1
|
Saunders PA, Muyle A. Sex Chromosome Evolution: Hallmarks and Question Marks. Mol Biol Evol 2024; 41:msae218. [PMID: 39417444 PMCID: PMC11542634 DOI: 10.1093/molbev/msae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Sex chromosomes are widespread in species with separate sexes. They have evolved many times independently and display a truly remarkable diversity. New sequencing technologies and methodological developments have allowed the field of molecular evolution to explore this diversity in a large number of model and nonmodel organisms, broadening our vision on the mechanisms involved in their evolution. Diverse studies have allowed us to better capture the common evolutionary routes that shape sex chromosomes; however, we still mostly fail to explain why sex chromosomes are so diverse. We review over half a century of theoretical and empirical work on sex chromosome evolution and highlight pending questions on their origins, turnovers, rearrangements, degeneration, dosage compensation, gene content, and rates of evolution. We also report recent theoretical progress on our understanding of the ultimate reasons for sex chromosomes' existence.
Collapse
Affiliation(s)
- Paul A Saunders
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aline Muyle
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
2
|
Filipović I, Marshall JM, Rašić G. Finding divergent sequences of homomorphic sex chromosomes via diploidized nanopore-based assembly from a single male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582759. [PMID: 38464271 PMCID: PMC10925256 DOI: 10.1101/2024.02.29.582759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Although homomorphic sex chromosomes can have non-recombining regions with elevated sequence divergence between its complements, such divergence signals can be difficult to detect bioinformatically. If found in genomes of e.g. insect pests, these sequences could be targeted by the engineered genetic sexing and control systems. Here, we report an approach that can leverage long-read nanopore sequencing of a single XY male to identify divergent regions of homomorphic sex chromosomes. Long-read data are used for de novo genome assembly that is diploidized in a way that maximizes sex-specific differences between its haploid complements. We show that the correct assembly phasing is supported by the mapping of nanopore reads from the male's haploid Y-bearing sperm cells. The approach revealed a highly divergent region (HDR) near the centromere of the homomorphic sex chromosome of Aedes aegypti, the most important arboviral vector, for which there is a great interest in creating new genetic control tools. HDR is located ~5Mb downstream of the known male-determining locus on chromosome 1 and is significantly enriched for ovary-biased genes. While recombination in HDR ceased relatively recently (~1.4 MYA), HDR gametologs have divergent exons and introns of protein coding genes, and most lncRNA genes became X-specific. Megabases of previously invisible sex-linked sequences provide new putative targets for engineering the genetic systems to control this deadly mosquito. Broadly, our approach expands the toolbox for studying cryptic structure of sex chromosomes.
Collapse
Affiliation(s)
- Igor Filipović
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia
- The University of Queensland, School of Biological Sciences, St Lucia, QLD, Australia
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia
| |
Collapse
|
3
|
Xu XW, Sun P, Gao C, Zheng W, Chen S. Assembly of the poorly differentiated Verasper variegatus W chromosome by different sequencing technologies. Sci Data 2023; 10:893. [PMID: 38092799 PMCID: PMC10719390 DOI: 10.1038/s41597-023-02790-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
The assembly of W and Y chromosomes poses significant challenges in vertebrate genome sequencing and assembly. Here, we successfully assembled the W chromosome of Verasper variegatus with a length of 20.48 Mb by combining population and PacBio HiFi sequencing data. It was identified as a young sex chromosome and showed signs of expansion in repetitive sequences. The major component of the expansion was Ty3/Gypsy. The ancestral Osteichthyes karyotype consists of 24 protochromosomes. The sex chromosomes in four Pleuronectiformes species derived from a pair of homologous protochromosomes resulting from a whole-genome duplication event in teleost fish, yet with different sex-determination systems. V. variegatus and Cynoglossus semilaevis adhere to the ZZ/ZW system, while Hippoglossus stenolepis and H. hippoglossus follow the XX/XY system. Interestingly, V. variegatus and H. hippoglossus derived from one protochromosome, while C. semilaevis and H. stenolepis derived from another protochromosome. Our study provides valuable insights into the evolution of sex chromosomes in flatfish and sheds light on the important role of whole-genome duplication in shaping the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Xi-Wen Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China
| | - Pengchuan Sun
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chengbin Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Weiwei Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
4
|
Wang Y, Cai X, Zhang Y, Hörandl E, Zhang Z, He L. The male-heterogametic sex determination system on chromosome 15 of Salix triandra and Salix arbutifolia reveals ancestral male heterogamety and subsequent turnover events in the genus Salix. Heredity (Edinb) 2023; 130:122-134. [PMID: 36593355 PMCID: PMC9981616 DOI: 10.1038/s41437-022-00586-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
Dioecious Salix evolved more than 45 million years ago, but have homomorphic sex chromosomes, suggesting that turnover event(s) prevented major differentiation. Sex chromosome turnover events have been inferred in the sister genus Populus. The genus Salix includes two main clades, Salix and Vetrix, with several previously studied Vetrix clade species having female-heterogametic (ZW) or male-heterogametic (XY) sex-determining systems (SDSs) on chromosome 15, while three Salix clade species have XY SDSs on chromosome 7. We here studied two basal taxa of the Vetrix clade, S. arbutifolia and S. triandra using S. purpurea as the reference genome. Analyses of whole genome resequencing data for genome-wide associations (GWAS) with the sexes and genetic differentiation between the sexes (FST values) showed that both species have male heterogamety with a sex-determining locus on chromosome 15, suggesting an early turnover event within the Vetrix clade, perhaps promoted by sexually antagonistic or (and) sex-ratio selection. Changepoint analysis based on FST values identified small sex-linked regions of ~3.33 Mb and ~2.80 Mb in S. arbutifolia and S. triandra, respectively. The SDS of S. arbutifolia was consistent with recent results that used its own genome as reference. Ancestral state reconstruction of SDS suggests that at least two turnover events occurred in Salix.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Xinjie Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Zhang
- Shenyang Arboretum, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.
| | - Li He
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| |
Collapse
|
5
|
Mrnjavac A, Khudiakova KA, Barton NH, Vicoso B. Slower-X: reduced efficiency of selection in the early stages of X chromosome evolution. Evol Lett 2023; 7:4-12. [PMID: 37065438 PMCID: PMC10091493 DOI: 10.1093/evlett/qrac004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 12/17/2022] [Indexed: 02/04/2023] Open
Abstract
Abstract
Differentiated X chromosomes are expected to have higher rates of adaptive divergence than autosomes, if new beneficial mutations are recessive (the “faster-X effect”), largely because these mutations are immediately exposed to selection in males. The evolution of X chromosomes after they stop recombining in males, but before they become hemizygous, has not been well explored theoretically. We use the diffusion approximation to infer substitution rates of beneficial and deleterious mutations under such a scenario. Our results show that selection is less efficient on diploid X loci than on autosomal and hemizygous X loci under a wide range of parameters. This “slower-X” effect is stronger for genes affecting primarily (or only) male fitness, and for sexually antagonistic genes. These unusual dynamics suggest that some of the peculiar features of X chromosomes, such as the differential accumulation of genes with sex-specific functions, may start arising earlier than previously appreciated.
Collapse
Affiliation(s)
- Andrea Mrnjavac
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| | - Ksenia A Khudiakova
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| | - Nicholas H Barton
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| |
Collapse
|
6
|
Hearn KE, Koch EL, Stankowski S, Butlin RK, Faria R, Johannesson K, Westram AM. Differing associations between sex determination and sex‐linked inversions in two ecotypes of
Littorina saxatilis. Evol Lett 2022; 6:358-374. [PMID: 36254259 PMCID: PMC9554762 DOI: 10.1002/evl3.295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Sexual antagonism is a common hypothesis for driving the evolution of sex chromosomes, whereby recombination suppression is favored between sexually antagonistic loci and the sex‐determining locus to maintain beneficial combinations of alleles. This results in the formation of a sex‐determining region. Chromosomal inversions may contribute to recombination suppression but their precise role in sex chromosome evolution remains unclear. Because local adaptation is frequently facilitated through the suppression of recombination between adaptive loci by chromosomal inversions, there is potential for inversions that cover sex‐determining regions to be involved in local adaptation as well, particularly if habitat variation creates environment‐dependent sexual antagonism. With these processes in mind, we investigated sex determination in a well‐studied example of local adaptation within a species: the intertidal snail, Littorina saxatilis. Using SNP data from a Swedish hybrid zone, we find novel evidence for a female‐heterogametic sex determination system that is restricted to one ecotype. Our results suggest that four putative chromosomal inversions, two previously described and two newly discovered, span the putative sex chromosome pair. We determine their differing associations with sex, which suggest distinct strata of differing ages. The same inversions are found in the second ecotype but do not show any sex association. The striking disparity in inversion‐sex associations between ecotypes that are connected by gene flow across a habitat transition that is just a few meters wide indicates a difference in selective regime that has produced a distinct barrier to the spread of the newly discovered sex‐determining region between ecotypes. Such sex chromosome‐environment interactions have not previously been uncovered in L. saxatilis and are known in few other organisms. A combination of both sex‐specific selection and divergent natural selection is required to explain these highly unusual patterns.
Collapse
Affiliation(s)
- Katherine E. Hearn
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
| | - Eva L. Koch
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
- Department of Zoology University of Cambridge Cambridge CB2 3EJ United Kingdom
| | - Sean Stankowski
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
- ISTA (Institute of Science and Technology Austria) Klosterneuburg 3400 Austria
| | - Roger K. Butlin
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
- Department of Marine Sciences University of Gothenburg Strömstad SE‐45296 Sweden
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado Campus de Vairão, Universidade do Porto Vairão 4485‐661 Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO Campus de Vairão, Universidade do Porto Vairão 4485‐661 Portugal
| | - Kerstin Johannesson
- Department of Marine Sciences University of Gothenburg Strömstad SE‐45296 Sweden
| | - Anja M. Westram
- ISTA (Institute of Science and Technology Austria) Klosterneuburg 3400 Austria
- Faculty of Biosciences and Aquaculture Nord University Bodø 8026 Norway
| |
Collapse
|
7
|
She H, Xu Z, Zhang H, Wu J, Wang X, Liu Z, Qian W. Remarkable Divergence of the Sex-Linked Region between Two Wild Spinach Progenitors, Spinacia turkestanica and Spinacia tetrandra. BIOLOGY 2022; 11:1138. [PMID: 36009765 PMCID: PMC9404990 DOI: 10.3390/biology11081138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The sex-linked region (SLR) plays an important role in determining the sex of a plant. The SLR of the Y chromosome, composed of a 14.1-Mb inversion and a 10-Mb Y-duplication region (YDR), was deciphered in Spinacia oleracea previously. However, our understanding of the SLR in its wild relatives, S. turkestanica and S. tetrandra, remains limited. In this study, we used 63 resequencing data from the three Spinacia species to infer the evolution of the SLR among the Spinacia species. In the SLR, all the cultivated spinach and S. turkestanica accessions were clustered into two distinct categories with both sexes, while the S. tetrandra accessions of both sexes were grouped. This suggests that S. oleracea shared a similar SLR with S. turkestanica, but not with S. tetrandra, which was further confirmed based on the population structure and principal component analysis. Furthermore, we identified 3910 fully sex-linked SNPs in S. oleracea and 92.82% of them were available in S. turkestanica, while none of the SNPs were adopted in S. tetrandra. Genome coverage in males and females supported the hypothesis that the YDR increasingly expanded during its evolution. Otherwise, we identified 13 sex-linked transposable element insertion polymorphisms within the inversion in both S. oleracea and S. turkestanica, demonstrating that the transposable element insertions might have occurred before the recombination suppression event of the inversion. The SLR was conserved compared with the pseudoautosomal region given that the genetic hitchhiking process occurred in the SLR during its evolution. Our findings will significantly advance our understanding of the characteristics and evolution of the SLR in Spinacia species.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiyuan Liu
- Correspondence: (Z.L.); (W.Q.); Tel.: +86-010-62194559 (W.Q.)
| | - Wei Qian
- Correspondence: (Z.L.); (W.Q.); Tel.: +86-010-62194559 (W.Q.)
| |
Collapse
|
8
|
Wilkerson DG, Taskiran B, Carlson CH, Smart LB. Mapping the sex determination region in the Salix F1 hybrid common parent population confirms a ZW system in six diverse species. G3 GENES|GENOMES|GENETICS 2022; 12:6554199. [PMID: 35333299 PMCID: PMC9157088 DOI: 10.1093/g3journal/jkac071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/17/2022] [Indexed: 11/24/2022]
Abstract
Within the genus Salix, there are approximately 350 species native primarily to the northern hemisphere and adapted to a wide range of habitats. This diversity can be exploited to mine novel alleles conferring variation important for production as a bioenergy crop, but also to identify evolutionarily important genes, such as those involved in sex determination. To leverage this diversity, we created a mapping population by crossing 6 Salix species (Salix viminalis, Salix suchowensis, Salix integra, Salix koriyanagi, Salix udensis, and Salix alberti) to common male and female Salix purpurea parents. Each family was genotyped via genotyping-by-sequencing and assessed for kinship and population structure as well as the construction of 16 backcross linkage maps to be used as a genetic resource for breeding and selection. Analyses of population structure resolved both the parents and F1 progeny to their respective phylogenetic section and indicated that the S. alberti parent was misidentified and was most likely S.suchowensis. Sex determining regions were identified on Salix chromosome 15 in the female-informative maps for seven of the eight families indicating that these species share a common female heterogametic ZW sex system. The eighth family, S. integra × S. purpurea, was entirely female and had a truncated chromosome 15. Beyond sex determination, the Salix F1 hybrid common parent population (Salix F1 HCP) introduced here will be useful in characterizing genetic factors underlying complex traits, aid in marker-assisted selection, and support genome assemblies for this promising bioenergy crop.
Collapse
Affiliation(s)
- Dustin G Wilkerson
- Horticulture Section, School of Integrative Plant Sciences, Cornell University, Cornell AgriTech , Geneva, NY 14456, USA
| | - Bircan Taskiran
- Horticulture Section, School of Integrative Plant Sciences, Cornell University, Cornell AgriTech , Geneva, NY 14456, USA
| | - Craig H Carlson
- Horticulture Section, School of Integrative Plant Sciences, Cornell University, Cornell AgriTech , Geneva, NY 14456, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Sciences, Cornell University, Cornell AgriTech , Geneva, NY 14456, USA
| |
Collapse
|
9
|
Mank JE. Are plant and animal sex chromosomes really all that different? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210218. [PMID: 35306885 PMCID: PMC8935310 DOI: 10.1098/rstb.2021.0218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sex chromosomes in plants have often been contrasted with those in animals with the goal of identifying key differences that can be used to elucidate fundamental evolutionary properties. For example, the often homomorphic sex chromosomes in plants have been compared to the highly divergent systems in some animal model systems, such as birds, Drosophila and therian mammals, with many hypotheses offered to explain the apparent dissimilarities, including the younger age of plant sex chromosomes, the lesser prevalence of sexual dimorphism, or the greater extent of haploid selection. Furthermore, many plant sex chromosomes lack complete sex chromosome dosage compensation observed in some animals, including therian mammals, Drosophila, some poeciliids, and Anolis, and plant dosage compensation, where it exists, appears to be incomplete. Even the canonical theoretical models of sex chromosome formation differ somewhat between plants and animals. However, the highly divergent sex chromosomes observed in some animal groups are actually the exception, not the norm, and many animal clades are far more similar to plants in their sex chromosome patterns. This begs the question of how different are plant and animal sex chromosomes, and which of the many unique properties of plants would be expected to affect sex chromosome evolution differently than animals? In fact, plant and animal sex chromosomes exhibit more similarities than differences, and it is not at all clear that they differ in terms of sexual conflict, dosage compensation, or even degree of divergence. Overall, the largest difference between these two groups is the greater potential for haploid selection in plants compared to animals. This may act to accelerate the expansion of the non-recombining region at the same time that it maintains gene function within it. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
10
|
Bürli S, Pannell JR, Tonnabel J. Environmental variation in sex ratios and sexual dimorphism in three wind‐pollinated dioecious plant species. OIKOS 2022. [DOI: 10.1111/oik.08651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah Bürli
- Dept of Ecology and Evolution, Le Biophore, UNIL‐SORGE, Univ. of Lausanne Lausanne Switzerland
- Botanical Garden&Inst. of Plant Sciences of the Univ. of Bern Bern Switzerland
| | - John R. Pannell
- Dept of Ecology and Evolution, Le Biophore, UNIL‐SORGE, Univ. of Lausanne Lausanne Switzerland
| | - Jeanne Tonnabel
- Dept of Ecology and Evolution, Le Biophore, UNIL‐SORGE, Univ. of Lausanne Lausanne Switzerland
- CEFE, Univ. Montpellier, CNRS, Univ. Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| |
Collapse
|
11
|
Zhou F, Chen Y, Wu H, Yin T. A Selection of Reliable Reference Genes for Gene Expression Analysis in the Female and Male Flowers of Salix suchowensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050647. [PMID: 35270117 PMCID: PMC8912643 DOI: 10.3390/plants11050647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 05/03/2023]
Abstract
Salix is a dioecious plant. Research on the molecular regulation mechanism of male and female inflorescence differentiation and development is necessary to analyze sex differentiation in the willow and the underlying mechanisms of unisexual flower development. However, at present, there are no reference genes suitable for stable expression in the process of willow inflorescence development. In this study, Salix suchowensis was used as the research material, nine candidate reference genes (α-TUB1, α-TUB2, ACT, H2A, DnaJ, CDC2, GAPDH, TIP41, β-TUB) were selected, and qRT-PCR technology was used to detect the expression of each candidate reference gene in female and male flowers at different developmental stages and using five algorithms (geNorm, Normfinder, Delta Ct, BestKeeper, and RefFinder) to comprehensively evaluate the stability of candidate reference genes. The results showed that ACT and DnaJ were stably expressed in all samples and could be used as reference genes. In addition, the reliability of the screening results was further verified via an expression pattern analysis of the CFS gene that encodes flower specific transcription factor in different samples. The stable reference genes selected in this study provide the basis for future research on the expression analysis of functional genes related to the development of male and female flowers of S. suchowensis.
Collapse
|
12
|
Hallingbäck HR, Pucholt P, Ingvarsson PK, Rönnberg-Wästljung AC, Berlin S. Genome-wide association mapping uncovers sex-associated copy number variation markers and female hemizygous regions on the W chromosome in Salix viminalis. BMC Genomics 2021; 22:710. [PMID: 34600471 PMCID: PMC8487499 DOI: 10.1186/s12864-021-08021-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/14/2021] [Indexed: 01/24/2023] Open
Abstract
Background Sex chromosomes are in some species largely undifferentiated (homomorphic) with restricted sex determination regions. Homomorphic but different sex chromosomes are found in the closely related genera Populus and Salix indicating flexible sex determination systems, ideal for studies of processes involved in sex chromosome evolution. We have performed genome-wide association studies of sex and analysed sex chromosomes in a population of 265 wild collected Salix viminalis accessions and studied the sex determining locus. Results A total of 19,592 markers were used in association analyses using both Fisher’s exact tests and a single-marker mixed linear model, which resulted in 48 and 41 sex-associated (SA) markers respectively. Across all 48 SA markers, females were much more often heterozygous than males, which is expected if females were the heterogametic sex. The majority of the SA markers were, based on positions in the S. purpurea genome, located on chromosome 15, previously demonstrated to be the sex chromosome. Interestingly, when mapping the genotyping-by-sequencing sequence tag harbouring the two SA markers with the highest significance to the S. viminalis genomic scaffolds, five regions of very high similarity were found: three on a scaffold that represents a part of chromosome 15, one on a scaffold that represents a part of chromosome 9 and one on a scaffold not anchored to the genome. Based on segregation differences of the alleles at the two marker positions and on differences in PCR amplification between females and males we conclude that females had multiple copies of this DNA fragment (chromosome 9 and 15), whereas males only had one (chromosome 9). We therefore postulate that the female specific sequences have been copied from chromosome 9 and inserted on chromosome 15, subsequently developing into a hemizygous W chromosome linked region. Conclusions Our results support that sex determination in S. viminalis is controlled by one locus on chromosome 15. The segregation patterns observed at the SA markers furthermore confirm that S. viminalis females are the heterogametic sex. We also identified a translocation from chromosome 9 to the W chromosome. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08021-2.
Collapse
Affiliation(s)
- Henrik R Hallingbäck
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07, Uppsala, Sweden.,Present Address: Skogforsk (The Forestry Research Institute of Sweden), Uppsala Science Park, SE-751 83, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07, Uppsala, Sweden
| | - Pär K Ingvarsson
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07, Uppsala, Sweden
| | - Ann Christin Rönnberg-Wästljung
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07, Uppsala, Sweden.
| | - Sofia Berlin
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07, Uppsala, Sweden
| |
Collapse
|
13
|
Ye X, Zhao X, Sun Y, Zhang M, Feng S, Zhou A, Wu W, Ma S, Liu S. The underlying molecular conservation and diversification of dioecious flower and leaf buds provide insights into the development, dormancy breaking, flowering, and sex association of willows. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:651-664. [PMID: 34488151 DOI: 10.1016/j.plaphy.2021.08.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/07/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
As harbingers of bursting growth, flower buds and leaf buds generally show similar surface morphologies but different structural and functional changes. Dioecious plants further generate four types of Female/Male Flower/Leaf Buds (FFB, FLB, MFB, and MLB), showing a complex regulation. However, little is known about their underlying molecular mechanisms. Here, we exemplify the woody dioecious Salix linearistipularis to investigate their morphological characteristics and potential molecular mechanisms by combining cytological, physiological, phenological, and transcriptomic datasets. First, FFB and MFB have simultaneous development dynamics and so do FLB and MLB. Interestingly, FLB and MLB show very similar expression profiles preparing for photosynthesis and stress-tolerance, whereas FFB and MFB show great similarities but also striking sexual differences. Comparing flower buds and leaf buds after their revival from dormancy shows different cold- and vernalization-responsive genes (e.g. SliVRN1, SliAGL19, and SliAGL24), implying different programming processes for dormancy breaking between the buds. Moreover, except SliAP3, the expression of ABCDE model genes is consistent with their roles in the buds, suggesting a conserved mechanism of flower development between dioecious Salix and hermaphrodite Arabidopsis. Finally, considering sex-associated genes (e.g. SliCLE25, SliTPS21, and SliARR9) on Salix chromosomes and other reports, we hypothesize a dynamic model of sex determination on chromosomes 15 and 19 in the last ancestor of Salix and Populus but evolutionarily on 15 in Salix after their divergence. Together, our study provides new insights into the molecular mechanisms of dioecious four-type buds by showing the genes involved in their development, dormancy breaking, flowering, and sexual association.
Collapse
Affiliation(s)
- Xiaoxue Ye
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China; Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Yajun Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China; Qiqihar Eco-environmental Monitoring Center of Heilongjiang Province, Qiqihar, 161005, China.
| | - Meijiao Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Shuang Feng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Shurong Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| |
Collapse
|
14
|
Prentout D, Stajner N, Cerenak A, Tricou T, Brochier-Armanet C, Jakse J, Käfer J, Marais GAB. Plant genera Cannabis and Humulus share the same pair of well-differentiated sex chromosomes. THE NEW PHYTOLOGIST 2021; 231:1599-1611. [PMID: 33978992 DOI: 10.1111/nph.17456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
We recently described, in Cannabis sativa, the oldest sex chromosome system documented so far in plants (12-28 Myr old). Based on the estimated age, we predicted that it should be shared by its sister genus Humulus, which is known also to possess XY chromosomes. Here, we used transcriptome sequencing of an F1 family of H. lupulus to identify and study the sex chromosomes in this species using the probabilistic method SEX-DETector. We identified 265 sex-linked genes in H. lupulus, which preferentially mapped to the C. sativa X chromosome. Using phylogenies of sex-linked genes, we showed that a region of the sex chromosomes had already stopped recombining in an ancestor of both species. Furthermore, as in C. sativa, Y-linked gene expression reduction is correlated to the position on the X chromosome, and highly Y degenerated genes showed dosage compensation. We report, for the first time in Angiosperms, a sex chromosome system that is shared by two different genera. Thus, recombination suppression started at least 21-25 Myr ago, and then (either gradually or step-wise) spread to a large part of the sex chromosomes (c. 70%), leading to a degenerated Y chromosome.
Collapse
Affiliation(s)
- Djivan Prentout
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Natasa Stajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Andreja Cerenak
- Slovenian Institute of Hop Research and Brewing, Cesta Zalskega Tabora 2, Zalec, SI-3310, Slovenia
| | - Theo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Celine Brochier-Armanet
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Jos Käfer
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, F-69622, France
- LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, 1349-017, Portugal
| |
Collapse
|
15
|
Song XY, Furman BLS, Premachandra T, Knytl M, Cauret CMS, Wasonga DV, Measey J, Dworkin I, Evans BJ. Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs ( Xenopus). Philos Trans R Soc Lond B Biol Sci 2021; 376:20200095. [PMID: 34247503 DOI: 10.1098/rstb.2020.0095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The tempo of sex chromosome evolution-how quickly, in what order, why and how their particular characteristics emerge during evolution-remains poorly understood. To understand this further, we studied three closely related species of African clawed frog (genus Xenopus), that each has independently evolved sex chromosomes. We identified population polymorphism in the extent of sex chromosome differentiation in wild-caught Xenopus borealis that corresponds to a large, previously identified region of recombination suppression. This large sex-linked region of X. borealis has an extreme concentration of genes that encode transcripts with sex-biased expression, and we recovered similar findings in the smaller sex-linked regions of Xenopus laevis and Xenopus tropicalis. In two of these species, strong skews in expression (mostly female-biased in X. borealis, mostly male-biased in X. tropicalis) are consistent with expectations associated with recombination suppression, and in X. borealis, we hypothesize that a degenerate ancestral Y-chromosome transitioned into its contemporary Z-chromosome. These findings indicate that Xenopus species are tolerant of differences between the sexes in dosage of the products of multiple genes, and offer insights into how evolutionary transformations of ancestral sex chromosomes carry forward to affect the function of new sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Xue-Ying Song
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Benjamin L S Furman
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.,Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Tharindu Premachandra
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Martin Knytl
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.,Department of Cell Biology, Charles University, 7 Vinicna Street, Prague 12843, Czech Republic
| | - Caroline M S Cauret
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Ben J Evans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
16
|
Extreme Y chromosome polymorphism corresponds to five male reproductive morphs of a freshwater fish. Nat Ecol Evol 2021; 5:939-948. [PMID: 33958755 DOI: 10.1038/s41559-021-01452-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Loss of recombination between sex chromosomes often depletes Y chromosomes of functional content and genetic variation, which might limit their potential to generate adaptive diversity. Males of the freshwater fish Poecilia parae occur as one of five discrete morphs, all of which shoal together in natural populations where morph frequency has been stable for over 50 years. Each morph uses a different complex reproductive strategy and morphs differ dramatically in colour, body size and mating behaviour. Morph phenotype is passed perfectly from father to son, indicating there are five Y haplotypes segregating in the species, which encode the complex male morph characteristics. Here, we examine Y diversity in natural populations of P. parae. Using linked-read sequencing on multiple P. parae females and males of all five morphs, we find that the genetic architecture of the male morphs evolved on the Y chromosome after recombination suppression had occurred with the X. Comparing Y chromosomes between each of the morphs, we show that, although the Ys of the three minor morphs that differ in colour are highly similar, there are substantial amounts of unique genetic material and divergence between the Ys of the three major morphs that differ in reproductive strategy, body size and mating behaviour. Altogether, our results suggest that the Y chromosome is able to overcome the constraints of recombination loss to generate extreme diversity, resulting in five discrete Y chromosomes that control complex reproductive strategies.
Collapse
|
17
|
Elkrewi M, Moldovan MA, Picard MAL, Vicoso B. Schistosome W-linked genes inform temporal dynamics of sex chromosome evolution and suggest candidate for sex determination. Mol Biol Evol 2021; 38:5345-5358. [PMID: 34146097 PMCID: PMC8662593 DOI: 10.1093/molbev/msab178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Schistosomes, the human parasites responsible for snail fever, are female-heterogametic. Different parts of their ZW sex chromosomes have stopped recombining in distinct lineages, creating "evolutionary strata" of various ages. While the Z-chromosome is well characterized at the genomic and molecular level, the W-chromosome has remained largely unstudied from an evolutionary perspective, as only a few W-linked genes have been detected outside of the model species Schistosoma mansoni. Here, we characterize the gene content and evolution of the W-chromosomes of S. mansoni and of the divergent species S. japonicum. We use a combined RNA/DNA k-mer based pipeline to assemble around one hundred candidate W-specific transcripts in each of the species. About half of them map to known protein coding genes, the majority homologous to S. mansoni Z-linked genes. We perform an extended analysis of the evolutionary strata present in the two species (including characterizing a previously undetected young stratum in S. japonicum) to infer patterns of sequence and expression evolution of W-linked genes at different time points after recombination was lost. W-linked genes show evidence of degeneration, including high rates of protein evolution and reduced expression. Most are found in young lineage-specific strata, with only a few high expression ancestral W-genes remaining, consistent with the progressive erosion of non-recombining regions. Among these, the splicing factor U2AF2 stands out as a promising candidate for primary sex determination, opening new avenues for understanding the molecular basis of the reproductive biology of this group.
Collapse
Affiliation(s)
- Marwan Elkrewi
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria
| | - Mikhail A Moldovan
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Marion A L Picard
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria.,Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria
| |
Collapse
|
18
|
He L, Jia KH, Zhang RG, Wang Y, Shi TL, Li ZC, Zeng SW, Cai XJ, Wagner ND, Hörandl E, Muyle A, Yang K, Charlesworth D, Mao JF. Chromosome-scale assembly of the genome of Salix dunnii reveals a male-heterogametic sex determination system on chromosome 7. Mol Ecol Resour 2021; 21:1966-1982. [PMID: 33609314 PMCID: PMC8359994 DOI: 10.1111/1755-0998.13362] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
Sex determination systems in plants can involve either female or male heterogamety (ZW or XY, respectively). Here we used Illumina short reads, Oxford Nanopore Technologies (ONT) long reads and Hi-C reads to assemble the first chromosome-scale genome of a female willow tree (Salix dunnii), and to predict genes using transcriptome sequences and available databases. The final genome sequence of 328 Mb in total was assembled in 29 scaffolds, and includes 31,501 predicted genes. Analyses of short-read sequence data that included female and male plants suggested a male heterogametic sex-determining factor on chromosome 7, implying that, unlike the female heterogamety of most species in the genus Salix, male heterogamety evolved in the subgenus Salix. The S. dunnii sex-linked region occupies about 3.21 Mb of chromosome 7 in females (representing its position in the X chromosome), probably within a pericentromeric region. Our data suggest that this region is enriched for transposable element insertions, and about one-third of its 124 protein-coding genes were gained via duplications from other genome regions. We detect purifying selection on the genes that were ancestrally present in the region, though some have been lost. Transcriptome data from female and male individuals show more male- than female-biased genes in catkin and leaf tissues, and indicate enrichment for male-biased genes in the pseudo-autosomal regions. Our study provides valuable genomic resources for further studies of sex-determining regions in the family Salicaceae, and sex chromosome evolution.
Collapse
Affiliation(s)
- Li He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai-Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ren-Gang Zhang
- Ori (Shandong) Gene Science and Technology Co., Ltd, Weifang, China
| | - Yuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tian-Le Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhi-Chao Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Si-Wen Zeng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin-Jie Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Natascha Dorothea Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Aline Muyle
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Ke Yang
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Yang W, Wang D, Li Y, Zhang Z, Tong S, Li M, Zhang X, Zhang L, Ren L, Ma X, Zhou R, Sanderson BJ, Keefover-Ring K, Yin T, Smart LB, Liu J, DiFazio SP, Olson M, Ma T. A General Model to Explain Repeated Turnovers of Sex Determination in the Salicaceae. Mol Biol Evol 2021; 38:968-980. [PMID: 33027519 PMCID: PMC7947767 DOI: 10.1093/molbev/msaa261] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex-determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosomes in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.
Collapse
Affiliation(s)
- Wenlu Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Deyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhiyang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shaofei Tong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liwen Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinzhi Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ran Zhou
- Department of Biology, West Virginia University, Morgantown, WV
| | - Brian J Sanderson
- Department of Biology, West Virginia University, Morgantown, WV
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin—Madison, Madison, WI
| | - Tongming Yin
- The Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, China
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, China
| | | | - Matthew Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Almeida P, Sandkam BA, Morris J, Darolti I, Breden F, Mank JE. Divergence and Remarkable Diversity of the Y Chromosome in Guppies. Mol Biol Evol 2021; 38:619-633. [PMID: 33022040 PMCID: PMC7826173 DOI: 10.1093/molbev/msaa257] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The guppy sex chromosomes show an extraordinary diversity in divergence across populations and closely related species. In order to understand the dynamics of the guppy Y chromosome, we used linked-read sequencing to assess Y chromosome evolution and diversity across upstream and downstream population pairs that vary in predator and food abundance in three replicate watersheds. Based on our population-specific genome assemblies, we first confirmed and extended earlier reports of two strata on the guppy sex chromosomes. Stratum I shows significant accumulation of male-specific sequence, consistent with Y divergence, and predates the colonization of Trinidad. In contrast, Stratum II shows divergence from the X, but no Y-specific sequence, and this divergence is greater in three replicate upstream populations compared with their downstream pair. Despite longstanding assumptions that sex chromosome recombination suppression is achieved through inversions, we find no evidence of inversions associated with either Stratum I or Stratum II. Instead, we observe a remarkable diversity in Y chromosome haplotypes within each population, even in the ancestral Stratum I. This diversity is likely due to gradual mechanisms of recombination suppression, which, unlike an inversion, allow for the maintenance of multiple haplotypes. In addition, we show that this Y diversity is dominated by low-frequency haplotypes segregating in the population, suggesting a link between haplotype diversity and female preference for rare Y-linked color variation. Our results reveal the complex interplay between recombination suppression and Y chromosome divergence at the earliest stages of sex chromosome divergence.
Collapse
Affiliation(s)
- Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Benjamin A Sandkam
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jake Morris
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Xue L, Wu H, Chen Y, Li X, Hou J, Lu J, Wei S, Dai X, Olson MS, Liu J, Wang M, Charlesworth D, Yin T. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides. Nat Commun 2020; 11:5893. [PMID: 33208755 PMCID: PMC7674411 DOI: 10.1038/s41467-020-19559-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Almost all plants in the genus Populus are dioecious (i.e. trees are either male or female), but it is unknown whether dioecy evolved in a common ancestor or independently in different subgenera. Here, we sequence the small peritelomeric X- and Y-linked regions of P. deltoides chromosome XIX. Two genes are present only in the Y-linked region. One is a duplication of a non-Y-linked, female-specifically expressed response regulator, which produces siRNAs that block this gene's expression, repressing femaleness. The other is an LTR/Gypsy transposable element family member, which generates long non-coding RNAs. Overexpression of this gene in A. thaliana promotes androecium development. We also find both genes in the sex-determining region of P. simonii, a different poplar subgenus, which suggests that they are both stable components of poplar sex-determining systems. By contrast, only the duplicated response regulator gene is present in the sex-linked regions of P. davidiana and P. tremula. Therefore, findings in our study suggest dioecy may have evolved independently in different poplar subgenera.
Collapse
Affiliation(s)
- Liangjiao Xue
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Huaitong Wu
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Yingnan Chen
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Xiaoping Li
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Jing Hou
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Jing Lu
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Suyun Wei
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Xiaogang Dai
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Mingxiu Wang
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| | - Tongming Yin
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China.
| |
Collapse
|
22
|
Baránková S, Pascual-Díaz JP, Sultana N, Alonso-Lifante MP, Balant M, Barros K, D'Ambrosio U, Malinská H, Peska V, Pérez Lorenzo I, Kovařík A, Vyskot B, Janoušek B, Garcia S. Sex-chrom, a database on plant sex chromosomes. THE NEW PHYTOLOGIST 2020; 227:1594-1604. [PMID: 32357248 DOI: 10.1111/nph.16635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 05/15/2023]
Affiliation(s)
- Simona Baránková
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Joan Pere Pascual-Díaz
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Nusrat Sultana
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
- Department of Botany, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Maria Pilar Alonso-Lifante
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Manica Balant
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Karina Barros
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Ugo D'Ambrosio
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Hana Malinská
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| | - Vratislav Peska
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Iván Pérez Lorenzo
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Aleš Kovařík
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Boris Vyskot
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Bohuslav Janoušek
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Sònia Garcia
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| |
Collapse
|
23
|
Martinez-Ruiz C, Pracana R, Stolle E, Paris CI, Nichols RA, Wurm Y. Genomic architecture and evolutionary antagonism drive allelic expression bias in the social supergene of red fire ants. eLife 2020; 9:55862. [PMID: 32773032 PMCID: PMC7476760 DOI: 10.7554/elife.55862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
Supergene regions maintain alleles of multiple genes in tight linkage through suppressed recombination. Despite their importance in determining complex phenotypes, our empirical understanding of early supergene evolution is limited. Here we focus on the young ‘social’ supergene of fire ants, a powerful system for disentangling the effects of evolutionary antagonism and suppressed recombination. We hypothesize that gene degeneration and social antagonism shaped the evolution of the fire ant supergene, resulting in distinct patterns of gene expression. We test these ideas by identifying allelic differences between supergene variants, characterizing allelic expression across populations, castes and body parts, and contrasting allelic expression biases with differences in expression between social forms. We find strong signatures of gene degeneration and gene-specific dosage compensation. On this background, a small portion of the genes has the signature of adaptive responses to evolutionary antagonism between social forms. Red fire ants (Solenopsis invicta) are native to South America, but the species has spread to North America, Australia and New Zealand where it can be an invasive pest. A reason for this species’ invasiveness types of colonies : one with a single egg-laying queen and another with several queens. However, it is not possible to simply add more queens to a colony with one queen. Instead, the number of queens in a colony is controlled genetically, by a chromosome known as the ‘social chromosome’. Like many other animals, red fire ants are diploid: their cells have two copies of each chromosome, which can carry two different versions of each gene. The social chromosome is no different, and it comes in two variants, SB and Sb. Each ant can therefore have either two SB chromosomes, leading to a colony with a single queen; or one SB chromosome and one Sb chromosome, leading to a colony with multiple queens. Ants with two copies of the Sb variant die when they are young, so the Sb version is inherited in a similar way to how the Y chromosome is passed on in humans. However, the social chromosome in red fire ants appeared less than one million years ago, making it much younger than the human Y chromosome, which is 180 million years old. This makes the social chromosome a good candidate for examining the early evolution of special chromosome variants that are only inherited. How differences between the SB and the Sb chromosomes are evolving is an open question, however. Perhaps each version of the social chromosome has been optimised through natural selection to one colony type. Another suggestion is that the Sb chromosome has degenerated over time because its genes cannot be ‘reshuffled’ as they would be on normal chromosomes. Martinez-Ruiz et al. compared genetic variants on the SB and Sb chromosomes, along with their expression in different types of ant colonies. The analysis showed that the Sb variant is in fact breaking down because of the lack of gene shuffling. This loss is compensated by intact copies of the same genes found on the SB variant, which explains why ants with the Sb variant can only survive if they also carry the SB version. Only a handful of genes on the social chromosomes appear to have been optimised by natural selection. Therefore Martinez-Ruiz et al. concluded the differences between the two chromosomes that lead to different colony types are collateral effects of Sb’s inability to reshuffle its genes. This work reveals how a special chromosome similar to the Y chromosome in humans evolved. It also shows how multiple complex evolutionary forces can shape a species’ genetic makeup and social forms.
Collapse
Affiliation(s)
- Carlos Martinez-Ruiz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Rodrigo Pracana
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Eckart Stolle
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Carolina Ivon Paris
- Departamento Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires, Argentina
| | - Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Alan Turing Institute, London, United Kingdom
| |
Collapse
|
24
|
Wang W, Carlson CH, Smart LB, Carlson JE. Transcriptome analysis of contrasting resistance to herbivory by Empoasca fabae in two shrub willow species and their hybrid progeny. PLoS One 2020; 15:e0236586. [PMID: 32726362 PMCID: PMC7390382 DOI: 10.1371/journal.pone.0236586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/08/2020] [Indexed: 11/18/2022] Open
Abstract
Short rotation woody biomass cultivars developed from fast-growing shrub species of willow (Salix spp.) have superior properties as perennial energy crops for the Northeast and Midwest US. However, the insect pest potato leafhopper (PLH) Empoasca fabae (Harris) can cause serious damage and reduce yield of susceptible genotypes. Currently, the willow cultivars in use display varying levels of susceptibility under PLH infestation. However, genes and markers for resistance to PLH are not yet available for marker-assisted selection in breeding. In this study, transcriptome differences between a resistant genotype 94006 (S. purpurea) and a susceptible cultivar ‘Jorr’ (S. viminalis), and their hybrid progeny were determined. Over 600 million RNA-Seq reads were generated and mapped to the Salix purpurea reference transcriptome. Gene expression analyses revealed the unique defense mechanism in resistant genotype 94006 that involves PLH-induced secondary cell wall modification. In the susceptible genotypes, genes involved in programed cell death were highly expressed, explaining the necrosis symptoms after PLH feeding. Overall, the discovery of resistance genes and defense mechanisms provides new resources for shrub willow breeding and research in the future.
Collapse
Affiliation(s)
- Wanyan Wang
- Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Craig H. Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, United States of America
| | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, United States of America
| | - John E. Carlson
- Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Almeida P, Proux-Wera E, Churcher A, Soler L, Dainat J, Pucholt P, Nordlund J, Martin T, Rönnberg-Wästljung AC, Nystedt B, Berlin S, Mank JE. Genome assembly of the basket willow, Salix viminalis, reveals earliest stages of sex chromosome expansion. BMC Biol 2020; 18:78. [PMID: 32605573 PMCID: PMC7329446 DOI: 10.1186/s12915-020-00808-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sex chromosomes have evolved independently multiple times in eukaryotes and are therefore considered a prime example of convergent genome evolution. Sex chromosomes are known to emerge after recombination is halted between a homologous pair of chromosomes, and this leads to a range of non-adaptive modifications causing gradual degeneration and gene loss on the sex-limited chromosome. However, the proximal causes of recombination suppression and the pace at which degeneration subsequently occurs remain unclear. RESULTS Here, we use long- and short-read single-molecule sequencing approaches to assemble and annotate a draft genome of the basket willow, Salix viminalis, a species with a female heterogametic system at the earliest stages of sex chromosome emergence. Our single-molecule approach allowed us to phase the emerging Z and W haplotypes in a female, and we detected very low levels of Z/W single-nucleotide divergence in the non-recombining region. Linked-read sequencing of the same female and an additional male (ZZ) revealed the presence of two evolutionary strata supported by both divergence between the Z and W haplotypes and by haplotype phylogenetic trees. Gene order is still largely conserved between the Z and W homologs, although the W-linked region contains genes involved in cytokinin signaling regulation that are not syntenic with the Z homolog. Furthermore, we find no support across multiple lines of evidence for inversions, which have long been assumed to halt recombination between the sex chromosomes. CONCLUSIONS Our data suggest that selection against recombination is a more gradual process at the earliest stages of sex chromosome formation than would be expected from an inversion and may result instead from the accumulation of transposable elements. Our results present a cohesive understanding of the earliest genomic consequences of recombination suppression as well as valuable insights into the initial stages of sex chromosome formation and regulation of sex differentiation.
Collapse
Affiliation(s)
- Pedro Almeida
- Department of Genetics, Evolution & Environment, University College London, London, UK.
| | - Estelle Proux-Wera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Allison Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jacques Dainat
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, National Genomics Infrastructure, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tom Martin
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ann-Christin Rönnberg-Wästljung
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Björn Nystedt
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sofia Berlin
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Judith E Mank
- Department of Genetics, Evolution & Environment, University College London, London, UK
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
26
|
Almeida P, Proux-Wera E, Churcher A, Soler L, Dainat J, Pucholt P, Nordlund J, Martin T, Rönnberg-Wästljung AC, Nystedt B, Berlin S, Mank JE. Genome assembly of the basket willow, Salix viminalis, reveals earliest stages of sex chromosome expansion. BMC Biol 2020. [PMID: 32605573 DOI: 10.1101/589804v1.full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Sex chromosomes have evolved independently multiple times in eukaryotes and are therefore considered a prime example of convergent genome evolution. Sex chromosomes are known to emerge after recombination is halted between a homologous pair of chromosomes, and this leads to a range of non-adaptive modifications causing gradual degeneration and gene loss on the sex-limited chromosome. However, the proximal causes of recombination suppression and the pace at which degeneration subsequently occurs remain unclear. RESULTS Here, we use long- and short-read single-molecule sequencing approaches to assemble and annotate a draft genome of the basket willow, Salix viminalis, a species with a female heterogametic system at the earliest stages of sex chromosome emergence. Our single-molecule approach allowed us to phase the emerging Z and W haplotypes in a female, and we detected very low levels of Z/W single-nucleotide divergence in the non-recombining region. Linked-read sequencing of the same female and an additional male (ZZ) revealed the presence of two evolutionary strata supported by both divergence between the Z and W haplotypes and by haplotype phylogenetic trees. Gene order is still largely conserved between the Z and W homologs, although the W-linked region contains genes involved in cytokinin signaling regulation that are not syntenic with the Z homolog. Furthermore, we find no support across multiple lines of evidence for inversions, which have long been assumed to halt recombination between the sex chromosomes. CONCLUSIONS Our data suggest that selection against recombination is a more gradual process at the earliest stages of sex chromosome formation than would be expected from an inversion and may result instead from the accumulation of transposable elements. Our results present a cohesive understanding of the earliest genomic consequences of recombination suppression as well as valuable insights into the initial stages of sex chromosome formation and regulation of sex differentiation.
Collapse
Affiliation(s)
- Pedro Almeida
- Department of Genetics, Evolution & Environment, University College London, London, UK.
| | - Estelle Proux-Wera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Allison Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jacques Dainat
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, National Genomics Infrastructure, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tom Martin
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ann-Christin Rönnberg-Wästljung
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Björn Nystedt
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sofia Berlin
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Judith E Mank
- Department of Genetics, Evolution & Environment, University College London, London, UK
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
27
|
Müller NA, Kersten B, Leite Montalvão AP, Mähler N, Bernhardsson C, Bräutigam K, Carracedo Lorenzo Z, Hoenicka H, Kumar V, Mader M, Pakull B, Robinson KM, Sabatti M, Vettori C, Ingvarsson PK, Cronk Q, Street NR, Fladung M. A single gene underlies the dynamic evolution of poplar sex determination. NATURE PLANTS 2020; 6:630-637. [PMID: 32483326 DOI: 10.1038/s41477-020-0672-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
Although hundreds of plant lineages have independently evolved dioecy (that is, separation of the sexes), the underlying genetic basis remains largely elusive1. Here we show that diverse poplar species carry partial duplicates of the ARABIDOPSIS RESPONSE REGULATOR 17 (ARR17) orthologue in the male-specific region of the Y chromosome. These duplicates give rise to small RNAs apparently causing male-specific DNA methylation and silencing of the ARR17 gene. CRISPR-Cas9-induced mutations demonstrate that ARR17 functions as a sex switch, triggering female development when on and male development when off. Despite repeated turnover events, including a transition from the XY system to a ZW system, the sex-specific regulation of ARR17 is conserved across the poplar genus and probably beyond. Our data reveal how a single-gene-based mechanism of dioecy can enable highly dynamic sex-linked regions and contribute to maintaining recombination and integrity of sex chromosomes.
Collapse
Affiliation(s)
- Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany.
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | - Niklas Mähler
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Carolina Bernhardsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Katharina Bräutigam
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | - Hans Hoenicka
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vikash Kumar
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Malte Mader
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Birte Pakull
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | - Maurizio Sabatti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Cristina Vettori
- Institute of Biosciences and BioResources, Division of Florence, National Research Council, Sesto Fiorentino, Italy
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Quentin Cronk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
28
|
Li W, Wu H, Li X, Chen Y, Yin T. Fine mapping of the sex locus in Salix triandra confirms a consistent sex determination mechanism in genus Salix. HORTICULTURE RESEARCH 2020; 7:64. [PMID: 32377355 PMCID: PMC7193568 DOI: 10.1038/s41438-020-0289-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 05/19/2023]
Abstract
Salix triandra belongs to section Amygdalinae in genus Salix, which is in a different section from the willow species in which sex determination has been well studied. Studying sex determination in distantly related willow species will help to clarify whether the sexes of different willows arise through a common sex determination system. For this purpose, we generated an intraspecific full-sib F1 population for S. triandra and constructed high-density genetic linkage maps for the crossing parents using restriction site-associated DNA sequencing and following a two-way pseudo-testcross strategy. With the established maps, the sex locus was positioned in linkage group XV only in the maternal map, and no sex linkage was detected in the paternal map. Consistent with previous findings in other willow species, our study showed that chromosome XV was the incipient sex chromosome and that females were the heterogametic sex in S. triandra. Therefore, sex in this willow species is also determined through a ZW sex determination system. We further performed fine mapping in the vicinity of the sex locus with SSR markers. By comparing the physical and genetic distances for the target interval encompassing the sex determination gene confined by SSRs, severe recombination repression was revealed in the sex determination region in the female map. The recombination rate in the confined interval encompassing the sex locus was approximately eight-fold lower than the genome-wide average. This study provides critical information relevant to sex determination in S. triandra.
Collapse
Affiliation(s)
- Wei Li
- The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| | - Huaitong Wu
- The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| | - Xiaoping Li
- The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| | - Yingnan Chen
- The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| | - Tongming Yin
- The Key Lab of Cultivar Innovation and Germplasm Improvement of Salicaceae, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
29
|
Ma WJ, Carpentier F, Giraud T, Hood ME. Differential Gene Expression between Fungal Mating Types Is Associated with Sequence Degeneration. Genome Biol Evol 2020; 12:243-258. [PMID: 32058544 PMCID: PMC7150583 DOI: 10.1093/gbe/evaa028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2020] [Indexed: 12/13/2022] Open
Abstract
Degenerative mutations in non-recombining regions, such as in sex chromosomes, may lead to differential expression between alleles if mutations occur stochastically in one or the other allele. Reduced allelic expression due to degeneration has indeed been suggested to occur in various sex-chromosome systems. However, whether an association occurs between specific signatures of degeneration and differential expression between alleles has not been extensively tested, and sexual antagonism can also cause differential expression on sex chromosomes. The anther-smut fungus Microbotryum lychnidis-dioicae is ideal for testing associations between specific degenerative signatures and differential expression because 1) there are multiple evolutionary strata on the mating-type chromosomes, reflecting successive recombination suppression linked to mating-type loci; 2) separate haploid cultures of opposite mating types help identify differential expression between alleles; and 3) there is no sexual antagonism as a confounding factor accounting for differential expression. We found that differentially expressed genes were enriched in the four oldest evolutionary strata compared with other genomic compartments, and that, within compartments, several signatures of sequence degeneration were greater for differentially expressed than non-differentially expressed genes. Two particular degenerative signatures were significantly associated with lower expression levels within differentially expressed allele pairs: upstream insertion of transposable elements and mutations truncating the protein length. Other degenerative mutations associated with differential expression included nonsynonymous substitutions and altered intron or GC content. The association between differential expression and allele degeneration is relevant for a broad range of taxa where mating compatibility or sex is determined by genes located in large regions where recombination is suppressed.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Biology, Amherst College, Amherst, MA
| | - Fantin Carpentier
- Ecologie Systematique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, Orsay, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, Orsay, France
| | | |
Collapse
|
30
|
Feng G, Sanderson BJ, Keefover-Ring K, Liu J, Ma T, Yin T, Smart LB, DiFazio SP, Olson MS. Pathways to sex determination in plants: how many roads lead to Rome? CURRENT OPINION IN PLANT BIOLOGY 2020; 54:61-68. [PMID: 32106015 DOI: 10.1016/j.pbi.2020.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 05/20/2023]
Abstract
The presence of thousands of independent origins of dioecy in angiosperms provides a unique opportunity to address the parallel evolution of the molecular pathways underlying unisexual flowers. Recent progress towards identifying sex determination genes has identified hormone response pathways, mainly associated with cytokinin and ethylene response pathways, as having been recruited multiple times independently to control unisexuality. Moreover, transcriptomics has begun to identify commonalities among intermediate sections of signal transduction pathways. These recent advances set the stage for development of a comparative evolutionary development research program to identify the shared and unique aspects of the genetic pathways of unisexual flower development in angiosperms.
Collapse
Affiliation(s)
- Guanqiao Feng
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Brian J Sanderson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin Madison, Madison, WI 53795, USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
31
|
Wang Y, Jia HM, Shen YT, Zhao HB, Yang QS, Zhu CQ, Sun DL, Wang GY, Zhou CC, Jiao Y, Chai CY, Yan LJ, Li XW, Jia HJ, Gao ZS. Construction of an anchoring SSR marker genetic linkage map and detection of a sex-linked region in two dioecious populations of red bayberry. HORTICULTURE RESEARCH 2020; 7:53. [PMID: 32257239 PMCID: PMC7109115 DOI: 10.1038/s41438-020-0276-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/02/2020] [Accepted: 02/12/2020] [Indexed: 05/21/2023]
Abstract
Red bayberry (Morella rubra) is an evergreen fruit tree found in southern China whose whole-genome sequence has recently been published. We updated the linkage map of the species by adding 118 SSR markers and the female-specific marker MrFT2_BD-SEX. The integrated map included eight linkage groups and spanned 491 cM. Eleven sex-associated markers were identified, six of which were located in linkage group 8, in agreement with the previously reported location of the sex-determining region. The MrFT2_BD-SEX marker was genotyped in 203 cultivated accessions. Among the females of the accessions, we found two female-specific alleles, designated W-b (151 bp) and W-d (129 bp). We previously found that 'Dongkui', a female cultivar, could produce viable pollen (we refer to such plants 'Dongkui-male') and serve as the paternal parent in crosses. The genotypes of the MrFT2_BD-SEX marker were W-b/Z in 'Biqi' and W-d/Z in 'Dongkui-male'. The progeny of a cross between these parents produced a 3:1 female (W-) to male (ZZ) ratio and the expected 1:1:1:1 ratio of W-b/W-d: W-b/Z: W-d/Z: Z/Z. In addition, the flowering and fruiting phenotypes of all the F1 progeny fit their genotypes. Our results confirm the existence of ZW sex determination and show that the female phenotype is controlled by a single dominant locus (W) in a small genomic region (59 kb and less than 3.3 cM). Furthermore, we have produced a homozygous "super female" (WW) that should produce all-female offspring in the F2 generation, providing a foundation for commercial use and presenting great potential for use in modern breeding programs.
Collapse
Affiliation(s)
- Yan Wang
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Hui-Min Jia
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Yu-Tong Shen
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Hai-Bo Zhao
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Qin-Song Yang
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Chang-Qing Zhu
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - De-Li Sun
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Guo-Yun Wang
- Yuyao Forestry Technology Extension Center, 315400 Ningbo, China
| | - Chao-Chao Zhou
- Yuyao Forestry Technology Extension Center, 315400 Ningbo, China
| | - Yun Jiao
- Institute of Forestry, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Chun-Yan Chai
- Cixi Forestry Technology Extension Center, 315300 Cixi, China
| | - Li-Ju Yan
- Linhai Forestry Technology Extension Center, 317000 Taizhou, China
| | - Xiong-Wei Li
- Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, 201403 Shanghai, China
| | - Hui-Juan Jia
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Zhong-Shan Gao
- Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
32
|
Chen JH, Huang Y, Brachi B, Yun QZ, Zhang W, Lu W, Li HN, Li WQ, Sun XD, Wang GY, He J, Zhou Z, Chen KY, Ji YH, Shi MM, Sun WG, Yang YP, Zhang RG, Abbott RJ, Sun H. Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. Nat Commun 2019; 10:5230. [PMID: 31745089 PMCID: PMC6864086 DOI: 10.1038/s41467-019-13128-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/22/2019] [Indexed: 01/25/2023] Open
Abstract
The Hengduan Mountains (HDM) biodiversity hotspot exhibits exceptional alpine plant diversity. Here, we investigate factors driving intraspecific divergence within a HDM alpine species Salix brachista (Cushion willow), a common component of subnival assemblages. We produce a high-quality genome assembly for this species and characterize its genetic diversity, population structure and pattern of evolution by resequencing individuals collected across its distribution. We detect population divergence that has been shaped by a landscape of isolated sky island-like habitats displaying strong environmental heterogeneity across elevational gradients, combined with population size fluctuations that have occurred since approximately the late Miocene. These factors are likely important drivers of intraspecific divergence within Cushion willow and possibly other alpine plants with a similar distribution. Since intraspecific divergence is often the first step toward speciation, the same factors can be important contributors to the high alpine species diversity in the HDM.
Collapse
Affiliation(s)
- Jia-Hui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China.
| | - Yuan Huang
- School of Life Sciences, Yunnan Normal University, 650092, Kunming, Yunnan, P. R. China
| | | | - Quan-Zheng Yun
- Beijing Ori-Gene Science and Technology Co., Ltd, 102206, Beijing, P.R. China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, 100871, Beijing, P.R. China
- School of Life Sciences, Peking University, 100871, Beijing, P.R. China
| | - Wei Lu
- School of Life Sciences, Peking University, 100871, Beijing, P.R. China
| | - Hong-Na Li
- Beijing Ori-Gene Science and Technology Co., Ltd, 102206, Beijing, P.R. China
| | - Wen-Qing Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Xu-Dong Sun
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Guang-Yan Wang
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Jun He
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Zhuo Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Kai-Yun Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Yun-Heng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Ming-Ming Shi
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Wen-Guang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China
| | - Yong-Ping Yang
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China.
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China.
| | - Ren-Gang Zhang
- Beijing Ori-Gene Science and Technology Co., Ltd, 102206, Beijing, P.R. China
| | - Richard J Abbott
- School of Biology, University of St. Andrews, St. Andrews, Fife, KY16 9TH, UK.
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, P. R. China.
| |
Collapse
|
33
|
Palmer DH, Rogers TF, Dean R, Wright AE. How to identify sex chromosomes and their turnover. Mol Ecol 2019; 28:4709-4724. [PMID: 31538682 PMCID: PMC6900093 DOI: 10.1111/mec.15245] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Although sex is a fundamental component of eukaryotic reproduction, the genetic systems that control sex determination are highly variable. In many organisms the presence of sex chromosomes is associated with female or male development. Although certain groups possess stable and conserved sex chromosomes, others exhibit rapid sex chromosome evolution, including transitions between male and female heterogamety, and turnover in the chromosome pair recruited to determine sex. These turnover events have important consequences for multiple facets of evolution, as sex chromosomes are predicted to play a central role in adaptation, sexual dimorphism, and speciation. However, our understanding of the processes driving the formation and turnover of sex chromosome systems is limited, in part because we lack a complete understanding of interspecific variation in the mechanisms by which sex is determined. New bioinformatic methods are making it possible to identify and characterize sex chromosomes in a diverse array of non-model species, rapidly filling in the numerous gaps in our knowledge of sex chromosome systems across the tree of life. In turn, this growing data set is facilitating and fueling efforts to address many of the unanswered questions in sex chromosome evolution. Here, we synthesize the available bioinformatic approaches to produce a guide for characterizing sex chromosome system and identity simultaneously across clades of organisms. Furthermore, we survey our current understanding of the processes driving sex chromosome turnover, and highlight important avenues for future research.
Collapse
Affiliation(s)
- Daniela H. Palmer
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Thea F. Rogers
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Rebecca Dean
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Alison E. Wright
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
34
|
Veltsos P, Ridout KE, Toups MA, González-Martínez SC, Muyle A, Emery O, Rastas P, Hudzieczek V, Hobza R, Vyskot B, Marais GAB, Filatov DA, Pannell JR. Early Sex-Chromosome Evolution in the Diploid Dioecious Plant Mercurialis annua. Genetics 2019; 212:815-835. [PMID: 31113811 PMCID: PMC6614902 DOI: 10.1534/genetics.119.302045] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
Suppressed recombination allows divergence between homologous sex chromosomes and the functionality of their genes. Here, we reveal patterns of the earliest stages of sex-chromosome evolution in the diploid dioecious herb Mercurialis annua on the basis of cytological analysis, de novo genome assembly and annotation, genetic mapping, exome resequencing of natural populations, and transcriptome analysis. The genome assembly contained 34,105 expressed genes, of which 10,076 were assigned to linkage groups. Genetic mapping and exome resequencing of individuals across the species range both identified the largest linkage group, LG1, as the sex chromosome. Although the sex chromosomes of M. annua are karyotypically homomorphic, we estimate that about one-third of the Y chromosome, containing 568 transcripts and spanning 22.3 cM in the corresponding female map, has ceased recombining. Nevertheless, we found limited evidence for Y-chromosome degeneration in terms of gene loss and pseudogenization, and most X- and Y-linked genes appear to have diverged in the period subsequent to speciation between M. annua and its sister species M. huetii, which shares the same sex-determining region. Taken together, our results suggest that the M. annua Y chromosome has at least two evolutionary strata: a small old stratum shared with M. huetii, and a more recent larger stratum that is probably unique to M. annua and that stopped recombining ∼1 MYA. Patterns of gene expression within the nonrecombining region are consistent with the idea that sexually antagonistic selection may have played a role in favoring suppressed recombination.
Collapse
Affiliation(s)
- Paris Veltsos
- Department of Biology, Indiana University, Bloomington, IN 47405
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Switzerland
| | - Kate E Ridout
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Switzerland
- Department of Plant Sciences, University of Oxford, OX1 3RB, United Kingdom
- Department of Oncology, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Melissa A Toups
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Switzerland
- Department of Integrative Biology, University of Texas, Austin, 78712 Texas
| | | | - Aline Muyle
- Laboratoire Biométrie et Biologie Évolutive (UMR 5558), CNRS/Université Lyon 1, 69100 Villeurbanne, France
| | - Olivier Emery
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Switzerland
| | - Pasi Rastas
- University of Helsinki, Institute of Biotechnology, 00014, Finland
| | - Vojtech Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61200 Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61200 Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61200 Brno, Czech Republic
| | | | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, OX1 3RB, United Kingdom
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Switzerland
| |
Collapse
|
35
|
Jia H, Jia H, Cai Q, Wang Y, Zhao H, Yang W, Wang G, Li Y, Zhan D, Shen Y, Niu Q, Chang L, Qiu J, Zhao L, Xie H, Fu W, Jin J, Li X, Jiao Y, Zhou C, Tu T, Chai C, Gao J, Fan L, van de Weg E, Wang J, Gao Z. The red bayberry genome and genetic basis of sex determination. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:397-409. [PMID: 29992702 PMCID: PMC6335074 DOI: 10.1111/pbi.12985] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 05/12/2023]
Abstract
Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high-quality genome for both a female and a male individual of red bayberry. The genome size was 313-Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole-genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59-Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them are related to sex floral development. This 59-Kb female-specific region was likely to be derived from duplication and rearrangement of paralogous genes and retained non-recombinant in the female-specific region. Sex-specific molecular markers developed from candidate genes co-segregated with sex in a genetically diverse female and male germplasm. We propose sex determination follow the ZW model of female heterogamety. The genome sequence of red bayberry provides a valuable resource for plant sex chromosome evolution and also provides important insights for molecular biology, genetics and modern breeding in Myricaceae family.
Collapse
Affiliation(s)
- Hui‐Min Jia
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Hui‐Juan Jia
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | | | - Yan Wang
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Hai‐Bo Zhao
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Wei‐Fei Yang
- Hangzhou 1 Gene LtdHangzhouChina
- Forestry Technology Extension CenterYuyaoNingboChina
- Present address:
Annoroad Gene Tech. Co., LtdBeijingChina
| | - Guo‐Yun Wang
- Forestry Technology Extension CenterYuyaoNingboChina
| | - Ying‐Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | | | - Yu‐Tong Shen
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Qing‐Feng Niu
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular GeneticsCenter of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Le Chang
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Jie Qiu
- Institute of Crop Science & Institute of BioinformaticsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Lan Zhao
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Han‐Bing Xie
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Wan‐Yi Fu
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Jing Jin
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Xiong‐Wei Li
- Forest & Fruit Tree InstituteShanghai Academy of Agricultural SciencesShanghaiChina
| | - Yun Jiao
- Institute of ForestryNingbo Academy of Agricultural ScienceNingboChina
| | | | - Ting Tu
- Shunmei Breeding and Propagation Centre for Chinese BayberryYuyaoChina
| | | | | | - Long‐Jiang Fan
- Institute of Crop Science & Institute of BioinformaticsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Eric van de Weg
- Plant Breeding‐Wageningen University and ResearchWageningenThe Netherlands
| | | | - Zhong‐Shan Gao
- Institute of Fruit ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
36
|
Martin H, Carpentier F, Gallina S, Godé C, Schmitt E, Muyle A, Marais GAB, Touzet P. Evolution of Young Sex Chromosomes in Two Dioecious Sister Plant Species with Distinct Sex Determination Systems. Genome Biol Evol 2019; 11:350-361. [PMID: 30649306 PMCID: PMC6364797 DOI: 10.1093/gbe/evz001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
In the last decade, progress has been made in methods to identify the sex determination system in plants. This gives the opportunity to study sex chromosomes that arose independently at different phylogenetic scales, and thus allows the discovery and the understanding of early stages of sex chromosome evolution. In the genus Silene, sex chromosomes have evolved independently in at least two clades from a nondioecious ancestor, the Melandrium and Otites sections. In the latter, sex chromosomes could be younger than in the section Melandrium, based on phylogenetic studies and as no heteromorphic sex chromosomes have been detected. This section might also exhibit lability in sex determination, because male heterogamy and female heterogamy have been suggested to occur. In this study, we investigated the sex determination system of two dioecious species in the section Otites (Silene otites and its close relative Silene pseudotites). Applying the new probabilistic method SEX-DETector on RNA-seq data from cross-controlled progenies, we inferred their most likely sex determination system and a list of putative autosomal and sex-linked contigs. We showed that the two phylogenetically close species differed in their sex determination system (XY versus ZW) with sex chromosomes that derived from two different pairs of autosomes. We built a genetic map of the sex chromosomes and showed that both pairs exhibited a large region with lack of recombination. However, the sex-limited chromosomes exhibited no strong degeneration. Finally, using the “ancestral” autosomal expression of sex-linked orthologs of nondioecious S. nutans, we found a slight signature of dosage compensation in the heterogametic females of S. otites.
Collapse
Affiliation(s)
- Hélène Martin
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France.,Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Fantin Carpentier
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France.,Ecologie Systématique Evolution, Université Paris Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | | | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France
| | - Eric Schmitt
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, France
| | - Aline Muyle
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
| | | |
Collapse
|
37
|
Balounova V, Gogela R, Cegan R, Cangren P, Zluvova J, Safar J, Kovacova V, Bergero R, Hobza R, Vyskot B, Oxelman B, Charlesworth D, Janousek B. Evolution of sex determination and heterogamety changes in section Otites of the genus Silene. Sci Rep 2019; 9:1045. [PMID: 30705300 PMCID: PMC6355844 DOI: 10.1038/s41598-018-37412-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/05/2018] [Indexed: 11/18/2022] Open
Abstract
Switches in heterogamety are known to occur in both animals and plants. Although plant sex determination systems probably often evolved more recently than those in several well-studied animals, including mammals, and have had less time for switches to occur, we previously detected a switch in heterogamety in the plant genus Silene: section Otites has both female and male heterogamety, whereas S. latifolia and its close relatives, in a different section of the genus, Melandrium (subgenus Behenantha), all have male heterogamety. Here we analyse the evolution of sex chromosomes in section Otites, which is estimated to have evolved only about 0.55 MYA. Our study confirms female heterogamety in S. otites and newly reveals female heterogamety in S. borysthenica. Sequence analyses and genetic mapping show that the sex-linked regions of these two species are the same, but the region in S. colpophylla, a close relative with male heterogamety, is different. The sex chromosome pairs of S. colpophylla and S. otites each correspond to an autosome of the other species, and both differ from the XY pair in S. latifolia. Silene section Otites species are suitable for detailed studies of the events involved in such changes, and our phylogenetic analysis suggests a possible change from female to male heterogamety within this section. Our analyses suggest a possibility that has so far not been considered, change in heterogamety through hybridization, in which a male-determining chromosome from one species is introgressed into another one, and over-rides its previous sex-determining system.
Collapse
Affiliation(s)
- Veronika Balounova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Roman Gogela
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Patrik Cangren
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden, Sweden
| | - Jitka Zluvova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Jan Safar
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Viera Kovacova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.,Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, Cologne, Germany
| | - Roberta Bergero
- Institute of Evolutionary Biology, EH9 3FL University of Edinburgh, Edinburgh, UK
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.,Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden, Sweden
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, EH9 3FL University of Edinburgh, Edinburgh, UK
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.
| |
Collapse
|
38
|
Sanderson BJ, Wang L, Tiffin P, Wu Z, Olson MS. Sex-biased gene expression in flowers, but not leaves, reveals secondary sexual dimorphism in Populus balsamifera. THE NEW PHYTOLOGIST 2019; 221:527-539. [PMID: 30252135 DOI: 10.1111/nph.15421] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/29/2018] [Indexed: 05/11/2023]
Abstract
Because sexual dimorphism in plants is often less morphologically conspicuous than in animals, studies of sex-biased gene expression may provide a quantitative metric to better address their commonality, molecular pathways, consistency across tissues and taxa, and evolution. The presence of sex-biased gene expression in tissues other than the androecium or gynoecium, termed secondary sexual characters, suggests that these traits arose after the initial evolution of dioecy. Patterns of sequence evolution may provide evidence of positive selection that drove sexual specialization. We compared gene expression in male and female flowers and leaves of Populus balsamifera to assess the extent of sex-biased expression, and tested whether sex-biased genes exhibit elevated rates of protein evolution. Sex-biased expression was pervasive in floral tissue, but nearly absent in leaf tissue. Female-biased genes in flowers were associated with photosynthesis, whereas male-biased genes were associated with mitochondrial function. Sex-biased genes did not exhibit elevated rates of protein evolution, contrary to results from other studies in animals and plants. Our results suggest that the ecological and physiological constraints associated with the energetics of flowering, rather than sexual conflict, have probably shaped the differences in male and female gene expression in P. balsamifera.
Collapse
Affiliation(s)
- Brian J Sanderson
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409, USA
| | - Li Wang
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409, USA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Zhiqiang Wu
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409, USA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409, USA
| |
Collapse
|
39
|
Ma WJ, Veltsos P, Sermier R, Parker DJ, Perrin N. Evolutionary and developmental dynamics of sex-biased gene expression in common frogs with proto-Y chromosomes. Genome Biol 2018; 19:156. [PMID: 30290841 PMCID: PMC6173898 DOI: 10.1186/s13059-018-1548-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The patterns of gene expression on highly differentiated sex chromosomes differ drastically from those on autosomes, due to sex-specific patterns of selection and inheritance. As a result, X chromosomes are often enriched in female-biased genes (feminization) and Z chromosomes in male-biased genes (masculinization). However, it is not known how quickly sexualization of gene expression and transcriptional degeneration evolve after sex-chromosome formation. Furthermore, little is known about how sex-biased gene expression varies throughout development. RESULTS We sample a population of common frogs (Rana temporaria) with limited sex-chromosome differentiation (proto-sex chromosome), leaky genetic sex determination evidenced by the occurrence of XX males, and delayed gonadal development, meaning that XY individuals may first develop ovaries before switching to testes. Using high-throughput RNA sequencing, we investigate the dynamics of gene expression throughout development, spanning from early embryo to froglet stages. Our results show that sex-biased expression affects different genes at different developmental stages and increases during development, reaching highest levels in XX female froglets. Additionally, sex-biased gene expression depends on phenotypic, rather than genotypic sex, with similar expression in XX and XY males; correlates with gene evolutionary rates; and is not localized to the proto-sex chromosome nor near the candidate sex-determining gene Dmrt1. CONCLUSIONS The proto-sex chromosome of common frogs does not show evidence of sexualization of gene expression, nor evidence for a faster rate of evolution. This challenges the notion that sexually antagonistic genes play a central role in the initial stages of sex-chromosome evolution.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
- Current address: Department of Biology, Amherst College, Amherst, MA USA
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Darren J Parker
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Zhou R, Macaya-Sanz D, Rodgers-Melnick E, Carlson CH, Gouker FE, Evans LM, Schmutz J, Jenkins JW, Yan J, Tuskan GA, Smart LB, DiFazio SP. Characterization of a large sex determination region in Salix purpurea L. (Salicaceae). Mol Genet Genomics 2018; 293:1437-1452. [PMID: 30022352 DOI: 10.1007/s00438-018-1473-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022]
Abstract
Dioecy has evolved numerous times in plants, but heteromorphic sex chromosomes are apparently rare. Sex determination has been studied in multiple Salix and Populus (Salicaceae) species, and P. trichocarpa has an XY sex determination system on chromosome 19, while S. suchowensis and S. viminalis have a ZW system on chromosome 15. Here we use whole genome sequencing coupled with quantitative trait locus mapping and a genome-wide association study to characterize the genomic composition of the non-recombining portion of the sex determination region. We demonstrate that Salix purpurea also has a ZW system on chromosome 15. The sex determination region has reduced recombination, high structural polymorphism, an abundance of transposable elements, and contains genes that are involved in sex expression in other plants. We also show that chromosome 19 contains sex-associated markers in this S. purpurea assembly, along with other autosomes. This raises the intriguing possibility of a translocation of the sex determination region within the Salicaceae lineage, suggesting a common evolutionary origin of the Populus and Salix sex determination loci.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506-6057, USA
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506-6057, USA
| | - Eli Rodgers-Melnick
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506-6057, USA
| | - Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Fred E Gouker
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Luke M Evans
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506-6057, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA.,Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Jerry W Jenkins
- HudsonAlpha Institute of Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Juying Yan
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Gerald A Tuskan
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA.,Biosciences Division, Oak Ridge National Lab, Oak Ridge, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, WV, 26506-6057, USA.
| |
Collapse
|
41
|
Scott MF, Osmond MM, Otto SP. Haploid selection, sex ratio bias, and transitions between sex-determining systems. PLoS Biol 2018; 16:e2005609. [PMID: 29940019 PMCID: PMC6042799 DOI: 10.1371/journal.pbio.2005609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/12/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Sex determination is remarkably dynamic; many taxa display shifts in the location of sex-determining loci or the evolution of entirely new sex-determining systems. Predominant theories for why we observe such transitions generally conclude that novel sex-determining systems are favoured by selection if they equalise the sex ratio or increase linkage with a locus that experiences different selection in males versus females. We use population genetic models to extend these theories in two ways: (1) We consider the dynamics of loci very tightly linked to the ancestral sex-determining loci, e.g., within the nonrecombining region of the ancestral sex chromosomes. Variation at such loci can favour the spread of new sex-determining systems in which the heterogametic sex changes (XY to ZW or ZW to XY) and the new sex-determining region is less closely linked (or even unlinked) to the locus under selection. (2) We consider selection upon haploid genotypes either during gametic competition (e.g., pollen competition) or meiosis (i.e., nonmendelian segregation), which can cause the zygotic sex ratio to become biased. Haploid selection can drive transitions between sex-determining systems without requiring selection to act differently in diploid males versus females. With haploid selection, we find that transitions between male and female heterogamety can evolve so that linkage with the sex-determining locus is either strengthened or weakened. Furthermore, we find that sex ratio biases may increase or decrease with the spread of new sex chromosomes, which implies that transitions between sex-determining systems cannot be simply predicted by selection to equalise the sex ratio. In fact, under many conditions, we find that transitions in sex determination are favoured equally strongly in cases in which the sex ratio bias increases or decreases. Overall, our models predict that sex determination systems should be highly dynamic, particularly when haploid selection is present, consistent with the evolutionary lability of this trait in many taxa.
Collapse
Affiliation(s)
- Michael Francis Scott
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Matthew Miles Osmond
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Perin Otto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Morris J, Darolti I, Bloch NI, Wright AE, Mank JE. Shared and Species-Specific Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. Genes (Basel) 2018; 9:E238. [PMID: 29751570 PMCID: PMC5977178 DOI: 10.3390/genes9050238] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 11/22/2022] Open
Abstract
Sex chromosomes form once recombination is halted around the sex-determining locus between a homologous pair of chromosomes, resulting in a male-limited Y chromosome. We recently characterized the nascent sex chromosome system in the Trinidadian guppy (Poeciliareticulata). The guppy Y is one of the youngest animal sex chromosomes yet identified, and therefore offers a unique window into the early evolutionary forces shaping sex chromosome formation, particularly the rate of accumulation of repetitive elements and Y-specific sequence. We used comparisons between male and female genomes in P. reticulata and its sister species, Endler’s guppy (P. wingei), which share an ancestral sex chromosome, to identify male-specific sequences and to characterize the degree of differentiation between the X and Y chromosomes. We identified male-specific sequence shared between P. reticulata and P. wingei consistent with a small ancestral non-recombining region. Our assembly of this Y-specific sequence shows substantial homology to the X chromosome, and appears to be significantly enriched for genes implicated in pigmentation. We also found two plausible candidates that may be involved in sex determination. Furthermore, we found that the P. wingei Y chromosome exhibits a greater signature of repetitive element accumulation than the P. reticulata Y chromosome. This suggests that Y chromosome divergence does not necessarily correlate with the time since recombination suppression. Overall, our results reveal the early stages of Y chromosome divergence in the guppy.
Collapse
Affiliation(s)
- Jake Morris
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Iulia Darolti
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Natasha I Bloch
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden.
| |
Collapse
|
43
|
Darolti I, Wright AE, Pucholt P, Berlin S, Mank JE. Slow evolution of sex-biased genes in the reproductive tissue of the dioecious plant Salix viminalis. Mol Ecol 2018; 27:694-708. [PMID: 29274186 PMCID: PMC5901004 DOI: 10.1111/mec.14466] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
The relative rate of evolution for sex‐biased genes has often been used as a measure of the strength of sex‐specific selection. In contrast to studies in a wide variety of animals, far less is known about the molecular evolution of sex‐biased genes in plants, particularly in dioecious angiosperms. Here, we investigate the gene expression patterns and evolution of sex‐biased genes in the dioecious plant Salix viminalis. We observe lower rates of sequence evolution for male‐biased genes expressed in the reproductive tissue compared to unbiased and female‐biased genes. These results could be partially explained by the lower codon usage bias for male‐biased genes leading to elevated rates of synonymous substitutions compared to unbiased genes. However, the stronger haploid selection in the reproductive tissue of plants, together with pollen competition, would also lead to higher levels of purifying selection acting to remove deleterious variation. Future work should focus on the differential evolution of haploid‐ and diploid‐specific genes to understand the selective dynamics acting on these loci.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alison E Wright
- Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Pascal Pucholt
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Array and Analysis Facility, Department of Medical Science, Uppsala University, Uppsala, Sweden
| | - Sofia Berlin
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Wang W, Zhang X. Identification of the Sex-Biased Gene Expression and Putative Sex-Associated Genes in Eucommia ulmoides Oliver Using Comparative Transcriptome Analyses. Molecules 2017; 22:E2255. [PMID: 29258253 PMCID: PMC6149867 DOI: 10.3390/molecules22122255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 12/04/2022] Open
Abstract
Eucommia ulmoides is a model representative of the dioecious plants with sex differentiation at initiation. Nevertheless, the genetic mechanisms of sexual dimorphism and sex determination in E. ulmoides remain poorly understood. In this study de novo transcriptome sequencing on Illumina platform generated >45 billion high-quality bases from fresh leaves of six male and female individuals of E. ulmoides. A total of 148,595 unigenes with an average length of 801 base-pairs (bp) were assembled. Through comparative transcriptome analyses, 116 differentially expressed genes (DEGs) between the males and the females were detected, including 73 male-biased genes and 43 female-biased genes. Of these DEGs, three female-biased genes were annotated to be related with the sexually dimorphic gutta content in E. ulmoides. One male-biased DEG was identified as putative MADS box gene APETALA3, a B class floral organ identity gene in the flowering plants. SNPs calling analyses further confirmed that the APETALA3-like gene was probably involved in the sex determination in E. ulmoides. Four other male-biased DEGs were potential sex-associated genes as well with segregated SNPs in accord with sex type. In addition, the SNPs density was 1.02 per kilobase (kb) in the expressed genes of E. ulmoides, implying a relatively high genetic diversity.
Collapse
Affiliation(s)
- Wencai Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Xianzhi Zhang
- Department of Forestry Protection, College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
45
|
Carlson CH, Choi Y, Chan AP, Serapiglia MJ, Town CD, Smart LB. Dominance and Sexual Dimorphism Pervade the Salix purpurea L. Transcriptome. Genome Biol Evol 2017; 9:2377-2394. [PMID: 28957462 PMCID: PMC5622329 DOI: 10.1093/gbe/evx174] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/24/2022] Open
Abstract
The heritability of gene expression is critical in understanding heterosis and is dependent on allele-specific regulation by local and remote factors in the genome. We used RNA-Seq to test whether variation in gene expression among F1 and F2 intraspecific Salix purpurea progeny is attributable to cis- and trans-regulatory divergence. We assessed the mode of inheritance based on gene expression levels and allele-specific expression for F1 and F2 intraspecific progeny in two distinct tissue types: shoot tip and stem internode. In addition, we explored sexually dimorphic patterns of inheritance and regulatory divergence among F1 progeny individuals. We show that in S. purpurea intraspecific crosses, gene expression inheritance largely exhibits a maternal dominant pattern, regardless of tissue type or pedigree. A significantly greater number of cis- and trans-regulated genes coincided with upregulation of the maternal parent allele in the progeny, irrespective of the magnitude, whereas the paternal allele was higher expressed for genes showing cis × trans or compensatory regulation. Importantly, consistent with previous genetic mapping results for sex in shrub willow, we have delimited sex-biased gene expression to a 2 Mb pericentromeric region on S. purpurea chr15 and further refined the sex determination region. Altogether, our results offer insight into the inheritance of gene expression in S. purpurea as well as evidence of sexually dimorphic expression which may have contributed to the evolution of dioecy in Salix.
Collapse
Affiliation(s)
- Craig H. Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456 USA
| | - Yongwook Choi
- J. Craig Venter Institute, Rockville, Maryland 20850 USA
| | - Agnes P. Chan
- J. Craig Venter Institute, Rockville, Maryland 20850 USA
| | - Michelle J. Serapiglia
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456 USA
| | | | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456 USA
| |
Collapse
|