of selection involving "public" alleles.
Collapse
Affiliation(s)
- David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
9
|
Kopania EEK, Watson EM, Rathje CC, Skinner BM, Ellis PJI, Larson EL, Good JM. The contribution of sex chromosome conflict to disrupted spermatogenesis in hybrid house mice. Genetics 2022; 222:iyac151. [PMID: 36194004 PMCID: PMC9713461 DOI: 10.1093/genetics/iyac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
Incompatibilities on the sex chromosomes are important in the evolution of hybrid male sterility, but the evolutionary forces underlying this phenomenon are unclear. House mice (Mus musculus) lineages have provided powerful models for understanding the genetic basis of hybrid male sterility. X chromosome-autosome interactions cause strong incompatibilities in M. musculus F1 hybrids, but variation in sterility phenotypes suggests a more complex genetic basis. In addition, XY chromosome conflict has resulted in rapid expansions of ampliconic genes with dosage-dependent expression that is essential to spermatogenesis. Here, we evaluated the contribution of XY lineage mismatch to male fertility and stage-specific gene expression in hybrid mice. We performed backcrosses between two house mouse subspecies to generate reciprocal Y-introgression strains and used these strains to test the effects of XY mismatch in hybrids. Our transcriptome analyses of sorted spermatid cells revealed widespread overexpression of the X chromosome in sterile F1 hybrids independent of Y chromosome subspecies origin. Thus, postmeiotic overexpression of the X chromosome in sterile F1 mouse hybrids is likely a downstream consequence of disrupted meiotic X-inactivation rather than XY gene copy number imbalance. Y chromosome introgression did result in subfertility phenotypes and disrupted expression of several autosomal genes in mice with an otherwise nonhybrid genomic background, suggesting that Y-linked incompatibilities contribute to reproductive barriers, but likely not as a direct consequence of XY conflict. Collectively, these findings suggest that rapid sex chromosome gene family evolution driven by genomic conflict has not resulted in strong male reproductive barriers between these subspecies of house mice.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Eleanor M Watson
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Claudia C Rathje
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | - Peter J I Ellis
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
10
|
Morgan AP, Hughes JJ, Didion JP, Jolley WJ, Campbell KJ, Threadgill DW, Bonhomme F, Searle JB, de Villena FPM. Population structure and inbreeding in wild house mice (Mus musculus) at different geographic scales. Heredity (Edinb) 2022; 129:183-194. [PMID: 35764696 PMCID: PMC9411160 DOI: 10.1038/s41437-022-00551-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022] Open
Abstract
House mice (Mus musculus) have spread globally as a result of their commensal relationship with humans. In the form of laboratory strains, both inbred and outbred, they are also among the most widely used model organisms in biomedical research. Although the general outlines of house mouse dispersal and population structure are well known, details have been obscured by either limited sample size or small numbers of markers. Here we examine ancestry, population structure, and inbreeding using SNP microarray genotypes in a cohort of 814 wild mice spanning five continents and all major subspecies of Mus, with a focus on M. m. domesticus. We find that the major axis of genetic variation in M. m. domesticus is a south-to-north gradient within Europe and the Mediterranean. The dominant ancestry component in North America, Australia, New Zealand, and various small offshore islands are of northern European origin. Next we show that inbreeding is surprisingly pervasive and highly variable, even between nearby populations. By inspecting the length distribution of homozygous segments in individual genomes, we find that inbreeding in commensal populations is mostly due to consanguinity. Our results offer new insight into the natural history of an important model organism for medicine and evolutionary biology.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Medicine, Duke University Hospital, Durham, NC, USA.
| | - Jonathan J Hughes
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - John P Didion
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Independent Scientist, San Diego, CA, USA
| | | | | | - David W Threadgill
- Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
| | - Francois Bonhomme
- Institut des Sciences de l'Évolution Montpellier, Université de Montpellier, Montpellier, France
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
11
|
Brud E. Adaptive meiotic drive in selfing populations with heterozygote advantage. Theor Popul Biol 2022; 146:61-70. [PMID: 35839925 DOI: 10.1016/j.tpb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
The egalitarian allotment of gametes to each allele at a locus (Mendel's law of segregation) is a near-universal phenomenon characterizing inheritance in sexual populations. As exceptions to Mendel's law are known to occur, one can investigate why non-Mendelian segregation is not more common using modifier theory. Earlier work assuming sex-independent modifier effects in a random mating population with heterozygote advantage concluded that equal segregation is stable over long-term evolution. Subsequent investigation, however, demonstrated that the stability of the Mendelian scheme disappears when sex-specific modifier effects are allowed. Here I derive invasion conditions favoring the repeal of Mendelian law in mixed and obligate selfing populations. Oppositely-directed segregation distortion in the production of male and female gametes is selected for in the presence of overdominant fitness. The conditions are less restrictive than under panmixia in that strong selection can occur even without differential viability of reciprocal heterozygotes (i.e. in the absence of parent-of-origin effects at the overdominant fitness locus). Generalized equilibria are derived for full selfing.
Collapse
Affiliation(s)
- Evgeny Brud
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11790, United States of America.
| |
Collapse
|
12
|
Searle JB, de Villena FPM. The evolutionary significance of meiotic drive. Heredity (Edinb) 2022; 129:44-47. [PMID: 35468941 DOI: 10.1038/s41437-022-00534-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.
| | | |
Collapse
|
13
|
Abstract
Female meiotic drive is the phenomenon where a selfish genetic element alters chromosome segregation during female meiosis to segregate to the egg and transmit to the next generation more frequently than Mendelian expectation. While several examples of female meiotic drive have been known for many decades, a molecular understanding of the underlying mechanisms has been elusive. Recent advances in this area in several model species prompts a comparative re-examination of these drive systems. In this review, we compare female meiotic drive of several animal and plant species, highlighting pertinent similarities.
Collapse
Affiliation(s)
- Frances E. Clark
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Arora UP, Charlebois C, Lawal RA, Dumont BL. Population and subspecies diversity at mouse centromere satellites. BMC Genomics 2021; 22:279. [PMID: 33865332 PMCID: PMC8052823 DOI: 10.1186/s12864-021-07591-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mammalian centromeres are satellite-rich chromatin domains that execute conserved roles in kinetochore assembly and chromosome segregation. Centromere satellites evolve rapidly between species, but little is known about population-level diversity across these loci. RESULTS We developed a k-mer based method to quantify centromere copy number and sequence variation from whole genome sequencing data. We applied this method to diverse inbred and wild house mouse (Mus musculus) genomes to profile diversity across the core centromere (minor) satellite and the pericentromeric (major) satellite repeat. We show that minor satellite copy number varies more than 10-fold among inbred mouse strains, whereas major satellite copy numbers span a 3-fold range. In contrast to widely held assumptions about the homogeneity of mouse centromere repeats, we uncover marked satellite sequence heterogeneity within single genomes, with diversity levels across the minor satellite exceeding those at the major satellite. Analyses in wild-caught mice implicate subspecies and population origin as significant determinants of variation in satellite copy number and satellite heterogeneity. Intriguingly, we also find that wild-caught mice harbor dramatically reduced minor satellite copy number and elevated satellite sequence heterogeneity compared to inbred strains, suggesting that inbreeding may reshape centromere architecture in pronounced ways. CONCLUSION Taken together, our results highlight the power of k-mer based approaches for probing variation across repetitive regions, provide an initial portrait of centromere variation across Mus musculus, and lay the groundwork for future functional studies on the consequences of natural genetic variation at these essential chromatin domains.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA.
| | | | | | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
15
|
Mechanisms of meiotic drive in symmetric and asymmetric meiosis. Cell Mol Life Sci 2021; 78:3205-3218. [PMID: 33449147 DOI: 10.1007/s00018-020-03735-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022]
Abstract
Meiotic drive, the non-Mendelian transmission of chromosomes to the next generation, functions in asymmetric or symmetric meiosis across unicellular and multicellular organisms. In asymmetric meiosis, meiotic drivers act to alter a chromosome's spatial position in a single egg. In symmetric meiosis, meiotic drivers cause phenotypic differences between gametes with and without the driver. Here we discuss existing models of meiotic drive, highlighting the underlying mechanisms and regulation governing systems for which the most is known. We focus on outstanding questions surrounding these examples and speculate on how new meiotic drive systems evolve and how to detect them.
Collapse
|
16
|
Sigmon JS, Blanchard MW, Baric RS, Bell TA, Brennan J, Brockmann GA, Burks AW, Calabrese JM, Caron KM, Cheney RE, Ciavatta D, Conlon F, Darr DB, Faber J, Franklin C, Gershon TR, Gralinski L, Gu B, Gaines CH, Hagan RS, Heimsath EG, Heise MT, Hock P, Ideraabdullah F, Jennette JC, Kafri T, Kashfeen A, Kulis M, Kumar V, Linnertz C, Livraghi-Butrico A, Lloyd KCK, Lutz C, Lynch RM, Magnuson T, Matsushima GK, McMullan R, Miller DR, Mohlke KL, Moy SS, Murphy CEY, Najarian M, O'Brien L, Palmer AA, Philpot BD, Randell SH, Reinholdt L, Ren Y, Rockwood S, Rogala AR, Saraswatula A, Sassetti CM, Schisler JC, Schoenrock SA, Shaw GD, Shorter JR, Smith CM, St Pierre CL, Tarantino LM, Threadgill DW, Valdar W, Vilen BJ, Wardwell K, Whitmire JK, Williams L, Zylka MJ, Ferris MT, McMillan L, Manuel de Villena FP. Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research. Genetics 2020; 216:905-930. [PMID: 33067325 PMCID: PMC7768238 DOI: 10.1534/genetics.120.303596] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well-annotated genome, wealth of genetic resources, and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost-effective, informative, and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole-genome sequencing. Here, we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array (MUGA), MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: (1) chromosomal sex determination, (2) discrimination between substrains from multiple commercial vendors, (3) diagnostic SNPs for popular laboratory strains, (4) detection of constructs used in genetically engineered mice, and (5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA, we genotyped 6899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays, both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived, and recombinant inbred lines. Here, we also report the detection of a substantial number of XO and XXY individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC, and an important new tool to increase the rigor and reproducibility of mouse research.
Collapse
Affiliation(s)
- John Sebastian Sigmon
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Matthew W Blanchard
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Mutant Mouse Resource and Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jennifer Brennan
- Mutant Mouse Resource and Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - A Wesley Burks
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Richard E Cheney
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dominic Ciavatta
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Frank Conlon
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - James Faber
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Craig Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211
| | - Timothy R Gershon
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lisa Gralinski
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Bin Gu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Christiann H Gaines
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ernest G Heimsath
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Mark T Heise
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Folami Ideraabdullah
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Nutrition, Gillings School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599
| | - J Charles Jennette
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Tal Kafri
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Anwica Kashfeen
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Mike Kulis
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | - Colton Linnertz
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute/UNC Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - K C Kent Lloyd
- Department of Surgery, University of California Davis, Davis, California 95616
- School of Medicine, University of California Davis, California 95616
- Mouse Biology Program, University of California Davis, California 95616
| | | | - Rachel M Lynch
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Mutant Mouse Resource and Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Glenn K Matsushima
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rachel McMullan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Darla R Miller
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sheryl S Moy
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27599
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Caroline E Y Murphy
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Maya Najarian
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lori O'Brien
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - Benjamin D Philpot
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
- Marsico Lung Institute/UNC Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - Yuyu Ren
- University of California San Diego, La Jolla, California 92093
| | | | - Allison R Rogala
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Avani Saraswatula
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Jonathan C Schisler
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sarah A Schoenrock
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - John R Shorter
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Clare M Smith
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | | | - Lisa M Tarantino
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David W Threadgill
- University of California San Diego, La Jolla, California 92093
- Department of Biochemistry and Biophysics, Texas A&M University, Texas 77843
| | - William Valdar
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Barbara J Vilen
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - Jason K Whitmire
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lucy Williams
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Mark J Zylka
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Leonard McMillan
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- Mutant Mouse Resource and Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
17
|
Knief U, Forstmeier W, Pei Y, Wolf J, Kempenaers B. A test for meiotic drive in hybrids between Australian and Timor zebra finches. Ecol Evol 2020; 10:13464-13475. [PMID: 33304552 PMCID: PMC7713956 DOI: 10.1002/ece3.6951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Meiotic drivers have been proposed as a potent evolutionary force underlying genetic and phenotypic variation, genome structure, and also speciation. Due to their strong selective advantage, they are expected to rapidly spread through a population despite potentially detrimental effects on organismal fitness. Once fixed, autosomal drivers are cryptic within populations and only become visible in between-population crosses lacking the driver or corresponding suppressor. However, the assumed ubiquity of meiotic drivers has rarely been assessed in crosses between populations or species. Here we test for meiotic drive in hybrid embryos and offspring of Timor and Australian zebra finches-subspecies that have evolved in isolation for about two million years-using 38,541 informative transmissions of 56 markers linked to either centromeres or distal chromosome ends. We did not find evidence for meiotic driver loci on specific chromosomes. However, we observed a weak overall transmission bias toward Timor alleles at centromeres in females (transmission probability of Australian alleles of 47%, nominal p = 6 × 10-5). While this is in line with the centromere drive theory, it goes against the expectation that the subspecies with the larger effective population size (i.e., the Australian zebra finch) should have evolved the more potent meiotic drivers. We thus caution against interpreting our finding as definite evidence for centromeric drive. Yet, weak centromeric meiotic drivers may be more common than generally anticipated and we encourage further studies that are designed to detect also small effect meiotic drivers.
Collapse
Affiliation(s)
- Ulrich Knief
- Department of Behavioural Ecology and Evolutionary GeneticsMax Planck Institute for OrnithologySeewiesenGermany
- Division of Evolutionary BiologyFaculty of BiologyLudwig Maximilian University of MunichPlanegg‐MartinsriedGermany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary GeneticsMax Planck Institute for OrnithologySeewiesenGermany
| | - Yifan Pei
- Department of Behavioural Ecology and Evolutionary GeneticsMax Planck Institute for OrnithologySeewiesenGermany
| | - Jochen Wolf
- Division of Evolutionary BiologyFaculty of BiologyLudwig Maximilian University of MunichPlanegg‐MartinsriedGermany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary GeneticsMax Planck Institute for OrnithologySeewiesenGermany
| |
Collapse
|
18
|
Hillis DA, Yadgary L, Weinstock GM, Pardo-Manuel de Villena F, Pomp D, Fowler AS, Xu S, Chan F, Garland T. Genetic Basis of Aerobically Supported Voluntary Exercise: Results from a Selection Experiment with House Mice. Genetics 2020; 216:781-804. [PMID: 32978270 PMCID: PMC7648575 DOI: 10.1534/genetics.120.303668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
The biological basis of exercise behavior is increasingly relevant for maintaining healthy lifestyles. Various quantitative genetic studies and selection experiments have conclusively demonstrated substantial heritability for exercise behavior in both humans and laboratory rodents. In the "High Runner" selection experiment, four replicate lines of Mus domesticus were bred for high voluntary wheel running (HR), along with four nonselected control (C) lines. After 61 generations, the genomes of 79 mice (9-10 from each line) were fully sequenced and single nucleotide polymorphisms (SNPs) were identified. We used nested ANOVA with MIVQUE estimation and other approaches to compare allele frequencies between the HR and C lines for both SNPs and haplotypes. Approximately 61 genomic regions, across all somatic chromosomes, showed evidence of differentiation; 12 of these regions were differentiated by all methods of analysis. Gene function was inferred largely using Panther gene ontology terms and KO phenotypes associated with genes of interest. Some of the differentiated genes are known to be associated with behavior/motivational systems and/or athletic ability, including Sorl1, Dach1, and Cdh10 Sorl1 is a sorting protein associated with cholinergic neuron morphology, vascular wound healing, and metabolism. Dach1 is associated with limb bud development and neural differentiation. Cdh10 is a calcium ion binding protein associated with phrenic neurons. Overall, these results indicate that selective breeding for high voluntary exercise has resulted in changes in allele frequencies for multiple genes associated with both motivation and ability for endurance exercise, providing candidate genes that may explain phenotypic changes observed in previous studies.
Collapse
Affiliation(s)
- David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, California 92521
| | - Liran Yadgary
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032
| | | | - Daniel Pomp
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Alexandra S Fowler
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521
| |
Collapse
|
19
|
Abstract
Cooperation has been essential to the evolution of biological complexity, but many societies struggle to overcome internal conflicts and divisions. Dictyostelium discoideum, or the social amoeba, has been a useful model system for exploring these conflicts and how they can be resolved. When starved, these cells communicate, gather into groups, and build themselves into a multicellular fruiting body. Some cells altruistically die to form the rigid stalk, while the remainder sit atop the stalk, become spores, and disperse. Evolutionary theory predicts that conflict will arise over which cells die to form the stalk and which cells become spores and survive. The power of the social amoeba lies in the ability to explore how cooperation and conflict work across multiple levels, ranging from proximate mechanisms (how does it work?) to ultimate evolutionary answers (why does it work?). Recent studies point to solutions to the problem of ensuring fairness, such as the ability to suppress selfishness and to recognize and avoid unrelated individuals. This work confirms a central role for kin selection, but also suggests new explanations for how social amoebae might enforce cooperation. New approaches based on genomics are also enabling researchers to decipher for the first time the evolutionary history of cooperation and conflict and to determine its role in shaping the biology of multicellular organisms.
Collapse
Affiliation(s)
- Elizabeth A Ostrowski
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand.
| |
Collapse
|
20
|
Abstract
Mice (Mus musculus) and rats (Rattus norvegicus) have long served as model systems for biomedical research. However, they are also excellent models for studying the evolution of populations, subspecies, and species. Within the past million years, they have spread in various waves across large parts of the globe, with the most recent spread in the wake of human civilization. They have developed into commensal species, but have also been able to colonize extreme environments on islands free of human civilization. Given that ample genomic and genetic resources are available for these species, they have thus also become ideal mammalian systems for evolutionary studies on adaptation and speciation, particularly in the combination with the rapid developments in population genomics. The chapter provides an overview of the systems and their history, as well as of available resources.
Collapse
Affiliation(s)
- Kristian K Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
21
|
Fishman L, McIntosh M. Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annu Rev Genet 2019; 53:347-372. [DOI: 10.1146/annurev-genet-112618-043905] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Mariah McIntosh
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
22
|
Godwin J, Serr M, Barnhill-Dilling SK, Blondel DV, Brown PR, Campbell K, Delborne J, Lloyd AL, Oh KP, Prowse TAA, Saah R, Thomas P. Rodent gene drives for conservation: opportunities and data needs. Proc Biol Sci 2019; 286:20191606. [PMID: 31690240 PMCID: PMC6842857 DOI: 10.1098/rspb.2019.1606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Invasive rodents impact biodiversity, human health and food security worldwide. The biodiversity impacts are particularly significant on islands, which are the primary sites of vertebrate extinctions and where we are reaching the limits of current control technologies. Gene drives may represent an effective approach to this challenge, but knowledge gaps remain in a number of areas. This paper is focused on what is currently known about natural and developing synthetic gene drive systems in mice, some key areas where key knowledge gaps exist, findings in a variety of disciplines relevant to those gaps and a brief consideration of how engagement at the regulatory, stakeholder and community levels can accompany and contribute to this effort. Our primary species focus is the house mouse, Mus musculus, as a genetic model system that is also an important invasive pest. Our primary application focus is the development of gene drive systems intended to reduce reproduction and potentially eliminate invasive rodents from islands. Gene drive technologies in rodents have the potential to produce significant benefits for biodiversity conservation, human health and food security. A broad-based, multidisciplinary approach is necessary to assess this potential in a transparent, effective and responsible manner.
Collapse
Affiliation(s)
- John Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Megan Serr
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Dimitri V. Blondel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Peter R. Brown
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Karl Campbell
- Island Conservation, Charles Darwin Avenue, Puerto Ayora, Galapagos Islands, Ecuador
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Jason Delborne
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Alun L. Lloyd
- Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
| | - Kevin P. Oh
- National Wildlife Research Center, US Department of Agriculture, Fort Collins, CO 80521, USA
| | - Thomas A. A. Prowse
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Royden Saah
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC 27695, USA
- Island Conservation, Charles Darwin Avenue, Puerto Ayora, Galapagos Islands, Ecuador
| | - Paul Thomas
- School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Abstract
For over a century, mice have been used to model human disease, leading to many fundamental discoveries about mammalian biology and the development of new therapies. Mouse genetics research has been further catalysed by a plethora of genomic resources developed in the last 20 years, including the genome sequence of C57BL/6J and more recently the first draft reference genomes for 16 additional laboratory strains. Collectively, the comparison of these genomes highlights the extreme diversity that exists at loci associated with the immune system, pathogen response, and key sensory functions, which form the foundation for dissecting phenotypic traits in vivo. We review the current status of the mouse genome across the diversity of the mouse lineage and discuss the value of mice to understanding human disease.
Collapse
Affiliation(s)
- Jingtao Lilue
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
- Instituto Gulbenkian de Ciência, Oeiras, Lisbon, Portugal
| | - Anu Shivalikanjli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | | | - Thomas M. Keane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
24
|
Manser A, Cornell SJ, Sutter A, Blondel DV, Serr M, Godwin J, Price TAR. Controlling invasive rodents via synthetic gene drive and the role of polyandry. Proc Biol Sci 2019; 286:20190852. [PMID: 31431159 PMCID: PMC6732378 DOI: 10.1098/rspb.2019.0852] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022] Open
Abstract
House mice are a major ecosystem pest, particularly threatening island ecosystems as a non-native invasive species. Rapid advances in synthetic biology offer new avenues to control pest species for biodiversity conservation. Recently, a synthetic sperm-killing gene drive construct called t-Sry has been proposed as a means to eradicate target mouse populations owing to a lack of females. A factor that has received little attention in the discussion surrounding such drive applications is polyandry. Previous research has demonstrated that sperm-killing drivers are extremely damaging to a male's sperm competitive ability. Here, we examine the importance of this effect on the t-Sry system using a theoretical model. We find that polyandry substantially hampers the spread of t-Sry such that release efforts have to be increased three- to sixfold for successful eradication. We discuss the implications of our finding for potential pest control programmes, the risk of drive spread beyond the target population, and the emergence of drive resistance. Our work highlights that a solid understanding of the forces that determine drive dynamics in a natural setting is key for successful drive application, and that exploring the natural diversity of gene drives may inform effective gene drive design.
Collapse
Affiliation(s)
- Andri Manser
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, UK
| | - Stephen J. Cornell
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, UK
| | - Andreas Sutter
- Centre for Ecology, Evolution and Conservation, University of East Anglia, Norwich, UK
| | - Dimitri V. Blondel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Megan Serr
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - John Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Tom A. R. Price
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, UK
| |
Collapse
|
25
|
Daugherty MD, Zanders SE. Gene conversion generates evolutionary novelty that fuels genetic conflicts. Curr Opin Genet Dev 2019; 58-59:49-54. [PMID: 31466040 DOI: 10.1016/j.gde.2019.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/15/2019] [Accepted: 07/20/2019] [Indexed: 12/21/2022]
Abstract
Genetic conflicts arise when the evolutionary interests of two genetic elements are not aligned. Conflicts between genomes (e.g. pathogen versus host) or within the same genome (e.g. internal parasitic DNA sequences versus the rest of the host genome) can both foster 'molecular arms races', in which genes on both sides of the conflict rapidly evolve due to bouts of adaptation and counter-adaptation. Importantly, a source of genetic novelty is needed to fuel these arms races. In this review, we highlight gene conversion as a major force in generating the novel alleles on which selection can act. Using examples from both intergenomic and intragenomic conflicts, we feature the mechanisms by which gene conversion facilitates the rapid evolution of genes in conflict.
Collapse
Affiliation(s)
- Matthew D Daugherty
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Sarah E Zanders
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
26
|
Bolcun-Filas E, Handel MA. Meiosis: the chromosomal foundation of reproduction. Biol Reprod 2019; 99:112-126. [PMID: 29385397 DOI: 10.1093/biolre/ioy021] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Meiosis is the chromosomal foundation of reproduction, with errors in this important process leading to aneuploidy and/or infertility. In this review celebrating the 50th anniversary of the founding of the Society for the Study of Reproduction, the important chromosomal structures and dynamics contributing to genomic integrity across generations are highlighted. Critical unsolved biological problems are identified, and the advances that will lead to their ultimate resolution are predicted.
Collapse
|
27
|
Morgan AP, Bell TA, Crowley JJ, Pardo-Manuel de Villena F. Instability of the Pseudoautosomal Boundary in House Mice. Genetics 2019; 212:469-487. [PMID: 31028113 PMCID: PMC6553833 DOI: 10.1534/genetics.119.302232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Faithful segregation of homologous chromosomes at meiosis requires pairing and recombination. In taxa with dimorphic sex chromosomes, pairing between them in the heterogametic sex is limited to a narrow interval of residual sequence homology known as the pseudoautosomal region (PAR). Failure to form the obligate crossover in the PAR is associated with male infertility in house mice (Mus musculus) and humans. Yet despite this apparent functional constraint, the boundary and organization of the PAR is highly variable in mammals, and even between subspecies of mice. Here, we estimate the genetic map in a previously documented expansion of the PAR in the M. musculus castaneus subspecies and show that the local recombination rate is 100-fold higher than the autosomal background. We identify an independent shift in the PAR boundary in the M. musculus musculus subspecies and show that it involves a complex rearrangement, but still recombines in heterozygous males. Finally, we demonstrate pervasive copy-number variation at the PAR boundary in wild populations of M. m. domesticus, M. m. musculus, and M. m. castaneus Our results suggest that the intensity of recombination activity in the PAR, coupled with relatively weak constraints on its sequence, permit the generation and maintenance of unusual levels of polymorphism in the population of unknown functional significance.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - James J Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27514
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| |
Collapse
|
28
|
Nadachowska-Brzyska K, Burri R, Ellegren H. Footprints of adaptive evolution revealed by whole Z chromosomes haplotypes in flycatchers. Mol Ecol 2019; 28:2290-2304. [PMID: 30653779 PMCID: PMC6852393 DOI: 10.1111/mec.15021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/19/2023]
Abstract
Detecting positive selection using genomic data is critical to understanding the role of adaptive evolution. Of particular interest in this context is sex chromosomes since they are thought to play a special role in local adaptation and speciation. We sought to circumvent the challenges associated with statistical phasing when using haplotype-based statistics in sweep scans by benefitting from that whole chromosome haplotypes of the sex chromosomes can be obtained by resequencing of individuals of the hemizygous sex. We analyzed whole Z chromosome haplotypes from 100 females from several populations of four black and white flycatcher species (in birds, females are ZW and males ZZ). Based on integrated haplotype score (iHS) and number of segregating sites by length (nSL) statistics, we found strong and frequent haplotype structure in several regions of the Z chromosome in each species. Most of these sweep signals were population-specific, with essentially no evidence for regions under selection shared among species. Some completed sweeps were revealed by the cross-population extended haplotype homozygosity (XP-EHH) statistic. Importantly, by using statistically phased Z chromosome data from resequencing of males, we failed to recover the signals of selection detected in analyses based on whole chromosome haplotypes from females; instead, what likely represent false signals of selection were frequently seen. This highlights the power issues in statistical phasing and cautions against conclusions from selection scans using such data. The detection of frequent selective sweeps on the avian Z chromosome supports a large role of sex chromosomes in adaptive evolution.
Collapse
Affiliation(s)
| | - Reto Burri
- Department of Evolutionary Biology, University of Uppsala, Uppsala, Sweden.,Department of Population Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Hans Ellegren
- Department of Evolutionary Biology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
29
|
Abstract
Data cleaning is an important first step in most statistical analyses, including efforts to map the genetic loci that contribute to variation in quantitative traits. Here we illustrate approaches to quality control and cleaning of array-based genotyping data for multiparent populations (experimental crosses derived from more than two founder strains), using MegaMUGA array data from a set of 291 Diversity Outbred (DO) mice. Our approach employs data visualizations that can reveal problems at the level of individual mice or with individual SNP markers. We find that the proportion of missing genotypes for each mouse is an effective indicator of sample quality. We use microarray probe intensities for SNPs on the X and Y chromosomes to confirm the sex of each mouse, and we use the proportion of matching SNP genotypes between pairs of mice to detect sample duplicates. We use a hidden Markov model (HMM) reconstruction of the founder haplotype mosaic across each mouse genome to estimate the number of crossovers and to identify potential genotyping errors. To evaluate marker quality, we find that missing data and genotyping error rates are the most effective diagnostics. We also examine the SNP genotype frequencies with markers grouped according to their minor allele frequency in the founder strains. For markers with high apparent error rates, a scatterplot of the allele-specific probe intensities can reveal the underlying cause of incorrect genotype calls. The decision to include or exclude low-quality samples can have a significant impact on the mapping results for a given study. We find that the impact of low-quality markers on a given study is often minimal, but reporting problematic markers can improve the utility of the genotyping array across many studies.
Collapse
|
30
|
Sweigart AL, Brandvain Y, Fishman L. Making a Murderer: The Evolutionary Framing of Hybrid Gamete-Killers. Trends Genet 2019; 35:245-252. [DOI: 10.1016/j.tig.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Accepted: 01/23/2019] [Indexed: 11/15/2022]
|
31
|
Scott MF, Osmond MM, Otto SP. Haploid selection, sex ratio bias, and transitions between sex-determining systems. PLoS Biol 2018; 16:e2005609. [PMID: 29940019 PMCID: PMC6042799 DOI: 10.1371/journal.pbio.2005609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/12/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Sex determination is remarkably dynamic; many taxa display shifts in the location of sex-determining loci or the evolution of entirely new sex-determining systems. Predominant theories for why we observe such transitions generally conclude that novel sex-determining systems are favoured by selection if they equalise the sex ratio or increase linkage with a locus that experiences different selection in males versus females. We use population genetic models to extend these theories in two ways: (1) We consider the dynamics of loci very tightly linked to the ancestral sex-determining loci, e.g., within the nonrecombining region of the ancestral sex chromosomes. Variation at such loci can favour the spread of new sex-determining systems in which the heterogametic sex changes (XY to ZW or ZW to XY) and the new sex-determining region is less closely linked (or even unlinked) to the locus under selection. (2) We consider selection upon haploid genotypes either during gametic competition (e.g., pollen competition) or meiosis (i.e., nonmendelian segregation), which can cause the zygotic sex ratio to become biased. Haploid selection can drive transitions between sex-determining systems without requiring selection to act differently in diploid males versus females. With haploid selection, we find that transitions between male and female heterogamety can evolve so that linkage with the sex-determining locus is either strengthened or weakened. Furthermore, we find that sex ratio biases may increase or decrease with the spread of new sex chromosomes, which implies that transitions between sex-determining systems cannot be simply predicted by selection to equalise the sex ratio. In fact, under many conditions, we find that transitions in sex determination are favoured equally strongly in cases in which the sex ratio bias increases or decreases. Overall, our models predict that sex determination systems should be highly dynamic, particularly when haploid selection is present, consistent with the evolutionary lability of this trait in many taxa.
Collapse
Affiliation(s)
- Michael Francis Scott
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Matthew Miles Osmond
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Perin Otto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
The Evolution of Polymorphic Hybrid Incompatibilities in House Mice. Genetics 2018; 209:845-859. [PMID: 29692350 DOI: 10.1534/genetics.118.300840] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
Resolving the mechanistic and genetic bases of reproductive barriers between species is essential to understanding the evolutionary forces that shape speciation. Intrinsic hybrid incompatibilities are often treated as fixed between species, yet there can be considerable variation in the strength of reproductive isolation between populations. The extent and causes of this variation remain poorly understood in most systems. We investigated the genetic basis of variable hybrid male sterility (HMS) between two recently diverged subspecies of house mice, Mus musculus domesticus and Mus musculus musculus We found that polymorphic HMS has a surprisingly complex genetic basis, with contributions from at least five autosomal loci segregating between two closely related wild-derived strains of M. m. musculus One of the HMS-linked regions on chromosome 4 also showed extensive introgression among inbred laboratory strains and transmission ratio distortion (TRD) in hybrid crosses. Using additional crosses and whole genome sequencing of sperm pools, we showed that TRD was limited to hybrid crosses and was not due to differences in sperm motility between M. m. musculus strains. Based on these results, we argue that TRD likely reflects additional incompatibilities that reduce hybrid embryonic viability. In some common inbred strains of mice, selection against deleterious interactions appears to have unexpectedly driven introgression at loci involved in epistatic hybrid incompatibilities. The highly variable genetic basis to F1 hybrid incompatibilities between closely related mouse lineages argues that a thorough dissection of reproductive isolation will require much more extensive sampling of natural variation than has been commonly utilized in mice and other model systems.
Collapse
|
33
|
Weigand H, Leese F. Detecting signatures of positive selection in non-model species using genomic data. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Hannah Weigand
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße, Essen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Universitätsstraße, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße, Essen, Germany
| |
Collapse
|
34
|
Do Gametes Woo? Evidence for Their Nonrandom Union at Fertilization. Genetics 2018; 207:369-387. [PMID: 28978771 DOI: 10.1534/genetics.117.300109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
A fundamental tenet of inheritance in sexually reproducing organisms such as humans and laboratory mice is that gametes combine randomly at fertilization, thereby ensuring a balanced and statistically predictable representation of inherited variants in each generation. This principle is encapsulated in Mendel's First Law. But exceptions are known. With transmission ratio distortion, particular alleles are preferentially transmitted to offspring. Preferential transmission usually occurs in one sex but not both, and is not known to require interactions between gametes at fertilization. A reanalysis of our published work in mice and of data in other published reports revealed instances where any of 12 mutant genes biases fertilization, with either too many or too few heterozygotes and homozygotes, depending on the mutant gene and on dietary conditions. Although such deviations are usually attributed to embryonic lethality of the underrepresented genotypes, the evidence is more consistent with genetically-determined preferences for specific combinations of egg and sperm at fertilization that result in genotype bias without embryo loss. This unexpected discovery of genetically-biased fertilization could yield insights about the molecular and cellular interactions between sperm and egg at fertilization, with implications for our understanding of inheritance, reproduction, population genetics, and medical genetics.
Collapse
|
35
|
|
36
|
Complex History and Differentiation Patterns of the t-Haplotype, a Mouse Meiotic Driver. Genetics 2017; 208:365-375. [PMID: 29138255 PMCID: PMC5753869 DOI: 10.1534/genetics.117.300513] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022] Open
Abstract
The t-haplotype, a mouse meiotic driver found on chromosome 17, has been a model for autosomal segregation distortion for close to a century, but several questions remain regarding its biology and evolutionary history. A recently published set of population genomics resources for wild mice includes several individuals heterozygous for the t-haplotype, which we use to characterize this selfish element at the genomic and transcriptomic level. Our results show that large sections of the t-haplotype have been replaced by standard homologous sequences, possibly due to occasional events of recombination, and that this complicates the inference of its history. As expected for a long genomic segment of very low recombination, the t-haplotype carries an excess of fixed nonsynonymous mutations compared to the standard chromosome. This excess is stronger for regions that have not undergone recent recombination, suggesting that occasional gene flow between the t and the standard chromosome may provide a mechanism to regenerate coding sequences that have accumulated deleterious mutations. Finally, we find that t-complex genes with altered expression largely overlap with deleted or amplified regions, and that carrying a t-haplotype alters the testis expression of genes outside of the t-complex, providing new leads into the pathways involved in the biology of this segregation distorter.
Collapse
|
37
|
Liebert A, López S, Jones BL, Montalva N, Gerbault P, Lau W, Thomas MG, Bradman N, Maniatis N, Swallow DM. World-wide distributions of lactase persistence alleles and the complex effects of recombination and selection. Hum Genet 2017; 136:1445-1453. [PMID: 29063188 PMCID: PMC5702378 DOI: 10.1007/s00439-017-1847-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/07/2017] [Indexed: 01/17/2023]
Abstract
The genetic trait of lactase persistence (LP) is associated with at least five independent functional single nucleotide variants in a regulatory region about 14 kb upstream of the lactase gene [−13910*T (rs4988235), −13907*G (rs41525747), −13915*G (rs41380347), −14009*G (rs869051967) and −14010*C (rs145946881)]. These alleles have been inferred to have spread recently and present-day frequencies have been attributed to positive selection for the ability of adult humans to digest lactose without risk of symptoms of lactose intolerance. One of the inferential approaches used to estimate the level of past selection has been to determine the extent of haplotype homozygosity (EHH) of the sequence surrounding the SNP of interest. We report here new data on the frequencies of the known LP alleles in the ‘Old World’ and their haplotype lineages. We examine and confirm EHH of each of the LP alleles in relation to their distinct lineages, but also show marked EHH for one of the older haplotypes that does not carry any of the five LP alleles. The region of EHH of this (B) haplotype exactly coincides with a region of suppressed recombination that is detectable in families as well as in population data, and the results show how such suppression may have exaggerated haplotype-based measures of past selection.
Collapse
Affiliation(s)
- Anke Liebert
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
- Department of Paediatrics, University of Cambridge, Box 116, Level 8, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Saioa López
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Bryony Leigh Jones
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Nicolas Montalva
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
- UCL Department of Anthropology, Human Evolutionary Ecology Group, University College London, 14 Taviton Street, London, WC1H 0BW, UK
- Departmento de Antropología, Facultad de Ciencias Sociales y Jurídicas, Universidad de Tarapacá, 384 Calle Cardenal Caro, Arica, Chile
| | - Pascale Gerbault
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
- Department of Life Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Winston Lau
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Neil Bradman
- Henry Stewart Group, 28/30 Little Russell Street, London, WC1A 2HN, UK
| | - Nikolas Maniatis
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Dallas M Swallow
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
38
|
Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, Hickman HD, McCulloch JA, Badger JH, Ajami NJ, Trinchieri G, Pardo-Manuel de Villena F, Yewdell JW, Rehermann B. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell 2017; 171:1015-1028.e13. [PMID: 29056339 DOI: 10.1016/j.cell.2017.09.016] [Citation(s) in RCA: 566] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/12/2017] [Accepted: 09/09/2017] [Indexed: 12/14/2022]
Abstract
Laboratory mice, while paramount for understanding basic biological phenomena, are limited in modeling complex diseases of humans and other free-living mammals. Because the microbiome is a major factor in mammalian physiology, we aimed to identify a naturally evolved reference microbiome to better recapitulate physiological phenomena relevant in the natural world outside the laboratory. Among 21 distinct mouse populations worldwide, we identified a closely related wild relative to standard laboratory mouse strains. Its bacterial gut microbiome differed significantly from its laboratory mouse counterpart and was transferred to and maintained in laboratory mice over several generations. Laboratory mice reconstituted with natural microbiota exhibited reduced inflammation and increased survival following influenza virus infection and improved resistance against mutagen/inflammation-induced colorectal tumorigenesis. By demonstrating the host fitness-promoting traits of natural microbiota, our findings should enable the discovery of protective mechanisms relevant in the natural world and improve the modeling of complex diseases of free-living mammals. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Stephan P Rosshart
- Immunology Section, Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| | - Brian G Vassallo
- Immunology Section, Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Davide Angeletti
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Diane S Hutchinson
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew P Morgan
- Department of Genetics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Heather D Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - John A McCulloch
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
A Mixed Model Approach to Genome-Wide Association Studies for Selection Signatures, with Application to Mice Bred for Voluntary Exercise Behavior. Genetics 2017; 207:785-799. [PMID: 28774881 DOI: 10.1534/genetics.117.300102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023] Open
Abstract
Selection experiments and experimental evolution provide unique opportunities to study the genetics of adaptation because the target and intensity of selection are known relatively precisely. In contrast to natural selection, where populations are never strictly "replicated," experimental evolution routinely includes replicate lines so that selection signatures-genomic regions showing excessive differentiation between treatments-can be separated from possible founder effects, genetic drift, and multiple adaptive solutions. We developed a mouse model with four lines within a high running (HR) selection treatment and four nonselected controls (C). At generation 61, we sampled 10 mice of each line and used the Mega Mouse Universal Genotyping Array to obtain single nucleotide polymorphism (SNP) data for 25,318 SNPs for each individual. Using an advanced mixed model procedure developed in this study, we identified 152 markers that were significantly different in frequency between the two selection treatments. They occurred on all chromosomes except 1, 2, 8, 13, and 19, and showed a variety of patterns in terms of fixation (or the lack thereof) in the four HR and four C lines. Importantly, none were fixed for alternative alleles between the two selection treatments. The current state-of-the-art regularized F test applied after pooling DNA samples for each line failed to detect any markers. We conclude that when SNP or sequence data are available from individuals, the mixed model methodology is recommended for selection signature detection. As sequencing at the individual level becomes increasingly feasible, the new methodology may be routinely applied for detection of selection.
Collapse
|
40
|
Male Infertility Is Responsible for Nearly Half of the Extinction Observed in the Mouse Collaborative Cross. Genetics 2017; 206:557-572. [PMID: 28592496 DOI: 10.1534/genetics.116.199596] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022] Open
Abstract
The goal of the Collaborative Cross (CC) project was to generate and distribute over 1000 independent mouse recombinant inbred strains derived from eight inbred founders. With inbreeding nearly complete, we estimated the extinction rate among CC lines at a remarkable 95%, which is substantially higher than in the derivation of other mouse recombinant inbred populations. Here, we report genome-wide allele frequencies in 347 extinct CC lines. Contrary to expectations, autosomes had equal allelic contributions from the eight founders, but chromosome X had significantly lower allelic contributions from the two inbred founders with underrepresented subspecific origins (PWK/PhJ and CAST/EiJ). By comparing extinct CC lines to living CC strains, we conclude that a complex genetic architecture is driving extinction, and selection pressures are different on the autosomes and chromosome X Male infertility played a large role in extinction as 47% of extinct lines had males that were infertile. Males from extinct lines had high variability in reproductive organ size, low sperm counts, low sperm motility, and a high rate of vacuolization of seminiferous tubules. We performed QTL mapping and identified nine genomic regions associated with male fertility and reproductive phenotypes. Many of the allelic effects in the QTL were driven by the two founders with underrepresented subspecific origins, including a QTL on chromosome X for infertility that was driven by the PWK/PhJ haplotype. We also performed the first example of cross validation using complementary CC resources to verify the effect of sperm curvilinear velocity from the PWK/PhJ haplotype on chromosome 2 in an independent population across multiple generations. While selection typically constrains the examination of reproductive traits toward the more fertile alleles, the CC extinct lines provided a unique opportunity to study the genetic architecture of fertility in a widely genetically variable population. We hypothesize that incompatibilities between alleles with different subspecific origins is a key driver of infertility. These results help clarify the factors that drove strain extinction in the CC, reveal the genetic regions associated with poor fertility in the CC, and serve as a resource to further study mammalian infertility.
Collapse
|
41
|
Abstract
The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse. The initial CC genome data were haplotype reconstructions based on dense genotyping of the most recent common ancestors (MRCAs) of each strain followed by imputation from the genome sequence of the corresponding founder inbred strain. The MRCA resource captured segregating regions in strains that were not fully inbred, but it had limited resolution in the transition regions between founder haplotypes, and there was uncertainty about founder assignment in regions of limited diversity. Here we report the whole genome sequence of 69 CC strains generated by paired-end short reads at 30× coverage of a single male per strain. Sequencing leads to a substantial improvement in the fine structure and completeness of the genomes of the CC. Both MRCAs and sequenced samples show a significant reduction in the genome-wide haplotype frequencies from two wild-derived strains, CAST/EiJ and PWK/PhJ. In addition, analysis of the evolution of the patterns of heterozygosity indicates that selection against three wild-derived founder strains played a significant role in shaping the genomes of the CC. The sequencing resource provides the first description of tens of thousands of new genetic variants introduced by mutation and drift in the CC genomes. We estimate that new SNP mutations are accumulating in each CC strain at a rate of 2.4 ± 0.4 per gigabase per generation. The fixation of new mutations by genetic drift has introduced thousands of new variants into the CC strains. The majority of these mutations are novel compared to currently sequenced laboratory stocks and wild mice, and some are predicted to alter gene function. Approximately one-third of the CC inbred strains have acquired large deletions (>10 kb) many of which overlap known coding genes and functional elements. The sequence of these mice is a critical resource to CC users, increases threefold the number of mouse inbred strain genomes available publicly, and provides insight into the effect of mutation and drift on common resources.
Collapse
|
42
|
Whole Genome Sequence of Two Wild-Derived Mus musculus domesticus Inbred Strains, LEWES/EiJ and ZALENDE/EiJ, with Different Diploid Numbers. G3-GENES GENOMES GENETICS 2016; 6:4211-4216. [PMID: 27765810 PMCID: PMC5144988 DOI: 10.1534/g3.116.034751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wild-derived mouse inbred strains are becoming increasingly popular for complex traits analysis, evolutionary studies, and systems genetics. Here, we report the whole-genome sequencing of two wild-derived mouse inbred strains, LEWES/EiJ and ZALENDE/EiJ, of Mus musculus domesticus origin. These two inbred strains were selected based on their geographic origin, karyotype, and use in ongoing research. We generated 14× and 18× coverage sequence, respectively, and discovered over 1.1 million novel variants, most of which are private to one of these strains. This report expands the number of wild-derived inbred genomes in the Mus genus from six to eight. The sequence variation can be accessed via an online query tool; variant calls (VCF format) and alignments (BAM format) are available for download from a dedicated ftp site. Finally, the sequencing data have also been stored in a lossless, compressed, and indexed format using the multi-string Burrows-Wheeler transform. All data can be used without restriction.
Collapse
|
43
|
Diversity Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection. G3-GENES GENOMES GENETICS 2016; 6:3893-3902. [PMID: 27694113 PMCID: PMC5144960 DOI: 10.1534/g3.116.035527] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multi-parent populations (MPPs) capture and maintain the genetic diversity from multiple inbred founder strains to provide a resource for high-resolution genetic mapping through the accumulation of recombination events over many generations. Breeding designs that maintain a large effective population size with randomized assignment of breeders at each generation can minimize the impact of selection, inbreeding, and genetic drift on allele frequencies. Small deviations from expected allele frequencies will have little effect on the power and precision of genetic analysis, but a major distortion could result in reduced power and loss of important functional alleles. We detected strong transmission ratio distortion in the Diversity Outbred (DO) mouse population on chromosome 2, caused by meiotic drive favoring transmission of the WSB/EiJ allele at the R2d2 locus. The distorted region harbors thousands of polymorphisms derived from the seven non-WSB founder strains and many of these would be lost if the sweep was allowed to continue. To ensure the utility of the DO population to study genetic variation on chromosome 2, we performed an artificial selection against WSB/EiJ alleles at the R2d2 locus. Here, we report that we have purged the WSB/EiJ allele from the drive locus while preserving WSB/EiJ alleles in the flanking regions. We observed minimal disruption to allele frequencies across the rest of the autosomal genome. However, there was a shift in haplotype frequencies of the mitochondrial genome and an increase in the rate of an unusual sex chromosome aneuploidy. The DO population has been restored to genome-wide utility for genetic analysis, but our experience underscores that vigilant monitoring of similar genetic resource populations is needed to ensure their long-term utility.
Collapse
|
44
|
Giménez MD, Förster DW, Jones EP, Jóhannesdóttir F, Gabriel SI, Panithanarak T, Scascitelli M, Merico V, Garagna S, Searle JB, Hauffe HC. A Half-Century of Studies on a Chromosomal Hybrid Zone of the House Mouse. J Hered 2016; 108:25-35. [PMID: 27729448 DOI: 10.1093/jhered/esw061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022] Open
Abstract
The first natural chromosomal variation in the house mouse was described nearly 50 years ago in Val Poschiavo on the Swiss side of the Swiss-Italian border in the Central Eastern Alps. Studies have extended into neighboring Valtellina, and the house mice of the Poschiavo-Valtellina area have been subject to detailed analysis, reviewed here. The maximum extent of this area is 70 km, yet it has 4 metacentric races and the standard 40-chromosome telocentric race distributed in a patchwork fashion. The metacentric races are characterized by highly reduced diploid numbers (2n = 22-26) resulting from Robertsonian fusions, perhaps modified by whole-arm reciprocal translocations. The races hybridize and the whole Poschiavo-Valtellina area can be considered a "hybrid zone." The studies of this area have provided insights into origin of races within hybrid zones, gene flow within hybrid zones and the possibility of speciation in hybrid zones. This provides a case study of how chromosomal rearrangements may impact the genetic structure of populations and their diversification.
Collapse
Affiliation(s)
- Mabel D Giménez
- From the Department of Biology, University of York, York, UK (Giménez, Förster, Jones, Jóhannesdóttir, Gabriel, Panithanarak, Scascitelli, Searle, and Hauffe); Instituto de Biología Subtropical (UNaM-CONICET), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina (Giménez); Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany (Förster); Fera Science, York, UK (Jones); Department of Ecology and Evolution, Corson Hall, Cornell University, Ithaca, NY 14853-2701 (Jóhannesdóttir and Searle); CESAM-Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal (Gabriel); Institute of Marine Science, Burapha University, Chonburi, Thailand (Panithanarak); Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Pavia, Italy (Merico and Garagna); and Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (TN), Italy (Hauffe)
| | - Daniel W Förster
- From the Department of Biology, University of York, York, UK (Giménez, Förster, Jones, Jóhannesdóttir, Gabriel, Panithanarak, Scascitelli, Searle, and Hauffe); Instituto de Biología Subtropical (UNaM-CONICET), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina (Giménez); Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany (Förster); Fera Science, York, UK (Jones); Department of Ecology and Evolution, Corson Hall, Cornell University, Ithaca, NY 14853-2701 (Jóhannesdóttir and Searle); CESAM-Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal (Gabriel); Institute of Marine Science, Burapha University, Chonburi, Thailand (Panithanarak); Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Pavia, Italy (Merico and Garagna); and Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (TN), Italy (Hauffe)
| | - Eleanor P Jones
- From the Department of Biology, University of York, York, UK (Giménez, Förster, Jones, Jóhannesdóttir, Gabriel, Panithanarak, Scascitelli, Searle, and Hauffe); Instituto de Biología Subtropical (UNaM-CONICET), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina (Giménez); Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany (Förster); Fera Science, York, UK (Jones); Department of Ecology and Evolution, Corson Hall, Cornell University, Ithaca, NY 14853-2701 (Jóhannesdóttir and Searle); CESAM-Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal (Gabriel); Institute of Marine Science, Burapha University, Chonburi, Thailand (Panithanarak); Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Pavia, Italy (Merico and Garagna); and Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (TN), Italy (Hauffe)
| | - Fríða Jóhannesdóttir
- From the Department of Biology, University of York, York, UK (Giménez, Förster, Jones, Jóhannesdóttir, Gabriel, Panithanarak, Scascitelli, Searle, and Hauffe); Instituto de Biología Subtropical (UNaM-CONICET), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina (Giménez); Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany (Förster); Fera Science, York, UK (Jones); Department of Ecology and Evolution, Corson Hall, Cornell University, Ithaca, NY 14853-2701 (Jóhannesdóttir and Searle); CESAM-Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal (Gabriel); Institute of Marine Science, Burapha University, Chonburi, Thailand (Panithanarak); Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Pavia, Italy (Merico and Garagna); and Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (TN), Italy (Hauffe)
| | - Sofia I Gabriel
- From the Department of Biology, University of York, York, UK (Giménez, Förster, Jones, Jóhannesdóttir, Gabriel, Panithanarak, Scascitelli, Searle, and Hauffe); Instituto de Biología Subtropical (UNaM-CONICET), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina (Giménez); Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany (Förster); Fera Science, York, UK (Jones); Department of Ecology and Evolution, Corson Hall, Cornell University, Ithaca, NY 14853-2701 (Jóhannesdóttir and Searle); CESAM-Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal (Gabriel); Institute of Marine Science, Burapha University, Chonburi, Thailand (Panithanarak); Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Pavia, Italy (Merico and Garagna); and Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (TN), Italy (Hauffe)
| | - Thadsin Panithanarak
- From the Department of Biology, University of York, York, UK (Giménez, Förster, Jones, Jóhannesdóttir, Gabriel, Panithanarak, Scascitelli, Searle, and Hauffe); Instituto de Biología Subtropical (UNaM-CONICET), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina (Giménez); Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany (Förster); Fera Science, York, UK (Jones); Department of Ecology and Evolution, Corson Hall, Cornell University, Ithaca, NY 14853-2701 (Jóhannesdóttir and Searle); CESAM-Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal (Gabriel); Institute of Marine Science, Burapha University, Chonburi, Thailand (Panithanarak); Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Pavia, Italy (Merico and Garagna); and Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (TN), Italy (Hauffe)
| | - Moira Scascitelli
- From the Department of Biology, University of York, York, UK (Giménez, Förster, Jones, Jóhannesdóttir, Gabriel, Panithanarak, Scascitelli, Searle, and Hauffe); Instituto de Biología Subtropical (UNaM-CONICET), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina (Giménez); Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany (Förster); Fera Science, York, UK (Jones); Department of Ecology and Evolution, Corson Hall, Cornell University, Ithaca, NY 14853-2701 (Jóhannesdóttir and Searle); CESAM-Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal (Gabriel); Institute of Marine Science, Burapha University, Chonburi, Thailand (Panithanarak); Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Pavia, Italy (Merico and Garagna); and Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (TN), Italy (Hauffe)
| | - Valeria Merico
- From the Department of Biology, University of York, York, UK (Giménez, Förster, Jones, Jóhannesdóttir, Gabriel, Panithanarak, Scascitelli, Searle, and Hauffe); Instituto de Biología Subtropical (UNaM-CONICET), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina (Giménez); Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany (Förster); Fera Science, York, UK (Jones); Department of Ecology and Evolution, Corson Hall, Cornell University, Ithaca, NY 14853-2701 (Jóhannesdóttir and Searle); CESAM-Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal (Gabriel); Institute of Marine Science, Burapha University, Chonburi, Thailand (Panithanarak); Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Pavia, Italy (Merico and Garagna); and Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (TN), Italy (Hauffe)
| | - Silvia Garagna
- From the Department of Biology, University of York, York, UK (Giménez, Förster, Jones, Jóhannesdóttir, Gabriel, Panithanarak, Scascitelli, Searle, and Hauffe); Instituto de Biología Subtropical (UNaM-CONICET), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina (Giménez); Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany (Förster); Fera Science, York, UK (Jones); Department of Ecology and Evolution, Corson Hall, Cornell University, Ithaca, NY 14853-2701 (Jóhannesdóttir and Searle); CESAM-Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal (Gabriel); Institute of Marine Science, Burapha University, Chonburi, Thailand (Panithanarak); Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Pavia, Italy (Merico and Garagna); and Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (TN), Italy (Hauffe)
| | - Jeremy B Searle
- From the Department of Biology, University of York, York, UK (Giménez, Förster, Jones, Jóhannesdóttir, Gabriel, Panithanarak, Scascitelli, Searle, and Hauffe); Instituto de Biología Subtropical (UNaM-CONICET), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina (Giménez); Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany (Förster); Fera Science, York, UK (Jones); Department of Ecology and Evolution, Corson Hall, Cornell University, Ithaca, NY 14853-2701 (Jóhannesdóttir and Searle); CESAM-Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal (Gabriel); Institute of Marine Science, Burapha University, Chonburi, Thailand (Panithanarak); Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Pavia, Italy (Merico and Garagna); and Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (TN), Italy (Hauffe)
| | - Heidi C Hauffe
- From the Department of Biology, University of York, York, UK (Giménez, Förster, Jones, Jóhannesdóttir, Gabriel, Panithanarak, Scascitelli, Searle, and Hauffe); Instituto de Biología Subtropical (UNaM-CONICET), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina (Giménez); Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany (Förster); Fera Science, York, UK (Jones); Department of Ecology and Evolution, Corson Hall, Cornell University, Ithaca, NY 14853-2701 (Jóhannesdóttir and Searle); CESAM-Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal (Gabriel); Institute of Marine Science, Burapha University, Chonburi, Thailand (Panithanarak); Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Pavia, Italy (Merico and Garagna); and Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige (TN), Italy (Hauffe)
| |
Collapse
|
45
|
Morgan AP, Holt JM, McMullan RC, Bell TA, Clayshulte AMF, Didion JP, Yadgary L, Thybert D, Odom DT, Flicek P, McMillan L, de Villena FPM. The Evolutionary Fates of a Large Segmental Duplication in Mouse. Genetics 2016; 204:267-85. [PMID: 27371833 PMCID: PMC5012392 DOI: 10.1534/genetics.116.191007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/27/2016] [Indexed: 01/21/2023] Open
Abstract
Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127-kbp segmental duplication, R2d, in the house mouse (Mus musculus). R2d contains a single protein-coding gene, Cwc22 De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to nonallelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from zero in the mouse reference genome to >80 in wild mice sampled from around the globe. Hemizygosity for high copy-number alleles of R2d2 is associated in cis with meiotic drive; suppression of meiotic crossovers; and copy-number instability, with a mutation rate in excess of 1 per 100 transmissions in some laboratory populations. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - J Matthew Holt
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rachel C McMullan
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Timothy A Bell
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Amelia M-F Clayshulte
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - John P Didion
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Liran Yadgary
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David Thybert
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge, CB10 1SD, United Kingdom
| | - Duncan T Odom
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, United Kingdom
| | - Paul Flicek
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge, CB10 1SD, United Kingdom Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, United Kingdom
| | - Leonard McMillan
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|