1
|
Sun P, Hua Q, Fu H, Yao L, Yuan X, Li Q, Li Y, Jia M, Xia R, Yao X. Epithelial FETUB-mediated the inhibition of NEP activity aggravates asthma. Int Immunopharmacol 2025; 152:114397. [PMID: 40064057 DOI: 10.1016/j.intimp.2025.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Neuropeptide accumulation exacerbates asthma, with reduced neprilysin (NEP) activity implicated. However, this regulatory mechanism remains unexplored. OBJECTIVE To identify and characterize epithelial-derived modulators of NEP activity and their role in asthma pathogenesis. METHODS Bioinformatics and molecular docking identified fetuin B (FETUB) as a NEP inhibitor. FETUB expression in human lung tissue was assessed by immunohistochemistry, and its levels in exhaled breath condensate (EBC) and serum were quantified by ELISA. Functional assays and a lung-specific FETUB knockdown mouse model using Adeno-associated virus (AAV) vector confirmed its role in NEP inhibition and asthma pathogenesis. RESULTS Bioinformatic analysis, protein binding assays, and fluorescence substrate degradation experiments confirmed that FETUB is an inhibitor of NEP. Serum FETUB levels were elevated in asthmatics and positively correlated with serum IgE, eosinophil counts. Similarly, in asthmatic EBC, FETUB levels were significantly higher than in healthy controls and negatively correlated with asthma control test, FEV1 and FEV1%pred. The expression of FETUB was elevated in asthma lung tissue and primarily localized to airway epithelial cells. Combined bioinformatics and experimental data indicated that IL-13 as a key inducer of epithelial FETUB expression. Lung-specific FETUB knockdown restored NEP activity, reduced neuropeptides CGRP and SP, and improved airway inflammation and hyperresponsiveness in asthma. CONCLUSION The findings suggest that epithelial-derived FETUB exacerbates airway inflammation and hyperresponsiveness in asthma through the inhibition of NEP activity and the resultant accumulation of CGRP and SP.
Collapse
Affiliation(s)
- Peng Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China
| | - Qi Hua
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China; Department of Respiratory and Critical Care Medicine, Dongtai People's Hospital, NO.2 West Kangfu Road, Yancheng 224200, China
| | - Heng Fu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China
| | - Lei Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China
| | - Xijing Yuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China
| | - Qian Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China; Department of Respiratory and Critical Care Medicine, Nanjing First Hospital Nanjing Medical University, NO.68 Changle Road Nanjing, 210006, China
| | - Yuebei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China
| | - Rong Xia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, NO.101 Longmian Road, Nanjing 211166, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
2
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024; 41:3261-3286. [PMID: 39320554 PMCID: PMC11707141 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
3
|
Wassarman PM, Litscher ES. Female fertility and the mammalian egg's zona pellucida. Histol Histopathol 2024; 39:1273-1284. [PMID: 38487866 DOI: 10.14670/hh-18-728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
All mammalian eggs are surrounded by a relatively thick extracellular matrix (ECM) or zona pellucida (ZP) to which free-swimming sperm bind in a species-restricted manner during fertilization. The ZP consists of either three (e.g., Mus musculus) or four (e.g., Homo sapiens) glycosylated proteins, called ZP1-4. These proteins are unlike those found in somatic cell ECM, are encoded by single-copy genes on different chromosomes, and are well conserved among different mammals. Mammalian ZP proteins are synthesized as polypeptide precursors by growing oocytes that will become ovulated, unfertilized eggs. These precursors are processed to remove a signal-sequence and carboxy-terminal propeptide and are secreted into the extracellular space. Secreted ZP proteins assemble into long, crosslinked fibrils that exhibit a structural repeat due to the presence of ZP2-ZP3 dimers every 140 Å or so along fibrils. Fibrils are crosslinked by ZP1 and are oriented either perpendicular, parallel, or randomly to the plasma membrane of eggs depending on their position in the ZP. Free-swimming mouse sperm recognize and bind to ZP2 or ZP3 that serve as sperm receptors. Acrosome-intact sperm bind to ZP3 oligosaccharides and acrosome-reacted sperm bind to ZP2 polypeptide. ZP fibrils fail to assemble in the absence of either nascent ZP2 or ZP3 and results in mouse eggs that lack a ZP and female infertility. Gene sequence variations due to point, missense, or frameshift mutations in genes encoding ZP1-4 result in human eggs that lack a ZP or have an abnormal ZP and female infertility. These and other features of the mouse and human egg's ZP are discussed here.
Collapse
Affiliation(s)
- Paul M Wassarman
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Eveline S Litscher
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
4
|
Tian Q, Yin Y, Tian Y, Wang Y, Wang Y, Fukunaga R, Fujii T, Liao A, Li L, Zhang W, He X, Xiang W, Zhou L. Chromatin Modifier EP400 Regulates Oocyte Quality and Zygotic Genome Activation in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308018. [PMID: 38493496 PMCID: PMC11132066 DOI: 10.1002/advs.202308018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Epigenetic modifiers that accumulate in oocytes, play a crucial role in steering the developmental program of cleavage embryos and initiating life. However, the identification of key maternal epigenetic regulators remains elusive. In the findings, the essential role of maternal Ep400, a chaperone for H3.3, in oocyte quality and early embryo development in mice is highlighted. Depletion of Ep400 in oocytes resulted in a decline in oocyte quality and abnormalities in fertilization. Preimplantation embryos lacking maternal Ep400 exhibited reduced major zygotic genome activation (ZGA) and experienced developmental arrest at the 2-to-4-cell stage. The study shows that EP400 forms protein complex with NFYA, occupies promoters of major ZGA genes, modulates H3.3 distribution between euchromatin and heterochromatin, promotes transcription elongation, activates the expression of genes regulating mitochondrial functions, and facilitates the expression of rate-limiting enzymes of the TCA cycle. This intricate process driven by Ep400 ensures the proper execution of the developmental program, emphasizing its critical role in maternal-to-embryonic transition.
Collapse
Affiliation(s)
- Qing Tian
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Department of Gynecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Ying Yin
- Department of PhysiologySchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Center for Genomics and Proteomics ResearchSchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yu Tian
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yufan Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yong‐feng Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Rikiro Fukunaga
- Department of BiochemistryOsaka Medical and Pharmaceutical UniversityTakatsukiOsaka569‐1094Japan
| | - Toshihiro Fujii
- Department of BiochemistryOsaka Medical and Pharmaceutical UniversityTakatsukiOsaka569‐1094Japan
| | - Ai‐hua Liao
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Wei Zhang
- Department of Gynecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Ximiao He
- Department of PhysiologySchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Center for Genomics and Proteomics ResearchSchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Wenpei Xiang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Li‐quan Zhou
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| |
Collapse
|
5
|
Manssur TSB, Sebastião TRC, Franchi FF, Dos Santos PH, Razza EM, Nunes SG, Castilho ACDS, Fontes PK. Pre-fertilization approach using α-l-fucosidase modulates zona pellucida hardening during bovine in vitro embryo production. Vet Res Commun 2024; 48:1135-1147. [PMID: 38191818 DOI: 10.1007/s11259-023-10291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
The polyspermy occurrence is considerably lower under in vivo compared to in vitro embryo culture conditions, suggesting that the presence of some factors in the maternal environment is responsible for this. The α-L-fucosidase (FUCA) is a natural glycosidase present in the oviductal fluid, therefore, this study aimed at investigating the effect of adding FUCA to the hardening of the zona pellucida (ZP), polyspermy control, and embryonic yield and quality of bovine blastocysts produced in vitro. In the first experiment, the effect of FUCA (0.125 U/mL) was evaluated during the entire in vitro fertilization (IVF). However, it was demonstrated to be embryotoxic by completely inhibiting the blastocyst formation. In the second experiment, the FUCA (0.125 U/mL) was tested as short-term incubation before IVF (pre-fertilization step) for 30 min or 2 h, which demonstrated that FUCA treatment for 30 min resulted in ZP hardening. In the third experiment, a pre-fertilization FUCA treatment (1 h) at different concentrations (0, 0.0625, and 0.125 U/mL) showed that FUCA (0.0625 U/mL) improved pre-fertilization ZP hardening and tended to increase monospermic fertilization rates but did not improve embryo yield and quality. Together, it has been demonstrated that FUCA can induce oocyte pre-fertilization ZP hardening and might improve monospermic fertilization performance, and this effect is dependent on both variables (protein concentration and incubation time).
Collapse
Affiliation(s)
| | | | - Fernanda Fagali Franchi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Rua Prof. Antonio Celso Wagner Zanin, S/N, Zip Code: 18618689, Botucatu, São Paulo State, Brazil
| | - Priscila Helena Dos Santos
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Rua Prof. Antonio Celso Wagner Zanin, S/N, Zip Code: 18618689, Botucatu, São Paulo State, Brazil
| | - Eduardo Montanari Razza
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Rua Prof. Antonio Celso Wagner Zanin, S/N, Zip Code: 18618689, Botucatu, São Paulo State, Brazil
| | - Sarah Gomes Nunes
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Rua Prof. Antonio Celso Wagner Zanin, S/N, Zip Code: 18618689, Botucatu, São Paulo State, Brazil
| | | | - Patricia Kubo Fontes
- Laboratory of Phytomedicines, Pharmacology and Biotechnology, Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Rua Prof. Antonio Celso Wagner Zanin, S/N, Zip Code: 18618689, Botucatu, São Paulo State, Brazil.
| |
Collapse
|
6
|
Felten M, Distler U, von Wiegen N, Łącki M, Behl C, Tenzer S, Stöcker W, Körschgen H. Substrate profiling of the metalloproteinase ovastacin uncovers specific enzyme-substrate interactions and discloses fertilization-relevant substrates. FEBS J 2024; 291:114-131. [PMID: 37690456 DOI: 10.1111/febs.16954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The metalloproteinase ovastacin is released by the mammalian egg upon fertilization and cleaves a distinct peptide bond in zona pellucida protein 2 (ZP2), a component of the enveloping extracellular matrix. This limited proteolysis causes zona pellucida hardening, abolishes sperm binding, and thereby regulates fertility. Accordingly, this process is tightly controlled by the plasma protein fetuin-B, an endogenous competitive inhibitor. At present, little is known about how the cleavage characteristics of ovastacin differ from closely related proteases. Physiological implications of ovastacin beyond ZP2 cleavage are still obscure. In this study, we employed N-terminal amine isotopic labeling of substrates (N-TAILS) contained in the secretome of mouse embryonic fibroblasts to elucidate the substrate specificity and the precise cleavage site specificity. Furthermore, we were able to unravel the physicochemical properties governing ovastacin-substrate interactions as well as the individual characteristics that distinguish ovastacin from similar proteases, such as meprins and tolloid. Eventually, we identified several substrates whose cleavage could affect mammalian fertilization. Consequently, these substrates indicate newly identified functions of ovastacin in mammalian fertilization beyond zona pellucida hardening.
Collapse
Affiliation(s)
- Matthias Felten
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Nele von Wiegen
- Institute of Pathobiochemistry, The Autophagy Lab, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Mateusz Łącki
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, The Autophagy Lab, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Germany
| | - Hagen Körschgen
- Institute of Pathobiochemistry, The Autophagy Lab, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| |
Collapse
|
7
|
Wu H, Che J, Zheng W, Cheng D, Gong F, Lu G, Lin G, Dai C. Novel biallelic ASTL variants are associated with polyspermy and female infertility: A successful live birth following ICSI treatment. Gene 2023; 887:147745. [PMID: 37640117 DOI: 10.1016/j.gene.2023.147745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Fertilization of the egg by the sperm is the first vital stage of embryogenesis. In mammals, only one sperm is incorporated into the oocyte. Polyspermy is a key anomaly of fertilization that is generally lethal to the embryo. To date, only a few causative genes for polyspermy have been reported. In a recent study, a homozygous variant in astacin-like metalloendopeptidase (ASTL), which encodes the ovastacin enzyme that cleaves ZP2 to prevent polyspermy, was found to be associated with female infertility characterized by polyspermy in vitro. Herein, we identified two ASTL variants in a Chinese woman likely responsible for her primary infertility and polyspermy in in vitro fertilization. Both variants were located within the key catalytic domain and predicted to alter hydrogen bonds, potentially impairing protein stability. Moreover, expression and immunoblot analyses in CHO-K1 cells indicated abnormal ovastacin zymogen activation or decreased enzyme stability. Intracytoplasmic sperm injection treatment successfully bypassed the defect in polyspermy blocking and resulted in a live birth. Our study associates ASTL variants with human infertility and further supports the contribution of this gene to blocking polyspermy in humans. Our findings expand the spectrum of ASTL mutations and should facilitate the diagnosis of oocyte-borne polyspermy.
Collapse
Affiliation(s)
- Huixia Wu
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Jianfang Che
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Wei Zheng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Dehua Cheng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Fei Gong
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China
| | - Guangxiu Lu
- School of Medicine, Hunan Normal University, Changsha 410013, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China; National Engineering and Research Center of Human Stem Cell, Changsha 410205, China
| | - Ge Lin
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China; National Engineering and Research Center of Human Stem Cell, Changsha 410205, China.
| | - Can Dai
- School of Medicine, Hunan Normal University, Changsha 410013, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China.
| |
Collapse
|
8
|
Kang I, Koo M, Yoon H, Park BS, Jun JH, Lee J. Ovastacin: An oolemma protein that cleaves the zona pellucida to prevent polyspermy. Clin Exp Reprod Med 2023; 50:154-159. [PMID: 37643828 PMCID: PMC10477413 DOI: 10.5653/cerm.2023.05981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 08/31/2023] Open
Abstract
Monospermy occurs in the process of normal fertilization where a single sperm fuses with the egg, resulting in the formation of a diploid zygote. During the process of fertilization, the sperm must penetrate the zona pellucida (ZP), the outer layer of the egg, to reach the egg's plasma membrane. Once a sperm binds to the ZP, it undergoes an acrosomal reaction, which involves the release of enzymes from the sperm's acrosome that help it to penetrate the ZP. Ovastacin is one of the enzymes that is involved in breaking down the ZP. Studies have shown that ovastacin is necessary for the breakdown of the ZP and for successful fertilization to occur. However, the activity of ovastacin is tightly regulated to ensure that only one sperm can fertilize the egg. One way in which ovastacin helps to prevent polyspermy (the fertilization of an egg by more than one sperm) is by rapidly degrading the ZP after a sperm has penetrated it. This makes it difficult for additional sperm to penetrate the ZP and fertilize the egg. Ovastacin is also thought to play a role in the block to polyspermy, a mechanism that prevents additional sperm from fusing with the egg's plasma membrane after fertilization has occurred. In summary, the role of ovastacin in monospermic fertilization is to help ensure that only one sperm can fertilize the egg, while preventing polyspermy and ensuring successful fertilization.
Collapse
Affiliation(s)
- Inyoung Kang
- Department of Biomedical Laboratory Sciences, Eulji University, Seongnam, Republic of Korea
| | - Myoungjoo Koo
- Department of Biomedical Laboratory Sciences, Eulji University, Seongnam, Republic of Korea
| | - Hyejin Yoon
- Department of Senior Healthcare, Graduate School of Eulji University, Seongnam, Republic of Korea
| | - Beom Seok Park
- Department of Biomedical Laboratory Sciences, Eulji University, Seongnam, Republic of Korea
- Department of Senior Healthcare, Graduate School of Eulji University, Seongnam, Republic of Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Sciences, Eulji University, Seongnam, Republic of Korea
- Department of Senior Healthcare, Graduate School of Eulji University, Seongnam, Republic of Korea
- Eulji Medi-Bio Research Institute (EMBRI), Eulji University, Daejeon, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Sciences, Eulji University, Seongnam, Republic of Korea
| |
Collapse
|
9
|
Suri K, Rajput N, Sharma P, Omble AD, Kulkarni K, Gahlay GK. In silico identification and characterization of the SNPs in the human ASTL gene and their probable role in female infertility. Front Cell Dev Biol 2023; 11:1151672. [PMID: 37363721 PMCID: PMC10285486 DOI: 10.3389/fcell.2023.1151672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Ovastacin (ASTL), a zinc metalloprotease, is released from a fertilized egg during exocytosis of cortical granules which occurs minutes after the sperm and egg fuse. ASTL cleaves ZP2, one of the four primary glycoproteins of human zona pellucida, and this cleavage prevents polyspermy, causes zona pellucida hardening, and also protects the pre-implantation embryo. Any perturbation in the activity of ASTL can thus disturb this process and may lead to infertility without changing the gross morphology of the oocyte. A small amount of ASTL is also released by unfertilized oocytes but its catalytic activity is absent as it is bound by its inhibitor, Fetuin-B (FETUB). Pre-mature release of ASTL when FETUB is absent also causes infertility. To identify and understand the structural and functional effects of deleterious SNPs of ASTL on its interaction with ZP2 and FETUB and hence on fertility, a total of 4,748 SNPs from the dbSNP database were evaluated using a variety of in silico tools. All of the 40 shortlisted nsSNPs were present in the catalytic domain of the protein. Comparison of the wild type with mutants using MutPred2 suggests an alteration in the catalytic activity/zinc binding site in many SNPs. Docking studies show the involvement of hydrophobic interactions and H bonding between ASTL and ZP2 and also between ASTL and FETUB. Four positions in ASTL involved in the hydrophobic interactions (P105 and D200 between ASTL and ZP2; D198 and L278 between ASTL and FETUB) and 5 in H bonding (E75 and R159 between ASTL and ZP2; and K93, R159, and C281 between ASTL and FETUB) have SNP's associated with them validating their importance. Interestingly, a cluster of multiple SNPs was found in the motif 198DRD200, which is also a well-conserved region among several species. Statistical Coupling Analysis (SCA) suggested that the deleterious SNPs were present in the functionally important amino acid positions of ASTL and are evolutionarily coupled. Thus, these results attempt to identify the regions in ASTL, mutations in which can affect its binding with ZP2 or FETUB and cause female infertility.
Collapse
Affiliation(s)
- Kapali Suri
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neha Rajput
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Priya Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aishwarya D. Omble
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Kiran Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Gagandeep K. Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
10
|
Fiorentino G, Cimadomo D, Innocenti F, Soscia D, Vaiarelli A, Ubaldi FM, Gennarelli G, Garagna S, Rienzi L, Zuccotti M. Biomechanical forces and signals operating in the ovary during folliculogenesis and their dysregulation: implications for fertility. Hum Reprod Update 2023; 29:1-23. [PMID: 35856663 DOI: 10.1093/humupd/dmac031] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/12/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Folliculogenesis occurs in the highly dynamic environment of the ovary. Follicle cyclic recruitment, neo-angiogenesis, spatial displacement, follicle atresia and ovulation stand out as major events resulting from the interplay between mechanical forces and molecular signals. Morphological and functional changes to the growing follicle and to the surrounding tissue are required to produce oocytes capable of supporting preimplantation development to the blastocyst stage. OBJECTIVE AND RATIONALE This review will summarize the ovarian morphological and functional context that contributes to follicle recruitment, growth and ovulation, as well as to the acquisition of oocyte developmental competence. We will describe the changes occurring during folliculogenesis to the ovarian extracellular matrix (ECM) and to the vasculature, their influence on the mechanical properties of the ovarian tissue, and, in turn, their influence on the regulation of signal transduction. Also, we will outline how their dysregulation might be associated with pathologies such as polycystic ovary syndrome (PCOS), endometriosis or premature ovarian insufficiency (POI). Finally, for each of these three pathologies, we will highlight therapeutic strategies attempting to correct the altered biomechanical context in order to restore fertility. SEARCH METHODS For each area discussed, a systematic bibliographical search was performed, without temporal limits, using PubMed Central, Web of Science and Scopus search engines employing the keywords extracellular matrix, mechanobiology, biomechanics, vasculature, angiogenesis or signalling pathway in combination with: ovary, oogenesis, oocyte, folliculogenesis, ovarian follicle, theca, granulosa, cumulus, follicular fluid, corpus luteum, meiosis, oocyte developmental competence, preimplantation, polycystic ovary syndrome, premature ovarian insufficiency or endometriosis. OUTCOMES Through search engines queries, we yielded a total of 37 368 papers that were further selected based on our focus on mammals and, specifically, on rodents, bovine, equine, ovine, primates and human, and also were trimmed around each specific topic of the review. After the elimination of duplicates, this selection process resulted in 628 papers, of which 287 were cited in the manuscript. Among these, 89.2% were published in the past 22 years, while the remaining 8.0%, 2.4% or 0.3% were published during the 1990s, 1980s or before, respectively. During folliculogenesis, changes occur to the ovarian ECM composition and organization that, together with vasculature modelling around the growing follicle, are aimed to sustain its recruitment and growth, and the maturation of the enclosed oocyte. These events define the scenario in which mechanical forces are key to the regulation of cascades of molecular signals. Alterations to this context determine impaired folliculogenesis and decreased oocyte developmental potential, as observed in pathological conditions which are causes of infertility, such as PCOS, endometriosis or POI. WIDER IMPLICATIONS The knowledge of these mechanisms and the rules that govern them lay a sound basis to explain how follicles recruitment and growth are modulated, and stimulate insights to develop, in clinical practice, strategies to improve follicular recruitment and oocyte competence, particularly for pathologies like PCOS, endometriosis and POI.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | | | | | - Daria Soscia
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy
| | | | | | - Gianluca Gennarelli
- Obstetrics and Gynecology, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital, University of Torino, Turin, Italy.,Livet, GeneraLife IVF, Turin, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy.,Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Gomis-Rüth FX, Stöcker W. Structural and evolutionary insights into astacin metallopeptidases. Front Mol Biosci 2023; 9:1080836. [PMID: 36685277 PMCID: PMC9848320 DOI: 10.3389/fmolb.2022.1080836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
The astacins are a family of metallopeptidases (MPs) that has been extensively described from animals. They are multidomain extracellular proteins, which have a conserved core architecture encompassing a signal peptide for secretion, a prodomain or prosegment and a zinc-dependent catalytic domain (CD). This constellation is found in the archetypal name-giving digestive enzyme astacin from the European crayfish Astacus astacus. Astacin catalytic domains span ∼200 residues and consist of two subdomains that flank an extended active-site cleft. They share several structural elements including a long zinc-binding consensus sequence (HEXXHXXGXXH) immediately followed by an EXXRXDRD motif, which features a family-specific glutamate. In addition, a downstream SIMHY-motif encompasses a "Met-turn" methionine and a zinc-binding tyrosine. The overall architecture and some structural features of astacin catalytic domains match those of other more distantly related MPs, which together constitute the metzincin clan of metallopeptidases. We further analysed the structures of PRO-, MAM, TRAF, CUB and EGF-like domains, and described their essential molecular determinants. In addition, we investigated the distribution of astacins across kingdoms and their phylogenetic origin. Through extensive sequence searches we found astacin CDs in > 25,000 sequences down the tree of life from humans beyond Metazoa, including Choanoflagellata, Filasterea and Ichtyosporea. We also found < 400 sequences scattered across non-holozoan eukaryotes including some fungi and one virus, as well as in selected taxa of archaea and bacteria that are pathogens or colonizers of animal hosts, but not in plants. Overall, we propose that astacins originate in the root of Holozoa consistent with Darwinian descent and that the latter genes might be the result of horizontal gene transfer from holozoan donors.
Collapse
Affiliation(s)
- F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC), Barcelona, Catalonia, Spain,*Correspondence: F. Xavier Gomis-Rüth, ; Walter Stöcker,
| | - Walter Stöcker
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz (JGU), Mainz, Germany,*Correspondence: F. Xavier Gomis-Rüth, ; Walter Stöcker,
| |
Collapse
|
12
|
Jiang J, Stührwohldt N, Liu T, Huang Q, Li L, Zhang L, Gu H, Fan L, Zhong S, Schaller A, Qu LJ. Egg cell-secreted aspartic proteases ECS1/2 promote gamete attachment to prioritize the fertilization of egg cells over central cells in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2047-2059. [PMID: 36165344 DOI: 10.1111/jipb.13371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Double fertilization is an innovative phenomenon in angiosperms, in which one sperm cell first fuses with the egg cell to produce the embryo, and then the other sperm fuses with the central cell to produce the endosperm. However, the molecular mechanism of the preferential fertilization of egg cells is poorly understood. In this study, we report that two egg cell-secreted aspartic proteases, ECS1 and ECS2, play an important role in promoting preferential fertilization of egg cells in Arabidopsis. We show that simultaneous loss of ECS1 and ECS2 function resulted in an approximately 20% reduction in fertility, which can be complemented by the full-length ECS1/2 but not by corresponding active site mutants or by secretion-defective versions of ECS1/2. Detailed phenotypic analysis revealed that the egg cell-sperm cell attachment was compromised in ecs1 ecs2 siliques. Limited pollination assays with cyclin-dependent kinase a1 (cdka;1) pollen showed that preferential egg cell fertilization was impaired in the ecs1 ecs2 mutant. Taken together, these results demonstrate that egg cells secret two aspartic proteases, ECS1 and ECS2, to facilitate the attachment of sperm cells to egg cells so that preferential fertilization of egg cells is achieved. This study reveals the molecular mechanism of preferential fertilization in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jiahao Jiang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Tianxu Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qingpei Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Ling Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Li Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Liumin Fan
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
13
|
Legg MSG, Gagnon SML, Powell CJ, Boulanger MJ, Li AJJ, Evans SV. Monoclonal antibody 7H2.2 binds the C-terminus of the cancer-oocyte antigen SAS1B through the hydrophilic face of a conserved amphipathic helix corresponding to one of only two regions predicted to be ordered. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:623-632. [DOI: 10.1107/s2059798322003011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022]
Abstract
The structure of the antigen-binding fragment (Fab) of mouse monoclonal antibody 7H2.2 in complex with a 15-residue fragment from the metalloproteinase sperm acrosomal SLLP1 binding protein (SAS1B), which is a molecular and cellular candidate for both cancer therapy and female contraception, has been determined at 2.75 Å resolution by single-crystal X-ray diffraction. Although the crystallization conditions contained the final 148 C-terminal residues of SAS1B, the Fab was observed to crystallize in complex with a 15-residue fragment corresponding to one of only two elements of secondary structure that are predicted to be ordered within the C-terminal region of SAS1B. The antigen forms an amphipathic α-helix that binds the 7H2.2 combining site via hydrophilic residues in an epitope that spans the length of the antigen α-helix, with only two CH–π interactions observed along the edge of the interface between the antibody and antigen. Interestingly, the paratope contains two residues mutated away from the germline (YL32F and YH58R), as well as a ProH96-ThrH97-AspH98-AspH99 insertion within heavy chain CDR3. The intact 7H2.2 antibody exhibits high affinity for the SAS1B antigen, with 1:1 binding and nanomolar affinity for both the SAS1B C-terminal construct used for crystallization (3.38 ± 0.59 nM) and a 15-amino-acid synthetic peptide construct corresponding to the helical antigen observed within the crystal structure (1.60 ± 0.31 nM). The SAS1B–antibody structure provides the first structural insight into any portion of the subdomain architecture of the C-terminal region of the novel cancer-oocyte tumor surface neoantigen SAS1B and provides a basis for the targeted use of SAS1B.
Collapse
|
14
|
Yurtcu N, Oral S, Celik S, Calıskan ST, Alagoz M, Dahan MH. Predıctıve value of pregnancy of follıcular fluıd fetuın-A and -B levels ın infertıle women after intra-cytoplasmic sperm injection. J Obstet Gynaecol Res 2022; 48:178-187. [PMID: 34708901 DOI: 10.1111/jog.15070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/27/2022]
Abstract
AIM We aimed to investigate the value of follicular fluid fetuins-A and -B to predict successful IVF and pregnancy outcomes in infertile women with poor, normal, and high ovarian reserve. METHODS The follicular fluid of 96 infertile women who underwent intra-cytoplasmic sperm injection (ICSI) procedure was analyzed. Fetuins-A and -B levels were examined and compared in those who could achieve pregnancy and those who could not. Receiver operating characteristic curve analyzes were used to determine cut-off and statistically significant associations for fetuins-A and -B. RESULTS Follicular fluid fetuin-A levels were higher in cases with weak ovarian reserve (OR) (p < 0.05) and higher in patients who did not achieve clinical pregnancy (p < 0.05). Conversely, the follicular fluid fetuin-B levels were lower in cases with poor OR (p < 0.05) and were lower in patients who did not achieve a clinical pregnancy (p < 0.05). A follicular fluid fetuin-A concentration ≤ 19.12 ng/mL had a sensitivity and specificity of 94.74% and 93.1%, respectively, at predicting clinical pregnancy. While the follicular fluid fetuin-B concentration >24.7 ng/mL had sensitivity and specificity of 71.1% and 51.7%, respectively, for clinical pregnancy prediction. CONCLUSION Overall, high levels of follicular fluid fetuin-A may be independently associated with unsuccessful IVF irrespective of OR grouping. A low level of follicular fetuin-B was also associated with failed IVF. The sensitivity and specificity were found to be higher for fetuin-A in predicting clinical pregnancy. Therefore, the follicular fluid fetuin-A may be more predictive for successful IVF and clinical pregnancy outcomes than follicular fluid fetuin-B.
Collapse
Affiliation(s)
- Nazan Yurtcu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Serkan Oral
- Department of Obstetrics and Gynecology, Faculty of Medicine, Halic University, Istanbul, Turkey
| | - Sebahattin Celik
- Department of Obstetrics and Gynecology, Balikesir State Hospital, Balikesir, Turkey
| | | | - Murat Alagoz
- In Vitro Fertilization Unit, Department of Obstetrics and Gynecology, Medical Park Hospital, Samsun, Turkey
| | - Michael H Dahan
- McGill University Reproductive Center, Montréal, Quebec, Canada
| |
Collapse
|
15
|
Wassarman PM, Litscher ES. Mouse zona pellucida proteins as receptors for binding of sperm to eggs. TRENDS IN DEVELOPMENTAL BIOLOGY 2022; 15:1-13. [PMID: 36776744 PMCID: PMC9910581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Fertilization in mammals is initiated by species-restricted binding of free-swimming sperm to the unfertilized egg's thick extracellular matrix, the zona pellucida (ZP). Both acrosome-intact and acrosome-reacted sperm can bind to the ZP, but only the latter can penetrate the ZP, reach the egg's plasma membrane, and fuse with plasma membrane (fertilization) to produce a zygote. Following fertilization, the ZP is modified by cortical granule components such that acrosome-intact and acrosome-reacted sperm are unable to bind to fertilized eggs. Here we review some of the evidence that bears directly on the involvement of two mouse ZP proteins, mZP2 and mZP3, as receptors for binding of mouse sperm to unfertilized eggs and address some contentious issues surrounding this important initial step in the process of mammalian fertilization.
Collapse
|
16
|
Maddirevula S, Coskun S, Al-Qahtani M, Aboyousef O, Alhassan S, Aldeery M, Alkuraya FS. ASTL is mutated in female infertility. Hum Genet 2021; 141:49-54. [PMID: 34704130 DOI: 10.1007/s00439-021-02388-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022]
Abstract
Female infertility is a relatively common phenotype with a growing number of single gene causes although these account for only a minority of cases. Here, we report a consanguineous family in which adult females who are homozygous for a truncating variant in ASTL display markedly reduced fertility in a pattern strikingly similar to Astl-/- female mice. ASTL encodes ovastacin, which is known to trigger zona pellucida hardening (ZPH) as part of the cortical reaction upon fertilization. ZPH is required for normal early embryonic development and its absence can be caused by pathogenic variants in other zona pellucida proteins that result in a similar infertility phenotype in humans and mouse. This is the first report of ASTL-related infertility in humans and suggests that the inclusion of ASTL in female infertility gene panels is warranted.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center and College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mashael Al-Qahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Omar Aboyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Saad Alhassan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Meshael Aldeery
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia.
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia.
| |
Collapse
|
17
|
Kalra S, Dhamannapatil P, Panda S, Singh S, Sarwalia P, Mohanty AK, Datta TK, Kaushik JK. Recombinant expression and molecular characterization of buffalo sperm lysozyme-like protein 1. Protein Expr Purif 2021; 190:105993. [PMID: 34656738 DOI: 10.1016/j.pep.2021.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Several sperm lysozyme-like genes evolved from lysozyme by successive duplications and mutations; however their functional role in the reproduction of farm animals is not well understood. To understand the function and molecular properties of buffalo sperm lysozyme-like protein 1 (buSLLP1), it was expressed in E. coli; however, it partitioned to inclusion bodies. Lowering of temperature and inducer concentration did not help in the recovery of the expressed protein in the biologically active form. Therefore, buSLLP1 was cloned and expressed in Pichiapink system based on auxotrophic Pichia pastoris in a labscale fermenter. The expressed protein was obtained in flow-through by using a 30 kDa ultrafiltration membrane followed by MonoQ anion exchange chromatography, resulting in a homogenous preparation of 40 mg recombinant buSLLP1 per liter of initial spent culture-supernatant. Circular dichroism spectroscopy showed that recombinant buSLLP1 possessed a native-like secondary structure. The recombinant buSLLP1 also showed thermal denaturation profile typical of folded globular proteins; however, the thermal stability was lower than the hen egg white lysozyme. Binding of buSLLP1 to chitin and zona pellucida of buffalo oocytes showed that the recombinant buSLLP1 possessed a competent binding pocket, therefore, the produced protein could be used to study its functional role in the reproduction of farm animals.
Collapse
Affiliation(s)
- Shalini Kalra
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Prakash Dhamannapatil
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Santanu Panda
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Surender Singh
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Ashok Kumar Mohanty
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Jai Kumar Kaushik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
18
|
Rojas J, Hinostroza F, Vergara S, Pinto-Borguero I, Aguilera F, Fuentes R, Carvacho I. Knockin' on Egg's Door: Maternal Control of Egg Activation That Influences Cortical Granule Exocytosis in Animal Species. Front Cell Dev Biol 2021; 9:704867. [PMID: 34540828 PMCID: PMC8446563 DOI: 10.3389/fcell.2021.704867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Fertilization by multiple sperm leads to lethal chromosomal number abnormalities, failed embryo development, and miscarriage. In some vertebrate and invertebrate eggs, the so-called cortical reaction contributes to their activation and prevents polyspermy during fertilization. This process involves biogenesis, redistribution, and subsequent accumulation of cortical granules (CGs) at the female gamete cortex during oogenesis. CGs are oocyte- and egg-specific secretory vesicles whose content is discharged during fertilization to block polyspermy. Here, we summarize the molecular mechanisms controlling critical aspects of CG biology prior to and after the gametes interaction. This allows to block polyspermy and provide protection to the developing embryo. We also examine how CGs form and are spatially redistributed during oogenesis. During egg activation, CG exocytosis (CGE) and content release are triggered by increases in intracellular calcium and relies on the function of maternally-loaded proteins. We also discuss how mutations in these factors impact CG dynamics, providing unprecedented models to investigate the genetic program executing fertilization. We further explore the phylogenetic distribution of maternal proteins and signaling pathways contributing to CGE and egg activation. We conclude that many important biological questions and genotype–phenotype relationships during fertilization remain unresolved, and therefore, novel molecular players of CG biology need to be discovered. Future functional and image-based studies are expected to elucidate the identity of genetic candidates and components of the molecular machinery involved in the egg activation. This, will open new therapeutic avenues for treating infertility in humans.
Collapse
Affiliation(s)
- Japhet Rojas
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Fernando Hinostroza
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Sebastián Vergara
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile.,Escuela de Ingeniería en Biotecnología, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ingrid Pinto-Borguero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ingrid Carvacho
- Laboratorio Fisiología de la Reproducción, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
19
|
Ziegler B, Yiallouros I, Trageser B, Kumar S, Mercker M, Kling S, Fath M, Warnken U, Schnölzer M, Holstein TW, Hartl M, Marciniak-Czochra A, Stetefeld J, Stöcker W, Özbek S. The Wnt-specific astacin proteinase HAS-7 restricts head organizer formation in Hydra. BMC Biol 2021; 19:120. [PMID: 34107975 PMCID: PMC8191133 DOI: 10.1186/s12915-021-01046-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background The Hydra head organizer acts as a signaling center that initiates and maintains the primary body axis in steady state polyps and during budding or regeneration. Wnt/beta-Catenin signaling functions as a primary cue controlling this process, but how Wnt ligand activity is locally restricted at the protein level is poorly understood. Here we report a proteomic analysis of Hydra head tissue leading to the identification of an astacin family proteinase as a Wnt processing factor. Results Hydra astacin-7 (HAS-7) is expressed from gland cells as an apical-distal gradient in the body column, peaking close beneath the tentacle zone. HAS-7 siRNA knockdown abrogates HyWnt3 proteolysis in the head tissue and induces a robust double axis phenotype, which is rescued by simultaneous HyWnt3 knockdown. Accordingly, double axes are also observed in conditions of increased Wnt activity as in transgenic actin::HyWnt3 and HyDkk1/2/4 siRNA treated animals. HyWnt3-induced double axes in Xenopus embryos could be rescued by coinjection of HAS-7 mRNA. Mathematical modelling combined with experimental promotor analysis indicate an indirect regulation of HAS-7 by beta-Catenin, expanding the classical Turing-type activator-inhibitor model. Conclusions We show the astacin family protease HAS-7 maintains a single head organizer through proteolysis of HyWnt3. Our data suggest a negative regulatory function of Wnt processing astacin proteinases in the global patterning of the oral-aboral axis in Hydra. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01046-9.
Collapse
Affiliation(s)
- Berenice Ziegler
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Benjamin Trageser
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Sumit Kumar
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Moritz Mercker
- Institute for Applied Mathematics, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Svenja Kling
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Maike Fath
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas W Holstein
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Anna Marciniak-Czochra
- Institute for Applied Mathematics, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2 N2, Canada
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Suat Özbek
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|
20
|
Kuske M, Floehr J, Yiallouros I, Michna T, Jahnen-Dechent W, Tenzer S, Stöcker W, Körschgen H. Limited proteolysis by acrosin affects sperm-binding and mechanical resilience of the mouse zona pellucida. Mol Hum Reprod 2021; 27:6199430. [PMID: 33779727 DOI: 10.1093/molehr/gaab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
The encounter of oocyte and sperm is the key event initiating embryonic development in mammals. Crucial functions of this existential interaction are determined by proteolytic enzymes, such as acrosin, carried in the sperm head acrosome, and ovastacin, stored in the oocyte cortical granules. Ovastacin is released upon fertilisation to cleave the zona pellucida, a glycoprotein matrix surrounding the oocyte. This limited proteolysis hardens the oocyte envelope, and thereby provides a definitive block against polyspermy and protects the developing embryo. On the other hand, acrosin, the renowned and most abundant acrosomal protease, has been thought to enable sperm to penetrate the oocyte envelope. Depending on the species, proteolytic cleavage of the zona pellucida by acrosin is either essential or conducive for fertilisation. However, the specific target cleavage sites and the resulting physiological consequences of this proteolysis remained obscure. Here, we treated native mouse zonae pellucidae with active acrosin and identified two cleavage sites in zona pellucida protein 1 (ZP1), five in ZP2 and one in ZP3 by mass spectrometry. Several of these sites are highly conserved in mammals. Remarkably, limited proteolysis by acrosin leads to zona pellucida remodelling rather than degradation. Thus, acrosin affects both sperm binding and mechanical resilience of the zona pellucida, as assessed by microscopy and nanoindentation measurements, respectively. Furthermore, we ascertained potential regulatory effects of acrosin, via activation of latent pro-ovastacin and inactivation of fetuin-B, a tight binding inhibitor of ovastacin. These results offer novel insights into the complex proteolytic network modifying the extracellular matrix of the mouse oocyte, which might apply also to other species.
Collapse
Affiliation(s)
- Michael Kuske
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Mainz, German
| | - Julia Floehr
- Biointerface Laboratory, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, German
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Mainz, German
| | - Thomas Michna
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, German
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Mainz, German
| | - Hagen Körschgen
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Mainz, German
| |
Collapse
|
21
|
Tan K, Jäger C, Körschgen H, Geissler S, Schlenzig D, Buchholz M, Stöcker W, Ramsbeck D. Heteroaromatic Inhibitors of the Astacin Proteinases Meprin α, Meprin β and Ovastacin Discovered by a Scaffold-Hopping Approach. ChemMedChem 2021; 16:976-988. [PMID: 33369214 PMCID: PMC8048867 DOI: 10.1002/cmdc.202000822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Astacin metalloproteinases, in particular meprins α and β, as well as ovastacin, are emerging drug targets. Drug-discovery efforts have led to the development of the first potent and selective inhibitors in the last few years. However, the most recent compounds are based on a highly flexible tertiary amine scaffold that could cause metabolic liabilities or decreased potency due to the entropic penalty upon binding to the target. Thus, the aim of this study was to discover novel conformationally constrained scaffolds as starting points for further inhibitor optimization. Shifting from flexible tertiary amines to rigid heteroaromatic cores resulted in a boost in inhibitory activity. Moreover, some compounds already exhibited higher activity against individual astacin proteinases compared to recently reported inhibitors and also a favorable off-target selectivity profile, thus qualifying them as very suitable chemical probes for target validation.
Collapse
Affiliation(s)
- Kathrin Tan
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZIBiocenter, Weinbergweg 2206120Halle (Saale)Germany
| | - Christian Jäger
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZIBiocenter, Weinbergweg 2206120Halle (Saale)Germany
- present address: Vivoryon Therapeutics N.V.Weinbergweg 2206120Halle (Saale)Germany
| | - Hagen Körschgen
- Institute of Molecular PhysiologyCell and Matrix BiologyJohannes Gutenberg-University MainzJohann-Joachim-Becher-Weg 755128MainzGermany
| | - Stefanie Geissler
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZIBiocenter, Weinbergweg 2206120Halle (Saale)Germany
| | - Dagmar Schlenzig
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZIBiocenter, Weinbergweg 2206120Halle (Saale)Germany
| | - Mirko Buchholz
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZIBiocenter, Weinbergweg 2206120Halle (Saale)Germany
| | - Walter Stöcker
- Institute of Molecular PhysiologyCell and Matrix BiologyJohannes Gutenberg-University MainzJohann-Joachim-Becher-Weg 755128MainzGermany
| | - Daniel Ramsbeck
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZIBiocenter, Weinbergweg 2206120Halle (Saale)Germany
| |
Collapse
|
22
|
Wang Y, Chen F, He J, Xue G, Chen J, Xie P. Cellular and molecular modification of egg envelope hardening in fertilization. Biochimie 2020; 181:134-144. [PMID: 33333173 DOI: 10.1016/j.biochi.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 11/30/2022]
Abstract
Fertilization is an essential process that fundamentally impacts fitness. An egg changes dramatically after fertilization mediating the beginning of life, which mainly includes the transformation of the egg envelope via hardening, which is thought to be due to complex reactions involved in the conversion of cellular and molecular. This review highlights the mechanisms of egg envelope hardening in teleost fish. We conclude that the egg envelope hardening might be carried out in two steps. (a) A metalloprotease (alveolin) hydrolyzes the N-terminal proline-glutamine (Pro-Gln) region of zona pellucida (ZP) 1 and (b) triggers intermolecular cross-linking to ZP3 catalyzed by transglutaminase (TGase). The post-fertilization hardening of the egg envelope is an evolutionarily conserved phenomenon across species. We discuss the biochemical function and interaction of some factors reported to be essential to egg envelope hardening in mammalian and nonmammalian species, including metalloprotease, TGase, peroxidase/ovoperoxidase, and other factors (carbohydrate moieties, zinc and Larp6 proteins), and the relevant data suggest that egg envelope hardening is crucial to block polyspermy in internal fertilization, in addition to protecting the developing embryo from mechanical shock and preventing bacterial infection in external fertilization. Increased knowledge of the processes of egg envelope hardening and fertilization is likely to make a remarkable contribution to reproduction and aquaculture.
Collapse
Affiliation(s)
- Yeke Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ge Xue
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Institute of Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environment, Yunnan University, Kunming, 650500, PR China.
| |
Collapse
|
23
|
Körschgen H, Jäger C, Tan K, Buchholz M, Stöcker W, Ramsbeck D. A Primary Evaluation of Potential Small-Molecule Inhibitors of the Astacin Metalloproteinase Ovastacin, a Novel Drug Target in Female Infertility Treatment. ChemMedChem 2020; 15:1499-1504. [PMID: 32946206 PMCID: PMC7496240 DOI: 10.1002/cmdc.202000397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 01/20/2023]
Abstract
Despite huge progress in hormonal therapy and improved in vitro fertilization methods, the success rates in infertility treatment are still limited. A recently discovered mechanism revealed the interplay between the plasma protein fetuin-B and the cortical granule-based proteinase ovastacin to be a novel key mechanism in the regulation of fertilization. Upon sperm-egg fusion, cleavage of a distinct zona pellucida component by ovastacin destroys the sperm receptor, enhances zona robustness, and eventually provides a definitive block against polyspermy. An untimely onset of this zona hardening prior to fertilization would consequently result in infertility. Physiologically, this process is controlled by fetuin-B, an endogenous ovastacin inhibitor. Here we aimed to discover small-molecule inhibitors of ovastacin that could mimic the effect of fetuin-B. These compounds could be useful lead structures for the development of specific ovastacin inhibitors that can be used in infertility treatment or in vitro fertilization.
Collapse
Affiliation(s)
- Hagen Körschgen
- Institute of Molecular PhysiologyCell and Matrix BiologyJohannes Gutenberg University MainzJohann-Joachim-Becher-Weg 755128MainzGermany
| | - Christian Jäger
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZI BiocenterWeinbergweg 2206120Halle (Saale)Germany
| | - Kathrin Tan
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZI BiocenterWeinbergweg 2206120Halle (Saale)Germany
| | - Mirko Buchholz
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZI BiocenterWeinbergweg 2206120Halle (Saale)Germany
| | - Walter Stöcker
- Institute of Molecular PhysiologyCell and Matrix BiologyJohannes Gutenberg University MainzJohann-Joachim-Becher-Weg 755128MainzGermany
| | - Daniel Ramsbeck
- Department of Drug Design and Target Validation MWTFraunhofer Institute for Cell Therapy and Immunology IZI BiocenterWeinbergweg 2206120Halle (Saale)Germany
| |
Collapse
|
24
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Fahrenkamp E, Algarra B, Jovine L. Mammalian egg coat modifications and the block to polyspermy. Mol Reprod Dev 2020; 87:326-340. [PMID: 32003503 PMCID: PMC7155028 DOI: 10.1002/mrd.23320] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023]
Abstract
Fertilization by more than one sperm causes polyploidy, a condition that is generally lethal to the embryo in the majority of animal species. To prevent this occurrence, eggs have developed a series of mechanisms that block polyspermy at the level of the plasma membrane or their extracellular coat. In this review, we first introduce the mammalian egg coat, the zona pellucida (ZP), and summarize what is currently known about its composition, structure, and biological functions. We then describe how this specialized extracellular matrix is modified by the contents of cortical granules (CG), secretory organelles that are exocytosed by the egg after gamete fusion. This process releases proteases, glycosidases, lectins and zinc onto the ZP, resulting in a series of changes in the properties of the egg coat that are collectively referred to as hardening. By drawing parallels with comparable modifications of the vitelline envelope of nonmammalian eggs, we discuss how CG‐dependent modifications of the ZP are thought to contribute to the block to polyspermy. Moreover, we argue for the importance of obtaining more information on the architecture of the ZP, as well as systematically investigating the many facets of ZP hardening.
Collapse
Affiliation(s)
- Eileen Fahrenkamp
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Blanca Algarra
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
26
|
Guevara T, Körschgen H, Cuppari A, Schmitz C, Kuske M, Yiallouros I, Floehr J, Jahnen-Dechent W, Stöcker W, Gomis-Rüth FX. The C-terminal region of human plasma fetuin-B is dispensable for the raised-elephant-trunk mechanism of inhibition of astacin metallopeptidases. Sci Rep 2019; 9:14683. [PMID: 31604990 PMCID: PMC6789097 DOI: 10.1038/s41598-019-51095-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023] Open
Abstract
Human fetuin-B plays a key physiological role in human fertility through its inhibitory action on ovastacin, a member of the astacin family of metallopeptidases. The inhibitor consists of tandem cystatin-like domains (CY1 and CY2), which are connected by a linker containing a "CPDCP-trunk" and followed by a C-terminal region (CTR) void of regular secondary structure. Here, we solved the crystal structure of the complex of the inhibitor with archetypal astacin from crayfish, which is a useful model of human ovastacin. Two hairpins from CY2, the linker, and the tip of the "legumain-binding loop" of CY1 inhibit crayfish astacin following the "raised-elephant-trunk mechanism" recently reported for mouse fetuin-B. This inhibition is exerted by blocking active-site cleft sub-sites upstream and downstream of the catalytic zinc ion, but not those flanking the scissile bond. However, contrary to the mouse complex, which was obtained with fetuin-B nicked at a single site but otherwise intact, most of the CTR was proteolytically removed during crystallization of the human complex. Moreover, the two complexes present in the crystallographic asymmetric unit diverged in the relative arrangement of CY1 and CY2, while the two complexes found for the mouse complex crystal structure were equivalent. Biochemical studies in vitro confirmed the differential cleavage susceptibility of human and mouse fetuin-B in front of crayfish astacin and revealed that the cleaved human inhibitor blocks crayfish astacin and human meprin α and β only slightly less potently than the intact variant. Therefore, the CTR of animal fetuin-B orthologs may have a function in maintaining a particular relative orientation of CY1 and CY2 that nonetheless is dispensable for peptidase inhibition.
Collapse
Affiliation(s)
- Tibisay Guevara
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| | - Hagen Körschgen
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - Anna Cuppari
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| | - Carlo Schmitz
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Michael Kuske
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - Julia Floehr
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
27
|
Cuppari A, Körschgen H, Fahrenkamp D, Schmitz C, Guevara T, Karmilin K, Kuske M, Olf M, Dietzel E, Yiallouros I, de Sanctis D, Goulas T, Weiskirchen R, Jahnen-Dechent W, Floehr J, Stoecker W, Jovine L, Gomis-Rüth FX. Structure of mammalian plasma fetuin-B and its mechanism of selective metallopeptidase inhibition. IUCRJ 2019; 6:317-330. [PMID: 30867929 PMCID: PMC6400186 DOI: 10.1107/s2052252519001568] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Mammalian fetuin-A and fetuin-B are abundant serum proteins with pleiotropic functions. Fetuin-B is a highly selective and potent inhibitor of metallo-peptidases (MPs) of the astacin family, which includes ovastacin in mammals. By inhibiting ovastacin, fetuin-B is essential for female fertility. The crystal structure of fetuin-B was determined unbound and in complex with archetypal astacin, and it was found that the inhibitor has tandem cystatin-type modules (CY1 and CY2). They are connected by an exposed linker with a rigid, disulfide-linked 'CPDCP-trunk', and are followed by a C-terminal region (CTR) with little regular secondary structure. The CPDCP-trunk and a hairpin of CY2 form a bipartite wedge, which slots into the active-site cleft of the MP. These elements occupy the nonprimed and primed sides of the cleft, respectively, but spare the specificity pocket so that the inhibitor is not cleaved. The aspartate in the trunk blocks the catalytic zinc of astacin, while the CY2 hairpin binds through a QWVXGP motif. The CY1 module assists in structural integrity and the CTR is not involved in inhibition, as verified by in vitro studies using a cohort of mutants and variants. Overall, the inhibition conforms to a novel 'raised-elephant-trunk' mechanism for MPs, which is reminiscent of single-domain cystatins that target cysteine peptidases. Over 200 sequences from vertebrates have been annotated as fetuin-B, underpinning its ubiquity and physiological relevance; accordingly, sequences with conserved CPDCP- and QWVXGP-derived motifs have been found from mammals to cartilaginous fishes. Thus, the raised-elephant-trunk mechanism is likely to be generally valid for the inhibition of astacins by orthologs of fetuin-B.
Collapse
Affiliation(s)
- Anna Cuppari
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/o Baldiri Reixac 15-21, E-08028 Barcelona, Catalonia, Spain
| | - Hagen Körschgen
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Dirk Fahrenkamp
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Blickagången 16, SE-141 83 Huddinge, Sweden
| | - Carlo Schmitz
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/o Baldiri Reixac 15-21, E-08028 Barcelona, Catalonia, Spain
| | - Konstantin Karmilin
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Michael Kuske
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Mario Olf
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Eileen Dietzel
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Blickagången 16, SE-141 83 Huddinge, Sweden
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Daniele de Sanctis
- ESRF – The European Synchrotron, 71 Rue Jules Horowitz, F-38000 Grenoble, France
| | - Theodoros Goulas
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/o Baldiri Reixac 15-21, E-08028 Barcelona, Catalonia, Spain
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Julia Floehr
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Walter Stoecker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Luca Jovine
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Blickagången 16, SE-141 83 Huddinge, Sweden
| | - F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/o Baldiri Reixac 15-21, E-08028 Barcelona, Catalonia, Spain
| |
Collapse
|
28
|
Karmilin K, Schmitz C, Kuske M, Körschgen H, Olf M, Meyer K, Hildebrand A, Felten M, Fridrich S, Yiallouros I, Becker-Pauly C, Weiskirchen R, Jahnen-Dechent W, Floehr J, Stöcker W. Mammalian plasma fetuin-B is a selective inhibitor of ovastacin and meprin metalloproteinases. Sci Rep 2019; 9:546. [PMID: 30679641 PMCID: PMC6346019 DOI: 10.1038/s41598-018-37024-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/28/2018] [Indexed: 11/29/2022] Open
Abstract
Vertebrate fetuins are multi-domain plasma-proteins of the cystatin-superfamily. Human fetuin-A is also known as AHSG, α2-Heremans-Schmid-glycoprotein. Gene-knockout in mice identified fetuin-A as essential for calcified-matrix-metabolism and bone-mineralization. Fetuin-B deficient mice, on the other hand, are female infertile due to zona pellucida ‘hardening’ caused by the metalloproteinase ovastacin in unfertilized oocytes. In wildtype mice fetuin-B inhibits the activity of ovastacin thus maintaining oocytes fertilizable. Here we asked, if fetuins affect further proteases as might be expected from their evolutionary relation to single-domain-cystatins, known as proteinase-inhibitors. We show that fetuin-A is not an inhibitor of any tested protease. In stark contrast, the closely related fetuin-B selectively inhibits astacin-metalloproteinases such as meprins and ovastacin, but not astacins of the tolloid-subfamily, nor any other proteinase. The analysis of fetuin-B expressed in various mammalian cell types, insect cells, and truncated fish-fetuin expressed in bacteria, showed that the cystatin-like domains alone are necessary and sufficient for inhibition. This report highlights fetuin-B as a specific antagonist of ovastacin and meprin-metalloproteinases. Control of ovastacin was shown to be indispensable for female fertility. Meprin inhibition, on the other hand, renders fetuin-B a potential key-player in proteolytic networks controlling angiogenesis, immune-defense, extracellular-matrix-assembly and general cell-signaling, with implications for inflammation, fibrosis, neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- Konstantin Karmilin
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Carlo Schmitz
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Michael Kuske
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Hagen Körschgen
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Mario Olf
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Katharina Meyer
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - André Hildebrand
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Matthias Felten
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Sven Fridrich
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry RWTH, 52074, Aachen, Germany
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Julia Floehr
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany.
| |
Collapse
|