1
|
Milhaven M, Garg A, Versoza CJ, Pfeifer SP. Quantifying the effects of computational filter criteria on the accurate identification of de novo mutations at varying levels of sequencing coverage. Heredity (Edinb) 2025; 134:273-279. [PMID: 40082647 PMCID: PMC12056167 DOI: 10.1038/s41437-025-00754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
The rate of spontaneous (de novo) germline mutation is a key parameter in evolutionary biology, impacting genetic diversity and contributing to the evolution of populations and species. Mutation rates themselves evolve over time but the mechanisms underlying the mutation rate variation observed across the Tree of Life remain largely to be elucidated. In recent years, whole genome sequencing has enabled the estimation of mutation rates for several organisms. However, due to a lack of community standards, many previous studies differ both empirically - most notably, in the depth of sequencing used to reliably identify de novo mutations - and computationally - utilizing different computational pipelines to detect germline mutations as well as different analysis strategies to mitigate technical artifacts - rendering comparisons between studies challenging. Using a pedigree of Western chimpanzees as an illustrative example, we here quantify the effects of commonly utilized quality metrics to reliably identify de novo mutations at different levels of sequencing coverage. We demonstrate that datasets with a mean depth of ≤ 30X are ill-suited for the detection of de novo mutations due to high false positive rates that can only be partially mitigated by computational filter criteria. In contrast, higher coverage datasets enable a comprehensive identification of de novo mutations at low false positive rates, with minimal benefits beyond a sequencing coverage of 60X, suggesting that future work should favor breadth (by sequencing additional individuals) over depth. Importantly, the simulation and analysis framework described here provides conceptual guidelines that will allow researchers to take study design and species-specific resources into account when determining computational filtering strategies for their organism of interest.
Collapse
Affiliation(s)
- Mark Milhaven
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85281, USA
| | - Aman Garg
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Cyril J Versoza
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85281, USA
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
2
|
Rochus CM, Steensma MJ, Bink MCAM, Huisman AE, Harlizius B, Derks MFL, Crooijmans RPMA, Ducro BJ, Bijma P, Groenen MAM, Mulder HA. Estimating mutation rate and characterising single nucleotide de novo mutations in pigs. Genet Sel Evol 2025; 57:21. [PMID: 40229661 PMCID: PMC11995543 DOI: 10.1186/s12711-025-00967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Direct estimates of mutation rates in humans have changed our understanding of evolutionary timing and de novo mutations (DNM) have been associated with several developmental disorders in humans. Livestock species, including pigs, can contribute to the study of DNM because of their ideal population structure and routine phenotype collection. In principle, there is the potential for livestock populations to quickly accumulate new genetic variants because of short generation intervals and high selection intensity. However, the impact of DNM on the fitness of individuals is not known and with current genomic selection programs they cannot contribute to estimated breeding values. The aims of our project were to detect and validate single nucleotide DNM in two commercial pig breeding lines, estimate the single nucleotide mutation rate, and characterise DNM. RESULTS We sequenced (150 bp paired end reads, 30X coverage) 46 pig trios from two commercial lines. Single nucleotide DNM were detected using a trio-aware method. We defined candidate DNM as single nucleotide variants (SNVs) found in heterozygous state in trio-offspring with both trio-parents homozygous for the reference allele. In this study, we estimate a lower threshold of the DNM rate in pigs of 6.3 × 10-9 per site per gamete. Our findings are consistent with those from other mammals and those published for a small number of livestock species. Most DNM we detected were in introns (47%) and intergenic regions (49%). The mutational spectrum in pigs differs from that in humans and we found several DNM predicted to have an effect on animal's fitness based on the base pair change and their location in the genome. CONCLUSIONS With this study, we have generated fundamental knowledge on mutation rate in a non-primate species and identified DNM that could have an impact on the fitness of individuals.
Collapse
Affiliation(s)
- Christina M Rochus
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
- The University of Edinburgh, The Roslin Institute Easter Bush Campus, Midlothian, EH25 9RG, Scotland
| | - Marije J Steensma
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.
| | - Marco C A M Bink
- Hendrix Genetics, P.O. Box 114, 5830 AC, Boxmeer, The Netherlands
| | - Abe E Huisman
- Hendrix Genetics, P.O. Box 114, 5830 AC, Boxmeer, The Netherlands
| | - Barbara Harlizius
- Topigs Norsvin Research Center, Meerendonkweg 25, 5216 TZ, Den Bosch, The Netherlands
| | - Martijn F L Derks
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
- Topigs Norsvin Research Center, Meerendonkweg 25, 5216 TZ, Den Bosch, The Netherlands
| | - Richard P M A Crooijmans
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Bart J Ducro
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Piter Bijma
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Martien A M Groenen
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Han A Mulder
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
3
|
Armstrong EE, Carey SB, Harkess A, Zenato Lazzari G, Solari KA, Maldonado JE, Fleischer RC, Aziz N, Walsh P, Koepfli KP, Eizirik E, Petrov DA, Campana MG. Parameterizing Pantherinae: De Novo Mutation Rate Estimates from Panthera and Neofelis Pedigrees. Genome Biol Evol 2025; 17:evaf060. [PMID: 40171701 PMCID: PMC11997302 DOI: 10.1093/gbe/evaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 03/12/2025] [Accepted: 03/23/2025] [Indexed: 04/04/2025] Open
Abstract
Estimates of de novo mutation rates are essential for phylogenetic and demographic analyses, but their inference has previously been impeded by high error rates in sequence data and uncertainty in the fossil record. Here, we directly estimate de novo germline mutation rates for all extant members of Panthera, as well as the closely related outgroup Neofelis nebulosa, using pedigrees. We use a previously validated pipeline (RatesTools) to calculate mutation rates for each species and subsequently explore the impacts of the novel rates on historic effective population size estimates in each of these charismatic felids of conservation concern. Importantly, we find that the choice of reference genome, the data type and coverage, and the individual all impact estimates of the mutation rate, but these can be largely ameliorated through extensive manual curation. Despite these stochastic effects, manual validation of de novo mutation candidates permitted the reliable inference of pantherine mutation rates. We inferred that base pair mutation rates for all species fell between 3.6 × 10-9 and 7.6 × 10-9 per generation per base pair (mean 5.5 × 10-9 ± 1.7 × 10-9 across Pantherinae at a mean parental age of 5.5 years). Similar to other studies, we show a positive trend of mean parental age with mutation rate and our inferred rates are well within the expected range for other mammals.
Collapse
Affiliation(s)
- Ellie E Armstrong
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Biology, Washington State University, Pullman, WA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Gabriele Zenato Lazzari
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Neel Aziz
- Department of Animal Care Sciences, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Patricia Walsh
- Department of Animal Care Sciences, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| | - Eduardo Eizirik
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Michael G Campana
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
4
|
Lobo D, Morales HE, Van Oosterhout C, López-Bao JV, Silva P, Llaneza L, Pacheco C, Castro D, Hernández-Alonso G, Pacheco G, Archer J, Gilbert MTP, Ferrand N, Godinho R. Ancient dog introgression into the Iberian wolf genome may have facilitated adaptation to human-dominated landscapes. Genome Res 2025; 35:432-445. [PMID: 39952679 PMCID: PMC11960463 DOI: 10.1101/gr.279093.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Understanding how large carnivores respond to increasingly human-dominated landscapes will determine their future adaptive potential. The Iberian wolf (Canis lupus signatus), a gray wolf subspecies endemic to the Iberian Peninsula (Portugal and Spain), has uniquely persisted in human-dominated landscapes, unlike many other wolf populations that faced widespread extinction across Europe during the twentieth century. In this study, we conducted a comprehensive genome-wide analysis of 145 historical and contemporary Iberian wolf samples to investigate whether hybridization with domestic dogs resulted in genetic introgression. We identified a dog-derived block on Chromosome 2 in Iberian wolves, displaying signatures consistent with introgression and high nucleotide similarity among introgressed individuals. Additionally, our estimates place the average timing of introgression between 6100 and 3000 years ago, with low sequence divergence to dogs from the Iberian Peninsula suggesting a single local origin for the hybridization event. Using forward genetic simulations, we show that the introgressed haplotype is most likely being maintained in Iberian wolves by selection. The introgressed dog variants are located within the MAST4 gene, which has been linked to neurological disorders, including cognitive and motor developmental delays, hinting at a potential role in cognitive behavior in Iberian wolves. This study uncovers a case of putative adaptive introgression from domestic dogs into wolves, offering new insights into wild canids' adaptation to human-dominated landscapes.
Collapse
Affiliation(s)
- Diana Lobo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Hernán E Morales
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Cock Van Oosterhout
- School of Environmental Sciences, Norwich Research Park, University of East Anglia, NR4 7TJ Norwich, United Kingdom
| | - José Vicente López-Bao
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias) Oviedo University, E-33600 Mieres, Spain
| | - Pedro Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Luis Llaneza
- A.RE.NA, Asesores en Recursos Naturales, 27003 Lugo, Spain
| | - Carolina Pacheco
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Diana Castro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Germán Hernández-Alonso
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark
| | - George Pacheco
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark
| | - John Archer
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, 7012 Trondheim, Norway
| | - Nuno Ferrand
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, 2006 South Africa
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, 2006 South Africa
| |
Collapse
|
5
|
Peña-Garcia Y, Wang RJ, Raveendran M, Harris RA, Samollow PB, Rogers J, Hahn MW. Low mutation rate but high male-bias in the germline of a short-lived opossum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627076. [PMID: 39713461 PMCID: PMC11661067 DOI: 10.1101/2024.12.05.627076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Age and sex have been found to be important determinants of the mutation rate per generation in mammals, but the mechanisms underlying these factors are still unclear. One approach to distinguishing between alternative mechanisms is to study species that reproduce at very young ages, as competing hypotheses make different predictions about patterns of mutation in these organisms. Here, we study the germline mutation rate in the gray short-tailed opossum, Monodelphis domestica, a laboratory model species that becomes reproductively mature at less than six months of age. Whole-genome sequencing of 22 trios reveals the lowest mutation rate per generation found in mammals thus far (0.26 × 10-8 per base pair per generation at an average parental age of 313 days), which is expected given their early reproduction. We also examine the mutation spectrum and find fewer mutations at CpG sites in opossums than in humans, consistent with the lower CpG content in the opossum genome. We observe that two-thirds of mutations are inherited from the male parent in opossums, slightly lower than the degree of male bias observed in organisms that reproduce at much older ages. Nevertheless, the very young age at reproduction in opossums suggests that ongoing spermatogonial divisions in males after puberty are not the primary driver of the observed male mutation bias. These findings contribute to a growing body of evidence that the differences between male and female germline mutation may arise from mechanisms other than cell division post-puberty. Article Summary This study investigates the germline mutation rate in the gray short-tailed opossum, a marsupial with early reproductive maturity. By sequencing 22 families, we report the lowest mutation rate recorded in mammals but a typical male mutation bias. These findings add to growing evidence that challenges the traditional view that continuing cell division is the primary driver of male-biased mutations. Instead, the study suggests that alternative mechanisms, such as differences in DNA repair, may influence sex-specific mutation rates.
Collapse
|
6
|
Nguyen AK, Schall PZ, Kidd JM. A map of canine sequence variation relative to a Greenland wolf outgroup. Mamm Genome 2024; 35:565-576. [PMID: 39088040 DOI: 10.1007/s00335-024-10056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
For over 15 years, canine genetics research relied on a reference assembly from a Boxer breed dog named Tasha (i.e., canFam3.1). Recent advances in long-read sequencing and genome assembly have led to the development of numerous high-quality assemblies from diverse canines. These assemblies represent notable improvements in completeness, contiguity, and the representation of gene promoters and gene models. Although genome graph and pan-genome approaches have promise, most genetic analyses in canines rely upon the mapping of Illumina sequencing reads to a single reference. The Dog10K consortium, and others, have generated deep catalogs of genetic variation through an alignment of Illumina sequencing reads to a reference genome obtained from a German Shepherd Dog named Mischka (i.e., canFam4, UU_Cfam_GSD_1.0). However, alignment to a breed-derived genome may introduce bias in genotype calling across samples. Since the use of an outgroup reference genome may remove this effect, we have reprocessed 1929 samples analyzed by the Dog10K consortium using a Greenland wolf (mCanLor1.2) as the reference. We efficiently performed remapping and variant calling using a GPU-implementation of common analysis tools. The resulting call set removes the variability in genetic differences seen across samples and breed relationships revealed by principal component analysis are not affected by the choice of reference genome. Using this sequence data, we inferred the history of population sizes and found that village dog populations experienced a 9-13 fold reduction in historic effective population size relative to wolves.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Amorim CEG, Di C, Lin M, Marsden C, Del Carpio CA, Mah JC, Robinson J, Kim BY, Mooney JA, Cornejo OE, Lohmueller KE. Evolutionary consequences of domestication on the selective effects of new amino acid changing mutations in canids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623529. [PMID: 39605619 PMCID: PMC11601280 DOI: 10.1101/2024.11.13.623529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The domestication of wild canids led to dogs no longer living in the wild but instead residing alongside humans. Extreme changes in behavior and diet associated with domestication may have led to the relaxation of the selective pressure on traits that may be less important in the domesticated context. Thus, here we hypothesize that strongly deleterious mutations may have become less deleterious in domesticated populations. We test this hypothesis by estimating the distribution of fitness effects (DFE) for new amino acid changing mutations using whole-genome sequence data from 24 gray wolves and 61 breed dogs. We find that the DFE is strikingly similar across canids, with 26-28% of new amino acid changing mutations being neutral/nearly neutral (|s| < 1e-5), and 41-48% under strong purifying selection (|s| > 1e-2). Our results are robust to different model assumptions suggesting that the DFE is stable across short evolutionary timescales, even in the face of putative drastic changes in the selective pressure caused by artificial selection during domestication and breed formation. On par with previous works describing DFE evolution, our data indicate that the DFE of amino acid changing mutations depends more strongly on genome structure and organismal characteristics, and less so on shifting selective pressures or environmental factors. Given the constant DFE and previous data showing that genetic variants that differentiate wolf and dog populations are enriched in regulatory elements, we speculate that domestication may have had a larger impact on regulatory variation than on amino acid changing mutations.
Collapse
Affiliation(s)
| | - Chenlu Di
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Meixi Lin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Clare Marsden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
- Serology/DNA unit, Forensic Science Division, Los Angeles Police Department, Los Angeles CA 90032
| | - Christina A. Del Carpio
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Jonathan C. Mah
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Jacqueline Robinson
- Institute for Human Genetics, University of California San Francisco, San Francisco CA 94143
| | - Bernard Y. Kim
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jazlyn A. Mooney
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, 90089, USA
| | - Omar E. Cornejo
- Ecology & Evolutionary Biology Department, University of California, Santa Cruz, California, 95060, USA
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, 90095, USA
| |
Collapse
|
8
|
Liang X, Yang S, Wang D, Knief U. Characterization and distribution of de novo mutations in the zebra finch. Commun Biol 2024; 7:1243. [PMID: 39358581 PMCID: PMC11447093 DOI: 10.1038/s42003-024-06945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Germline de novo mutations (DNMs) provide the raw material for evolution. The DNM rate varies considerably between species, sexes and chromosomes. Here, we identify DNMs in the zebra finch (Taeniopygia guttata) across 16 parent-offspring trios using two genome assemblies of different quality. Using an independent genotyping assay, we validate 82% of the 150 candidate DNMs. DNM rates are consistent between both assemblies, with estimates of 6.14 × 10-9 and 6.36 × 10-9 per site per generation. We observe a strong paternal bias in DNM rates (male-to-female ratio ɑ ≈ 4), but this bias is in transition mutations only, leading to a transition-to-transversion ratio of 3.18 and 3.57. Finally, we find that DNMs tend to be randomly distributed across chromosomes, not associated with recombination hotspots or genic regions. However, the sex chromosome chrZ shows a roughly fourfold increased DNM rate compared to autosomes, which is more than the expected increase due to chrZ spending two-thirds of its time in males. Overall, our results further enhance our understanding of DNMs in passerine songbirds.
Collapse
Affiliation(s)
- Xixi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daiping Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ulrich Knief
- Evolutionary Biology & Ecology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Quinn CB, Preckler-Quisquater S, Buchalski MR, Sacks BN. Whole Genomes Inform Genetic Rescue Strategy for Montane Red Foxes in North America. Mol Biol Evol 2024; 41:msae193. [PMID: 39288165 PMCID: PMC11424165 DOI: 10.1093/molbev/msae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
A few iconic examples have proven the value of facilitated gene flow for counteracting inbreeding depression and staving off extinction; yet, the practice is often not implemented for fear of causing outbreeding depression. Using genomic sequencing, climatic niche modeling, and demographic reconstruction, we sought to assess the risks and benefits of using translocations as a tool for recovery of endangered montane red fox (Vulpes vulpes) populations in the western United States. We demonstrated elevated inbreeding and homozygosity of deleterious alleles across all populations, but especially those isolated in the Cascade and Sierra Nevada ranges. Consequently, translocations would be expected to increase population growth by masking deleterious recessive alleles. Demographic reconstructions further indicated shallow divergences of less than a few thousand years among montane populations, suggesting low risk of outbreeding depression. These genomic-guided findings set the stage for future management, the documentation of which will provide a roadmap for recovery of other data-deficient taxa.
Collapse
Affiliation(s)
- Cate B Quinn
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- California Department of Fish and Wildlife, Wildlife Genetics Research Unit, Wildlife Health Laboratory, Sacramento, CA, USA
- National Genomics Center for Wildlife and Fish Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT, USA
| | - Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Michael R Buchalski
- California Department of Fish and Wildlife, Wildlife Genetics Research Unit, Wildlife Health Laboratory, Sacramento, CA, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
10
|
Nguyen AK, Blacksmith MS, Kidd JM. Duplications and Retrogenes Are Numerous and Widespread in Modern Canine Genomic Assemblies. Genome Biol Evol 2024; 16:evae142. [PMID: 38946312 PMCID: PMC11259980 DOI: 10.1093/gbe/evae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
Recent years have seen a dramatic increase in the number of canine genome assemblies available. Duplications are an important source of evolutionary novelty and are also prone to misassembly. We explored the duplication content of nine canine genome assemblies using both genome self-alignment and read-depth approaches. We find that 8.58% of the genome is duplicated in the canFam4 assembly, derived from the German Shepherd Dog Mischka, including 90.15% of unplaced contigs. Highlighting the continued difficulty in properly assembling duplications, less than half of read-depth and assembly alignment duplications overlap, but the mCanLor1.2 Greenland wolf assembly shows greater concordance. Further study shows the presence of multiple segments that have alignments to four or more duplicate copies. These high-recurrence duplications correspond to gene retrocopies. We identified 3,892 candidate retrocopies from 1,316 parental genes in the canFam4 assembly and find that ∼8.82% of duplicated base pairs involve a retrocopy, confirming this mechanism as a major driver of gene duplication in canines. Similar patterns are found across eight other recent canine genome assemblies, with metrics supporting a greater quality of the PacBio HiFi mCanLor1.2 assembly. Comparison between the wolf and other canine assemblies found that 92% of retrocopy insertions are shared between assemblies. By calculating the number of generations since genome divergence, we estimate that new retrocopy insertions appear, on average, in 1 out of 3,514 births. Our analyses illustrate the impact of retrogene formation on canine genomes and highlight the variable representation of duplicated sequences among recently completed canine assemblies.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Matthew S Blacksmith
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Li S, Yeh C, Jang‐Liaw N, Chang S, Lin Y, Tsai C, Chiu C, Chen C, Ke H, Wang Q, Lu Y, Zheng K, Fan P, Zhang L, Liu Y. Low but highly geographically structured genomic diversity of East Asian Eurasian otters and its conservation implications. Evol Appl 2024; 17:e13630. [PMID: 38288030 PMCID: PMC10824276 DOI: 10.1111/eva.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 01/31/2024] Open
Abstract
Populations of Eurasian otters Lutra lutra, one of the most widely distributed apex predators in Eurasia, have been depleted mainly since the 1950s. However, a lack of information about their genomic diversity and how they are organized geographically in East Asia severely impedes our ability to monitor and conserve them in particular management units. Here, we re-sequenced and analyzed 20 otter genomes spanning continental East Asia, including a population at Kinmen, a small island off the Fujian coast, China. The otters form three genetic clusters (one of L. l. lutra in the north and two of L. l. chinensis in the south), which have diverged in the Holocene. These three clusters should be recognized as three conservation management units to monitor and manage independently. The heterozygosity of the East Asian otters is as low as that of the threatened carnivores sequenced. Historical effective population size trajectories inferred from genomic variations suggest that their low genomic diversity could be partially attributed to changes in the climate since the mid-Pleistocene and anthropogenic intervention since the Holocene. However, no evidence of genetic erosion, mutation load, or high level of inbreeding was detected in the presumably isolated Kinmen Island population. Any future in situ conservation efforts should consider this information for the conservation management units.
Collapse
Affiliation(s)
- Shou‐Hsien Li
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chia‐fen Yeh
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | | | - Shih‐Wei Chang
- Division of ZoologyEndemic Species Research InstituteNantouTaiwan
| | - Yu‐Hsiu Lin
- Division of ZoologyEndemic Species Research InstituteNantouTaiwan
| | - Cheng‐En Tsai
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chi‐Cheng Chiu
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | | | - Hui‐Ru Ke
- Genomics BioSci & Tech Co., Ltd.New Taipei CityTaiwan
| | - Qiaoyun Wang
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yiwei Lu
- Zhejiang Museum of Natural HistoryZhejiang Biodiversity Research CenterHangzhouChina
| | - Kaidan Zheng
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Pengfei Fan
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Lu Zhang
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
12
|
Zhang H, Lundberg M, Tarka M, Hasselquist D, Hansson B. Evidence of Site-Specific and Male-Biased Germline Mutation Rate in a Wild Songbird. Genome Biol Evol 2023; 15:evad180. [PMID: 37793164 PMCID: PMC10627410 DOI: 10.1093/gbe/evad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Germline mutations are the ultimate source of genetic variation and the raw material for organismal evolution. Despite their significance, the frequency and genomic locations of mutations, as well as potential sex bias, are yet to be widely investigated in most species. To address these gaps, we conducted whole-genome sequencing of 12 great reed warblers (Acrocephalus arundinaceus) in a pedigree spanning 3 generations to identify single-nucleotide de novo mutations (DNMs) and estimate the germline mutation rate. We detected 82 DNMs within the pedigree, primarily enriched at CpG sites but otherwise randomly located along the chromosomes. Furthermore, we observed a pronounced sex bias in DNM occurrence, with male warblers exhibiting three times more mutations than females. After correction for false negatives and adjusting for callable sites, we obtained a mutation rate of 7.16 × 10-9 mutations per site per generation (m/s/g) for the autosomes and 5.10 × 10-9 m/s/g for the Z chromosome. To demonstrate the utility of species-specific mutation rates, we applied our autosomal mutation rate in models reconstructing the demographic history of the great reed warbler. We uncovered signs of drastic population size reductions predating the last glacial period (LGP) and reduced gene flow between western and eastern populations during the LGP. In conclusion, our results provide one of the few direct estimates of the mutation rate in wild songbirds and evidence for male-driven mutations in accordance with theoretical expectations.
Collapse
Affiliation(s)
- Hongkai Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - Max Lundberg
- Department of Biology, Lund University, Lund, Sweden
| | - Maja Tarka
- Department of Biology, Lund University, Lund, Sweden
| | | | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Burda K, Konczal M. Validation of machine learning approach for direct mutation rate estimation. Mol Ecol Resour 2023; 23:1757-1771. [PMID: 37486035 DOI: 10.1111/1755-0998.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
Mutations are the primary source of all genetic variation. Knowledge about their rates is critical for any evolutionary genetic analyses, but for a long time, that knowledge has remained elusive and indirectly inferred. In recent years, parent-offspring comparisons have yielded the first direct mutation rate estimates. The analyses are, however, challenging due to high rate of false positives and no consensus regarding standardized filtering of candidate de novo mutations. Here, we validate the application of a machine learning approach for such a task and estimate the mutation rate for the guppy (Poecilia reticulata), a model species in eco-evolutionary studies. We sequenced 4 parents and 20 offspring, followed by screening their genomes for de novo mutations. The initial large number of candidate de novo mutations was hard-filtered to remove false-positive results. These results were compared with mutation rate estimated with a supervised machine learning approach. Both approaches were followed by molecular validation of all candidate de novo mutations and yielded similar results. The ML method uniquely identified three mutations, but overall required more hands-on curation and had higher rates of false positives and false negatives. Both methods concordantly showed no difference in mutation rates between families. Estimated here the guppy mutation rate is among the lowest directly estimated mutation rates in vertebrates; however, previous research has also found low estimated rates in other teleost fishes. We discuss potential explanations for such a pattern, as well as future utility and limitations of machine learning approaches.
Collapse
Affiliation(s)
- Katarzyna Burda
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
14
|
Sendell-Price AT, Tulenko FJ, Pettersson M, Kang D, Montandon M, Winkler S, Kulb K, Naylor GP, Phillippy A, Fedrigo O, Mountcastle J, Balacco JR, Dutra A, Dale RE, Haase B, Jarvis ED, Myers G, Burgess SM, Currie PD, Andersson L, Schartl M. Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks. Nat Commun 2023; 14:6628. [PMID: 37857613 PMCID: PMC10587355 DOI: 10.1038/s41467-023-42238-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10-10 per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate.
Collapse
Affiliation(s)
- Ashley T Sendell-Price
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Frank J Tulenko
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden
| | - Du Kang
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Sylke Winkler
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Kathleen Kulb
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Gavin P Naylor
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Adam Phillippy
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Jacquelyn Mountcastle
- Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Jennifer R Balacco
- Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Rebecca E Dale
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Bettina Haase
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Gene Myers
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center of Systems Biology Dresden, 01307, Dresden, Germany
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia.
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria, 3800, Australia.
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77483, USA.
| | - Manfred Schartl
- Developmental Biochemistry, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
15
|
Preckler-Quisquater S, Kierepka EM, Reding DM, Piaggio AJ, Sacks BN. Can demographic histories explain long-term isolation and recent pulses of asymmetric gene flow between highly divergent grey fox lineages? Mol Ecol 2023; 32:5323-5337. [PMID: 37632719 DOI: 10.1111/mec.17105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Secondary contact zones between deeply divergent, yet interfertile, lineages provide windows into the speciation process. North American grey foxes (Urocyon cinereoargenteus) are divided into western and eastern lineages that diverged approximately 1 million years ago. These ancient lineages currently hybridize in a relatively narrow zone of contact in the southern Great Plains, a pattern more commonly observed in smaller-bodied taxa, which suggests relatively recent contact after a long period of allopatry. Based on local ancestry inference with whole-genome sequencing (n = 43), we identified two distinct Holocene pulses of admixture. The older pulse (500-3500 YBP) reflected unidirectional gene flow from east to west, whereas the more recent pulse (70-200 YBP) of admixture was bi-directional. Augmented with genotyping-by-sequencing data from 216 additional foxes, demographic analyses indicated that the eastern lineage declined precipitously after divergence, remaining small throughout most of the late Pleistocene, and expanding only during the Holocene. Genetic diversity in the eastern lineage was highest in the southeast and lowest near the contact zone, consistent with a westward expansion. Concordantly, distribution modelling indicated that during their isolation, the most suitable habitat occurred far east of today's contact zone or west of the Great Plains. Thus, long-term isolation was likely caused by the small, distant location of the eastern refugium, with recent contact reflecting a large increase in suitable habitat and corresponding demographic expansion from the eastern refugium. Ultimately, long-term isolation in grey foxes may reflect their specialized bio-climatic niche. This system presents an opportunity for future investigation of potential pre- and post-zygotic isolating mechanisms.
Collapse
Affiliation(s)
- Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Elizabeth M Kierepka
- North Carolina Museum of Natural Sciences, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Dawn M Reding
- Department of Biology, Luther College, Decorah, Iowa, USA
| | - Antoinette J Piaggio
- USDA, Wildlife Services, National Wildlife Research Center, Wildlife Genetics Lab, Fort Collins, Colorado, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
16
|
Zhang C, Reid K, Sands AF, Fraimout A, Schierup MH, Merilä J. De Novo Mutation Rates in Sticklebacks. Mol Biol Evol 2023; 40:msad192. [PMID: 37648662 PMCID: PMC10503787 DOI: 10.1093/molbev/msad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Mutation rate is a fundamental parameter in population genetics. Apart from being an important scaling parameter for demographic and phylogenetic inference, it allows one to understand at what rate new genetic diversity is generated and what the expected level of genetic diversity is in a population at equilibrium. However, except for well-established model organisms, accurate estimates of de novo mutation rates are available for a very limited number of organisms from the wild. We estimated mutation rates (µ) in two marine populations of the nine-spined stickleback (Pungitius pungitius) with the aid of several 2- and 3-generational family pedigrees, deep (>50×) whole-genome resequences and a high-quality reference genome. After stringent filtering, we discovered 308 germline mutations in 106 offspring translating to µ = 4.83 × 10-9 and µ = 4.29 × 10-9 per base per generation in the two populations, respectively. Up to 20% of the mutations were shared by full-sibs showing that the level of parental mosaicism was relatively high. Since the estimated µ was 3.1 times smaller than the commonly used substitution rate, recalibration with µ led to substantial increase in estimated divergence times between different stickleback species. Our estimates of the de novo mutation rate should provide a useful resource for research focused on fish population genetics and that of sticklebacks in particular.
Collapse
Affiliation(s)
- Chaowei Zhang
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kerry Reid
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Arthur F Sands
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Antoine Fraimout
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Research Program in Organismal & Evolutionary Biology, Faculty Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Juha Merilä
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Research Program in Organismal & Evolutionary Biology, Faculty Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Suárez-Menéndez M, Bérubé M, Furni F, Rivera-León VE, Heide-Jørgensen MP, Larsen F, Sears R, Ramp C, Eriksson BK, Etienne RS, Robbins J, Palsbøll PJ. Wild pedigrees inform mutation rates and historic abundance in baleen whales. Science 2023; 381:990-995. [PMID: 37651509 DOI: 10.1126/science.adf2160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Phylogeny-based estimates suggesting a low germline mutation rate (μ) in baleen whales have influenced research ranging from assessments of whaling impacts to evolutionary cancer biology. We estimated μ directly from pedigrees in four baleen whale species for both the mitochondrial control region and nuclear genome. The results suggest values higher than those obtained through phylogeny-based estimates and similar to pedigree-based values for primates and toothed whales. Applying our estimate of μ reduces previous genetic-based estimates of preexploitation whale abundance by 86% and suggests that μ cannot explain low cancer rates in gigantic mammals. Our study shows that it is feasible to estimate μ directly from pedigrees in natural populations, with wide-ranging implications for ecological and evolutionary research.
Collapse
Affiliation(s)
- Marcos Suárez-Menéndez
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Martine Bérubé
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Center for Coastal Studies, Provincetown, MA, USA
| | - Fabrício Furni
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Vania E Rivera-León
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Finn Larsen
- National Institute of Aquatic Resources, Kongens Lyngby, Denmark
| | - Richard Sears
- Mingan Island Cetacean Study Inc., St. Lambert, Quebec, Canada
| | - Christian Ramp
- Mingan Island Cetacean Study Inc., St. Lambert, Quebec, Canada
- Scottish Oceans Institute, University of St. Andrews, St. Andrews, UK
| | - Britas Klemens Eriksson
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Per J Palsbøll
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Center for Coastal Studies, Provincetown, MA, USA
| |
Collapse
|
18
|
Lin Y, Darolti I, van der Bijl W, Morris J, Mank JE. Extensive variation in germline de novo mutations in Poecilia reticulata. Genome Res 2023; 33:1317-1324. [PMID: 37442578 PMCID: PMC10547258 DOI: 10.1101/gr.277936.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
The rate of germline mutation is fundamental to evolutionary processes, as it generates the variation upon which selection acts. The guppy, Poecilia reticulata, is a model of rapid adaptation, however the relative contribution of standing genetic variation versus de novo mutation (DNM) to evolution in this species remains unclear. Here, we use pedigree-based approaches to quantify and characterize germline DNMs in three large guppy families. Our results suggest germline mutation rate in the guppy varies substantially across individuals and families. Most DNMs are shared across multiple siblings, suggesting they arose during early embryonic development. DNMs are randomly distributed throughout the genome, and male-biased mutation rate is low, as would be expected from the short guppy generation time. Overall, our study shows remarkable variation in germline mutation rate and provides insights into rapid evolution of guppies.
Collapse
Affiliation(s)
- Yuying Lin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada;
| | - Iulia Darolti
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jake Morris
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
19
|
L Rocha J, Silva P, Santos N, Nakamura M, Afonso S, Qninba A, Boratynski Z, Sudmant PH, Brito JC, Nielsen R, Godinho R. North African fox genomes show signatures of repeated introgression and adaptation to life in deserts. Nat Ecol Evol 2023; 7:1267-1286. [PMID: 37308700 PMCID: PMC10527534 DOI: 10.1038/s41559-023-02094-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Elucidating the evolutionary process of animal adaptation to deserts is key to understanding adaptive responses to climate change. Here we generated 82 individual whole genomes of four fox species (genus Vulpes) inhabiting the Sahara Desert at different evolutionary times. We show that adaptation of new colonizing species to a hot arid environment has probably been facilitated by introgression and trans-species polymorphisms shared with older desert resident species, including a putatively adaptive 25 Mb genomic region. Scans for signatures of selection implicated genes affecting temperature perception, non-renal water loss and heat production in the recent adaptation of North African red foxes (Vulpes vulpes), after divergence from Eurasian populations approximately 78 thousand years ago. In the extreme desert specialists, Rueppell's fox (V. rueppellii) and fennec (V. zerda), we identified repeated signatures of selection in genes affecting renal water homeostasis supported by gene expression and physiological differences. Our study provides insights into the mechanisms and genetic underpinnings of a natural experiment of repeated adaptation to extreme conditions.
Collapse
Affiliation(s)
- Joana L Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA.
| | - Pedro Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Mónia Nakamura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Abdeljebbar Qninba
- Laboratory of Geophysics and Natural Hazards, Geophysics, Natural Patrimony and Green Chemistry Research Center (GEOPAC), Institut Scientifique, Mohammed V University of Rabat, Rabat, Morocco
| | - Zbyszek Boratynski
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Peter H Sudmant
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - José C Brito
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Rasmus Nielsen
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, CA, USA.
- Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa.
| |
Collapse
|
20
|
Krasovec M, Hoshino M, Zheng M, Lipinska AP, Coelho SM. Low Spontaneous Mutation Rate in Complex Multicellular Eukaryotes with a Haploid-Diploid Life Cycle. Mol Biol Evol 2023; 40:msad105. [PMID: 37140022 PMCID: PMC10254074 DOI: 10.1093/molbev/msad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
The spontaneous mutation rate µ is a crucial parameter to understand evolution and biodiversity. Mutation rates are highly variable across species, suggesting that µ is susceptible to selection and drift and that species life cycle and life history may impact its evolution. In particular, asexual reproduction and haploid selection are expected to affect the mutation rate, but very little empirical data are available to test this expectation. Here, we sequence 30 genomes of a parent-offspring pedigree in the model brown alga Ectocarpus sp.7, and 137 genomes of an interspecific cross of the closely related brown alga Scytosiphon to have access to the spontaneous mutation rate of representative organisms of a complex multicellular eukaryotic lineage outside animals and plants, and to evaluate the potential impact of life cycle on the mutation rate. Brown algae alternate between a haploid and a diploid stage, both multicellular and free living, and utilize both sexual and asexual reproduction. They are, therefore, excellent models to empirically test expectations of the effect of asexual reproduction and haploid selection on mutation rate evolution. We estimate that Ectocarpus has a base substitution rate of µbs = 4.07 × 10-10 per site per generation, whereas the Scytosiphon interspecific cross had µbs = 1.22 × 10-9. Overall, our estimations suggest that these brown algae, despite being multicellular complex eukaryotes, have unusually low mutation rates. In Ectocarpus, effective population size (Ne) could not entirely explain the low µbs. We propose that the haploid-diploid life cycle, combined with extensive asexual reproduction, may be additional key drivers of the mutation rate in these organisms.
Collapse
Affiliation(s)
- Marc Krasovec
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Masakazu Hoshino
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Steensma MJ, Lee YL, Bouwman AC, Pita Barros C, Derks MFL, Bink MCAM, Harlizius B, Huisman AE, Crooijmans RPMA, Groenen MAM, Mulder HA, Rochus CM. Identification and characterisation of de novo germline structural variants in two commercial pig lines using trio-based whole genome sequencing. BMC Genomics 2023; 24:208. [PMID: 37072725 PMCID: PMC10114323 DOI: 10.1186/s12864-023-09296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND De novo mutations arising in the germline are a source of genetic variation and their discovery broadens our understanding of genetic disorders and evolutionary patterns. Although the number of de novo single nucleotide variants (dnSNVs) has been studied in a number of species, relatively little is known about the occurrence of de novo structural variants (dnSVs). In this study, we investigated 37 deeply sequenced pig trios from two commercial lines to identify dnSVs present in the offspring. The identified dnSVs were characterised by identifying their parent of origin, their functional annotations and characterizing sequence homology at the breakpoints. RESULTS We identified four swine germline dnSVs, all located in intronic regions of protein-coding genes. Our conservative, first estimate of the swine germline dnSV rate is 0.108 (95% CI 0.038-0.255) per generation (one dnSV per nine offspring), detected using short-read sequencing. Two detected dnSVs are clusters of mutations. Mutation cluster 1 contains a de novo duplication, a dnSNV and a de novo deletion. Mutation cluster 2 contains a de novo deletion and three de novo duplications, of which one is inverted. Mutation cluster 2 is 25 kb in size, whereas mutation cluster 1 (197 bp) and the other two individual dnSVs (64 and 573 bp) are smaller. Only mutation cluster 2 could be phased and is located on the paternal haplotype. Mutation cluster 2 originates from both micro-homology as well as non-homology mutation mechanisms, where mutation cluster 1 and the other two dnSVs are caused by mutation mechanisms lacking sequence homology. The 64 bp deletion and mutation cluster 1 were validated through PCR. Lastly, the 64 bp deletion and the 573 bp duplication were validated in sequenced offspring of probands with three generations of sequence data. CONCLUSIONS Our estimate of 0.108 dnSVs per generation in the swine germline is conservative, due to our small sample size and restricted possibilities of dnSV detection from short-read sequencing. The current study highlights the complexity of dnSVs and shows the potential of breeding programs for pigs and livestock species in general, to provide a suitable population structure for identification and characterisation of dnSVs.
Collapse
Affiliation(s)
- Marije J Steensma
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands.
| | - Y L Lee
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
| | - A C Bouwman
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
| | - C Pita Barros
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
| | - M F L Derks
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
- Topigs Norsvin Research Center, Schoenaker 6, Beuningen, 6641 SZ, the Netherlands
| | - M C A M Bink
- Hendrix Genetics, P.O. Box 114, Boxmeer, 5830 AC, the Netherlands
| | - B Harlizius
- Topigs Norsvin Research Center, Schoenaker 6, Beuningen, 6641 SZ, the Netherlands
| | - A E Huisman
- Hendrix Genetics, P.O. Box 114, Boxmeer, 5830 AC, the Netherlands
| | - R P M A Crooijmans
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
| | - M A M Groenen
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
| | - H A Mulder
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, Wageningen, 6700 AH, the Netherlands
| | - C M Rochus
- University of Guelph, Centre for Genetic Improvement of Livestock, 50 Stone Rd E, Guelph, O N, N1G 2W1, Canada
| |
Collapse
|
22
|
Kyriazis CC, Robinson JA, Nigenda-Morales SF, Beichman AC, Rojas-Bracho L, Robertson KM, Fontaine MC, Wayne RK, Taylor BL, Lohmueller KE, Morin PA. Models based on best-available information support a low inbreeding load and potential for recovery in the vaquita. Heredity (Edinb) 2023; 130:183-187. [PMID: 36941409 PMCID: PMC10076335 DOI: 10.1038/s41437-023-00608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Affiliation(s)
- Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jacqueline A Robinson
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| | - Sergio F Nigenda-Morales
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (Langebio), Center for Research and Advanced Studies (Cinvestav); Irapuato, Guanajuato, Mexico
| | - Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Kelly M Robertson
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - Michael C Fontaine
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Barbara L Taylor
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA.
| |
Collapse
|
23
|
Mutation Rate and Spectrum of the Silkworm in Normal and Temperature Stress Conditions. Genes (Basel) 2023; 14:genes14030649. [PMID: 36980921 PMCID: PMC10048334 DOI: 10.3390/genes14030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Mutation rate is a crucial parameter in evolutionary genetics. However, the mutation rate of most species as well as the extent to which the environment can alter the genome of multicellular organisms remain poorly understood. Here, we used parents–progeny sequencing to investigate the mutation rate and spectrum of the domestic silkworm (Bombyx mori) among normal and two temperature stress conditions (32 °C and 0 °C). The rate of single-nucleotide mutations in the normal temperature rearing condition was 0.41 × 10−8 (95% confidence interval, 0.33 × 10−8–0.49 × 10−8) per site per generation, which was up to 1.5-fold higher than in four previously studied insects. Moreover, the mutation rates of the silkworm under the stresses are significantly higher than in normal conditions. Furthermore, the mutation rate varies less in gene regions under normal and temperature stresses. Together, these findings expand the known diversity of the mutation rate among eukaryotes but also have implications for evolutionary analysis that assumes a constant mutation rate among species and environments.
Collapse
|
24
|
Bergeron LA, Besenbacher S, Zheng J, Li P, Bertelsen MF, Quintard B, Hoffman JI, Li Z, St Leger J, Shao C, Stiller J, Gilbert MTP, Schierup MH, Zhang G. Evolution of the germline mutation rate across vertebrates. Nature 2023; 615:285-291. [PMID: 36859541 PMCID: PMC9995274 DOI: 10.1038/s41586-023-05752-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/23/2023] [Indexed: 03/03/2023]
Abstract
The germline mutation rate determines the pace of genome evolution and is an evolving parameter itself1. However, little is known about what determines its evolution, as most studies of mutation rates have focused on single species with different methodologies2. Here we quantify germline mutation rates across vertebrates by sequencing and comparing the high-coverage genomes of 151 parent-offspring trios from 68 species of mammals, fishes, birds and reptiles. We show that the per-generation mutation rate varies among species by a factor of 40, with mutation rates being higher for males than for females in mammals and birds, but not in reptiles and fishes. The generation time, age at maturity and species-level fecundity are the key life-history traits affecting this variation among species. Furthermore, species with higher long-term effective population sizes tend to have lower mutation rates per generation, providing support for the drift barrier hypothesis3. The exceptionally high yearly mutation rates of domesticated animals, which have been continually selected on fecundity traits including shorter generation times, further support the importance of generation time in the evolution of mutation rates. Overall, our comparative analysis of pedigree-based mutation rates provides ecological insights on the mutation rate evolution in vertebrates.
Collapse
Affiliation(s)
- Lucie A Bergeron
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Søren Besenbacher
- Department of Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Jiao Zheng
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | | | | | | | - Joseph I Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- British Antarctic Survey, High Cross, Cambridge, UK
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Judy St Leger
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Josefin Stiller
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | | | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Centre for Evolutionary & Organismal Biology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
25
|
Armstrong EE, Campana MG. RatesTools: a Nextflow pipeline for detecting de novo germline mutations in pedigree sequence data. BIOINFORMATICS (OXFORD, ENGLAND) 2023; 39:6873736. [PMID: 36469327 DOI: 10.1093/bioinformatics/btac784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
SUMMARY Here, we introduce RatesTools, an automated pipeline to infer de novo mutation rates from parent-offspring trio data of diploid organisms. By providing a reference genome and high-coverage, whole-genome resequencing data of a minimum of three individuals (sire, dam and offspring), RatesTools provides a list of candidate de novo mutations and calculates a putative mutation rate. RatesTools uses several quality filtering steps, such as discarding sites with low mappability and highly repetitive regions, as well as sites with low genotype and mapping qualities to find potential de novo mutations. In addition, RatesTools implements several optional filters based on post hoc assumptions of the heterozygosity and mutation rate of the organism. Filters are highly customizable to user specifications in order to maximize utility across a wide range of applications. AVAILABILITY AND IMPLEMENTATION RatesTools is freely available at https://github.com/campanam/RatesTools under a Creative Commons Zero (CC0) license. The pipeline is implemented in Nextflow (Di Tommaso et al., 2017), Ruby (http://www.ruby-lang.org), Bash (https://www.gnu.org/software/bash/) and R (R Core Team, 2020) with reliance upon several other freely available tools. RatesTools is compatible with macOS and Linux operating systems. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ellie E Armstrong
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.,Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael G Campana
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
26
|
Runge J, König B, Lindholm AK, Bendesky A. Parent-offspring inference in inbred populations. Mol Ecol Resour 2022; 22:2981-2993. [PMID: 35770342 PMCID: PMC9796703 DOI: 10.1111/1755-0998.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 01/07/2023]
Abstract
Genealogical relationships are fundamental components of genetic studies. However, it is often challenging to infer correct and complete pedigrees even when genome-wide information is available. For example, inbreeding can obscure genetic differences between individuals, making it difficult to even distinguish first-degree relatives such as parent-offspring from full siblings. Similarly, genotyping errors can interfere with the detection of genetic similarity between parents and their offspring. Inbreeding is common in natural, domesticated, and experimental populations and genotyping of these populations often has more errors than in human data sets, so efficient methods for building pedigrees under these conditions are necessary. Here, we present a new method for parent-offspring inference in inbred pedigrees called specific parent-offspring relationship estimation (spore). spore is vastly superior to existing pedigree-inference methods at detecting parent-offspring relationships, in particular when inbreeding is high or in the presence of genotyping errors, or both. spore therefore fills an important void in the arsenal of pedigree inference tools.
Collapse
Affiliation(s)
- Jan‐Niklas Runge
- Department of Ecology, Evolution and Environmental Biology, Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNYUSA
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Barbara König
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Anna K. Lindholm
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology, Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNYUSA
| |
Collapse
|
27
|
Hendricks SA, King JL, Duncan CL, Vickers W, Hohenlohe PA, Davis BW. Genomic Assessment of Cancer Susceptibility in the Threatened Catalina Island Fox ( Urocyon littoralis catalinae). Genes (Basel) 2022; 13:1496. [PMID: 36011407 PMCID: PMC9408614 DOI: 10.3390/genes13081496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/12/2022] Open
Abstract
Small effective population sizes raise the probability of extinction by increasing the frequency of potentially deleterious alleles and reducing fitness. However, the extent to which cancers play a role in the fitness reduction of genetically depauperate wildlife populations is unknown. Santa Catalina island foxes (Urocyon littoralis catalinae) sampled in 2007-2008 have a high prevalence of ceruminous gland tumors, which was not detected in the population prior to a recent bottleneck caused by a canine distemper epidemic. The disease appears to be associated with inflammation from chronic ear mite (Otodectes) infections and secondary elevated levels of Staphyloccus pseudointermedius bacterial infections. However, no other environmental factors to date have been found to be associated with elevated cancer risk in this population. Here, we used whole genome sequencing of the case and control individuals from two islands to identify candidate loci associated with cancer based on genetic divergence, nucleotide diversity, allele frequency spectrum, and runs of homozygosity. We identified several candidate loci based on genomic signatures and putative gene functions, suggesting that cancer susceptibility in this population may be polygenic. Due to the efforts of a recovery program and weak fitness effects of late-onset disease, the population size has increased, which may allow selection to be more effective in removing these presumably slightly deleterious alleles. Long-term monitoring of the disease alleles, as well as overall genetic diversity, will provide crucial information for the long-term persistence of this threatened population.
Collapse
Affiliation(s)
- Sarah A. Hendricks
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Julie L. King
- Catalina Island Conservancy, P.O. Box 2739, Avalon, CA 90704, USA
| | - Calvin L. Duncan
- Catalina Island Conservancy, P.O. Box 2739, Avalon, CA 90704, USA
| | - Winston Vickers
- Institute for Wildlife Studies, Arcata, CA 95521, USA
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Paul A. Hohenlohe
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX 77840, USA
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX 77840, USA
| |
Collapse
|
28
|
Wang RJ, Raveendran M, Harris RA, Murphy WJ, Lyons LA, Rogers J, Hahn MW. De novo Mutations in Domestic Cat are Consistent with an Effect of Reproductive Longevity on Both the Rate and Spectrum of Mutations. Mol Biol Evol 2022; 39:msac147. [PMID: 35771663 PMCID: PMC9290555 DOI: 10.1093/molbev/msac147] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mutation rate is a fundamental evolutionary parameter with direct and appreciable effects on the health and function of individuals. Here, we examine this important parameter in the domestic cat, a beloved companion animal as well as a valuable biomedical model. We estimate a mutation rate of 0.86 × 10-8 per bp per generation for the domestic cat (at an average parental age of 3.8 years). We find evidence for a significant paternal age effect, with more mutations transmitted by older sires. Our analyses suggest that the cat and the human have accrued similar numbers of mutations in the germline before reaching sexual maturity. The per-generation mutation rate in the cat is 28% lower than what has been observed in humans, but is consistent with the shorter generation time in the cat. Using a model of reproductive longevity, which takes into account differences in the reproductive age and time to sexual maturity, we are able to explain much of the difference in per-generation rates between species. We further apply our reproductive longevity model in a novel analysis of mutation spectra and find that the spectrum for the cat resembles the human mutation spectrum at a younger age of reproduction. Together, these results implicate changes in life-history as a driver of mutation rate evolution between species. As the first direct observation of the paternal age effect outside of rodents and primates, our results also suggest a phenomenon that may be universal among mammals.
Collapse
Affiliation(s)
- Richard J Wang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| |
Collapse
|
29
|
Bergström A, Stanton DWG, Taron UH, Frantz L, Sinding MHS, Ersmark E, Pfrengle S, Cassatt-Johnstone M, Lebrasseur O, Girdland-Flink L, Fernandes DM, Ollivier M, Speidel L, Gopalakrishnan S, Westbury MV, Ramos-Madrigal J, Feuerborn TR, Reiter E, Gretzinger J, Münzel SC, Swali P, Conard NJ, Carøe C, Haile J, Linderholm A, Androsov S, Barnes I, Baumann C, Benecke N, Bocherens H, Brace S, Carden RF, Drucker DG, Fedorov S, Gasparik M, Germonpré M, Grigoriev S, Groves P, Hertwig ST, Ivanova VV, Janssens L, Jennings RP, Kasparov AK, Kirillova IV, Kurmaniyazov I, Kuzmin YV, Kosintsev PA, Lázničková-Galetová M, Leduc C, Nikolskiy P, Nussbaumer M, O'Drisceoil C, Orlando L, Outram A, Pavlova EY, Perri AR, Pilot M, Pitulko VV, Plotnikov VV, Protopopov AV, Rehazek A, Sablin M, Seguin-Orlando A, Storå J, Verjux C, Zaibert VF, Zazula G, Crombé P, Hansen AJ, Willerslev E, Leonard JA, Götherström A, Pinhasi R, Schuenemann VJ, Hofreiter M, Gilbert MTP, Shapiro B, Larson G, Krause J, Dalén L, Skoglund P. Grey wolf genomic history reveals a dual ancestry of dogs. Nature 2022; 607:313-320. [PMID: 35768506 PMCID: PMC9279150 DOI: 10.1038/s41586-022-04824-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/28/2022] [Indexed: 01/01/2023]
Abstract
The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1–8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located. DNA from ancient wolves spanning 100,000 years sheds light on wolves’ evolutionary history and the genomic origin of dogs.
Collapse
Affiliation(s)
- Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| | - David W G Stanton
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden.,School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ulrike H Taron
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Laurent Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.,Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Mikkel-Holger S Sinding
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,The Qimmeq Project, University of Greenland, Nuuk, Greenland.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Erik Ersmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Saskia Pfrengle
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Molly Cassatt-Johnstone
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ophélie Lebrasseur
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Linus Girdland-Flink
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, UK.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Morgane Ollivier
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)-UMR 6553, Rennes, France
| | - Leo Speidel
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.,Genetics Institute, University College London, London, UK
| | | | - Michael V Westbury
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Tatiana R Feuerborn
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,The Qimmeq Project, University of Greenland, Nuuk, Greenland.,Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Joscha Gretzinger
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Max Planck Institute for the Science of Human History, Jena, Germany
| | - Susanne C Münzel
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Pooja Swali
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas J Conard
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Christian Carøe
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - James Haile
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Anna Linderholm
- Centre for Palaeogenetics, Stockholm, Sweden.,The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.,Texas A&M University, College Station, TX, USA.,Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | | | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Chris Baumann
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland
| | | | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Ruth F Carden
- School of Archaeology, University College Dublin, Dublin, Ireland
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Sergey Fedorov
- North-Eastern Federal University, Yakutsk, Russian Federation
| | | | | | | | - Pam Groves
- University of Alaska, Fairbanks, AK, USA
| | - Stefan T Hertwig
- Naturhistorisches Museum Bern, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | | | - Richard P Jennings
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russian Federation
| | - Irina V Kirillova
- Ice Age Museum, Shidlovskiy National Alliance 'Ice Age', Moscow, Russian Federation
| | - Islam Kurmaniyazov
- Department of Archaeology, Ethnology and Museology, Al-Farabi Kazakh State University, Almaty, Kazakhstan
| | - Yaroslav V Kuzmin
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | | | | | | | - Pavel Nikolskiy
- Geological Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Cóilín O'Drisceoil
- National Monuments Service, Department of Housing, Local Government and Heritage, Dublin, Ireland
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR 5288, CNRS, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - Alan Outram
- Department of Archaeology, University of Exeter, Exeter, UK
| | - Elena Y Pavlova
- Arctic & Antarctic Research Institute, St Petersburg, Russian Federation
| | - Angela R Perri
- PaleoWest, Henderson, NV, USA.,Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Małgorzata Pilot
- Museum & Institute of Zoology, Polish Academy of Sciences, Gdańsk, Poland
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russian Federation
| | | | | | | | - Mikhail Sablin
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR 5288, CNRS, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - Jan Storå
- Stockholm University, Stockholm, Sweden
| | | | - Victor F Zaibert
- Institute of Archaeology and Steppe Civilizations, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Grant Zazula
- Yukon Palaeontology Program, Whitehorse, Yukon Territories, Canada.,Collections and Research, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | | | - Anders J Hansen
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden.,Stockholm University, Stockholm, Sweden
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Verena J Schuenemann
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - M Thomas P Gilbert
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,University Museum, NTNU, Trondheim, Norway
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Greger Larson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
30
|
Selection for male stamina can help explain costly displays with cost-minimizing female choice. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Abstract
In many species, male lifespan is shorter than that of females, often attributed to sexual selection favouring costly expression of traits preferred by females. Coevolutionary models of female preferences and male traits predict that males can be selected to have such life histories; however, this typically requires that females also pay some costs to express their preferences. Here we show that this problem diminishes when we link coevolutionary models of costly mate choice with the idea of stamina. In our model, the most successful males are those who can combine high attendance time on a lek — or, more generally, tenacious effort in their display time budgets — with high viability such that they are not too strongly compromised in terms of lifespan. We find that an opportunistic female strategy, that minimizes its costs by mating with highly visible (displaying) males, often beats other alternatives. It typically resists invasion attempts of genotypes that mate randomly in the population genetic sense, as well as invasion of stricter ways of being choosy (which are potentially costly if choice requires e.g. active rejection of all males who do not presently display, or risky travel to lekking sites). Our model can produce a wide range of male time budgets (display vs. self-maintenance). This includes cases of alternative mating tactics where males in good condition spend much time displaying, while those in poor condition never display yet, importantly, gain some mating success due to females not engaging in rejection behaviours should these be very costly to express.
Significance statement
In many species, males spend much time and energy on displaying to attract females, but it is not always clear what females gain from paying attention to male displays. The tradition in mathematical models attempting to understand the situation is to assume that random mating is the least costly option for females. However, random mating in the population genetic sense requires females to behave in a manner that equalizes mating success between displaying and non-displaying males, and here we point out that this is biologically unlikely. Opportunistically mating females can cause males to spend much of their time budgets displaying and will shorten male lifespans in a quality-dependent manner.
Collapse
|
31
|
Zhang M, Yang Q, Ai H, Huang L. Revisiting the Evolutionary History of Pigs via De Novo Mutation Rate Estimation in A Three-generation Pedigree. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1040-1052. [PMID: 35181533 DOI: 10.1016/j.gpb.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 12/30/2022]
Abstract
The mutation rate used in the previous analyses of pig evolution and demographics was cursory and hence invited potential bias in inferring evolutionary history. Herein, we estimated the de novo mutation rate of pigs as 3.6 × 10-9 per base per generation using high-quality whole-genome sequencing data from nine individuals in a three-generation pedigree through stringent filtering and validation. Using this mutation rate, we re-investigated the evolutionary history of pigs. The estimated divergence time of ∼ 10 kiloyears ago (KYA) between European wild and domesticated pigs was consistent with the domestication time of European pigs based on archaeological evidence. However, other divergence events inferred here were not as ancient as previously described. Our estimates suggested that Sus speciation occurred ∼ 1.36 million years ago (MYA); European wild pigs split from Asian wild pigs only ∼ 219 KYA; and south and north Chinese wild pigs split ∼ 25 KYA. Meanwhile, our results showed that the most recent divergence event between Chinese wild and domesticated pigs occurred in the Hetao plain, North China, approximately 20 KYA, supporting the possibly independent domestication in North China along the middle Yellow River. We also found that the maximum effective population size of pigs was ∼ 6 times larger than the previous estimate. An archaic migration from other Sus species originating ∼ 2 MYA to European pigs was detected during western colonization of pigs; this interfered with the previous demographic inference. Our de novo mutation rate estimation and its consequences for demographic history inference reasonably provide a new vision regarding the evolutionary history of pigs.
Collapse
Affiliation(s)
- Mingpeng Zhang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qiang Yang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huashui Ai
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lusheng Huang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
32
|
Bergeron LA, Besenbacher S, Turner T, Versoza CJ, Wang RJ, Price AL, Armstrong E, Riera M, Carlson J, Chen HY, Hahn MW, Harris K, Kleppe AS, López-Nandam EH, Moorjani P, Pfeifer SP, Tiley GP, Yoder AD, Zhang G, Schierup MH. The mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates. eLife 2022; 11:73577. [PMID: 35018888 PMCID: PMC8830884 DOI: 10.7554/elife.73577] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, several studies have estimated the human per-generation germline mutation rate using large pedigrees. More recently, estimates for various nonhuman species have been published. However, methodological differences among studies in detecting germline mutations and estimating mutation rates make direct comparisons difficult. Here, we describe the many different steps involved in estimating pedigree-based mutation rates, including sampling, sequencing, mapping, variant calling, filtering, and appropriately accounting for false-positive and false-negative rates. For each step, we review the different methods and parameter choices that have been used in the recent literature. Additionally, we present the results from a ‘Mutationathon,’ a competition organized among five research labs to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We report almost a twofold variation in the final estimated rate among groups using different post-alignment processing, calling, and filtering criteria, and provide details into the sources of variation across studies. Though the difference among estimates is not statistically significant, this discrepancy emphasizes the need for standardized methods in mutation rate estimations and the difficulty in comparing rates from different studies. Finally, this work aims to provide guidelines for computational and statistical benchmarks for future studies interested in identifying germline mutations from pedigrees.
Collapse
Affiliation(s)
- Lucie A Bergeron
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Besenbacher
- Department of Molecular Medicine (MOMA), Aarhus University, Aarhus N, Denmark
| | - Tychele Turner
- Department of Genetics, Washington University in St. Louis, Saint Louis, United States
| | - Cyril J Versoza
- Center for Evolution and Medicine, Arizona State University, Tempe, United States
| | - Richard J Wang
- Department of Biology, Indiana University, Bloomington, United States
| | - Alivia Lee Price
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ellie Armstrong
- Department of Biology, Stanford University, Stanford, United States
| | - Meritxell Riera
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Jedidiah Carlson
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Hwei-Yen Chen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, United States
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, United States
| | | | | | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, United States
| | - George P Tiley
- Department of Biology, Duke University, Durham, United States
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, United States
| | - Guojie Zhang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
33
|
Rashid I, Campos M, Collier T, Crepeau M, Weakley A, Gripkey H, Lee Y, Schmidt H, Lanzaro GC. Spontaneous mutation rate estimates for the principal malaria vectors Anopheles coluzzii and Anopheles stephensi. Sci Rep 2022; 12:226. [PMID: 34996998 PMCID: PMC8742016 DOI: 10.1038/s41598-021-03943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Using high-depth whole genome sequencing of F0 mating pairs and multiple individual F1 offspring, we estimated the nuclear mutation rate per generation in the malaria vectors Anopheles coluzzii and Anopheles stephensi by detecting de novo genetic mutations. A purpose-built computer program was employed to filter actual mutations from a deep background of superficially similar artifacts resulting from read misalignment. Performance of filtering parameters was determined using software-simulated mutations, and the resulting estimate of false negative rate was used to correct final mutation rate estimates. Spontaneous mutation rates by base substitution were estimated at 1.00 × 10−9 (95% confidence interval, 2.06 × 10−10—2.91 × 10−9) and 1.36 × 10−9 (95% confidence interval, 4.42 × 10−10—3.18 × 10−9) per site per generation in A. coluzzii and A. stephensi respectively. Although similar studies have been performed on other insect species including dipterans, this is the first study to empirically measure mutation rates in the important genus Anopheles, and thus provides an estimate of µ that will be of utility for comparative evolutionary genomics, as well as for population genetic analysis of malaria vector mosquito species.
Collapse
Affiliation(s)
- Iliyas Rashid
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA.,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.,Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
| | - Melina Campos
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Travis Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Marc Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Allison Weakley
- Department of ChEM-H Operations, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Hans Gripkey
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St SE, Vero Beach, FL, 32962, USA
| | - Hanno Schmidt
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, Saarstraße 21, 55122, Mainz, Germany
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA.
| |
Collapse
|
34
|
Wang MS, Thakur M, Jhala Y, Wang S, Srinivas Y, Dai SS, Liu ZX, Chen HM, Green RE, Koepfli KP, Shapiro B. OUP accepted manuscript. Genome Biol Evol 2022; 14:6524629. [PMID: 35137061 PMCID: PMC8841465 DOI: 10.1093/gbe/evac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, USA
- Corresponding authors: E-mails: ; ; ;
| | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Corresponding authors: E-mails: ; ; ;
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yellapu Srinivas
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zheng-Xi Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Hong-Man Chen
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
- Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
- Corresponding authors: E-mails: ; ; ;
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, USA
- Corresponding authors: E-mails: ; ; ;
| |
Collapse
|
35
|
Warmuth VM, Burgess MD, Laaksonen T, Manica A, Mägi M, Nord A, Primmer CR, Sætre GP, Winkel W, Ellegren H. Major population splits coincide with episodes of rapid climate change in a forest-dependent bird. Proc Biol Sci 2021; 288:20211066. [PMID: 34727712 PMCID: PMC8564624 DOI: 10.1098/rspb.2021.1066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Climate change influences population demography by altering patterns of gene flow and reproductive isolation. Direct mutation rates offer the possibility for accurate dating on the within-species level but are currently only available for a handful of vertebrate species. Here, we use the first directly estimated mutation rate in birds to study the evolutionary history of pied flycatchers (Ficedula hypoleuca). Using a combination of demographic inference and species distribution modelling, we show that all major population splits in this forest-dependent system occurred during periods of increased climate instability and rapid global temperature change. We show that the divergent Spanish subspecies originated during the Eemian-Weichselian transition 115-104 thousand years ago (kya), and not during the last glacial maximum (26.5-19 kya), as previously suggested. The magnitude and rates of climate change during the glacial-interglacial transitions that preceded population splits in pied flycatchers were similar to, or exceeded, those predicted to occur in the course of the current, human-induced climate crisis. As such, our results provide a timely reminder of the strong impact that episodes of climate instability and rapid temperature changes can have on species' evolutionary trajectories, with important implications for the natural world in the Anthropocene.
Collapse
Affiliation(s)
- Vera M. Warmuth
- Department of Evolutionary Biology, Biozentrum Martinsried, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
| | - Malcolm D. Burgess
- Centre for Animal Behaviour, University of Exeter, Exeter, UK
- RSPB Centre for Conservation Science, Sandy, UK
| | - Toni Laaksonen
- Department of Biology, University of Turku, Turku, Finland
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marko Mägi
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Andreas Nord
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden
| | - Craig R. Primmer
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Finland
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Wolfgang Winkel
- Institute of Avian Research, ‘Vogelwarte Helgoland’, Wilhelmshaven, Germany
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Axelsson E, Ljungvall I, Bhoumik P, Conn LB, Muren E, Ohlsson Å, Olsen LH, Engdahl K, Hagman R, Hanson J, Kryvokhyzha D, Pettersson M, Grenet O, Moggs J, Del Rio-Espinola A, Epe C, Taillon B, Tawari N, Mane S, Hawkins T, Hedhammar Å, Gruet P, Häggström J, Lindblad-Toh K. The genetic consequences of dog breed formation-Accumulation of deleterious genetic variation and fixation of mutations associated with myxomatous mitral valve disease in cavalier King Charles spaniels. PLoS Genet 2021; 17:e1009726. [PMID: 34473707 PMCID: PMC8412370 DOI: 10.1371/journal.pgen.1009726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Selective breeding for desirable traits in strictly controlled populations has generated an extraordinary diversity in canine morphology and behaviour, but has also led to loss of genetic variation and random entrapment of disease alleles. As a consequence, specific diseases are now prevalent in certain breeds, but whether the recent breeding practice led to an overall increase in genetic load remains unclear. Here we generate whole genome sequencing (WGS) data from 20 dogs per breed from eight breeds and document a ~10% rise in the number of derived alleles per genome at evolutionarily conserved sites in the heavily bottlenecked cavalier King Charles spaniel breed (cKCs) relative to in most breeds studied here. Our finding represents the first clear indication of a relative increase in levels of deleterious genetic variation in a specific breed, arguing that recent breeding practices probably were associated with an accumulation of genetic load in dogs. We then use the WGS data to identify candidate risk alleles for the most common cause for veterinary care in cKCs–the heart disease myxomatous mitral valve disease (MMVD). We verify a potential link to MMVD for candidate variants near the heart specific NEBL gene in a dachshund population and show that two of the NEBL candidate variants have regulatory potential in heart-derived cell lines and are associated with reduced NEBL isoform nebulette expression in papillary muscle (but not in mitral valve, nor in left ventricular wall). Alleles linked to reduced nebulette expression may hence predispose cKCs and other breeds to MMVD via loss of papillary muscle integrity. As a consequence of selective breeding, specific disease-causing mutations have become more frequent in certain dog breeds. Whether the breeding practice also resulted in a general increase in the overall number of disease-causing mutations per dog genome is however not clear. To address this question, we compare the amount of harmful, potentially disease-causing, mutations in dogs from eight common breeds that have experienced varying degrees of intense selective breeding. We find that individuals belonging to the breed affected by the most intense breeding—cavalier King Charles spaniel (cKCs)—carry more harmful variants than other breeds, indicating that past breeding practices may have increased the overall levels of harmful genetic variation in dogs. The most common disease in cKCs is myxomatous mitral valve disease (MMVD). To identify variants linked to this disease we next characterize mutations that are common in cKCs, but rare in other breeds, and then investigate if these mutations can predict MMVD in dachshunds. We find that variants that regulate the expression of the gene NEBL in papillary muscles may increase the risk of the disease, indicating that loss of papillary muscle integrity could contribute to the development of MMVD.
Collapse
Affiliation(s)
- Erik Axelsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Priyasma Bhoumik
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Laura Bas Conn
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eva Muren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Ohlsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Engdahl
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jeanette Hanson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dmytro Kryvokhyzha
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Olivier Grenet
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jonathan Moggs
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Christian Epe
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Bruce Taillon
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Nilesh Tawari
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Shrinivas Mane
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Troy Hawkins
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
37
|
Campbell CR, Tiley GP, Poelstra JW, Hunnicutt KE, Larsen PA, Lee HJ, Thorne JL, Dos Reis M, Yoder AD. Pedigree-based and phylogenetic methods support surprising patterns of mutation rate and spectrum in the gray mouse lemur. Heredity (Edinb) 2021; 127:233-244. [PMID: 34272504 PMCID: PMC8322134 DOI: 10.1038/s41437-021-00446-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations are the raw material on which evolution acts, and knowledge of their frequency and genomic distribution is crucial for understanding how evolution operates at both long and short timescales. At present, the rate and spectrum of de novo mutations have been directly characterized in relatively few lineages. Our study provides the first direct mutation-rate estimate for a strepsirrhine (i.e., the lemurs and lorises), which comprises nearly half of the primate clade. Using high-coverage linked-read sequencing for a focal quartet of gray mouse lemurs (Microcebus murinus), we estimated the mutation rate to be among the highest calculated for a mammal at 1.52 × 10-8 (95% credible interval: 1.28 × 10-8-1.78 × 10-8) mutations/site/generation. Further, we found an unexpectedly low count of paternal mutations, and only a modest overrepresentation of mutations at CpG sites. Despite the surprising nature of these results, we found both the rate and spectrum to be robust to the manipulation of a wide range of computational filtering criteria. We also sequenced a technical replicate to estimate a false-negative and false-positive rate for our data and show that any point estimate of a de novo mutation rate should be considered with a large degree of uncertainty. For validation, we conducted an independent analysis of context-dependent substitution types for gray mouse lemur and five additional primate species for which de novo mutation rates have also been estimated. These comparisons revealed general consistency of the mutation spectrum between the pedigree-based and the substitution-rate analyses for all species compared.
Collapse
Affiliation(s)
- C Ryan Campbell
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | | | - Kelsie E Hunnicutt
- Department of Biology, Duke University, Durham, NC, USA
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Peter A Larsen
- Department of Biology, Duke University, Durham, NC, USA
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Hui-Jie Lee
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Mario Dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
38
|
Krasovec M. The spontaneous mutation rate of Drosophila pseudoobscura. G3 GENES|GENOMES|GENETICS 2021; 11:6265464. [PMID: 33950174 PMCID: PMC8495931 DOI: 10.1093/g3journal/jkab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
Abstract
The spontaneous mutation rate is a very variable trait that is subject to drift, selection and is sometimes highly plastic. Consequently, its variation between close species, or even between populations from the same species, can be very large. Here, I estimated the spontaneous mutation rate of Drosophila pseudoobscura and Drosophila persimilis crosses to explore the mutation rate variation within the Drosophila genus. All mutation rate estimations in Drosophila varied fourfold, probably explained by the sensitivity of the mutation rate to environmental and experimental conditions. Moreover, I found a very high mutation rate in the hybrid cross between D. pseudoobscura and D. persimilis, in agreement with known elevated mutation rate in hybrids. This mutation rate increase can be explained by heterozygosity and fitness decrease effects in hybrids.
Collapse
Affiliation(s)
- Marc Krasovec
- CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer 66650, France
| |
Collapse
|
39
|
How the west was won: genetic reconstruction of rapid wolf recolonization into Germany's anthropogenic landscapes. Heredity (Edinb) 2021; 127:92-106. [PMID: 33846578 PMCID: PMC8249462 DOI: 10.1038/s41437-021-00429-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Following massive persecution and eradication, strict legal protection facilitated a successful reestablishment of wolf packs in Germany, which has been ongoing since 2000. Here, we describe this recolonization process by mitochondrial DNA control-region sequencing, microsatellite genotyping and sex identification based on 1341 mostly non-invasively collected samples. We reconstructed the genealogy of German wolf packs between 2005 and 2015 to provide information on trends in genetic diversity, dispersal patterns and pack dynamics during the early expansion process. Our results indicate signs of a founder effect at the start of the recolonization. Genetic diversity in German wolves is moderate compared to other European wolf populations. Although dispersal among packs is male-biased in the sense that females are more philopatric, dispersal distances are similar between males and females once only dispersers are accounted for. Breeding with close relatives is regular and none of the six male wolves originating from the Italian/Alpine population reproduced. However, moderate genetic diversity and inbreeding levels of the recolonizing population are preserved by high sociality, dispersal among packs and several immigration events. Our results demonstrate an ongoing, rapid and natural wolf population expansion in an intensively used cultural landscape in Central Europe.
Collapse
|
40
|
Yoder AD, Tiley GP. The challenge and promise of estimating the de novo mutation rate from whole-genome comparisons among closely related individuals. Mol Ecol 2021; 30:6087-6100. [PMID: 34062029 DOI: 10.1111/mec.16007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Germline mutations are the raw material for natural selection, driving species evolution and the generation of earth's biodiversity. Without this driver of genetic diversity, life on earth would stagnate. Yet, it is a double-edged sword. An excess of mutations can have devastating effects on fitness and population viability. It is therefore one of the great challenges of molecular ecology to determine the rate and mechanisms by which these mutations accrue across the tree of life. Advances in high-throughput sequencing technologies are providing new opportunities for characterizing the rates and mutational spectra within species and populations thus informing essential evolutionary parameters such as the timing of speciation events, the intricacies of historical demography, and the degree to which lineages are subject to the burdens of mutational load. Here, we will focus on both the challenge and promise of whole-genome comparisons among parents and their offspring from known pedigrees for the detection of germline mutations as they arise in a single generation. The potential of these studies is high, but the field is still in its infancy and much uncertainty remains. Namely, the technical challenges are daunting given that pedigree-based genome comparisons are essentially searching for needles in a haystack given the very low signal to noise ratio. Despite the challenges, we predict that rapidly developing methods for whole-genome comparisons hold great promise for integrating empirically derived estimates of de novo mutation rates and mutation spectra across many molecular ecological applications.
Collapse
Affiliation(s)
- Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
41
|
Stability across the Whole Nuclear Genome in the Presence and Absence of DNA Mismatch Repair. Cells 2021; 10:cells10051224. [PMID: 34067668 PMCID: PMC8156620 DOI: 10.3390/cells10051224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
We describe the contribution of DNA mismatch repair (MMR) to the stability of the eukaryotic nuclear genome as determined by whole-genome sequencing. To date, wild-type nuclear genome mutation rates are known for over 40 eukaryotic species, while measurements in mismatch repair-defective organisms are fewer in number and are concentrated on Saccharomyces cerevisiae and human tumors. Well-studied organisms include Drosophila melanogaster and Mus musculus, while less genetically tractable species include great apes and long-lived trees. A variety of techniques have been developed to gather mutation rates, either per generation or per cell division. Generational rates are described through whole-organism mutation accumulation experiments and through offspring–parent sequencing, or they have been identified by descent. Rates per somatic cell division have been estimated from cell line mutation accumulation experiments, from systemic variant allele frequencies, and from widely spaced samples with known cell divisions per unit of tissue growth. The latter methods are also used to estimate generational mutation rates for large organisms that lack dedicated germlines, such as trees and hyphal fungi. Mechanistic studies involving genetic manipulation of MMR genes prior to mutation rate determination are thus far confined to yeast, Arabidopsis thaliana, Caenorhabditis elegans, and one chicken cell line. A great deal of work in wild-type organisms has begun to establish a sound baseline, but far more work is needed to uncover the variety of MMR across eukaryotes. Nonetheless, the few MMR studies reported to date indicate that MMR contributes 100-fold or more to genome stability, and they have uncovered insights that would have been impossible to obtain using reporter gene assays.
Collapse
|
42
|
Sarabia C, vonHoldt B, Larrasoaña JC, Uríos V, Leonard JA. Pleistocene climate fluctuations drove demographic history of African golden wolves (Canis lupaster). Mol Ecol 2020; 30:6101-6120. [PMID: 33372365 DOI: 10.1111/mec.15784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
Pleistocene climate change impacted entire ecosystems throughout the world. In the northern hemisphere, the distribution of Arctic species expanded during glacial periods, while more temperate and mesic species contracted into climatic refugia, where isolation drove genetic divergence. Cycles of local cooling and warming in the Sahara region of northern Africa caused repeated contractions and expansions of savannah-like environments which connected mesic species isolated in refugia during interglacial times, possibly driving population expansions and contractions; divergence and geneflow in the associated fauna. Here, we use whole genome sequences of African golden wolves (Canis lupaster), a generalist mesopredator with a wide distribution in northern Africa to estimate their demographic history and past episodes of geneflow. We detect a correlation between divergence times and cycles of increased aridity-associated Pleistocene glacial cycles. A complex demographic history with responses to local climate change in different lineages was found, including a relict lineage north of the High Atlas Mountains of Morocco that has been isolated for more than 18,000 years, possibly a distinct ecotype.
Collapse
Affiliation(s)
- Carlos Sarabia
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC, Seville, Spain
| | - Bridgett vonHoldt
- Faculty of Ecology and Evolutionary Biology, University of Princeton, Princeton, NJ, USA
| | | | - Vicente Uríos
- Vertebrate Zoology Research Group, University of Alicante, Alicante, Spain
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC, Seville, Spain
| |
Collapse
|
43
|
Wu FL, Strand AI, Cox LA, Ober C, Wall JD, Moorjani P, Przeworski M. A comparison of humans and baboons suggests germline mutation rates do not track cell divisions. PLoS Biol 2020; 18:e3000838. [PMID: 32804933 PMCID: PMC7467331 DOI: 10.1371/journal.pbio.3000838] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 09/02/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
In humans, most germline mutations are inherited from the father. This observation has been widely interpreted as reflecting the replication errors that accrue during spermatogenesis. If so, the male bias in mutation should be substantially lower in a closely related species with similar rates of spermatogonial stem cell divisions but a shorter mean age of reproduction. To test this hypothesis, we resequenced two 3-4 generation nuclear families (totaling 29 individuals) of olive baboons (Papio anubis), who reproduce at approximately 10 years of age on average, and analyzed the data in parallel with three 3-generation human pedigrees (26 individuals). We estimated a mutation rate per generation in baboons of 0.57×10-8 per base pair, approximately half that of humans. Strikingly, however, the degree of male bias in germline mutations is approximately 4:1, similar to that of humans-indeed, a similar male bias is seen across mammals that reproduce months, years, or decades after birth. These results mirror the finding in humans that the male mutation bias is stable with parental ages and cast further doubt on the assumption that germline mutations track cell divisions. Our mutation rate estimates for baboons raise a further puzzle, suggesting a divergence time between apes and Old World monkeys of 65 million years, too old to be consistent with the fossil record; reconciling them now requires not only a slowdown of the mutation rate per generation in humans but also in baboons.
Collapse
Affiliation(s)
- Felix L. Wu
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York, United States of America
| | - Alva I. Strand
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Carole Ober
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Jeffrey D. Wall
- Institute for Human Genetics, Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | - Priya Moorjani
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Molly Przeworski
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
44
|
Molecular Clocks without Rocks: New Solutions for Old Problems. Trends Genet 2020; 36:845-856. [PMID: 32709458 DOI: 10.1016/j.tig.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Molecular data have been used to date species divergences ever since they were described as documents of evolutionary history in the 1960s. Yet, an inadequate fossil record and discordance between gene trees and species trees are persistently problematic. We examine how, by accommodating gene tree discordance and by scaling branch lengths to absolute time using mutation rate and generation time, multispecies coalescent (MSC) methods can potentially overcome these challenges. We find that time estimates can differ - in some cases, substantially - depending on whether MSC methods or traditional phylogenetic methods that apply concatenation are used, and whether the tree is calibrated with pedigree-based mutation rates or with fossils. We discuss the advantages and shortcomings of both approaches and provide practical guidance for data analysis when using these methods.
Collapse
|
45
|
Silva P, Galaverni M, Ortega-Del Vecchyo D, Fan Z, Caniglia R, Fabbri E, Randi E, Wayne R, Godinho R. Genomic evidence for the Old divergence of Southern European wolf populations. Proc Biol Sci 2020; 287:20201206. [PMID: 32693716 PMCID: PMC7423677 DOI: 10.1098/rspb.2020.1206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The grey wolf (Canis lupus) is one of the most widely distributed mammals in which a variety of distinct populations have been described. However, given their currently fragmented distribution and recent history of human-induced population decline, little is known about the events that led to their differentiation. Based on the analysis of whole canid genomes, we examined the divergence times between Southern European wolf populations and their ancient demographic history. We found that all present-day Eurasian wolves share a common ancestor ca 36 000 years ago, supporting the hypothesis that all extant wolves derive from a single population that subsequently expanded after the Last Glacial Maximum. We also estimated that the currently isolated European populations of the Iberian Peninsula, Italy and the Dinarics-Balkans diverged very closely in time, ca 10 500 years ago, and maintained negligible gene flow ever since. This indicates that the current genetic and morphological distinctiveness of Iberian and Italian wolves can be attributed to their isolation dating back to the end of the Pleistocene, predating the recent human-induced extinction of wolves in Central Europe by several millennia.
Collapse
Affiliation(s)
- Pedro Silva
- CIBIO/InBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Marco Galaverni
- Conservation Unit, WWF Italia, Via Po 25/c - 00198 Roma, Italy
| | - Diego Ortega-Del Vecchyo
- International Laboratory for Human Genome Research, National Autonomous University of Mexico, Santiago de Querétaro, Querétaro 76230, Mexico
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Romolo Caniglia
- Unit for Conservation Genetics (BIO-CGE), Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, 40064 Ozzano dell'Emilia (Bo), Italy
| | - Elena Fabbri
- Unit for Conservation Genetics (BIO-CGE), Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, 40064 Ozzano dell'Emilia (Bo), Italy
| | - Ettore Randi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, Bologna 40126, Italy.,Department of Chemistry and Bioscience, Faculty of Engineering and Science, University of Aalborg, Aalborg, Denmark
| | - Robert Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Raquel Godinho
- CIBIO/InBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.,Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|