1
|
Zhang P, Sharwood RE, Carroll A, Estavillo GM, von Caemmerer S, Furbank RT. Systems analysis of long-term heat stress responses in the C4 grass Setaria viridis. THE PLANT CELL 2025; 37:koaf005. [PMID: 39778116 PMCID: PMC11964294 DOI: 10.1093/plcell/koaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/30/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Many C4 plants are used as food and fodder crops and often display improved resource use efficiency compared to C3 plants. However, the response of C4 plants to future extreme conditions such as heatwaves is less understood. Here, Setaria viridis, an emerging C4 model grass, was grown under long-term high-temperature stress for 2 wk (42 °C, compared to 28 °C). This resulted in stunted growth, but surprisingly had little impact on leaf thickness, leaf area-based photosynthetic rates, and bundle sheath leakiness. Dark respiration rates increased, and there were major alterations in carbon and nitrogen metabolism in the heat-stressed plants. Abscisic acid and indole-3-acetic acid-amino acid conjugates accumulated in the heat-stressed plants, consistent with transcriptional changes. Leaf transcriptomics, proteomics, and metabolomics analyses were carried out and mapped onto the metabolic pathways of photosynthesis, respiration, carbon/nitrogen metabolism, and phytohormone biosynthesis and signaling. An in-depth analysis of correlations between transcripts and their corresponding proteins revealed strong differences between groups in the strengths and signs of correlations. Overall, many stress signaling pathways were upregulated, consistent with multiple signals leading to reduced plant growth. A systems-based model of the plant response to long-term heat stress is presented based on the oxidative stress, phytohormone, and sugar signaling pathways.
Collapse
Affiliation(s)
- Peng Zhang
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
| | - Robert E Sharwood
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Adam Carroll
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Gonzalo M Estavillo
- Commonwealth Scientific and Research Organisation, Agriculture and Food, Black Mountain Canberra, ACT 2601, Australia
| | - Susanne von Caemmerer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
| | - Robert T Furbank
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Springer A, Krzewska M, Dubas E, Kopeć P, Plačková L, Doležal K, Weigt D, Żur I. Induction of microspore embryogenesis in bread wheat by mannitol pre-treatment is associated with the disruption of endogenous hormone balance and substantial accumulation of auxins. BMC PLANT BIOLOGY 2025; 25:370. [PMID: 40119252 PMCID: PMC11929367 DOI: 10.1186/s12870-025-06389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/12/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Hormonal homeostasis plays a critical role in the regulation of microspore embryogenesis (ME). The balance between endogenous phytohormones must be altered to induce microspore reprogramming from the classical pollen-formation pathway to embryogenic development, but too extensive changes may be detrimental. In the present study, the levels of auxins, cytokinins and abscisic acid were monitored in the anthers of two Polish winter wheat F1 lines and the spring cultivar Pavon highly differentiated in terms of ME effectiveness. Analyses were carried out at subsequent steps of the ME induction procedure that combined low temperature, sodium selenate and mannitol tiller pre-treatment. RESULTS Of all the factors tested, mannitol induced the most profound effect on phytohormones and their homeostasis in wheat anthers. It significantly increased the accumulation of all auxins and decreased the levels of most cytokinins, while the change in ABA content was limited to cv. Pavon. In an attempt to alleviate this hormonal shock, we tested several modifications of the induction medium hormonal composition and found thidiazuron to be the most promising in stimulating the embryogenic development of wheat microspores. CONCLUSIONS The lack of ABA-driven stress defence responses may be one of the reasons for the low effectiveness of ME induction in winter wheat microspore cultures. Low cytokinin level and a disturbed auxin/cytokinin balance may then be responsible for the morphological abnormalities observed during the next phases of embryogenic microspore development. One possible solution is to modify the hormonal composition of the induction medium with thidiazuron identified as the most promising component.
Collapse
Affiliation(s)
- Agnieszka Springer
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland
| | - Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland
| | - Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland
| | - Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland
| | - Lenka Plačková
- Institute of Experimental Botany of the Czech Academy of Sciences v. v. i. (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Šlechtitelů 31, Olomouc, 783 71, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Karel Doležal
- Institute of Experimental Botany of the Czech Academy of Sciences v. v. i. (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Šlechtitelů 31, Olomouc, 783 71, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Dorota Weigt
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St, Poznań, 60-632, Poland
| | - Iwona Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland.
| |
Collapse
|
3
|
Mwelase S, Adeyemi JO, Fawole OA. Recent Advances in Postharvest Application of Exogenous Phytohormones for Quality Preservation of Fruits and Vegetables. PLANTS (BASEL, SWITZERLAND) 2024; 13:3255. [PMID: 39599464 PMCID: PMC11598769 DOI: 10.3390/plants13223255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The increasing global population has heightened the demand for food, leading to escalated food production and, consequently, the generation of significant food waste. Factors such as rapid ripening, susceptibility to physiological disorders, and vulnerability to microbial attacks have been implicated as contributing to the accelerated senescence associated with food waste generation. Fruits and vegetables, characterized by their high perishability, account for approximately half of all food waste produced, rendering them a major area of concern. Various postharvest technologies have thus been employed, including the application of phytohormone treatments, to safeguard and extend the storability of highly perishable food products. This review, therefore, explores the physicochemical properties and biological aspects of phytohormones that render them suitable for food preservation. Furthermore, this review examines the effects of externally applied phytohormones on the postharvest physiology and quality attributes of fresh produce. Finally, the review investigates the mechanisms by which exogenous phytohormones preserve food quality and discusses the associated limitations and safety considerations related to the use of these compounds in food applications.
Collapse
Affiliation(s)
- Sbulelo Mwelase
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (S.M.); (J.O.A.)
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Jerry O. Adeyemi
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (S.M.); (J.O.A.)
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Olaniyi A. Fawole
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (S.M.); (J.O.A.)
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
4
|
El Arbi N, Nardeli SM, Šimura J, Ljung K, Schmid M. The Arabidopsis splicing factor PORCUPINE/SmE1 orchestrates temperature-dependent root development via auxin homeostasis maintenance. THE NEW PHYTOLOGIST 2024; 244:1408-1421. [PMID: 39327913 DOI: 10.1111/nph.20153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Appropriate abiotic stress response is pivotal for plant survival and makes use of multiple signaling molecules and phytohormones to achieve specific and fast molecular adjustments. A multitude of studies has highlighted the role of alternative splicing in response to abiotic stress, including temperature, emphasizing the role of transcriptional regulation for stress response. Here we investigated the role of the core-splicing factor PORCUPINE (PCP) on temperature-dependent root development. We used marker lines and transcriptomic analyses to study the expression profiles of meristematic regulators and mitotic markers, and chemical treatments, as well as root hormone profiling to assess the effect of auxin signaling. The loss of PCP significantly alters RAM architecture in a temperature-dependent manner. Our results indicate that PCP modulates the expression of central meristematic regulators and is required to maintain appropriate levels of auxin in the RAM. We conclude that alternative pre-mRNA splicing is sensitive to moderate temperature fluctuations and contributes to root meristem maintenance, possibly through the regulation of phytohormone homeostasis and meristematic activity.
Collapse
Affiliation(s)
- Nabila El Arbi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Sarah Muniz Nardeli
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007, Uppsala, Sweden
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Markus Schmid
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007, Uppsala, Sweden
| |
Collapse
|
5
|
Kong M, He J, Wang J, Gong M, Huo Q, Bai W, Song J, Song J, Han W, Lv G. Xylooligosaccharides Enhance Lettuce Root Morphogenesis and Growth Dynamics. PLANTS (BASEL, SWITZERLAND) 2024; 13:1699. [PMID: 38931130 PMCID: PMC11207311 DOI: 10.3390/plants13121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Enhancing root development is pivotal for boosting crop yield and augmenting stress resilience. In this study, we explored the regulatory effects of xylooligosaccharides (XOSs) on lettuce root growth, comparing their impact with that of indole-3-butyric acid potassium salt (IBAP). Treatment with XOS led to a substantial increase in root dry weight (30.77%), total root length (29.40%), volume (21.58%), and surface area (25.44%) compared to the water-treated control. These enhancements were on par with those induced by IBAP. Comprehensive phytohormone profiling disclosed marked increases in indole-3-acetic acid (IAA), zeatin riboside (ZR), methyl jasmonate (JA-ME), and brassinosteroids (BRs) following XOS application. Through RNA sequencing, we identified 3807 differentially expressed genes (DEGs) in the roots of XOS-treated plants, which were significantly enriched in pathways associated with manganese ion homeostasis, microtubule motor activity, and carbohydrate metabolism. Intriguingly, approximately 62.7% of the DEGs responsive to XOS also responded to IBAP, underscoring common regulatory mechanisms. However, XOS uniquely influenced genes related to cutin, suberine, and wax biosynthesis, as well as plant hormone signal transduction, hinting at novel mechanisms of stress tolerance. Prominent up-regulation of genes encoding beta-glucosidase and beta-fructofuranosidase highlights enhanced carbohydrate metabolism as a key driver of XOS-induced root enhancement. Collectively, these results position XOS as a promising, sustainable option for agricultural biostimulation.
Collapse
Affiliation(s)
- Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Juan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Qiuyan Huo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Jiqing Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Jianbin Song
- Station of Dawenliu, Shandong Yellow River Delta Nature Reserve, Dongying 257509, China
| | - Wei Han
- Shandong Agri-tech Extension Center, Jinan 250013, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| |
Collapse
|
6
|
Wang X, Jia C, An L, Zeng J, Ren A, Han X, Wang Y, Wu S. Genome-wide identification and expression characterization of the GH3 gene family of tea plant (Camellia sinensis). BMC Genomics 2024; 25:120. [PMID: 38280985 PMCID: PMC10822178 DOI: 10.1186/s12864-024-10004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024] Open
Abstract
To comprehensively understand the characteristics of the GH3 gene family in tea plants (Camellia sinensis), we identified 17 CsGH3 genes and analyzed their physicochemical properties, phylogenetic relationships, gene structures, promoters, and expression patterns in different tissues. The study showed that the 17 CsGH3 genes are distributed on 9 chromosomes, and based on evolutionary analysis, the CsGH3 members were divided into three subgroups. Gene duplication analysis revealed that segmental duplications have a significant impact on the amplification of CsGH3 genes. In addition, we identified and classified cis-elements in the CsGH3 gene promoters and detected elements related to plant hormone responses and non-biotic stress responses. Through expression pattern analysis, we observed tissue-specific expression of CsGH3.3 and CsGH3.10 in flower buds and roots. Moreover, based on predictive analysis of upstream regulatory transcription factors of CsGH3, we identified the potential transcriptional regulatory role of gibberellin response factor CsDELLA in CsGH3.14 and CsGH3.15. In this study, we found that CsGH3 genes are involved in a wide range of activities, such as growth and development, stress response, and transcription. This is the first report on CsGH3 genes and their potential roles in tea plants. In conclusion, these results provide a theoretical basis for elucidating the role of GH3 genes in the development of perennial woody plants and offer new insights into the synergistic effects of multiple hormones on plant growth and development in tea plants.
Collapse
Affiliation(s)
- Xinge Wang
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Chunyu Jia
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Lishuang An
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Jiangyan Zeng
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Aixia Ren
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Xin Han
- School of Life Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Yiqing Wang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Shuang Wu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
7
|
Kudoyarova G. Special Issue "Phytohormones: Important Participators in Plant Growth and Development". Int J Mol Sci 2024; 25:1380. [PMID: 38338660 PMCID: PMC10855094 DOI: 10.3390/ijms25031380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The articles published in the IJMS Special Issue "Phytohormones" are devoted to various aspects of hormonal control of plant growth and development promoting adaptation to normal and stress conditions [...].
Collapse
Affiliation(s)
- Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Pr. Octyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
8
|
Todd OE, Patterson EL, Westra EP, Nissen SJ, Araujo ALS, Kramer WB, Dayan FE, Gaines TA. Enhanced metabolic detoxification is associated with fluroxypyr resistance in Bassia scoparia. PLANT DIRECT 2024; 8:e560. [PMID: 38268857 PMCID: PMC10807189 DOI: 10.1002/pld3.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Auxin-mimic herbicides chemically mimic the phytohormone indole-3-acetic-acid (IAA). Within the auxin-mimic herbicide class, the herbicide fluroxypyr has been extensively used to control kochia (Bassia scoparia). A 2014 field survey for herbicide resistance in kochia populations across Colorado identified a putative fluroxypyr-resistant (Flur-R) population that was assessed for response to fluroxypyr and dicamba (auxin-mimics), atrazine (photosystem II inhibitor), glyphosate (EPSPS inhibitor), and chlorsulfuron (acetolactate synthase inhibitor). This population was resistant to fluroxypyr and chlorsulfuron but sensitive to glyphosate, atrazine, and dicamba. Subsequent dose-response studies determined that Flur-R was 40 times more resistant to fluroxypyr than a susceptible population (J01-S) collected from the same field survey (LD50 720 and 20 g ae ha-1, respectively). Auxin-responsive gene expression increased following fluroxypyr treatment in Flur-R, J01-S, and in a dicamba-resistant, fluroxypyr-susceptible line 9,425 in an RNA-sequencing experiment. In Flur-R, several transcripts with molecular functions for conjugation and transport were constitutively higher expressed, such as glutathione S-transferases (GSTs), UDP-glucosyl transferase (GT), and ATP binding cassette transporters (ABC transporters). After analyzing metabolic profiles over time, both Flur-R and J01-S rapidly converted [14C]-fluroxypyr ester, the herbicide formulation applied to plants, to [14C]-fluroxypyr acid, the biologically active form of the herbicide, and three unknown metabolites. The formation and flux of these metabolites were faster in Flur-R than J01-S, reducing the concentration of phytotoxic fluroxypyr acid. One unique metabolite was present in Flur-R that was not present in the J01-S metabolic profile. Gene sequence variant analysis specifically for auxin receptor and signaling proteins revealed the absence of non-synonymous mutations affecting auxin signaling and binding in candidate auxin target site genes, further supporting our hypothesis that non-target site metabolic degradation is contributing to fluroxypyr resistance in Flur-R.
Collapse
Affiliation(s)
- Olivia E. Todd
- United States Department of Agriculture – Agriculture Research Service (USDA‐ARS)Fort CollinsColoradoUSA
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Eric L. Patterson
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Eric P. Westra
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
- Department of Plants, Soils & ClimateUtah State UniversityLoganUtahUSA
| | - Scott J. Nissen
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | | | - William B. Kramer
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Franck E. Dayan
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Todd A. Gaines
- Department of Agricultural BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
9
|
Dash L, Swaminathan S, Šimura J, Gonzales CLP, Montes C, Solanki N, Mejia L, Ljung K, Zabotina OA, Kelley DR. Changes in cell wall composition due to a pectin biosynthesis enzyme GAUT10 impact root growth. PLANT PHYSIOLOGY 2023; 193:2480-2497. [PMID: 37606259 PMCID: PMC10663140 DOI: 10.1093/plphys/kiad465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) root development is regulated by multiple dynamic growth cues that require central metabolism pathways such as β-oxidation and auxin. Loss of the pectin biosynthesizing enzyme GALACTURONOSYLTRANSFERASE 10 (GAUT10) leads to a short-root phenotype under sucrose-limited conditions. The present study focused on determining the specific contributions of GAUT10 to pectin composition in primary roots and the underlying defects associated with gaut10 roots. Using live-cell microscopy, we determined reduced root growth in gaut10 is due to a reduction in both root apical meristem size and epidermal cell elongation. In addition, GAUT10 was required for normal pectin and hemicellulose composition in primary Arabidopsis roots. Specifically, loss of GAUT10 led to a reduction in galacturonic acid and xylose in root cell walls and altered the presence of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG) polymers in the root. Transcriptomic analysis of gaut10 roots compared to wild type uncovered hundreds of genes differentially expressed in the mutant, including genes related to auxin metabolism and peroxisome function. Consistent with these results, both auxin signaling and metabolism were modified in gaut10 roots. The sucrose-dependent short-root phenotype in gaut10 was linked to β-oxidation based on hypersensitivity to indole-3-butyric acid (IBA) and an epistatic interaction with TRANSPORTER OF IBA1 (TOB1). Altogether, these data support a growing body of evidence suggesting that pectin composition may influence auxin pathways and peroxisome activity.
Collapse
Affiliation(s)
- Linkan Dash
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Sivakumar Swaminathan
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Caitlin Leigh P Gonzales
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Iowa City, IA 50011, USA
| | - Neel Solanki
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Ludvin Mejia
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Dior R Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| |
Collapse
|
10
|
Yu Y, Hu H, Voytas DF, Doust AN, Kellogg EA. The YABBY gene SHATTERING1 controls activation rather than patterning of the abscission zone in Setaria viridis. THE NEW PHYTOLOGIST 2023; 240:846-862. [PMID: 37533135 DOI: 10.1111/nph.19157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023]
Abstract
Abscission is predetermined in specialized cell layers called the abscission zone (AZ) and activated by developmental or environmental signals. In the grass family, most identified AZ genes regulate AZ anatomy, which differs among lineages. A YABBY transcription factor, SHATTERING1 (SH1), is a domestication gene regulating abscission in multiple cereals, including rice and Setaria. In rice, SH1 inhibits lignification specifically in the AZ. However, the AZ of Setaria is nonlignified throughout, raising the question of how SH1 functions in species without lignification. Crispr-Cas9 knockout mutants of SH1 were generated in Setaria viridis and characterized with histology, cell wall and auxin immunofluorescence, transmission electron microscopy, hormonal treatment and RNA-Seq analysis. The sh1 mutant lacks shattering, as expected. No differences in cell anatomy or cell wall components including lignin were observed between sh1 and the wild-type (WT) until abscission occurs. Chloroplasts degenerated in the AZ of WT before abscission, but degeneration was suppressed by auxin treatment. Auxin distribution and expression of auxin-related genes differed between WT and sh1, with the signal of an antibody to auxin detected in the sh1 chloroplast. SH1 in Setaria is required for activation of abscission through auxin signaling, which is not reported in other grass species.
Collapse
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Daniel F Voytas
- College of Biological Sciences, University of Minnesota, St Paul, MN, 55108, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
11
|
Pintado A, Domínguez-Cerván H, Pastor V, Vincent M, Lee SG, Flors V, Ramos C. Allelic variation in the indoleacetic acid-lysine synthase gene of the bacterial pathogen Pseudomonas savastanoi and its role in auxin production. FRONTIERS IN PLANT SCIENCE 2023; 14:1176705. [PMID: 37346122 PMCID: PMC10280071 DOI: 10.3389/fpls.2023.1176705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Indole-3-acetic acid (IAA) production is a pathogenicity/virulence factor in the Pseudomonas syringae complex, including Pseudomonas savastanoi. P. savastanoi pathovars (pvs.) genomes contain the iaaL gene, encoding an enzyme that catalyzes the biosynthesis of the less biologically active compound 3-indole-acetyl-ϵ-L-lysine (IAA-Lys). Previous studies have reported the identification of IAA-Lys in culture filtrates of P. savastanoi strains isolated from oleander (pv. nerii), but the conversion of IAA into a conjugate was not detectable in olive strains (pv. savastanoi). In this paper, we show the distribution of iaaL alleles in all available P. savastanoi genomes of strains isolated from woody hosts. Most strains encode two different paralogs, except for those isolated from broom (pv. retacarpa), which contain a single allele. In addition to the three previously reported iaaL alleles (iaaL Psv, iaaL Psn and iaaL Pto), we identified iaaL Psf, an exclusive allele of strains isolated from ash (pv. fraxini). We also found that the production of IAA-Lys in P. savastanoi pv. savastanoi and pv. nerii depends on a functional iaaL Psn allele, whereas in pv. fraxini depends on iaaL Psf. The production of IAA-Lys was detected in cultures of an olive strain heterologously expressing IaaLPsn-1, IaaLPsf-1 and IaaLPsf-3, but not when expressing IaaLPsv-1. In addition, Arabidopsis seedlings treated with the strains overproducing the conjugate, and thus reducing the free IAA content, alleviated the root elongation inhibitory effect of IAA. IAA-Lys synthase activity assays with purified allozymes confirmed the functionality and specificity of lysine as a substrate of IaaLPsn-1 and IaaLPsf-3, with IaaLPsf-3 showing the highest catalytic efficiency for both substrates. The IAA-Lys synthase activity of IaaLPsn-1 was abolished by the insertion of two additional tyrosine residues encoded in the inactive allozyme IaaLPsv-1. These results highlight the relevance of allelic variation in a phytohormone-related gene for the modulation of auxin production in a bacterial phytopathogen.
Collapse
Affiliation(s)
- Adrián Pintado
- Área de Genética, Facultad de Ciencias, Universidad de Málaga (UMA), Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Hilario Domínguez-Cerván
- Área de Genética, Facultad de Ciencias, Universidad de Málaga (UMA), Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Victoria Pastor
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I (UJI), Castelló de la Plana, Spain
| | - Marissa Vincent
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Soon Goo Lee
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Víctor Flors
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I (UJI), Castelló de la Plana, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga (UMA), Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
12
|
Chen J, Hu Y, Hao P, Tsering T, Xia J, Zhang Y, Roth O, Njo MF, Sterck L, Hu Y, Zhao Y, Geelen D, Geisler M, Shani E, Beeckman T, Vanneste S. ABCB-mediated shootward auxin transport feeds into the root clock. EMBO Rep 2023; 24:e56271. [PMID: 36718777 PMCID: PMC10074126 DOI: 10.15252/embr.202256271] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
Although strongly influenced by environmental conditions, lateral root (LR) positioning along the primary root appears to follow obediently an internal spacing mechanism dictated by auxin oscillations that prepattern the primary root, referred to as the root clock. Surprisingly, none of the hitherto characterized PIN- and ABCB-type auxin transporters seem to be involved in this LR prepatterning mechanism. Here, we characterize ABCB15, 16, 17, 18, and 22 (ABCB15-22) as novel auxin-transporting ABCBs. Knock-down and genome editing of this genetically linked group of ABCBs caused strongly reduced LR densities. These phenotypes were correlated with reduced amplitude, but not reduced frequency of the root clock oscillation. High-resolution auxin transport assays and tissue-specific silencing revealed contributions of ABCB15-22 to shootward auxin transport in the lateral root cap (LRC) and epidermis, thereby explaining the reduced auxin oscillation. Jointly, these data support a model in which LRC-derived auxin contributes to the root clock amplitude.
Collapse
Affiliation(s)
- Jian Chen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Yangjie Hu
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Pengchao Hao
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Tashi Tsering
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Jian Xia
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Yuqin Zhang
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Ohad Roth
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Maria F Njo
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Lieven Sterck
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Yun Hu
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| | - Yunde Zhao
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| | - Danny Geelen
- Department of Plants and CropsGhent UniversityGhentBelgium
| | - Markus Geisler
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Eilon Shani
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Tom Beeckman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
- Department of Plants and CropsGhent UniversityGhentBelgium
- Lab of Plant Growth AnalysisGhent University Global CampusIncheonRepublic of Korea
| |
Collapse
|
13
|
Lei L, Zhang JY, Pu D, Liu BZ, Meng XM, Shang QM, Duan YD, Zhang F, Zhang MX, Dong CJ. ABA-responsive AREB1/ABI3-1/ABI5 cascade regulates IAA oxidase gene SlDAO2 to inhibit hypocotyl elongation in tomato. PLANT, CELL & ENVIRONMENT 2023; 46:498-517. [PMID: 36369997 DOI: 10.1111/pce.14491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Hypocotyl elongation is dramatically influenced by environmental factors and phytohormones. Indole-3-acetic acid (IAA) plays a prominent role in hypocotyl elongation, whereas abscisic acid (ABA) is regarded as an inhibitor through repressing IAA synthesis and signalling. However, the regulatory role of ABA in local IAA deactivation remains largely uncharacterized. In this study, we confirmed the antagonistic interplay of ABA and IAA during the hypocotyl elongation of tomato (Solanum lycopersicum) seedlings. We identified an IAA oxidase enzyme DIOXYGENASE FOR AUXIN OXIDATION2 (SlDAO2), and its expression was induced by both external and internal ABA signals in tomato hypocotyls. Moreover, the overexpression of SlDAO2 led to a reduced sensitivity to IAA, and the knockout of SlDAO2 alleviated the inhibitory effect of ABA on hypocotyl elongation. Furthermore, an ABA-responsive regulatory SlAREB1/SlABI3-1/SlABI5 cascade was identified to act upstream of SlDAO2 and to precisely control its expression. SlAREB1 directly bound to the ABRE present in the SlDAO2 promoter to activate SlDAO2 expression, and SlABI3-1 enhanced while SlABI5 inhibited the activation ability of SlAREB1 by directly interacting with SlAREB1. Our findings revealed that ABA might induce local IAA oxidation and deactivation via SlDAO2 to modulate IAA homoeostasis and thereby repress hypocotyl elongation in tomato.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing-Ya Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Dan Pu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Bing-Zhu Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Xian-Min Meng
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Qing-Mao Shang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Yun-Dan Duan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Meng-Xia Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Chun-Juan Dong
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| |
Collapse
|
14
|
Local light signaling at the leaf tip drives remote differential petiole growth through auxin-gibberellin dynamics. Curr Biol 2023; 33:75-85.e5. [PMID: 36538931 PMCID: PMC9839380 DOI: 10.1016/j.cub.2022.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Although plants are immobile, many of their organs are flexible to move in response to environmental cues. In dense vegetation, plants detect neighbors through far-red light perception with their leaf tip. They respond remotely, with asymmetrical growth between the abaxial and adaxial sides of the leafstalk, the petiole. This results in upward movement that brings the leaf blades into better lit zones of the canopy. The plant hormone auxin is required for this response, but it is not understood how non-differential leaf tip-derived auxin can remotely regulate movement. Here, we show that remote signaling of far-red light promotes auxin accumulation in the abaxial petiole. This local auxin accumulation is facilitated by reinforcing an intrinsic directionality of the auxin transport protein PIN3 on the petiole endodermis, as visualized with a PIN3-GFP line. Using an auxin biosensor, we show that auxin accumulates in all cell layers from endodermis to epidermis in the abaxial petiole, upon far-red light signaling in the remote leaf tip. In the petiole, auxin elicits a response to both auxin itself as well as a second growth promoter; gibberellin. We show that this dual regulation is necessary for hyponastic leaf movement in response to light. Our data indicate that gibberellin is required to permit cell growth, whereas differential auxin accumulation determines which cells can grow. Our results reveal how plants can spatially relay information about neighbor proximity from their sensory leaf tips to the petiole base, thus driving adaptive growth.
Collapse
|
15
|
Cortazar-Murillo EM, Méndez-Bravo A, Monribot-Villanueva JL, Garay-Serrano E, Kiel-Martínez AL, Ramírez-Vázquez M, Guevara-Avendaño E, Méndez-Bravo A, Guerrero-Analco JA, Reverchon F. Biocontrol and plant growth promoting traits of two avocado rhizobacteria are orchestrated by the emission of diffusible and volatile compounds. Front Microbiol 2023; 14:1152597. [PMID: 37206331 PMCID: PMC10189041 DOI: 10.3389/fmicb.2023.1152597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Avocado (Persea americana Mill.) is a tree crop of great social and economic importance. However, the crop productivity is hindered by fast-spreading diseases, which calls for the search of new biocontrol alternatives to mitigate the impact of avocado phytopathogens. Our objectives were to evaluate the antimicrobial activity of diffusible and volatile organic compounds (VOCs) produced by two avocado rhizobacteria (Bacillus A8a and HA) against phytopathogens Fusarium solani, Fusarium kuroshium, and Phytophthora cinnamomi, and assess their plant growth promoting effect in Arabidopsis thaliana. We found that, in vitro, VOCs emitted by both bacterial strains inhibited mycelial growth of the tested pathogens by at least 20%. Identification of bacterial VOCs by gas chromatography coupled to mass spectrometry (GC-MS) showed a predominance of ketones, alcohols and nitrogenous compounds, previously reported for their antimicrobial activity. Bacterial organic extracts obtained with ethyl acetate significantly reduced mycelial growth of F. solani, F. kuroshium, and P. cinnamomi, the highest inhibition being displayed by those from strain A8a (32, 77, and 100% inhibition, respectively). Tentative identifications carried out by liquid chromatography coupled to accurate mass spectrometry of diffusible metabolites in the bacterial extracts, evidenced the presence of some polyketides such as macrolactins and difficidin, hybrid peptides including bacillaene, and non-ribosomal peptides such as bacilysin, which have also been described in Bacillus spp. for antimicrobial activities. The plant growth regulator indole-3-acetic acid was also identified in the bacterial extracts. In vitro assays showed that VOCs from strain HA and diffusible compounds from strain A8a modified root development and increased fresh weight of A. thaliana. These compounds differentially activated several hormonal signaling pathways involved in development and defense responses in A. thaliana, such as auxin, jasmonic acid (JA) and salicylic acid (SA); genetic analyses suggested that developmental stimulation of the root system architecture by strain A8a was mediated by the auxin signaling pathway. Furthermore, both strains were able to enhance plant growth and decreased the symptoms of Fusarium wilt in A. thaliana when soil-inoculated. Collectively, our results evidence the potential of these two rhizobacterial strains and their metabolites as biocontrol agents of avocado pathogens and as biofertilizers.
Collapse
Affiliation(s)
| | - Alfonso Méndez-Bravo
- CONACyT – Escuela Nacional de Estudios Superiores, Unidad Morelia, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico
| | | | - Edith Garay-Serrano
- CONACyT – Red de Diversidad Biológica del Occidente Mexicano, Centro Regional del Bajío, Instituto de Ecología, A.C., Pátzcuaro, Michoacán, Mexico
| | - Ana L. Kiel-Martínez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | - Mónica Ramírez-Vázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Edgar Guevara-Avendaño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | - Alejandro Méndez-Bravo
- Escuela Nacional de Estudios Superiores Unidad Morelia, Laboratorio Nacional de Análisis y Síntesis Ecológica, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - José A. Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
- *Correspondence: José A. Guerrero-Analco,
| | - Frédérique Reverchon
- Red de Diversidad Biológica del Occidente Mexicano, Centro Regional del Bajío, Instituto de Ecología, A.C., Pátzcuaro, Michoacán, Mexico
- Frédérique Reverchon,
| |
Collapse
|
16
|
Zhao Q, Zhao PX, Wu Y, Zhong CQ, Liao H, Li CY, Fu XD, Fang P, Xu P, Xiang CB. SUE4, a novel PIN1-interacting membrane protein, regulates acropetal auxin transport in response to sulfur deficiency. THE NEW PHYTOLOGIST 2023; 237:78-87. [PMID: 36226797 DOI: 10.1111/nph.18536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Sulfur (S) is an essential macronutrient for plants and a signaling molecule in abiotic stress responses. It is known that S availability modulates root system architecture; however, the underlying molecular mechanisms are largely unknown. We previously reported an Arabidopsis gain-of-function mutant sulfate utilization efficiency4 (sue4) that could tolerate S deficiency during germination and early seedling growth with faster primary root elongation. Here, we report that SUE4, a novel plasma membrane-localized protein, interacts with the polar auxin transporter PIN1, resulting in reduced PIN1 protein levels and thus decreasing auxin transport to the root tips, which promotes primary root elongation. Moreover, SUE4 is induced by sulfate deficiency, consistent with its role in root elongation. Further analyses showed that the SUE4-PIN1 interaction decreased PIN1 levels, possibly through 26 S proteasome-mediated degradation. Taken together, our finding of SUE4-mediated root elongation is consistent with root adaptation to highly mobile sulfate in soil, thus revealing a novel component in the adaptive response of roots to S deficiency.
Collapse
Affiliation(s)
- Qing Zhao
- Division of Life Sciences and Medicine, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
- Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Ping-Xia Zhao
- Division of Life Sciences and Medicine, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
- Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Yu Wu
- Division of Life Sciences and Medicine, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
- Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Chang-Quan Zhong
- Division of Life Sciences and Medicine, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
- Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Hong Liao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Chuan-You Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Dong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Fang
- College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
- Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| |
Collapse
|
17
|
Rolón-Cárdenas GA, Arvizu-Gómez JL, Soria-Guerra RE, Pacheco-Aguilar JR, Alatorre-Cobos F, Hernández-Morales A. The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3743-3764. [PMID: 35022877 DOI: 10.1007/s10653-021-01179-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/05/2021] [Indexed: 05/16/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals for plant physiology and development. This review discusses Cd effects on auxin biosynthesis and homeostasis, and the strategies for restoring plant growth based on exogenous auxin application. First, the two well-characterized auxin biosynthesis pathways in plants are described, as well as the effect of exogenous auxin application on plant growth. Then, review describes the impacts of Cd on the content, biosynthesis, conjugation, and oxidation of endogenous auxins, which are related to a decrease in root development, photosynthesis, and biomass production. Finally, compelling evidence of the beneficial effects of auxin-producing rhizobacteria in plants exposed to Cd is showed, focusing on photosynthesis, oxidative stress, and production of antioxidant compounds and osmolytes that counteract Cd toxicity, favoring plant growth and improve phytoremediation efficiency. Expanding our understanding of the positive effects of exogenous auxins application and the interactions between bacteria and plants growing in Cd-polluted environments will allow us to propose phytoremediation strategies for restoring environments contaminated with this metal.
Collapse
Affiliation(s)
- Gisela Adelina Rolón-Cárdenas
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Ruth Elena Soria-Guerra
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
| | | | | | - Alejandro Hernández-Morales
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México.
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México.
| |
Collapse
|
18
|
Luo W, Xiao N, Wu F, Mo B, Kong W, Yu Y. Genome-Wide Identification and Characterization of YUCCA Gene Family in Mikania micrantha. Int J Mol Sci 2022; 23:13037. [PMID: 36361840 PMCID: PMC9655643 DOI: 10.3390/ijms232113037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 09/28/2023] Open
Abstract
Auxin is a general coordinator for growth and development throughout plant lifespan, acting in a concentration-dependent manner. Tryptophan aminotransferases (YUCCA) family catalyze the oxidative decarboxylation of indole-3-pyruvic acid (IPA) to form indole-3-acetic acid (IAA) and plays a critical role in auxin homeostasis. Here, 18 YUCCA family genes divided into four categories were identified from Mikania micrantha (M. micrantha), one of the world's most invasive plants. Five highly conserved motifs were characterized in these YUCCA genes (MmYUCs). Transcriptome analysis revealed that MmYUCs exhibited distinct expression patterns in different organs and five MmYUCs showed high expression levels throughout all the five tissues, implying that they may play dominant roles in auxin biosynthesis and plant development. In addition, MmYUC6_1 was overexpressed in DR5::GUS Arabidopsis line to explore its function, which resulted in remarkably increased auxin level and typical elevated auxin-related phenotypes including shortened roots and elongated hypocotyls in the transgenic plants, suggesting that MmYUC6_1 promoted IAA biosynthesis in Arabidopsis. Collectively, these findings provided comprehensive insight into the phylogenetic relationships, chromosomal distributions, expression patterns and functions of the MmYUC genes in M. micrantha, which would facilitate the study of molecular mechanisms underlying the fast growth of M. micrantha and preventing its invasion.
Collapse
Affiliation(s)
- Weigui Luo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nian Xiao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Feiyan Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wenwen Kong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
19
|
Huang X, Tanveer M, Min Y, Shabala S. Melatonin as a regulator of plant ionic homeostasis: implications for abiotic stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5886-5902. [PMID: 35640481 DOI: 10.1093/jxb/erac224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Melatonin is a highly conserved and ubiquitous molecule that operates upstream of a broad array of receptors in animal systems. Since melatonin was discovered in plants in 1995, hundreds of papers have been published revealing its role in plant growth, development, and adaptive responses to the environment. This paper summarizes the current state of knowledge of melatonin's involvement in regulating plant ion homeostasis and abiotic stress tolerance. The major topics covered here are: (i) melatonin's control of H+-ATPase activity and its implication for plant adaptive responses to various abiotic stresses; (ii) regulation of the reactive oxygen species (ROS)-Ca2+ hub by melatonin and its role in stress signaling; and (iii) melatonin's regulation of ionic homeostasis via hormonal cross-talk. We also show that the properties of the melatonin molecule allow its direct scavenging of ROS, thus preventing negative effects of ROS-induced activation of ion channels. The above 'desensitization' may play a critical role in preventing stress-induced K+ loss from the cytosol as well as maintaining basic levels of cytosolic Ca2+ required for optimal cell operation. Future studies should focus on revealing the molecular identity of transporters that could be directly regulated by melatonin and providing a bioinformatic analysis of evolutionary aspects of melatonin sensing and signaling.
Collapse
Affiliation(s)
- Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Tas, Hobart, Australia
| | - Yu Min
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
- Tasmanian Institute of Agriculture, University of Tasmania, Tas, Hobart, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
20
|
Huang ZH, Bao K, Jing ZH, Wang Q, Duan HF, Zhang S, Tao WW, Wu QN. Euryale Small Auxin Up RNA62 promotes cell elongation and seed size by altering the distribution of indole-3-acetic acid under the light. FRONTIERS IN PLANT SCIENCE 2022; 13:931063. [PMID: 36160968 PMCID: PMC9500450 DOI: 10.3389/fpls.2022.931063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
Euryale (Euryale ferox Salisb.) is an aquatic crop used as both food and drug in Asia, but its utilization is seriously limited due to low yield. Previously, we hypothesized that Euryale small auxin up RNAs (EuSAURs) regulate seed size, but the underlying biological functions and molecular mechanisms remain unclear. Here, we observed that the hybrid Euryale lines (HL) generate larger seeds with higher indole-3-acetic acid (IAA) concentrations than those in the North Gordon Euryale (WT). Histological analysis suggested that a larger ovary in HL is attributed to longer cells around. Overexpression of EuSAUR62 in rice (Oryza sativa L.) resulted in larger glumes and grains and increased the length of glume cells. Immunofluorescence and protein interaction assays revealed that EuSAUR62 modulates IAA accumulation around the rice ovary by interacting with the rice PIN-FORMED 9, an auxin efflux carrier protein. Euryale basic region/leucine zipper 55 (EubZIP55), which was highly expressed in HL, directly binds to the EuSAUR62 promoter and activated the expression of EuSAUR62. Constant light increased the expression of both EubZIP55 and EuSAUR62 with auxin-mediated hook curvature in HL seedlings. Overall, we proposed that EuSAUR62 is a molecular bridge between light and IAA and plays a crucial role in regulating the size of the Euryale seed.
Collapse
Affiliation(s)
- Zhi-heng Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Ke Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Zong-hui Jing
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Qian Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Hui-fang Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Sen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Wei-wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Qi-nan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| |
Collapse
|
21
|
Joubert M, van den Berg N, Theron J, Swart V. Transcriptomics Advancement in the Complex Response of Plants to Viroid Infection. Int J Mol Sci 2022; 23:ijms23147677. [PMID: 35887025 PMCID: PMC9318114 DOI: 10.3390/ijms23147677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Viroids are the smallest plant pathogens, consisting of a single-stranded circular RNA of less than 500 ribonucleotides in length. Despite their noncoding nature, viroids elicit disease symptoms in many economically important plant hosts, and are, thus, a class of pathogens of great interest. How these viroids establish disease within host plants, however, is not yet fully understood. Recent transcriptomic studies have revealed that viroid infection influences the expression of genes in several pathways and processes in plants, including defence responses, phytohormone signalling, cell wall modification, photosynthesis, secondary metabolism, transport, gene expression and protein modification. There is much debate about whether affected pathways signify a plant response to viroid infection, or are associated with the appearance of disease symptoms in these interactions. In this review, we consolidate the findings of viroid–host transcriptome studies to provide an overview of trends observed in the data. When considered together, changes in the gene expression of different hosts upon viroid infection reveal commonalities and differences in diverse interactions. Here, we discuss whether trends in host gene expression can be correlated to plant defence or disease development during viroid infection, and highlight avenues for future research in this field.
Collapse
Affiliation(s)
- Melissa Joubert
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Velushka Swart
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; (M.J.); (N.v.d.B.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Correspondence:
| |
Collapse
|
22
|
Zhang J, Tang Y, Pu X, Qiu X, Wang J, Li T, Yang Z, Zhou Y, Chang Y, Liang J, Zhang H, Deng G, Long H. Genetic and transcriptomic dissection of an artificially induced paired spikelets mutant of wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2543-2554. [PMID: 35695919 DOI: 10.1007/s00122-022-04137-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Morphological, genetic and transcriptomic characterizations of an EMS-induced wheat paired spikelets (PS) mutant were performed. A novel qualitative locus WPS1 on chromosome 1D was identified. Grain yield of wheat is significantly associated with inflorescence or spike architecture. However, few genes related to wheat spike development have been identified and their underlying mechanisms are largely unknown. In this study, we characterized an ethyl methanesulfonate (EMS)-induced wheat mutant, wheat paired spikelets 1 (wps1). Unlike a single spikelet that usually develops at each node of rachis, a secondary spikelet appeared below the primary spikelet at most of the rachis nodes of wps1. The microscope observation showed that the secondary spikelet initiated later than the primary spikelet. Genetic analysis suggested that the PS of wps1 is controlled by a single dominant nuclear gene, designated WHEAT PAIRED SPIKELETS 1 (WPS1). Further RNA-seq based bulked segregant analysis and molecular marker mapping localized WPS1 in an interval of 208.18-220.92 Mb on the chromosome arm 1DL, which is different to known genes related to spike development in wheat. By using wheat omics data, TraesCS1D02G155200 encoding a HD-ZIP III transcription factor was considered as a strong candidate gene for WPS1. Transcriptomic analysis indicated that PS formation in wps1 is associated with auxin-related pathways and may be regulated by networks involving TB1, Ppd1, FT1, VRN1, etc. This study laid the solid foundation for further validation of the causal gene of WPS1 and explored its regulatory mechanism in PS formation and inflorescence development, which may benefit to kernel yield improvement of wheat based on optimization or design of spike architecture in the future.
Collapse
Affiliation(s)
- Juanyu Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yanyan Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xi Pu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuebing Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinhui Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yao Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China
| | - Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
23
|
Indole-3-pyruvic acid regulates TAA1 activity, which plays a key role in coordinating the two steps of auxin biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2203633119. [PMID: 35696560 PMCID: PMC9231625 DOI: 10.1073/pnas.2203633119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Auxin biosynthesis involves two types of enzymes: the Trp aminotransferases (TAA/TARs) and the flavin monooxygenases (YUCCAs). This two-step pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. Despite their importance, it is unclear how these enzymes are regulated and how their activities are coordinated. Here, we show that TAA1/TARs are regulated by their product indole-3-pyruvic acid (IPyA) (or its mimic KOK2099) via negative feedback regulation in Arabidopsis thaliana. This regulatory system also functions in rice and tomato. This negative feedback regulation appears to be achieved by both the reversibility of Trp aminotransferase activity and the competitive inhibition of TAA1 activity by IPyA. The Km value of IPyA is 0.7 µM, and that of Trp is 43.6 µM; this allows IPyA to be maintained at low levels and prevents unfavorable nonenzymatic indole-3-acetic acid (IAA) formation from IPyA in vivo. Thus, IPyA levels are maintained by the push (by TAA1/TARs) and pull (by YUCCAs) of the two biosynthetic enzymes, in which TAA1 plays a key role in preventing the over- or under-accumulation of IPyA. TAA1 prefer Ala among various amino acid substrates in the reverse reaction of auxin biosynthesis, allowing TAA1 to show specificity for converting Trp and pyruvate to IPyA and Ala, and the reverse reaction.
Collapse
|
24
|
Wang R, Himschoot E, Grenzi M, Chen J, Safi A, Krebs M, Schumacher K, Nowack MK, Van Damme D, De Smet I, Geelen D, Beeckman T, Friml J, Costa A, Vanneste S. Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2308-2319. [PMID: 35085386 PMCID: PMC7612644 DOI: 10.1093/jxb/erac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins, and auxin analogs. In this context, synthetic auxin analogs, such as 1-naphthalene acetic acid (1-NAA), are often favored over the endogenous auxin, indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven instrumental in revealing the various faces of auxin, they display in some cases bioactivities distinct from IAA. Here, we focused on the effect of auxin analogs on the accumulation of PIN proteins in brefeldin A-sensitive endosomal aggregations (BFA bodies), and correlation with the ability to elicit Ca2+ responses. For a set of commonly used auxin analogs, we evaluated if auxin analog-induced Ca2+ signaling inhibits PIN accumulation. Not all auxin analogs elicited a Ca2+ response, and their differential ability to elicit Ca2+ responses correlated partially with their ability to inhibit BFA-body formation. However, in tir1/afb and cngc14, 1-NAA-induced Ca2+ signaling was strongly impaired, yet 1-NAA still could inhibit PIN accumulation in BFA bodies. This demonstrates that TIR1/AFB-CNGC14-dependent Ca2+ signaling does not inhibit BFA body formation in Arabidopsis roots.
Collapse
Affiliation(s)
- Ren Wang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ellie Himschoot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Jian Chen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Alaeddine Safi
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Melanie Krebs
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Moritz K. Nowack
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Daniёl Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Danny Geelen
- Ghent University, Department of Plants and Crops, 9000 Ghent, Belgium
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy
| | - Steffen Vanneste
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- Ghent University, Department of Plants and Crops, 9000 Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
25
|
Laloum D, Magen S, Soroka Y, Avin-Wittenberg T. Exploring the Contribution of Autophagy to the Excess-Sucrose Response in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23073891. [PMID: 35409249 PMCID: PMC8999498 DOI: 10.3390/ijms23073891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an essential intracellular eukaryotic recycling mechanism, functioning in, among others, carbon starvation. Surprisingly, although autophagy-deficient plants (atg mutants) are hypersensitive to carbon starvation, metabolic analysis revealed that they accumulate sugars under such conditions. In plants, sugars serve as both an energy source and as signaling molecules, affecting many developmental processes, including root and shoot formation. We thus set out to understand the interplay between autophagy and sucrose excess, comparing wild-type and atg mutant seedlings. The presented work showed that autophagy contributes to primary root elongation arrest under conditions of exogenous sucrose and glucose excess but not during fructose or mannitol treatment. Minor or no alterations in starch and primary metabolites were observed between atg mutants and wild-type plants, indicating that the sucrose response relates to its signaling and not its metabolic role. Extensive proteomic analysis of roots performed to further understand the mechanism found an accumulation of proteins essential for ROS reduction and auxin maintenance, which are necessary for root elongation, in atg plants under sucrose excess. The analysis also suggested mitochondrial and peroxisomal involvement in the autophagy-mediated sucrose response. This research increases our knowledge of the complex interplay between autophagy and sugar signaling in plants.
Collapse
|
26
|
Gilbert S, Poulev A, Chrisler W, Acosta K, Orr G, Lebeis S, Lam E. Auxin-Producing Bacteria from Duckweeds Have Different Colonization Patterns and Effects on Plant Morphology. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060721. [PMID: 35336603 PMCID: PMC8950272 DOI: 10.3390/plants11060721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/30/2022] [Accepted: 02/20/2022] [Indexed: 05/30/2023]
Abstract
The role of auxin in plant-microbe interaction has primarily been studied using indole-3-acetic acid (IAA)-producing pathogenic or plant-growth-promoting bacteria. However, the IAA biosynthesis pathway in bacteria involves indole-related compounds (IRCs) and intermediates with less known functions. Here, we seek to understand changes in plant response to multiple plant-associated bacteria taxa and strains that differ in their ability to produce IRCs. We had previously studied 47 bacterial strains isolated from several duckweed species and determined that 79% of these strains produced IRCs in culture, such as IAA, indole lactic acid (ILA), and indole. Using Arabidopsis thaliana as our model plant with excellent genetic tools, we performed binary association assays on a subset of these strains to evaluate morphological responses in the plant host and the mode of bacterial colonization. Of the 21 tested strains, only four high-quantity IAA-producing Microbacterium strains caused an auxin root phenotype. Compared to the commonly used colorimetric Salkowski assay, auxin concentration determined by LC-MS was a superior indicator of a bacteria's ability to cause an auxin root phenotype. Studies with the auxin response mutant axr1-3 provided further genetic support for the role of auxin signaling in mediating the root morphology response to IAA-producing bacteria strains. Interestingly, our microscopy results also revealed new evidence for the role of the conserved AXR1 gene in endophytic colonization of IAA-producing Azospirillum baldaniorum Sp245 via the guard cells.
Collapse
Affiliation(s)
- Sarah Gilbert
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - Alexander Poulev
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - William Chrisler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (W.C.); (G.O.)
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (W.C.); (G.O.)
| | - Sarah Lebeis
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - Eric Lam
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| |
Collapse
|
27
|
Du J, Zeng L, Yu Z, Chen S, Chen X, Zhang Y, Yang H. A magnetically enabled simulation of microgravity represses the auxin response during early seed germination on a microfluidic platform. MICROSYSTEMS & NANOENGINEERING 2022; 8:11. [PMID: 35087683 PMCID: PMC8760315 DOI: 10.1038/s41378-021-00331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
For plants on Earth, the phytohormone auxin is essential for gravitropism-regulated seedling establishment and plant growth. However, little is known about auxin responses under microgravity conditions due to the lack of a tool that can provide an alteration of gravity. In this paper, a microfluidic negative magnetophoretic platform is developed to levitate Arabidopsis seeds in an equilibrium plane where the applied magnetic force compensates for gravitational acceleration. With the benefit of the microfluidic platform to simulate a microgravity environment on-chip, it is found that the auxin response is significantly repressed in levitated seeds. Simulated microgravity statistically interrupts auxin responses in embryos, even after chemical-mediated auxin alterations, illustrating that auxin is a critical factor that mediates the plant response to gravity alteration. Furthermore, pretreatment with an auxin transportation inhibitor (N-1-naphthylphthalamic acid) enables a decrease in the auxin response, which is no longer affected by simulated microgravity, demonstrating that polar auxin transportation plays a vital role in gravity-regulated auxin responses. The presented microfluidic platform provides simulated microgravity conditions in an easy-to-implement manner, helping to study and elucidate how plants correspond to diverse gravity conditions; in the future, this may be developed into a versatile tool for biological study on a variety of samples.
Collapse
Affiliation(s)
- Jing Du
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Lin Zeng
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Zitong Yu
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Sihui Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Xi Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Yi Zhang
- Center for Medical AI, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| |
Collapse
|
28
|
Using targeted metabolomics to elucidate the indole auxin network in plants. Methods Enzymol 2022; 676:239-278. [DOI: 10.1016/bs.mie.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Müllender M, Varrelmann M, Savenkov EI, Liebe S. Manipulation of auxin signalling by plant viruses. MOLECULAR PLANT PATHOLOGY 2021; 22:1449-1458. [PMID: 34420252 PMCID: PMC8518663 DOI: 10.1111/mpp.13122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 05/03/2023]
Abstract
Compatible plant-virus interactions result in dramatic changes of the plant transcriptome and morphogenesis, and are often associated with rapid alterations in plant hormone homeostasis and signalling. Auxin controls many aspects of plant organogenesis, development, and growth; therefore, plants can rapidly perceive and respond to changes in the cellular auxin levels. Auxin signalling is a tightly controlled process and, hence, is highly vulnerable to changes in the mRNA and protein levels of its components. There are several core nuclear components of auxin signalling. In the nucleus, the interaction of auxin response factors (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins is essential for the control of auxin-regulated pathways. Aux/IAA proteins are negative regulators, whereas ARFs are positive regulators of the auxin response. The interplay between both is essential for the transcriptional regulation of auxin-responsive genes, which primarily regulate developmental processes but also modulate the plant immune system. Recent studies suggest that plant viruses belonging to different families have developed various strategies to disrupt auxin signalling, namely by (a) changing the subcellular localization of Aux/IAAs, (b) preventing degradation of Aux/IAAs by stabilization, or (c) inhibiting the transcriptional activity of ARFs. These interactions perturb auxin signalling and experimental evidence from various studies highlights their importance for virus replication, systemic movement, interaction with vectors for efficient transmission, and symptom development. In this microreview, we summarize and discuss the current knowledge on the interaction of plant viruses with auxin signalling components of their hosts.
Collapse
Affiliation(s)
| | - Mark Varrelmann
- Department of PhytopathologyInstitute of Sugar Beet ResearchGöttingenGermany
| | - Eugene I. Savenkov
- Department of Plant BiologyUppsala BioCenter SLU, Swedish University of Agricultural Sciences, Linnean Center for Plant BiologyUppsalaSweden
| | - Sebastian Liebe
- Department of PhytopathologyInstitute of Sugar Beet ResearchGöttingenGermany
| |
Collapse
|
30
|
Méndez-Hernández HA, Quintana-Escobar AO, Uc-Chuc MA, Loyola-Vargas VM. Genome-Wide Analysis, Modeling, and Identification of Amino Acid Binding Motifs Suggest the Involvement of GH3 Genes during Somatic Embryogenesis of Coffea canephora. PLANTS 2021; 10:plants10102034. [PMID: 34685847 PMCID: PMC8539013 DOI: 10.3390/plants10102034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022]
Abstract
Auxin plays a central role in growth and plant development. To maintain auxin homeostasis, biological processes such as biosynthesis, transport, degradation, and reversible conjugation are essential. The Gretchen Hagen 3 (GH3) family genes codify for the enzymes that esterify indole-3-acetic acid (IAA) to various amino acids, which is a key process in the induction of somatic embryogenesis (SE). The GH3 family is one of the principal families of early response to auxin genes, exhibiting IAA-amido synthetase activity to maintain optimal levels of free auxin in the cell. In this study, we carried out a systematic identification of the GH3 gene family in the genome of Coffea canephora, determining a total of 18 CcGH3 genes. Analysis of the genetic structures and phylogenetic relationships of CcGH3 genes with GH3 genes from other plant species revealed that they could be clustered in two major categories with groups 1 and 2 of the GH3 family of Arabidopsis. We analyzed the transcriptome expression profiles of the 18 CcGH3 genes using RNA-Seq analysis-based data and qRT-PCR during the different points of somatic embryogenesis induction. Furthermore, the endogenous quantification of free and conjugated indole-3-acetic acid (IAA) suggests that the various members of the CcGH3 genes play a crucial role during the embryogenic process of C. canephora. Three-dimensional modeling of the selected CcGH3 proteins showed that they consist of two domains: an extensive N-terminal domain and a smaller C-terminal domain. All proteins analyzed in the present study shared a unique conserved structural topology. Additionally, we identified conserved regions that could function to bind nucleotides and specific amino acids for the conjugation of IAA during SE in C. canephora. These results provide a better understanding of the C. canephora GH3 gene family for further exploration and possible genetic manipulation.
Collapse
|
31
|
Song P, Xu H, Zhang J, Chen H, Li L, Qu Y, Lin F, Zhang Q. Functional analysis of indole 3-hexanoic acid as a novel auxin from Arabidopsis thaliana. PLANTA 2021; 254:69. [PMID: 34498125 DOI: 10.1007/s00425-021-03719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Indole 3-hexanoic acid is a novel auxin and regulates plant growth and development. Auxin is a signaling molecule that influences most aspects of plant development. Although many small bioactive molecules have been developed as auxin analogues, naturally occurring auxin and the detailed mechanisms of its specific actions in plants remain to be fully elucidated. In this study, to screen auxin responses, we used a novel picolinate synthetic auxin, 3-indole hexanoic acid (IHA), which is similar in structure to indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). IHA showed classical auxin activity in the regulation of root growth, gene expression, and PIN-FORMED abundance. Physiological and genetic analyses indicated that IHA may be perceived by the auxin receptor TIR1 and transported by the G-class ATP-binding cassette protein ABCG36 and its homolog ABCG37. Importantly, IHA was detected in planta and converted into IBA depending on the peroxisomal β-oxidation. Together, these findings reveal a novel auxin pathway component and suggest possible undiscovered modes of auxin metabolism regulation in plants.
Collapse
Affiliation(s)
- Ping Song
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Xu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jixiu Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Li Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, People's Republic of China
| | - Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Feng Lin
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
32
|
Velasquez SM, Guo X, Gallemi M, Aryal B, Venhuizen P, Barbez E, Dünser KA, Darino M, Pĕnčík A, Novák O, Kalyna M, Mouille G, Benková E, P. Bhalerao R, Mravec J, Kleine-Vehn J. Xyloglucan Remodeling Defines Auxin-Dependent Differential Tissue Expansion in Plants. Int J Mol Sci 2021; 22:9222. [PMID: 34502129 PMCID: PMC8430841 DOI: 10.3390/ijms22179222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Size control is a fundamental question in biology, showing incremental complexity in plants, whose cells possess a rigid cell wall. The phytohormone auxin is a vital growth regulator with central importance for differential growth control. Our results indicate that auxin-reliant growth programs affect the molecular complexity of xyloglucans, the major type of cell wall hemicellulose in eudicots. Auxin-dependent induction and repression of growth coincide with reduced and enhanced molecular complexity of xyloglucans, respectively. In agreement with a proposed function in growth control, genetic interference with xyloglucan side decorations distinctly modulates auxin-dependent differential growth rates. Our work proposes that auxin-dependent growth programs have a spatially defined effect on xyloglucan's molecular structure, which in turn affects cell wall mechanics and specifies differential, gravitropic hypocotyl growth.
Collapse
Affiliation(s)
- Silvia Melina Velasquez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (X.G.); (J.M.)
| | - Marçal Gallemi
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; (M.G.); (E.B.)
| | - Bibek Aryal
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; (B.A.); (O.N.); (R.P.B.)
| | - Peter Venhuizen
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Elke Barbez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
- Faculty of Biology, Department of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany
| | - Kai Alexander Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Martin Darino
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Aleš Pĕnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
| | - Ondřej Novák
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; (B.A.); (O.N.); (R.P.B.)
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria; (P.V.); (E.B.); (K.A.D.); (M.D.); (M.K.)
| | - Gregory Mouille
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, RD10, CEDEX, 78026 Versailles, France;
| | - Eva Benková
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; (M.G.); (E.B.)
| | - Rishikesh P. Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden; (B.A.); (O.N.); (R.P.B.)
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (X.G.); (J.M.)
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Department of Molecular Plant Physiology (MoPP), University of Freiburg, 79104 Freiburg, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
33
|
Beyond the Usual Suspects: Physiological Roles of the Arabidopsis Amidase Signature (AS) Superfamily Members in Plant Growth Processes and Stress Responses. Biomolecules 2021; 11:biom11081207. [PMID: 34439873 PMCID: PMC8393822 DOI: 10.3390/biom11081207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
The diversification of land plants largely relies on their ability to cope with constant environmental fluctuations, which negatively impact their reproductive fitness and trigger adaptive responses to biotic and abiotic stresses. In this limiting landscape, cumulative research attention has centred on deepening the roles of major phytohormones, mostly auxins, together with brassinosteroids, jasmonates, and abscisic acid, despite the signaling networks orchestrating the crosstalk among them are so far only poorly understood. Accordingly, this review focuses on the Arabidopsis Amidase Signature (AS) superfamily members, with the aim of highlighting the hitherto relatively underappreciated functions of AMIDASE1 (AMI1) and FATTY ACID AMIDE HYDROLASE (FAAH), as comparable coordinators of the growth-defense trade-off, by balancing auxin and ABA homeostasis through the conversion of their likely bioactive substrates, indole-3-acetamide and N-acylethanolamine.
Collapse
|
34
|
Abstract
Bioactive compounds produced by plant growth-promoting bacteria through a fermentation process can be valuable for developing innovative second-generation plant biostimulants. The purpose of this study is to investigate the biotechnological potential of Enterobacter on the production of auxin—a hormone with multiple roles in plant growth and development. The experiments were carried in Erlenmeyer flasks and a 2-L fermenter under batch operating mode. The auxin production by Enterobacter sp. strain P-36 can be doubled by replacing casein with vegetable peptone in the culture medium. Cultivation of strain P36 in the benchtop fermenter indicates that by increasing the inoculum size 2-fold, it is possible to reduce the fermentation time from 72 (shake flask cultivation) to 24 h (bioreactor cultivation) and increase the auxin volumetric productivity from 6.4 to 17.2 mg [IAAequ]/L/h. Finally, an efficient storage procedure to preserve the bacterial auxin was developed. It is noteworthy that by sterilizing the clarified fermentation broth by filtration and storing the filtrated samples at +4 °C, the level of auxin remains unchanged for at least three months.
Collapse
|
35
|
Saini S, Kaur N, Marothia D, Singh B, Singh V, Gantet P, Pati PK. Morphological Analysis, Protein Profiling and Expression Analysis of Auxin Homeostasis Genes of Roots of Two Contrasting Cultivars of Rice Provide Inputs on Mechanisms Involved in Rice Adaptation towards Salinity Stress. PLANTS 2021; 10:plants10081544. [PMID: 34451587 PMCID: PMC8399380 DOI: 10.3390/plants10081544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022]
Abstract
Plants remodel their root architecture in response to a salinity stress stimulus. This process is regulated by an array of factors including phytohormones, particularly auxin. In the present study, in order to better understand the mechanisms involved in salinity stress adaptation in rice, we compared two contrasting rice cultivars—Luna Suvarna, a salt tolerant, and IR64, a salt sensitive cultivar. Phenotypic investigations suggested that Luna Suvarna in comparison with IR64 presented stress adaptive root traits which correlated with a higher accumulation of auxin in its roots. The expression level investigation of auxin signaling pathway genes revealed an increase in several auxin homeostasis genes transcript levels in Luna Suvarna compared with IR64 under salinity stress. Furthermore, protein profiling showed 18 proteins that were differentially regulated between the roots of two cultivars, and some of them were salinity stress responsive proteins found exclusively in the proteome of Luna Suvarna roots, revealing the critical role of these proteins in imparting salinity stress tolerance. This included proteins related to the salt overly sensitive pathway, root growth, the reactive oxygen species scavenging system, and abscisic acid activation. Taken together, our results highlight that Luna Suvarna involves a combination of morphological and molecular traits of the root system that could prime the plant to better tolerate salinity stress.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Deeksha Marothia
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Baldev Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Varinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
| | - Pascal Gantet
- Université de Montpellier, UMR DIADE, Centre de Recherche de l’IRD, Avenue Agropolis, BP 64501, CEDEX 5, 34394 Montpellier, France
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Molecular Biology, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Correspondence: (P.G.); (P.K.P.)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (S.S.); (N.K.); (D.M.); (B.S.); (V.S.)
- Correspondence: (P.G.); (P.K.P.)
| |
Collapse
|
36
|
Parveen S, Rahman A. Actin Isovariant ACT7 Modulates Root Thermomorphogenesis by Altering Intracellular Auxin Homeostasis. Int J Mol Sci 2021; 22:7749. [PMID: 34299366 PMCID: PMC8306570 DOI: 10.3390/ijms22147749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 12/16/2022] Open
Abstract
High temperature stress is one of the most threatening abiotic stresses for plants limiting the crop productivity world-wide. Altered developmental responses of plants to moderate-high temperature has been shown to be linked to the intracellular auxin homeostasis regulated by both auxin biosynthesis and transport. Trafficking of the auxin carrier proteins plays a major role in maintaining the cellular auxin homeostasis. The intracellular trafficking largely relies on the cytoskeletal component, actin, which provides track for vesicle movement. Different classes of actin and the isovariants function in regulating various stages of plant development. Although high temperature alters the intracellular trafficking, the role of actin in this process remains obscure. Using isovariant specific vegetative class actin mutants, here we demonstrate that ACTIN 7 (ACT7) isovariant plays an important role in regulating the moderate-high temperature response in Arabidopsis root. Loss of ACT7, but not ACT8 resulted in increased inhibition of root elongation under prolonged moderate-high temperature. Consistently, kinematic analysis revealed a drastic reduction in cell production rate and cell elongation in act7-4 mutant under high temperature. Quantification of actin dynamicity reveals that prolonged moderate-high temperature modulates bundling along with orientation and parallelness of filamentous actin in act7-4 mutant. The hypersensitive response of act7-4 mutant was found to be linked to the altered intracellular auxin distribution, resulted from the reduced abundance of PIN-FORMED PIN1 and PIN2 efflux carriers. Collectively, these results suggest that vegetative class actin isovariant, ACT7 modulates the long-term moderate-high temperature response in Arabidopsis root.
Collapse
Affiliation(s)
- Sumaya Parveen
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan;
| | - Abidur Rahman
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan;
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
- Agri-Innovation Center, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
37
|
Godoy F, Kühn N, Muñoz M, Marchandon G, Gouthu S, Deluc L, Delrot S, Lauvergeat V, Arce-Johnson P. The role of auxin during early berry development in grapevine as revealed by transcript profiling from pollination to fruit set. HORTICULTURE RESEARCH 2021; 8:140. [PMID: 34127649 PMCID: PMC8203632 DOI: 10.1038/s41438-021-00568-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 05/07/2023]
Abstract
Auxin is a key phytohormone that modulates fruit formation in many fleshy fruits through the regulation of cell division and expansion. Auxin content rapidly increases after pollination and the manipulation in its levels may lead to the parthenocarpic development. ln Vitis vinifera L., little is known about the early fruit development that encompasses from pollination to fruit set. Pollination/fertilization events trigger fruit formation, and auxin treatment mimics their effect in grape berry set. However, the role of auxin in this process at the molecular level is not well understood. To elucidate the participation of auxin in grapevine fruit formation, morphological, reproductive, and molecular events from anthesis to fruit set were described in sequential days after pollination. Exploratory RNA-seq analysis at four time points from anthesis to fruit set revealed that the highest percentage of genes induced/repressed within the hormone-related gene category were auxin-related genes. Transcript profiling showed significant transcript variations in auxin signaling and homeostasis-related genes during the early fruit development. Indole acetic acid and several auxin metabolites were present during this period. Finally, application of an inhibitor of auxin action reduced cell number and the mesocarp diameter, similarly to unpollinated berries, further confirming the key role of auxin during early berry development. This work sheds light into the molecular features of the initial fruit development and highlights the auxin participation during this stage in grapevine.
Collapse
Affiliation(s)
- Francisca Godoy
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Nathalie Kühn
- Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2340025, Valparaíso, Chile
| | - Mindy Muñoz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Germán Marchandon
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | - Laurent Deluc
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Serge Delrot
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, ISVV, Université de Bordeaux, Villenave d´Ornon, France
| | - Virginie Lauvergeat
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, ISVV, Université de Bordeaux, Villenave d´Ornon, France
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| |
Collapse
|
38
|
Xu R, Guo Y, Peng S, Liu J, Li P, Jia W, Zhao J. Molecular Targets and Biological Functions of cAMP Signaling in Arabidopsis. Biomolecules 2021; 11:biom11050688. [PMID: 34063698 PMCID: PMC8147800 DOI: 10.3390/biom11050688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Cyclic AMP (cAMP) is a pivotal signaling molecule existing in almost all living organisms. However, the mechanism of cAMP signaling in plants remains very poorly understood. Here, we employ the engineered activity of soluble adenylate cyclase to induce cellular cAMP elevation in Arabidopsis thaliana plants and identify 427 cAMP-responsive genes (CRGs) through RNA-seq analysis. Induction of cellular cAMP elevation inhibits seed germination, disturbs phytohormone contents, promotes leaf senescence, impairs ethylene response, and compromises salt stress tolerance and pathogen resistance. A set of 62 transcription factors are among the CRGs, supporting a prominent role of cAMP in transcriptional regulation. The CRGs are significantly overrepresented in the pathways of plant hormone signal transduction, MAPK signaling, and diterpenoid biosynthesis, but they are also implicated in lipid, sugar, K+, nitrate signaling, and beyond. Our results provide a basic framework of cAMP signaling for the community to explore. The regulatory roles of cAMP signaling in plant plasticity are discussed.
Collapse
Affiliation(s)
- Ruqiang Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-0371-6778-5095
| | - Yanhui Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Song Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Jinrui Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Panyu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Wenjing Jia
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Junheng Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| |
Collapse
|
39
|
Singh H, Bhat JA, Singh VP, Corpas FJ, Yadav SR. Auxin metabolic network regulates the plant response to metalloids stress. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124250. [PMID: 33109410 DOI: 10.1016/j.jhazmat.2020.124250] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 05/13/2023]
Abstract
Metalloids are among the major pollutants posing a risk to the environment and global food security. Plant roots uptake these toxic metalloids from the soil along with other essential minerals. Plants respond to metalloid stress by regulating the distribution and levels of various endogenous phytohormones. Recent research showed that auxin is instrumental in mediating resilience to metalloid-induced stress in plants. Exogenous supplementation of the auxin or plant growth-promoting micro-organisms (PGPMs) alleviates metalloid uptake, localization, and accumulation in the plant tissues, thereby improving plant growth under metalloid stress. Moreover, auxin triggers various biological responses such as the production of enzymatic and non-enzymatic antioxidants to combat nitro-oxidative stress induced by the metalloids. However, an in-depth understanding of the auxin stimulated molecular and physiological responses to the metalloid toxicity needs to be investigated in future studies. The current review attempts to provide an update on the recent advances and the current state-of-the-art associated with auxin and metalloid interaction, which could be used as a start point to develop biotechnological tools and create an eco-friendly environment.
Collapse
Affiliation(s)
- Harshita Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, Key L aboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj 211002, India
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Profesor Albareda, 1, 18008 Granada, Spain
| | - Shri Ram Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
40
|
Gan S, Rozhon W, Varga E, Halder J, Berthiller F, Poppenberger B. The acyltransferase PMAT1 malonylates brassinolide glucoside. J Biol Chem 2021; 296:100424. [PMID: 33600798 PMCID: PMC8010461 DOI: 10.1016/j.jbc.2021.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/01/2022] Open
Abstract
Brassinosteroids (BRs) are steroid hormones of plants that coordinate fundamental growth and development processes. Their homeostasis is controlled by diverse means, including glucosylation of the bioactive BR brassinolide (BL), which is catalyzed by the UDP-glycosyltransferases (UGTs) UGT73C5 and UGT73C6 and occurs mainly at the C-23 position. Additional evidence had suggested that the resultant BL-23-O-glucoside (BL-23-O-Glc) can be malonylated, but the physiological significance of and enzyme required for this reaction had remained unknown. Here, we show that in Arabidopsis thaliana malonylation of BL-23-O-Glc is catalyzed by the acyltransferase phenolic glucoside malonyl-transferase 1 (PMAT1), which is also known to malonylate phenolic glucosides and lipid amides. Loss of PMAT1 abolished BL-23-O-malonylglucoside formation and enriched BL-23-O-Glc, showing that the enzyme acts on the glucoside. An overexpression of PMAT1 in plants where UGT73C6 was also overexpressed, and thus, BL-23-O-Glc formation was promoted, enhanced the symptoms of BR-deficiency of UGT73C6oe plants, providing evidence that PMAT1 contributes to BL inactivation. Based on these results, a model is proposed in which PMAT1 acts in the conversion of both endogenous and xenobiotic glucosides to adjust metabolic homeostasis in spatial and temporal modes.
Collapse
Affiliation(s)
- Sufu Gan
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Elisabeth Varga
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | - Jyotirmoy Halder
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Franz Berthiller
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany.
| |
Collapse
|
41
|
Kępczyńska E, Orłowska A. Profiles of endogenous ABA, bioactive GAs, IAA and their metabolites in Medicago truncatula Gaertn. non-embryogenic and embryogenic tissues during induction phase in relation to somatic embryo formation. PLANTA 2021; 253:67. [PMID: 33586054 PMCID: PMC7882586 DOI: 10.1007/s00425-021-03582-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/30/2021] [Indexed: 05/02/2023]
Abstract
During the 3-week-long induction phase, when M. truncatula cells leaf explants from non-embryogenic genotype (M9) and embryogenic variant (M9-10a) were forming the callus, biosynthesis and degradation of ABA, Gas and IAA proceeded at different levels. Induction of embryo formation is related to a lower ABA content, compared to the content of IAA and that of total bioactive GAs. Endogenous phytohormones are involved in the regulation of zygotic embryogenesis, but their role, especially of ABA, a plant growth inhibitor, in inducing somatic embryogenesis (SE) in angiosperms is still incompletely known. To arrive a better understanding of the ABA role in the process, we analyzed simultaneously and in detail changes in the contents of both ABA and five bioactive GAs (GA4, GA7, GA1, GA3, GA6) and IAA in M. truncatula non-embryogenic M9 (NE) and embryogenic M9-10a (E) genotypes. The initial leaf explants of both genotypes, and particularly NE, contained many times more ABA compared to the total bioactive GAs or IAA. In tissues during the entire 21-day induction all the hormones mentioned and their metabolites or conjugates were present; however, their contents were found to differ between the lines tested. The ABA level in primary explants of NE genotype was more than two times higher than that in E genotype. An even larger difference in the ABA content was found on the last day (day 21) of the induction phase (IP); the ABA content in E callus was over six times lower than in NE callus. In contrast, the IAA and GAs contents in primary explants of both genotypes in relation to ABA were low, but the contents of IAA and GAs exceeded that of ABA in the M9-10a tissues on the last day of IP. It is shown for the first time that endogenous ABA together with endogenous bioactive GAs and IAA is involved in acquisition of embryogenic competence in Medicago truncatula leaf somatic cells. These findings have a strong functional implication as they allow to improve the SE induction protocol.
Collapse
Affiliation(s)
- Ewa Kępczyńska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| | - Anna Orłowska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| |
Collapse
|
42
|
Pérez-Alonso MM, Ortiz-García P, Moya-Cuevas J, Lehmann T, Sánchez-Parra B, Björk RG, Karim S, Amirjani MR, Aronsson H, Wilkinson MD, Pollmann S. Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:459-475. [PMID: 33068437 PMCID: PMC7853601 DOI: 10.1093/jxb/eraa485] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/13/2020] [Indexed: 05/13/2023]
Abstract
The evolutionary success of plants relies to a large extent on their extraordinary ability to adapt to changes in their environment. These adaptations require that plants balance their growth with their stress responses. Plant hormones are crucial mediators orchestrating the underlying adaptive processes. However, whether and how the growth-related hormone auxin and the stress-related hormones jasmonic acid, salicylic acid, and abscisic acid (ABA) are coordinated remains largely elusive. Here, we analyse the physiological role of AMIDASE 1 (AMI1) in Arabidopsis plant growth and its possible connection to plant adaptations to abiotic stresses. AMI1 contributes to cellular auxin homeostasis by catalysing the conversion of indole-acetamide into the major plant auxin indole-3-acetic acid. Functional impairment of AMI1 increases the plant's stress status rendering mutant plants more susceptible to abiotic stresses. Transcriptomic analysis of ami1 mutants disclosed the reprogramming of a considerable number of stress-related genes, including jasmonic acid and ABA biosynthesis genes. The ami1 mutants exhibit only moderately repressed growth but an enhanced ABA accumulation, which suggests a role for AMI1 in the crosstalk between auxin and ABA. Altogether, our results suggest that AMI1 is involved in coordinating the trade-off between plant growth and stress responses, balancing auxin and ABA homeostasis.
Collapse
Affiliation(s)
- Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Paloma Ortiz-García
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - José Moya-Cuevas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Thomas Lehmann
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, Bochum, Germany
| | - Beatriz Sánchez-Parra
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Current address: Max-Planck-Institute for Chemistry, Mainz, Germany
| | - Robert G Björk
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Sazzad Karim
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohammad R Amirjani
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Current address: Department of Biology, Arak University, Arak, Iran
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mark D Wilkinson
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Correspondence:
| |
Collapse
|
43
|
NMR spectroscopy analysis reveals differential metabolic responses in arabidopsis roots and leaves treated with a cytokinesis inhibitor. PLoS One 2020; 15:e0241627. [PMID: 33156865 PMCID: PMC7647083 DOI: 10.1371/journal.pone.0241627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
In plant cytokinesis, de novo formation of a cell plate evolving into the new cell wall partitions the cytoplasm of the dividing cell. In our earlier chemical genomics studies, we identified and characterized the small molecule endosidin-7, that specifically inhibits callose deposition at the cell plate, arresting late-stage cytokinesis in arabidopsis. Endosidin-7 has emerged as a very valuable tool for dissecting this essential plant process. To gain insights regarding its mode of action and the effects of cytokinesis inhibition on the overall plant response, we investigated the effect of endosidin-7 through a nuclear magnetic resonance spectroscopy (NMR) metabolomics approach. In this case study, metabolomics profiles of arabidopsis leaf and root tissues were analyzed at different growth stages and endosidin-7 exposure levels. The results show leaf and root-specific metabolic profile changes and the effects of endosidin-7 treatment on these metabolomes. Statistical analyses indicated that the effect of endosidin-7 treatment was more significant than the developmental impact. The endosidin-7 induced metabolic profiles suggest compensations for cytokinesis inhibition in central metabolism pathways. This study further shows that long-term treatment of endosidin-7 profoundly changes, likely via alteration of hormonal regulation, the primary metabolism of arabidopsis seedlings. Hormonal pathway-changes are likely reflecting the plant’s responses, compensating for the arrested cell division, which in turn are leading to global metabolite modulation. The presented NMR spectral data are made available through the Metabolomics Workbench, providing a reference resource for the scientific community.
Collapse
|
44
|
FRUITFULL Is a Repressor of Apical Hook Opening in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21176438. [PMID: 32899394 PMCID: PMC7504503 DOI: 10.3390/ijms21176438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/04/2022] Open
Abstract
Plants adjust their architecture to a constantly changing environment, requiring adaptation of differential growth. Despite their importance, molecular switches, which define growth transitions, are largely unknown. Apical hook development in dark grown Arabidopsis thaliana (A. thaliana) seedlings serves as a suitable model for differential growth transition in plants. Here, we show that the phytohormone auxin counteracts the light-induced growth transition during apical hook opening. We, subsequently, identified genes which are inversely regulated by light and auxin. We used in silico analysis of the regulatory elements in this set of genes and subsequently used natural variation in gene expression to uncover correlations between underlying transcription factors and the in silico predicted target genes. This approach uncovered that MADS box transcription factor AGAMOUS-LIKE 8 (AGL8)/FRUITFULL (FUL) modulates apical hook opening. Our data shows that transient FUL expression represses the expression of growth stimulating genes during early phases of apical hook development and therewith guards the transition to growth promotion for apical hook opening. Here, we propose a role for FUL in setting tissue identity, thereby regulating differential growth during apical hook development.
Collapse
|
45
|
Li S, Wang C, Zhou X, Liu D, Liu C, Luan J, Qin Z, Xin M. The curvature of cucumber fruits is associated with spatial variation in auxin accumulation and expression of a YUCCA biosynthesis gene. HORTICULTURE RESEARCH 2020; 7:135. [PMID: 32922807 PMCID: PMC7459348 DOI: 10.1038/s41438-020-00354-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 05/28/2023]
Abstract
Fruit curving lowers the commercial value of cucumber and leads to significant economic losses. The mechanism driving the abnormal curving of cucumber is largely unknown. Through our previous work, we discovered that 2 days post-anthesis (DPA) was the key time point at which various phenotypic and genotypic characteristics of cucumber fruits are determined. Here, we analyzed the transcriptome of the concave (C1) and convex (C2) sides of curved fruits at 2 DPA by Gene Ontology (GO) enrichment and functional pathway enrichment analyses and identified auxin as a putative factor influencing fruit curvature. Changes in the curve angle in the fruits and exogenous auxin treatment analyses showed that asymmetric auxin distribution induces fruit curving. Identification of differentially expressed genes (DEGs) related to auxin and qPCR validation showed that CsYUC10b had the most significant differential expression when both sides of the curved fruits were compared. Gene functional analysis showed that the transcript levels of CsYUC10b and the auxin concentration were even on both sides of the fruit in CsYUC10b-overexpressing plants, which in turn contributed to an equal rate of growth of both sides of cucumber fruits and resulted in a straight shape of the fruits. Thus, we conclude that CsYUC10b promotes the formation of straight cucumber fruits, with possible applications in the production and breeding of cucumber.
Collapse
Affiliation(s)
- Shengnan Li
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, 150030 China
| | - Chunhua Wang
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, 150030 China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiuyan Zhou
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, 150030 China
| | - Dong Liu
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, 150030 China
| | - Chunhong Liu
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, 150030 China
| | - Jie Luan
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, 150030 China
| | - Zhiwei Qin
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, 150030 China
| | - Ming Xin
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
46
|
Wakatake T, Ogawa S, Yoshida S, Shirasu K. An auxin transport network underlies xylem bridge formation between the hemi-parasitic plant Phtheirospermum japonicum and host Arabidopsis. Development 2020; 147:dev187781. [PMID: 32586973 DOI: 10.1242/dev.187781] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/15/2020] [Indexed: 03/01/2024]
Abstract
Parasitic plants form vascular connections with host plants for efficient material transport. The haustorium is the responsible organ for host invasion and subsequent vascular connection. After invasion of host tissues, vascular meristem-like cells emerge in the central region of the haustorium, differentiate into tracheary elements and establish a connection, known as a xylem bridge, between parasite and host xylem systems. Despite the importance of this parasitic connection, the regulatory mechanisms of xylem bridge formation are unknown. Here, we show the role of auxin and auxin transporters during the process of xylem bridge formation using an Orobanchaceae hemiparasitic plant, Phtheirospermum japonicum The auxin response marker DR5 has a similar expression pattern to tracheary element differentiation genes in haustoria. Auxin transport inhibitors alter tracheary element differentiation in haustoria, but biosynthesis inhibitors do not, demonstrating the importance of auxin transport during xylem bridge formation. The expression patterns and subcellular localization of PIN family auxin efflux carriers and AUX1/LAX influx carriers correlate with DR5 expression patterns. The cooperative action of auxin transporters is therefore responsible for controlling xylem vessel connections between parasite and host.
Collapse
Affiliation(s)
- Takanori Wakatake
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Satoshi Ogawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Satoko Yoshida
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
47
|
Nehela Y, Killiny N. The unknown soldier in citrus plants: polyamines-based defensive mechanisms against biotic and abiotic stresses and their relationship with other stress-associated metabolites. PLANT SIGNALING & BEHAVIOR 2020; 15:1761080. [PMID: 32408848 PMCID: PMC8570725 DOI: 10.1080/15592324.2020.1761080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 05/07/2023]
Abstract
Citrus plants are challenged by a broad diversity of abiotic and biotic stresses, which definitely alter their growth, development, and productivity. In order to survive the various stressful conditions, citrus plants relay on multi-layered adaptive strategies, among which is the accumulation of stress-associated metabolites that play vital and complex roles in citrus defensive responses. These metabolites included amino acids, organic acids, fatty acids, phytohormones, polyamines (PAs), and other secondary metabolites. However, the contribution of PAs pathways in citrus defense responses is poorly understood. In this review article, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the potential roles of PAs in citrus defensive responses against biotic and abiotic stressors. We believe that PAs-based defensive role, against biotic and abiotic stress in citrus, is involving the interaction with other stress-associated metabolites, particularly phytohormones. The knowledge gained so far about PAs-based defensive responses in citrus underpins our need for further genetic manipulation of PAs biosynthetic genes to produce transgenic citrus plants with modulated PAs content that may enhance the tolerance of citrus plants against stressful conditions. In addition, it provides valuable information for the potential use of PAs or their synthetic analogs and their emergence as a promising approach to practical applications in citriculture to enhance stress tolerance in citrus plants.
Collapse
Affiliation(s)
- Yasser Nehela
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
48
|
Brunoni F, Collani S, Casanova-Sáez R, Šimura J, Karady M, Schmid M, Ljung K, Bellini C. Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. THE NEW PHYTOLOGIST 2020; 226:1753-1765. [PMID: 32004385 DOI: 10.1111/nph.16463] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Dynamic regulation of the concentration of the natural auxin (IAA) is essential to coordinate most of the physiological and developmental processes and responses to environmental changes. Oxidation of IAA is a major pathway to control auxin concentrations in angiosperms and, along with IAA conjugation, to respond to perturbation of IAA homeostasis. However, these regulatory mechanisms remain poorly investigated in conifers. To reduce this knowledge gap, we investigated the different contributions of the IAA inactivation pathways in conifers. MS-based quantification of IAA metabolites under steady-state conditions and after perturbation was investigated to evaluate IAA homeostasis in conifers. Putative Picea abies GH3 genes (PaGH3) were identified based on a comprehensive phylogenetic analysis including angiosperms and basal land plants. Auxin-inducible PaGH3 genes were identified by expression analysis and their IAA-conjugating activity was explored. Compared to Arabidopsis, oxidative and conjugative pathways differentially contribute to reduce IAA concentrations in conifers. We demonstrated that the oxidation pathway plays a marginal role in controlling IAA homeostasis in spruce. By contrast, an excess of IAA rapidly activates GH3-mediated irreversible conjugation pathways. Taken together, these data indicate that a diversification of IAA inactivation mechanisms evolved specifically in conifers.
Collapse
Affiliation(s)
- Federica Brunoni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), 90736, Umeå, Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Silvio Collani
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), 90736, Umeå, Sweden
| | - Rubén Casanova-Sáez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- Departmebt of Chemical Biology and Genetics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), 90736, Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), 90736, Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
49
|
Into the Seed: Auxin Controls Seed Development and Grain Yield. Int J Mol Sci 2020; 21:ijms21051662. [PMID: 32121296 PMCID: PMC7084539 DOI: 10.3390/ijms21051662] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
Seed development, which involves mainly the embryo, endosperm and integuments, is regulated by different signaling pathways, leading to various changes in seed size or seed weight. Therefore, uncovering the genetic and molecular mechanisms of seed development has great potential for improving crop yields. The phytohormone auxin is a key regulator required for modulating different cellular processes involved in seed development. Here, we provide a comprehensive review of the role of auxin biosynthesis, transport, signaling, conjugation, and catabolism during seed development. More importantly, we not only summarize the research progress on the genetic and molecular regulation of seed development mediated by auxin but also discuss the potential of manipulating auxin metabolism and its signaling pathway for improving crop seed weight.
Collapse
|
50
|
Müller K, Hošek P, Laňková M, Vosolsobě S, Malínská K, Čarná M, Fílová M, Dobrev PI, Helusová M, Hoyerová K, Petrášek J. Transcription of specific auxin efflux and influx carriers drives auxin homeostasis in tobacco cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:627-640. [PMID: 31349380 DOI: 10.1111/tpj.14474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Auxin concentration gradients are informative for the transduction of many developmental cues, triggering downstream gene expression and other responses. The generation of auxin gradients depends significantly on cell-to-cell auxin transport, which is supported by the activities of auxin efflux and influx carriers. However, at the level of individual plant cell, the co-ordination of auxin efflux and influx largely remains uncharacterized. We addressed this issue by analyzing the contribution of canonical PIN-FORMED (PIN) proteins to the carrier-mediated auxin efflux in Nicotiana tabacum L., cv. Bright Yellow (BY-2) tobacco cells. We show here that a majority of canonical NtPINs are transcribed in cultured cells and in planta. Cloning of NtPIN genes and their inducible overexpression in tobacco cells uncovered high auxin efflux activity of NtPIN11, accompanied by auxin starvation symptoms. Auxin transport parameters after NtPIN11 overexpression were further assessed using radiolabelled auxin accumulation and mathematical modelling. Unexpectedly, these experiments showed notable stimulation of auxin influx, which was accompanied by enhanced transcript levels of genes for a specific auxin influx carrier and by decreased transcript levels of other genes for auxin efflux carriers. A similar transcriptional response was observed upon removal of auxin from the culture medium, which resulted in decreased auxin efflux. Overall, our results revealed an auxin transport-based homeostatic mechanism for the maintenance of endogenous auxin levels. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at http://osf.io/ka97b/.
Collapse
Affiliation(s)
- Karel Müller
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Petr Hošek
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Martina Laňková
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Kateřina Malínská
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Mária Čarná
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Markéta Fílová
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Petre I Dobrev
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Michaela Helusová
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Klára Hoyerová
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jan Petrášek
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| |
Collapse
|