1
|
Toprani SM, Mordukhovich I, McNeely E, Nagel ZD. Suppressed DNA repair capacity in flight attendants after air travel. Sci Rep 2025; 15:16513. [PMID: 40360675 PMCID: PMC12075667 DOI: 10.1038/s41598-025-98934-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Elevated cancer risk and compromised reproductive health have been well documented in flight attendants (FA), but the etiology remains unknown. Many studies using cell and animal models suggest that air travel related exposures might plausibly explain the adverse health outcomes observed in flight crew, but our understanding of the underlying biological mechanisms is incomplete. During air travel, FA are constantly exposed to complex mixtures of mutagens in the flight cabin that may contribute to genomic instability by inducing DNA damage and interfering with DNA repair. Defects in DNA repair capacity (DRC) have been associated with risk of cancer and other diseases. To explore our hypothesis that alterations in DNA damage and repair in FA are related to flight travel, we conducted a pilot study of FA's DNA damage and assess global DNA repair efficiency pre and post flight. We collected venous blood samples from nine FA before and after flight. Differential blood cell counts were carried out to assess immune responses and functional assays were performed to assess the DNA damage response. The CometChip assay was employed to quantify baseline DNA damage and repair kinetics for DNA damage induced by X-rays. Fluorescence multiplex based host cell reactivation (FM-HCR) assays were utilized to assess DRC in five major DNA repair pathways. Our findings revealed a significant increase in lymphocyte counts as well as diminished repair of ionizing radiation induced DNA damage and excision of 8oxoG:C lesions in after flight samples. Our results illustrate the potential for using biological samples to identify molecular mechanisms that may implicate impaired genomic stability and altered immune responses in the etiology of excess cancer in FAs.
Collapse
Affiliation(s)
- Sneh M Toprani
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Irina Mordukhovich
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- SHINE, Human Flourishing Program Institute for Quantitative Science, Harvard University, Cambridge, MA, USA
| | - Eileen McNeely
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- SHINE, Human Flourishing Program Institute for Quantitative Science, Harvard University, Cambridge, MA, USA
| | - Zachary D Nagel
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
2
|
Feary J, Yu Y, Kabir T, Schofield S, Bevan A, Askinyte V, Honan K, Emirali L, Rubbi A, Willis AE, Cullinan P, Anand S, Martins LM. Assessment of cancer biomarkers in the Grenfell firefighter cohort study. Sci Rep 2025; 15:15784. [PMID: 40335574 PMCID: PMC12059041 DOI: 10.1038/s41598-025-95991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/25/2025] [Indexed: 05/09/2025] Open
Abstract
Firefighters are exposed to a diverse range of harmful substances, including polycyclic aromatic hydrocarbons, benzene, and other carcinogens. These toxic compounds induce DNA damage, often causing the formation of DNA adducts and other lesions that can contribute to the development of various diseases, including cancer. Recent advancements in molecular diagnostics have shown that circulating cell-free DNA (cfDNA) in plasma is a valuable biomarker for detecting DNA damage and disease states. In this study, we explored whether changes in the quantity and quality of plasma cfDNA might reveal DNA lesions or serve as early markers for diseases such as cancer in UK firefighters. Whilst there are few published epidemiological studies of risk of cancer in UK firefighters, there are none on molecular markers in this population. All the 685 firefighters who participated in the study were employed by the London Fire Brigade in 2017; many of them also attended the Grenfell Tower fire, the most devastating fire to occur in the UK in modern history. In this exploratory analysis, we sought to gain insights into the potential long-term health impacts of toxic smoke exposure on these first responders by analysing both the concentration of cfDNA present and specific genetic alterations in cfDNA. Using next-generation sequencing and a panel that detects pathogenic DNA variants linked to various cancers, we analysed a subset of 261 firefighters. Our findings revealed that 11 firefighters carried pathogenic DNA variants associated with cancer, but we found no association between fire smoke exposure and the presence of these variants.
Collapse
Affiliation(s)
- Johanna Feary
- National Heart & Lung Institute, Imperial College, Emmanuel Kaye Building 1B, Manresa Road, London, SW3 6LR, UK.
- Royal Brompton Hospital, Guys and St Thomas' NHS Foundation Trust, London, SW3 6LR, UK.
| | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Tamanna Kabir
- Royal Brompton Hospital, Guys and St Thomas' NHS Foundation Trust, London, SW3 6LR, UK
| | - Susie Schofield
- National Heart & Lung Institute, Imperial College, Emmanuel Kaye Building 1B, Manresa Road, London, SW3 6LR, UK
| | - Adrian Bevan
- London Fire Brigade, Union Street, London, UK, SE1 0LL
| | - Victoria Askinyte
- Cancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, The Clifford Allbutt Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, UK
| | - Katherine Honan
- Cancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, The Clifford Allbutt Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, UK
| | - Liza Emirali
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Andrea Rubbi
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | - Shubha Anand
- Cancer Molecular Diagnostics Laboratory, Department of Oncology, University of Cambridge, The Clifford Allbutt Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| |
Collapse
|
3
|
Esteves F, Madureira J, Costa C, Pires J, Barros B, Alves S, Vaz J, Oliveira M, Slezakova K, Fernandes A, Pereira MDC, Morais S, Valdiglesias V, Bonassi S, Teixeira JP, Costa S. Occupational exposure to wildland firefighting and its effects on systemic DNA damage. Int J Hyg Environ Health 2025; 266:114576. [PMID: 40203508 DOI: 10.1016/j.ijheh.2025.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Portugal is among the European Union countries more devastated by forest fires. Wildland firefighters are at the forefront of this battle, facing exposure to a wide range of harmful pollutants. Epidemiological studies have highlighted a potential link between occupational firefighting exposure and several diseases, including cancer. To date, very few studies have explored the biological mechanisms associated with such exposure. The present longitudinal study aims to assess changes in early effect biomarkers following wildland firefighters' occupational exposure to a real wildfire event. METHODS Paired blood samples from 59 healthy Portuguese wildland firefighters were collected at two different time points: before wildfire season and after a fire event during wildfire season. Sociodemographic variables (e.g., age, sex) and work-related factors (e.g., years of service) were assessed via a self-reported questionnaire. Levels of early effect biomarkers, such as primary DNA damage and oxidative DNA damage (oxidised purines) were assessed via comet assay. DNA double-strand breaks (DSBs) were evaluated by phosphorylated H2AX (γH2AX). Moreover, hydroxylated polycyclic aromatic hydrocarbon metabolites (OHPAHs) and metal(loid)s were quantified in urine samples. The influence of urinary OHPAHs, urinary metal(loid)s, and other exposure-related factors (e.g., firefighting duration) on changes (Δ) in early effect biomarkers (post-vs. baseline levels) was investigated. RESULTS Firefighting activities led to a significant increase in both primary DNA damage and oxidative DNA damage by 22 % (95 % CI: 1.11-1.35; p < 0.05) and 23 % (95 % CI: 1.04-1.45; p < 0.05), respectively. Results from linear regression revealed that per each unit increase of urinary 2-hydroxyfluorene (2-OHFlu) (μmol/mol creatinine), the risk of ⧍ oxidative DNA damage increased by 20 % [FR: 1.20 (1.09-1.32); p < 0.01]. Additionally, each unit increase in urinary cesium (Cs) (μg/L) resulted in a significant 4 % increase in Δ primary DNA damage [FR: 1.04 (1.01-1.06); p < 0.05] and a 3 % increase in Δ oxidative DNA damage [FR: 1.03 (1.01-1.05); p < 0.05]. Post-exposure levels of γH2AX were significantly correlated with urinary 2-OHFlu levels assessed after firefighting (r = 0.30; p < 0.05). Furthermore, exposure duration and reported breathing difficulties during firefighting were significantly associated with increased levels of primary DNA damage. CONCLUSION Results obtained provide insights into the potential human health effects of wildland firefighting occupational exposure at the genetic and molecular levels, offering new and important mechanistic data. These findings are crucial for implementing health and safety measures, recommendations, and best practices to mitigate occupational risks and protect the health of wildland firefighters.
Collapse
Affiliation(s)
- Filipa Esteves
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Department of Public Health and Forensic Sciences, and Medical School, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450, Porto, Portugal
| | - Joana Madureira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Joana Pires
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Sara Alves
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Josiana Vaz
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Klara Slezakova
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Adília Fernandes
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Maria do Carmo Pereira
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, A Coruña, 15006, Spain
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00163, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166, Rome, Italy
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal.
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| |
Collapse
|
4
|
Esteves F, Madureira J, Barros B, Alves S, Pires J, Martins S, Oliveira M, Vaz J, Slezakova K, Pereira MDC, Fernandes A, Morais S, Guimarães JT, Bonassi S, Teixeira JP, Costa S. Impact of occupational exposure to wildfire events on systemic inflammatory biomarkers in Portuguese wildland firefighters. ENVIRONMENTAL RESEARCH 2025; 277:121608. [PMID: 40233845 DOI: 10.1016/j.envres.2025.121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/25/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
While occupational exposure as a firefighter is considered a dangerous occupation, research on the underlying mechanisms remains limited, particularly in wildland firefighters. Inflammation, a key effect of wildfire exposure, plays a significant role in the development of various diseases. The current study aims to investigate the impact of wildland firefighting exposure on the levels of pro-inflammatory systemic biomarkers. A pre-post study design investigated 59 wildland firefighters comparing data collected after participation in a wildfire event (Phase II) with data obtained before wildfire season (Phase I). Data on demographics, lifestyle, health and occupational-related factors were assessed. Exposure factors, such as fire combat (e.g., exposure duration), were also registered. Inflammatory biomarkers (i.e. interleukin-6 [IL-6], interleukin-8 [IL-8], tumor necrosis factor α [TNF-α] and high-sensitivity C-reactive protein [hs-CRP]) and hydroxylated polycyclic aromatic hydrocarbons metabolites (1-OHNaph+1-OHAce, 2-OHFlu, 1-OHPhen, 1-OHPyr) were analysed in blood and urine samples, respectively. Serum IL-8 and IL-6 levels were significantly increased after wildland fire combat. IL-8 levels were 2.62 times higher (95 % CI: 1.96-3.50; p < 0.01), whereas IL-6 levels were 1.25 times higher (95 % CI: 1.00-1.57; p = 0.04). Furthermore, IL-8 levels were significantly correlated with urinary 2-hydroxyfluorene levels and fire combat duration (>12 h). In addition, the mean hs-CRP level, in both phases, was above 3.0 mg/L, indicating a potential risk for cardiovascular events. Given the long-term health implications of firefighting occupational exposure, biomonitoring and early detection of occupational risks are essential for protecting firefighters' health. Protective measures must be urgently implemented to enhance occupational health and strengthen preventive strategies in this sector.
Collapse
Affiliation(s)
- Filipa Esteves
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Department of Public Health and Forensic Sciences, and Medical School, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450, Porto, Portugal
| | - Joana Madureira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Sara Alves
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Joana Pires
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Sandra Martins
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Department of Clinical Pathology, São João University Hospital Centre, 4200-319, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Josiana Vaz
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Klara Slezakova
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Adília Fernandes
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - João Tiago Guimarães
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Department of Clinical Pathology, São João University Hospital Centre, 4200-319, Porto, Portugal; Unit of Biochemistry, Department Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00163, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166, Rome, Italy
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal.
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| |
Collapse
|
5
|
Guedes Pinto T, de Aguiar GC, da Silva Avanci L, Nunes Dos Santos J, Ramos Cury P, Araki Ribeiro D. Do firefighters constitute a high-risk population for genotoxicity (DNA damage)? A systematic review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-12. [PMID: 39955632 DOI: 10.1080/09603123.2025.2464094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Firefighters regularly undertake high-risk operations in diverse environments, exposing them to extreme temperatures and hazardous pollutants resulting from combustion. For this reason, this systematic review aims to evaluate the potential genotoxicity associated with occupational exposure specific to firefighters. Methodologically, the review included 12 studies assessing genetic damage in firefighters. A thorough quality assessment was performed to account for potential confounding factors, and almost all studies were deemed as either strong or moderate (except for one), ensuring the reliability of the key findings. Likewise, more than half of the articles reviewed (7 out of 12) reported elevated levels of genotoxicity in firefighters, as evidenced by various assays employed in the studies. Taken together, the findings highlight the critical need for implementing biomonitoring strategies for early detection of genotoxicity among firefighters, emphasizing the necessity for further research in this occupational context.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Gabriel Carvalhal de Aguiar
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Lorrany da Silva Avanci
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Jean Nunes Dos Santos
- Department of Periodontics, School of Dentistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Patricia Ramos Cury
- Department of Periodontics, School of Dentistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| |
Collapse
|
6
|
Grünfeld J, Møller P, Vogel U, Jensen SP, Kofoed-Sørensen V, Andersen MHG. Assessment of Polycyclic Aromatic Hydrocarbon Exposure in Trainee Firefighters Using PAH CALUX Bioassay. TOXICS 2024; 12:825. [PMID: 39591003 PMCID: PMC11598809 DOI: 10.3390/toxics12110825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
This work investigated the application of a reporter gene bioassay in assessing polycyclic aromatic hydrocarbon (PAH) exposure in trainee firefighters. In the PAH CALUX bioassay, the PAH-induced activation of the aryl hydrocarbon receptor in a reporter cell line is recorded by increased luminescence. A repeated measurement study was performed, collecting urine and skin wipe samples at two baseline sessions (spring and autumn) and after three firefighting sessions: one with wood fuel, one with gas fuel, and one without fire. The bioassay response was expressed as benzo[a]pyrene equivalents, which was compared to levels of 16 EPA criteria PAHs in skin wipe samples and 8 hydroxylated PAHs (OH-PAHs) in urine samples quantified by chromatography-tandem mass spectrometry techniques. Benzo[a]pyrene equivalents and PAH levels in skin wipes indicated larger exposure to PAHs during the wood session compared to the other sessions. The urine bioassay showed non-significant effect sizes after all sessions, whereas the chemical analysis showed increased OH-PAH levels after the gas session. The non-significant changes observed for the session without fire suggest a negligible exposure from contaminated gear. In conclusion, the bioassay response for skin wipes shows that trainee firefighters were exposed to higher levels of potentially toxic PAHs during the wood fire training session.
Collapse
Affiliation(s)
- Johanna Grünfeld
- The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Simon Pelle Jensen
- The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Vivi Kofoed-Sørensen
- The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | | |
Collapse
|
7
|
Das A, Pantzke J, Jeong S, Hartner E, Zimmermann EJ, Gawlitta N, Offer S, Shukla D, Huber A, Rastak N, Meščeriakovas A, Ivleva NP, Kuhn E, Binder S, Gröger T, Oeder S, Delaval M, Czech H, Sippula O, Schnelle-Kreis J, Di Bucchianico S, Sklorz M, Zimmermann R. Generation, characterization, and toxicological assessment of reference ultrafine soot particles with different organic content for inhalation toxicological studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175727. [PMID: 39181261 DOI: 10.1016/j.scitotenv.2024.175727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Ultrafine particles (UFP) are the smallest atmospheric particulate matter linked to air pollution-related diseases. The extent to which UFP's physical and chemical properties contribute to its toxicity remains unclear. It is hypothesized that UFP act as carriers for chemicals that drive biological responses. This study explores robust methods for generating reference UFP to understand these mechanisms and perform toxicological tests. Two types of combustion-related UFP with similar elemental carbon cores and physical properties but different organic loads were generated and characterized. Human alveolar epithelial cells were exposed to these UFP at the air-liquid interface, and several toxicological endpoints were measured. UFP were generated using a miniCAST under fuel-rich conditions and immediately diluted to minimize agglomeration. A catalytic stripper and charcoal denuder removed volatile gases and semi-volatile particles from the surface. By adjusting the temperature of the catalytic stripper, UFP with high and low organic content was produced. These reference particles exhibited fractal structures with high reproducibility and stability over a year, maintaining similar mass and number concentrations (100 μg/m3, 2.0·105 #/cm3) and a mean particle diameter of about 40 nm. High organic content UFP had significant PAH levels, with benzo[a]pyrene at 0.2 % (m/m). Toxicological evaluations revealed that both UFP types similarly affected cytotoxicity and cell viability, regardless of organic load. Higher xenobiotic metabolism was noted for PAH-rich UFP, while reactive oxidation markers increased when semi-volatiles were stripped off. Both UFP types caused DNA strand breaks, but only the high organic content UFP induced DNA oxidation. This methodology allows modification of UFP's chemical properties while maintaining comparable physical properties, linking these variations to biological responses.
Collapse
Affiliation(s)
- Anusmita Das
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Seongho Jeong
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Nadine Gawlitta
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.
| | - Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Deeksha Shukla
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Arūnas Meščeriakovas
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Natalia P Ivleva
- Chair of Analytical Chemistry and Water Chemistry, Institute of Water Chemistry, TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Stephanie Binder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mathilde Delaval
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland; Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| |
Collapse
|
8
|
Frederiksen M, Jensen SP, Andersen MHG, Vogel U, Saber AT. Online SPE-LC-MS-MS method for eight hydroxylated metabolites of polycyclic aromatic hydrocarbons in urine and determination of optimal sampling time after firefighter training. Toxicol Lett 2024; 400:9-15. [PMID: 38977139 DOI: 10.1016/j.toxlet.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Polycyclic aromatic compounds (PAHs) are formed during incomplete combustion and firefighters are inadvertently at risk of being exposed to these and other hazardous compounds. Exposure to PAHs is often estimated by measuring their hydroxylated metabolites (OH-PAH) in urine. Here, an online-SPE LC-MS-MS method was set up for eight OH-PAHs thus increasing sample throughput and minimizing manual handling. The method was validated over a 5-month period and showed good reproducibility with intra- and inter-day variation of 2.4-8.1 % and 1.6-6.5 %, respectively, of low-level samples and accuracy (91.6-104.8 %) for a standard reference material. The method was applied to urine samples from conscripts training to become firefighters to determine the optimal sampling time for this training activity before a large intervention study. In total, six conscripts sampled urine 6-8 times over a 40-hr period during a 3-day training course. All eight metabolites were detected in ≥ 97 % of the samples and showed peak excretion 4-6 hrs after the training corresponding to 8-10 hrs after first exposure. Samples taken the morning after the exercise contained low levels of most metabolites. Consequently, 4-6 hrs post exposure is recommended as the optimal sampling time for quantification of PAH exposure and monitoring of potential differences in exposure.
Collapse
Affiliation(s)
- Marie Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen 2100, Denmark.
| | - Simon Pelle Jensen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen 2100, Denmark
| | | | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen 2100, Denmark; DTU Food, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen 2100, Denmark
| |
Collapse
|
9
|
Probert C, Ormond RB, Baynes RE. Impact of Skin Decontamination Wipe Solutions on the Percutaneous Absorption of Polycyclic Aromatic Hydrocarbons. TOXICS 2024; 12:716. [PMID: 39453136 PMCID: PMC11511401 DOI: 10.3390/toxics12100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
Firefighter occupational exposures were categorized as a class 1 (known) carcinogen by the International Agency for Research on Cancer in 2022. As a result, firefighters have become heavily focused on identifying effective and easy to implement decontamination strategies to reduce their chemical exposures. Skin decontamination using wipes post-exposure is one decontamination strategy that every firefighter has available to them. However, firefighters have expressed concerns over the ingredients in the wipe solution increasing dermal absorption. The goal of this study was to determine if the ingredients in skin decontamination wipe solution had any enhancement effect on the dermal absorption of phenanthrene. To determine any enhancement effects, the additive solution of four skin decontamination wipe products was applied to porcine skin 15 min after chemical dosing. The absorption of phenanthrene was tested in vitro using a flow-through diffusion cell system over eight hours. The wipe solution effects on dermal absorption were determined by measuring multiple absorption characteristics including cumulative absorption (µg/cm2), absorption efficiency (% dose absorbed), lag time (minutes), flux (µg/cm2/h), diffusivity (cm2/h), and permeability (cm/h). No penetration enhancement effects were observed in any of the skin decontamination wipe solutions tested; rather, all wipe solutions decreased the absorption of phenanthrene. Slight differences in cumulative absorption among two pairings of skin decontamination wipe solutions, wipes 1 and 3 vs. wipes 2 and 4, were observed, indicating that some ingredients may impact dermal absorption. These findings show that firefighters should continue using skin decontamination wipes to reduce their dermal exposures to fireground contaminants with little concern of increasing the absorption of phenanthrene.
Collapse
Affiliation(s)
- Chandler Probert
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - R. Bryan Ormond
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Ronald E. Baynes
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA;
| |
Collapse
|
10
|
Lang F, Wollschläger D, Letzel DIS, Roßbach B. Renal excretion of 1,2-dihydroxynaphthalene (DHN) in firefighting instructors after exposure to polycyclic aromatic hydrocarbons (PAHs) during live fire training. Sci Rep 2024; 14:15230. [PMID: 38956405 PMCID: PMC11219744 DOI: 10.1038/s41598-024-62388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/16/2024] [Indexed: 07/04/2024] Open
Abstract
Exposure of firefighting instructors to polycyclic aromatic hydrocarbons (PAHs) such as naphthalene is unavoidable during live fire training. The study aimed to investigate naphthalene uptake by measuring the urinary excretion of the naphthalene metabolite 1,2-dihydroxynaphthalene (DHN), to describe the DHN elimination kinetics and to evaluate the results by comparison to further biomarkers of PAH exposure. N = 6 male non-smoking firefighting instructors completed five training sessions each in a residential fire simulation unit under respiratory protection. All participants provided two urine samples before and another seven samples within an 18-h-interval after each session. DHN was detected by gas chromatography/tandem mass spectrometry (GC-MS/MS) in all samples (n = 237) with median concentrations ranging from 3.3 µg/g crea. (range 0.9-10.2) before exposure to 134.2 µg/g crea. (43.4-380.4) post exposure. Maximum elimination found 3.3 h (median) after onset of exposure decreased with a mean half-life of 6.6 h to 27.1 µg/g crea. (15.7-139.5) 18 h after training. DHN sensitively indicated a presumed dermal naphthalene intake during training, showing similar elimination kinetics like other naphthalene metabolites. Internal exposure of the participants transiently exceeded exposures determined for non-smokers in the general population, but was lower than at other workplaces with PAH exposure. Despite limited uptake, accumulation is possible with daily exposure.
Collapse
Affiliation(s)
- Felix Lang
- Institute of Occupational, Social and Environmental Medicine, University Medical Center, Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.
| | - Daniel Wollschläger
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Dipl-Ing Stephan Letzel
- Institute of Occupational, Social and Environmental Medicine, University Medical Center, Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Bernd Roßbach
- Institute of Occupational, Social and Environmental Medicine, University Medical Center, Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| |
Collapse
|
11
|
Olivo-Marston SE, Singh S, Hood R, Adetona O. Cancer odds among Ohio firefighters: data from the Ohio Cancer Incidence Surveillance System (OCISS) 1996-2019. BMJ PUBLIC HEALTH 2024; 2:e000471. [PMID: 40018128 PMCID: PMC11812796 DOI: 10.1136/bmjph-2023-000471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/12/2024] [Indexed: 03/01/2025]
Abstract
Objectives The objective of the current case-control study was to examine the odds of cancer among firefighters in the state of Ohio and compare the odds of being a firefighter versus police or the general population across different cancer types. Methods Cancer cases were examined from the Ohio Cancer Incidence Surveillance System (OCISS) between 1996 and 2019. Occupation status was classified as firefighter, police or general population. Logistic regression models were run to calculate ORs to determine the odds of being a firefighter compared with police or the general population across different cancer types. Models were adjusted for gender, race, age at cancer diagnosis and year of cancer diagnosis. Results Among the 906 164 cancer cases, 3397 were firefighters and 3341 were police. Firefighters were more likely to be men, white, non-Hispanic, married and a mean age of 66 at the time of cancer diagnosis. Firefighters had increased odds of cancer of the brain (OR=1.40, 95% CI: 0.99 to 1.99) and thyroid (OR=1.53, 95% CI: 1.05 to 2.23) compared with police and oesophageal (OR=1.83, 95% CI: 1.43 to 2.33), skin (OR=1.23, 95% CI: 1.06 to 1.42), brain (OR=1.37, 95% CI: 1.08 to 1.73) and thyroid (OR=1.52, 95% CI: 1.18 to 1.96) compared with the general population. They had decreased odds of pancreas, lung and bronchus and bladder compared with both police and the general population. Similar patterns were observed among male firefighters. Conclusions The current study demonstrated increased odds of several different types of cancer among Ohio firefighters compared with other individuals within the OCISS, which may be associated with differences in risk factors, including occupational exposures. The results align with evidence that firefighting is a cancer risk factor. This study is strengthened by the ability to also compare firefighters to police with regards to the odds of cancer. This supports future hypothesis-driven studies examining how specific occupational exposures are associated with increased cancer risk among Ohio firefighters.
Collapse
Affiliation(s)
- Susan Elizabeth Olivo-Marston
- Medical Microbiology, Immunology and Cell Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Shashank Singh
- West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia, USA
| | | | - Olorunfemi Adetona
- College of Public Health, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Abstract
Wildfire smoke (WFS) is a mixture of respirable particulate matter, environmental gases, and other hazardous pollutants that originate from the unplanned burning of arid vegetation during wildfires. The increasing size and frequency of recent wildfires has escalated public and occupational health concerns regarding WFS inhalation, by either individuals living nearby and downstream an active fire or wildland firefighters and other workers that face unavoidable exposure because of their profession. In this review, we first synthesize current evidence from environmental, controlled, and interventional human exposure studies, to highlight positive associations between WFS inhalation and cardiovascular morbidity and mortality. Motivated by these findings, we discuss preventative measures and suggest interventions to mitigate the cardiovascular impact of wildfires. We then review animal and cell exposure studies to call attention on the pathophysiological processes that support the deterioration of cardiovascular tissues and organs in response to WFS inhalation. Acknowledging the challenges of integrating evidence across independent sources, we contextualize laboratory-scale exposure approaches according to the biological processes that they model and offer suggestions for ensuring relevance to the human condition. Noting that wildfires are significant contributors to ambient air pollution, we compare the biological responses triggered by WFS to those of other harmful pollutants. We also review evidence for how WFS inhalation may trigger mechanisms that have been proposed as mediators of adverse cardiovascular effects upon exposure to air pollution. We finally conclude by highlighting research areas that demand further consideration. Overall, we aspire for this work to serve as a catalyst for regulatory initiatives to mitigate the adverse cardiovascular effects of WFS inhalation in the community and alleviate the occupational risk in wildland firefighters.
Collapse
Affiliation(s)
| | | | | | | | - Jessica M. Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
13
|
Barros B, Paiva AM, Oliveira M, Alves S, Esteves F, Fernandes A, Vaz J, Slezakova K, Costa S, Teixeira JP, Morais S. Baseline data and associations between urinary biomarkers of polycyclic aromatic hydrocarbons, blood pressure, hemogram, and lifestyle among wildland firefighters. Front Public Health 2024; 12:1338435. [PMID: 38510349 PMCID: PMC10950961 DOI: 10.3389/fpubh.2024.1338435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Available literature has found an association between firefighting and pathologic pathways leading to cardiorespiratory diseases, which have been linked with exposure to polycyclic aromatic hydrocarbons (PAHs). PAHs are highlighted as priority pollutants by the European Human Biomonitoring Initiative in occupational and non-occupational contexts. Methods This cross-sectional study is the first to simultaneously characterize six creatinine-adjusted PAHs metabolites (OHPAHs) in urine, blood pressure, cardiac frequency, and hemogram parameters among wildland firefighters without occupational exposure to fire emissions (> 7 days), while exploring several variables retrieved via questionnaires. Results Overall, baseline levels for total OHPAHs levels were 2 to 23-times superior to the general population, whereas individual metabolites remained below the general population median range (except for 1-hydroxynaphthalene+1-hydroxyacenaphtene). Exposure to gaseous pollutants and/or particulate matter during work-shift was associated with a 3.5-fold increase in total OHPAHs levels. Firefighters who smoke presented 3-times higher total concentration of OHPAHs than non-smokers (p < 0.001); non-smoker females presented 2-fold lower total OHPAHs (p = 0.049) than males. 1-hydroxypyrene was below the recommended occupational biological exposure value (2.5 μg/L), and the metabolite of carcinogenic PAH (benzo(a)pyrene) was not detected. Blood pressure was above 120/80 mmHg in 71% of subjects. Firefighters from the permanent intervention team presented significantly increased systolic pressure than those who performed other functions (p = 0.034). Tobacco consumption was significantly associated with higher basophils (p = 0.01-0.02) and hematocrit (p = 0.03). No association between OHPAHs and blood pressure was found. OHPAHs concentrations were positively correlated with monocyte, basophils, large immune cells, atypical lymphocytes, and mean corpuscular volume, which were stronger among smokers. Nevertheless, inverse associations were observed between fluorene and pyrene metabolites with neutrophils and eosinophils, respectively, in non-smokers. Hemogram was negatively affected by overworking and lower physical activity. Conclusion This study suggests possible associations between urinary PAHs metabolites and health parameters in firefighters, that should be further assessed in larger groups.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Ana Margarida Paiva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Sara Alves
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Instituto Politécnico de Bragança Campus de Santa Apolónia, Bragança, Portugal
| | - Filipa Esteves
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical School, Faculty of Medicine, University of Porto, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Adília Fernandes
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Instituto Politécnico de Bragança Campus de Santa Apolónia, Bragança, Portugal
| | - Josiana Vaz
- CIMO, Instituto Politécnico de Bragança, Bragança, Centro de Investigação de Montanha Campus Santa Apolónia, Bragança, Portugal
- SusTEC, Instituto Politécnico de Bragança, Bragança, Sustec – Associate Laboratory for Sustainability and Technology in Inland Regions – Campus Santa Apolónia, Bragança, Portugal
| | - Klara Slezakova
- LEPABE-ALiCE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
14
|
Keir JLA, Papas W, Wawrzynczak A, Aranda-Rodriguez R, Blais JM, White PA. Use of silicone wristbands to measure firefighters' exposures to polycyclic aromatic hydrocarbons (PAHs) during live fire training. ENVIRONMENTAL RESEARCH 2023; 239:117306. [PMID: 37797669 DOI: 10.1016/j.envres.2023.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Firefighters experience exposures to carcinogenic and mutagenic substances, including polycyclic aromatic hydrocarbons (PAHs). Silicone wristbands (SWBs) have been used as passive samplers to assess firefighters' exposures over the course of a shift but their utility in measuring short term exposures, source of exposure, and correlations with other measurements of exposure have not yet been investigated. In this study, SWBs were used to measure the concentrations of 16 priority PAHs inside and outside of firefighters' personal protective equipment (PPE) while firefighting. SWBs were placed on the wrist and jacket of 20 firefighters conducting live fire training. Correlations were made with matching data from a sister project that measured urinary concentrations of PAH metabolites and PAH concentrations from personal air samples from the same participants. Naphthalene, acenaphthylene and phenanthrene had the highest geometric mean concentrations in both jacket and wrist SWB, with 1040, 320, 180 ng/g SWB for jacket and 55.0, 4.9, and 6.0 ng/g SWB for wrist, respectively. Ratios of concentrations between the jacket and wrist SWBs were calculated as worker protection factors (WPFs) and averaged 40.1 for total PAHs and ranged from 2.8 to 214 for individual PAHs, similar to previous studies. Several significant correlations were observed between PAHs in jacket SWBs and air samples (e.g., total and low molecular weight PAHs, r = 0.55 and 0.59, p < 0.05, respectively). A few correlations were found between PAHs from SWBs worn on the wrist and jacket, and urinary concentrations of PAH metabolites and PAH concentrations in air samples. The ability of the SWBs to accurately capture exposures to various PAHs was likely influenced by short sampling time, high temperatures, and high turbulence. Future work should further examine the limitations of SWBs for PAH exposures in firefighting, and other extreme environments.
Collapse
Affiliation(s)
- Jennifer L A Keir
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada; Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada
| | - William Papas
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada
| | - Adam Wawrzynczak
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada
| | - Rocio Aranda-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada.
| | - Jules M Blais
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada.
| | - Paul A White
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada; Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9, Canada
| |
Collapse
|
15
|
Zhang X, Li Z. Investigating industrial PAH air pollution in relation to population exposure in major countries: A scoring approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117801. [PMID: 36996564 DOI: 10.1016/j.jenvman.2023.117801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common air pollutants worldwide, associated with industrial processes. In the general population, both modeling and field studies revealed a positive correlation between air PAH concentrations and urinary PAH metabolite levels. Many countries lack population urinary data that correspond to local PAH air concentrations. Thus, we proposed a scoring-based approximate approach to investigating that correlation in selected countries, hypothesizing that PAH air concentrations in selected regions could represent the national air quality influenced by industrial emission and further correlate to PAH internal exposure in the general population. This research compiled 85 peer-reviewed journal articles and 9 official monitoring datasets/reports covering 34 countries, 16 of which with both atmospheric PAH data and human biomonitoring data. For the air pollution score (AirS), Egypt had the highest AirS at 0.94 and Pakistan was at the bottom of the score ranking at -1.95, as well as the median in the UK (AirS: 0.50). For the population exposure score (ExpS), China gained the top ExpS at 0.44 and Spain was with the lowest ExpS of -1.52, with the median value in Italy (ExpS: 0.43). Through the correlation analysis, atmospheric PAHs and their corresponding urinary metabolites provided a positive relationship to a diverse extent, indicating that the related urinary metabolites could reflect the population's exposure to specific atmospheric PAHs. The findings also revealed that in the 16 selected countries, AirS indexes were positively correlated with ExpS indexes, implying that higher PAH levels in the air may lead to elevated metabolite urinary levels in general populations. Furthermore, lowering PAH air concentrations could reduce population internal PAH exposure, implying that strict PAH air regulation or emission would reduce health risks for general populations. Notably, this study was an ideal theoretical research based on proposed assumptions to some extent. Further research should focus on understanding exposure pathways, protecting vulnerable populations, and improving the PAH database to optimize PAH pollution control.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
16
|
Pálešová N, Maitre L, Stratakis N, Řiháčková K, Pindur A, Kohoutek J, Šenk P, Bartošková Polcrová A, Gregor P, Vrijheid M, Čupr P. Firefighters and the liver: Exposure to PFAS and PAHs in relation to liver function and serum lipids (CELSPAC-FIREexpo study). Int J Hyg Environ Health 2023; 252:114215. [PMID: 37418783 DOI: 10.1016/j.ijheh.2023.114215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Firefighting is one of the most hazardous occupations due to exposure to per- and polyfluoroalkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAHs). Such exposure is suspected to affect the cardiometabolic profile, e.g., liver function and serum lipids. However, only a few studies have investigated the impact of this specific exposure among firefighters. METHODS Men included in the CELSPAC-FIREexpo study were professional firefighters (n = 52), newly recruited firefighters in training (n = 58), and controls (n = 54). They completed exposure questionnaires and provided 1-3 samples of urine and blood during the 11-week study period to allow assessment of their exposure to PFAS (6 compounds) and PAHs (6 compounds), and to determine biomarkers of liver function (alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin (BIL)) and levels of serum lipids (total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL) and triglycerides (TG)). The associations between biomarkers were investigated both cross-sectionally using multiple linear regression (MLR) and Bayesian weighted quantile sum (BWQS) regression and prospectively using MLR. The models were adjusted for potential confounders and false discovery rate correction was applied to account for multiplicity. RESULTS A positive association between exposure to PFAS and PAH mixture and BIL (β = 28.6%, 95% CrI = 14.6-45.7%) was observed by the BWQS model. When the study population was stratified, in professional firefighters and controls the mixture showed a positive association with CHOL (β = 29.5%, CrI = 10.3-53.6%) and LDL (β = 26.7%, CrI = 8.3-48.5%). No statistically significant associations with individual compounds were detected using MLR. CONCLUSIONS This study investigated the associations between exposure to PFAS and PAHs and biomarkers of cardiometabolic health in the Czech men, including firefighters. The results suggest that higher exposure to a mixture of these compounds is associated with an increase in BIL and the alteration of serum lipids, which can result in an unfavourable cardiometabolic profile.
Collapse
Affiliation(s)
- Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Katarína Řiháčková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Aleš Pindur
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00, Czech Republic; Training Centre of Fire Rescue Service, Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00, Brno, Czech Republic
| | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | | | - Petr Gregor
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
17
|
Barros B, Oliveira M, Morais S. Biomonitoring of firefighting forces: a review on biomarkers of exposure to health-relevant pollutants released from fires. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:127-171. [PMID: 36748115 DOI: 10.1080/10937404.2023.2172119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Occupational exposure as a firefighter has recently been classified as a carcinogen to humans by International Agency for Research on Cancer (IARC). Biomonitoring has been increasingly used to characterize exposure of firefighting forces to contaminants. However, available data are dispersed and information on the most relevant and promising biomarkers in this context of firefighting is missing. This review presents a comprehensive summary and critical appraisal of existing biomarkers of exposure including volatile organic compounds such as polycyclic aromatic hydrocarbons, several other persistent other organic pollutants as well as heavy metals and metalloids detected in biological fluids of firefighters attending different fire scenarios. Urine was the most characterized matrix, followed by blood. Firefighters exhaled breath and saliva were poorly evaluated. Overall, biological levels of compounds were predominantly increased in firefighters after participation in firefighting activities. Biomonitoring studies combining different biomarkers of exposure and of effect are currently limited but exploratory findings are of high interest. However, biomonitoring still has some unresolved major limitations since reference or recommended values are not yet established for most biomarkers. In addition, half-lives values for most of the biomarkers have thus far not been defined, which significantly hampers the design of studies. These limitations need to be tackled urgently to improve risk assessment and support implementation of better more effective preventive strategies.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
18
|
Madsen AM, Uhrbrand K, Kofoed VC, Fischer TK, Frederiksen MW. A cohort study of wastewater treatment plant workers: Association between levels of biomarkers of systemic inflammation and exposure to bacteria and fungi, and endotoxin as measured using two methods. WATER RESEARCH 2023; 231:119625. [PMID: 36680819 DOI: 10.1016/j.watres.2023.119625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/05/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Work in wastewater treatment plants (WWTPs) can be associated with exposure to airborne microorganisms and endotoxin from the working environment. The aim of this study was to obtain knowledge about whether serum levels of the markers of systemic inflammation, C-reactive protein (CRP) and serum amyloid A (SAA), are associated with personal exposure to endotoxin, measured using the Limulus (endotoxinLimulus) and the rFC (endotoxinrFC) assays, as well as bacteria and fungi in a cohort of WWTP workers. Exposure and blood samples were collected for 11 workers over one year. Exposure to endotoxinLimulus-day and endotoxinrFC-day correlated significantly (r = 0.80, p<0.0001, n = 104), but endotoxinLimulus-day was 4.4 (Geometric mean (GM) value) times higher than endotoxinrFC-day (p<0.0001). The endotoxinLimulus-day, endotoxinrFC-day, bacteria, and fungal exposure as well as serum levels of CRP-day (GM=1.4 mg/l) and SAA-day (GM=12 mg/l) differed between workers. Serum levels of SAAday correlated significantly with CRPday (r = 0.30, p = 0.0068). The serum levels of CRPday were associated significantly with exposure to endotoxinLimulus-day. Exposure, SAA and CRP data were also analyzed as av. of each season, and SAAseason was associated positively and significantly with endotoxinLimulus-season and endotoxinrFC-season and negatively with fungalseason exposure. In conclusion, CRPday was associated with the endotoxinLimulus-day and SAAseason with endotoxinLimulus-season and endotoxinrFC-season exposure. Thus, we hereby document that WWTP workers are exposed to airborne endotoxin which seems to have a negative impact on their health.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark.
| | - Katrine Uhrbrand
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Victor Carp Kofoed
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Thea K Fischer
- Dept of Clinical Research, Nordsjaellands Hospital, Denmark; Dept of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| |
Collapse
|
19
|
Barbosa JV, Farraia M, Branco PTBS, Alvim-Ferraz MCM, Martins FG, Annesi-Maesano I, Sousa SIV. The Effect of Fire Smoke Exposure on Firefighters' Lung Function: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16799. [PMID: 36554677 PMCID: PMC9779288 DOI: 10.3390/ijerph192416799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Firefighters are exposed to a range of harmful substances during firefighting. Exposure to fire smoke has been associated with a decrease in their lung function. However, the cause-effect relationship between those two factors is not yet demonstrated. This meta-analysis aimed to evaluate the potential associations between firefighters' occupational exposure and their lung function deterioration. Studies were identified from PubMed, Web of Science, Scopus and Science Direct databases (August 1990-March 2021). The studies were included when reporting the lung function values of Forced Expiratory Volume in 1 s (FEV1) or Forced Vital Capacity (FVC). The meta-analyses were performed using the generic inverse variance in R software with a random-effects model. Subgroup analysis was used to determine if the lung function was influenced by a potential study effect or by the participants' characteristics. A total of 5562 participants from 24 studies were included. No significant difference was found between firefighters' predicted FEV1 from wildland, 97.64% (95% CI: 91.45-103.82%; I2 = 99%), and urban fires, 99.71% (95% CI: 96.75-102.67%; I2 = 98%). Similar results were found for the predicted FVC. Nevertheless, the mean values of firefighters' predicted lung function varied significantly among studies, suggesting many confounders, such as trials' design, statistical methods, methodologies applied, firefighters' daily exposure and career length, hindering an appropriate comparison between the studies.
Collapse
Affiliation(s)
- Joana V. Barbosa
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mariana Farraia
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Pedro T. B. S. Branco
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Conceição M. Alvim-Ferraz
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando G. Martins
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Isabella Annesi-Maesano
- Desbrest Institute of Epidemiology and Public Health (IDESP), Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier University, 34093 Montpellier, France
| | - Sofia I. V. Sousa
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
20
|
Sousa G, Teixeira J, Delerue-Matos C, Sarmento B, Morais S, Wang X, Rodrigues F, Oliveira M. Exposure to PAHs during Firefighting Activities: A Review on Skin Levels, In Vitro/In Vivo Bioavailability, and Health Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12677. [PMID: 36231977 PMCID: PMC9565977 DOI: 10.3390/ijerph191912677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Occupational exposure as a firefighter is a complex activity that continuously exposes subjects to several health hazards including fire emissions during firefighting. Firefighters are exposed to polycyclic aromatic hydrocarbons (PAHs), known as toxic, mutagenic, and carcinogenic compounds, by inhalation, dermal contact, and ingestion. In this work, a literature overview of firefighters' dermal exposure to PAHs after firefighting and data retrieved from skin in vitro/in vivo studies related to their dermal absorption, bioavailability, and associated toxicological and carcinogenic effects are reviewed. The evidence demonstrates the contamination of firefighters' skin with PAHs, mainly on the neck (2.23-62.50 ng/cm2), wrists (0.37-8.30 ng/cm2), face (2.50-4.82 ng/cm2), and hands (1.59-4.69 ng/cm2). Concentrations of possible/probable carcinogens (0.82-33.69 ng/cm2), including benzopyrene isomers, were found on firefighters' skin. PAHs penetrate the skin tissues, even at low concentrations, by absorption and/or diffusion, and are locally metabolized and distributed by the blood route to other tissues/organs. Lighter PAHs presented increased dermal permeabilities and absorption rates than heavier compounds. Topical PAHs activate the aryl hydrocarbon receptor and promote the enzymatic generation of reactive intermediates that may cause protein and/or DNA adducts. Future research should include in vitro/in vivo assays to perform a more realistic health risk assessment and to explore the contribution of dermal exposure to PAHs total internal dose.
Collapse
Affiliation(s)
- Gabriel Sousa
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Joana Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Bruno Sarmento
- CESPU-Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Xianyu Wang
- QAEHS-Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| |
Collapse
|
21
|
Orysiak J, Młynarczyk M, Piec R, Jakubiak A. Lifestyle and environmental factors may induce airway and systemic inflammation in firefighters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73741-73768. [PMID: 36094704 PMCID: PMC9465149 DOI: 10.1007/s11356-022-22479-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Health status depends on multiple genetic and non-genetic factors. Nonheritable factors (such as lifestyle and environmental factors) have stronger impact on immune responses than genetic factors. Firefighters work is associated with exposure to air pollution and heat stress, as well as: extreme physical effort, mental stress, or a changed circadian rhythm, among others. All these factors can contribute to both, short-term and long-term impairment of the physical and mental health of firefighters. Increased levels of some inflammatory markers, such as pro-inflammatory cytokines or C-reactive protein (CRP) have been observed in firefighters, which can lead to local, acute inflammation that promotes a systemic inflammatory response. It is worth emphasizing that inflammation is one of the main hallmarks of cancer and also plays a key role in the development of cardiovascular and respiratory diseases. This article presents possible causes of the development of an inflammatory reaction in firefighters, with particular emphasis on airway inflammation caused by smoke exposure.
Collapse
Affiliation(s)
- Joanna Orysiak
- Central Institute for Labour Protection - National Research Institute, Czerniakowska St. 16, 00-701, Warsaw, Poland.
| | - Magdalena Młynarczyk
- Central Institute for Labour Protection - National Research Institute, Czerniakowska St. 16, 00-701, Warsaw, Poland
| | - Robert Piec
- Institute of Internal Security, The Main School of Fire Service, Słowackiego St. 52/54, 01-629, Warsaw, Poland
| | - Agnieszka Jakubiak
- Department of Heart Failure and Cardiac Rehabilitation, Medical University of Warsaw, Żwirki and Wigury St. 61, 02-091, Warsaw, Poland
| |
Collapse
|
22
|
Louro H, Gomes BC, Saber AT, Iamiceli AL, Göen T, Jones K, Katsonouri A, Neophytou CM, Vogel U, Ventura C, Oberemm A, Duca RC, Fernandez MF, Olea N, Santonen T, Viegas S, Silva MJ. The Use of Human Biomonitoring to Assess Occupational Exposure to PAHs in Europe: A Comprehensive Review. TOXICS 2022; 10:toxics10080480. [PMID: 36006159 PMCID: PMC9414426 DOI: 10.3390/toxics10080480] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the chemicals with proven impact on workers' health. The use of human biomonitoring (HBM) to assess occupational exposure to PAHs has become more common in recent years, but the data generated need an overall view to make them more usable by regulators and policymakers. This comprehensive review, developed under the Human Biomonitoring for Europe (HBM4EU) Initiative, was based on the literature available from 2008-2022, aiming to present and discuss the information on occupational exposure to PAHs, in order to identify the strengths and limitations of exposure and effect biomarkers and the knowledge needs for regulation in the workplace. The most frequently used exposure biomarker is urinary 1-hydroxypyrene (1-OH-PYR), a metabolite of pyrene. As effect biomarkers, those based on the measurement of oxidative stress (urinary 8-oxo-dG adducts) and genotoxicity (blood DNA strand-breaks) are the most common. Overall, a need to advance new harmonized approaches both in data and sample collection and in the use of appropriate biomarkers in occupational studies to obtain reliable and comparable data on PAH exposure in different industrial sectors, was noted. Moreover, the use of effect biomarkers can assist to identify work environments or activities of high risk, thus enabling preventive risk mitigation and management measures.
Collapse
Affiliation(s)
- Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Bruno Costa Gomes
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | | | - Thomas Göen
- IPASUM, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kate Jones
- Health and Safety Executive, Buxton, Derbyshire SK17 9JN, UK
| | - Andromachi Katsonouri
- Cyprus State General Laboratory, Ministry of Health, P.O. Box 28648, Nicosia 2081, Cyprus
| | - Christiana M. Neophytou
- Cyprus State General Laboratory, Ministry of Health, P.O. Box 28648, Nicosia 2081, Cyprus
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
- National Food Institute, Technical University of Denmark, Kemitorvet, Bygning 202, DK-2800 Kgs Lyngby, Denmark
| | - Célia Ventura
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Radu Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), 1, Rue Louis Rech, 3555 Dudelange, Luxembourg
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, 3000 Leuven, Belgium
| | - Mariana F. Fernandez
- Centre of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Nicolas Olea
- Centre of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Tiina Santonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Susana Viegas
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
23
|
Chen S, Yin X, He Y, He Q, Li X, Yan M, Huang S, Lu J, Yang B. Joint effects of polycyclic aromatic hydrocarbons, smoking, and XPC polymorphisms on damage in exon 2 of KRAS gene among young coke oven workers. Front Public Health 2022; 10:945955. [PMID: 35991047 PMCID: PMC9389884 DOI: 10.3389/fpubh.2022.945955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic polymorphisms may contribute to individual susceptibility to DNA damage induced by environmental exposure. In this study, we evaluate the effects of co-exposure to PAHs, smoking and XPC polymorphisms, alone or combined, on damage in exons. A total of 288 healthy male coke oven workers were enrolled into this study, and urinary 1-hydroxypyrene (1-OH-Pyr) was detected. Base modification in exons of KRAS and BRAF gene, and polymorphisms of XPC were determined in plasma by real-time PCR. We observed 1-OH-Pyr was positively related to damage in exon 2 of KRAS (KRAS-2) and in exon 15 of BRAF (BRAF-15), respectively, and KRAS-2 and BRAF-15 were significantly associated with increased 1-OH-Pyr. A stratified analysis found 1-OH-Pyr was significantly associated with KRAS-2 in both smokers and non-smokers, while 1-OH-Pyr was significantly associated with BRAF-15 only in smokers. Additionally, individuals carrying both rs2228001 G-allele (GG+GT) and rs3731055 GG homozygote (GG) genotype appeared to have more significant effect on KRAS-2. The high levels of 1-OH-Pyr were associated with KRAS-2 only in rs2228001 GG+GT genotype carriers and the high levels of 1-OH-Pyr were associated with KRAS-2 only in rs3731055 GG genotype carriers and the most severe KRAS-2 was observed among subjects carrying all four of the above risk factors. Our findings indicated the co-exposure effect of PAHs and smoking could increase the risk of KRAS-2 by a mechanism partly involving XPC polymorphisms.
Collapse
Affiliation(s)
- Siqin Chen
- Innovation Center for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingyue Yin
- Innovation Center for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuefeng He
- Department of Environmental and Occupational Health, School of Public Health, Kunming Medical University, Kunming, China
| | - Qinghua He
- Innovation Center for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Li
- Innovation Center for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Maosheng Yan
- Department of Physical Factors and Occupational Health, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Binyao Yang
- Innovation Center for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Hwang J, Xu C, Grunsted P, Agnew RJ, Malone TR, Clifton S, Thompson K, Xu X. Urinary Metabolites of Polycyclic Aromatic Hydrocarbons in Firefighters: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8475. [PMID: 35886320 PMCID: PMC9318785 DOI: 10.3390/ijerph19148475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023]
Abstract
Firefighters are intermittently exposed to complex, mixed pollutants in random settings. Of those pollutants, PAHs (polycyclic aromatic hydrocarbons) are the most commonly studied and best understood. PAH exposure can occur via multiple routes; therefore, the levels of hydroxylated metabolites of PAHs in urine have been used as a biomonitoring tool for risk assessment. We performed a systematic review and meta-analysis of the literature to estimate the levels of urinary hydroxylated PAH (OHPAH) among firefighters, determine risk attributions, and, finally, evaluate the scope of preventive efforts and their utility as diagnostic tools. The meta-regression confirmed increases in OHPAH concentrations after fire activities by up to 1.71-times (p-values: <0.0001). Samples collected at a time point of 2−4 h after a fire suppression showed a consistent, statistically significant pattern as compared with baseline samples. The National Fire Protection Association (NFPA) standard 1582 Standard on Comprehensive Occupational Medical Program for Fire Departments lists various health examinations, including a urinalysis for occupational chemical exposure if indicated and medical screening for cancers and cardiovascular diseases. Biomonitoring is a valuable screening tool for assessing occupational exposure and the results of this meta-analysis support their inclusion in regular health screenings for firefighters.
Collapse
Affiliation(s)
- Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (C.X.); (P.G.)
| | - Paul Grunsted
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (C.X.); (P.G.)
| | - Robert J. Agnew
- Fire Protection & Safety Engineering Technology Program, College of Engineering, Architecture and Technology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Tara R. Malone
- Department of Health Sciences Library and Information Management, Graduate College, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (T.R.M.); (S.C.)
| | - Shari Clifton
- Department of Health Sciences Library and Information Management, Graduate College, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (T.R.M.); (S.C.)
| | - Krista Thompson
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390, USA;
| | - Xin Xu
- Shanghai Anti-Doping Laboratory, Shanghai University of Sport, Shanghai 200438, China;
| |
Collapse
|
25
|
Measurement of oxidatively damaged DNA in mammalian cells using the comet assay: Reflections on validity, reliability and variability. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503423. [PMID: 35094807 DOI: 10.1016/j.mrgentox.2021.503423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
The comet assay is a simple technique for measurements of low levels of DNA damage and repair in single cells. However, there is variation in background levels of DNA damage in peripheral blood mononuclear cells (PBMCs). This variation has been documented by inter-laboratory ring-trials where identical samples have been analysed in different laboratories using the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay. The coefficient of variation of background levels of Fpg-sensitive sites was 128 % in the first inter-laboratory validation trial called European Standards Committee on Oxidative DNA Damage. The variation was reduced to 44 % by the end of the project. Subsequent ring-trials by the European Comet Assay Validation Group showed similar inter-laboratory variation in Fpg-sensitive sites in PBMCs (45 %). The lowest inter-laboratory variation in Fpg-sensitive sites in PBMCs was 12 % when using calibration to standardize comet assay descriptors. Introduction of standard comet assay procedures was surprisingly unsuccessful as certain laboratories experienced technical problems using unaccustomed assay conditions. This problem was alleviated by using flexible assay standard conditions rather than a standard protocol in a ring-trial by the hCOMET group. The approach reduced technical problems, but the inter-laboratory variation in Fpg-sensitive sites was not reduced. The ring-trials have not pinpointed specific assay steps as major determinants of the variation in DNA damage levels. It is likely that small differences in several steps cause inter-laboratory variation. Although this variation in reported DNA damage levels causes concern, ring-trials have also shown that the comet assay is a reliable tool in biomonitoring studies.
Collapse
|
26
|
Abstract
Firefighters are the professional force at high risk of suffering potential health consequences due to their chronic exposure to numerous hazardous pollutants during firefighting activities. Unfortunately, determination of fire emission exposure is very challenging. As such, the identification and development of appropriate biomarkers is critical in meeting this need. This chapter presents a critical review of current information related with the use of different urinary biomarkers of effect and exposure in occupationally exposed firefighters over the last 25 years. Evidence suggests that urinary isoprostanes and mutagenicity testing are promising biomarkers of early oxidative stress. Data indicate that firefighters participating in firefighting activities present with increased urinary biomarkers of exposure. These include polycyclic aromatic hydrocarbons, heavy metals and metalloids, organo-chlorine and -phosphorus compounds, environmental phenols, phthalates, benzene and toluene. More studies are urgently needed to better evaluate firefighter occupational safety and health and to support the implementation of preventive measures and mitigation strategies to promote the protection of this chronically exposed group of workers.
Collapse
|
27
|
Møller P, Roursgaard M. Biomarkers of DNA Oxidation Products: Links to Exposure and Disease in Public Health Studies. Chem Res Toxicol 2021; 34:2235-2250. [PMID: 34704445 DOI: 10.1021/acs.chemrestox.1c00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Environmental exposure can increase the production of reactive oxygen species and deplete cellular antioxidants in humans, resulting in oxidatively generated damage to DNA that is both a useful biomarker of oxidative stress and indicator of carcinogenic hazard. Methods of oxidatively damaged DNA analysis have been developed and used in public health research since the 1990s. Advanced techniques detect specific lesions, but they might not be applicable to complex matrixes (e.g., tissues), small sample volume, and large-scale studies. The most reliable methods are characterized by (1) detecting relevant DNA oxidation products (e.g., premutagenic lesions), (2) not harboring technical problems, (3) being applicable to complex biological mixtures, and (4) having the ability to process a large number of samples in a reasonable period of time. Most effort has been devoted to the measurements of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG), which can be analyzed by chromatographic, enzymic, and antibody-based methods. Results from validation trials have shown that certain chromatographic and enzymic assays (namely the comet assay) are superior techniques. The enzyme-modified comet assay has been popular because it is technically simpler than chromatographic assays. It is widely used in public health studies on environmental exposures such as outdoor air pollution. Validated biomarker assays on oxidatively damaged DNA have been used to fill knowledge gaps between findings in prospective cohort studies and hazards from contemporary sources of air pollution exposures. Results from each of these research fields feed into public health research as approaches to conduct primary prevention of diseases caused by environmental or occupational agents.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
28
|
Barros B, Oliveira M, Morais S. Firefighters' occupational exposure: Contribution from biomarkers of effect to assess health risks. ENVIRONMENT INTERNATIONAL 2021; 156:106704. [PMID: 34161906 DOI: 10.1016/j.envint.2021.106704] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Firefighting is physically and physiologically exhausting besides encompassing exposure to toxic fire emissions. Biomonitoring studies from the past five years have been significantly contributing to characterize the occupational-related health effects in this group of professionals and to improve risk assessment. Therefore, this study gathers and critically discusses the most characterized biomarkers of effect (oxidative stress, DNA and protein damage, stress hormones, inflammation, and vascular, lung, and liver injury), including those potentially more promising to be explored in future studies, and their relation with health outcomes. Various studies proved an association between exposures to fire emissions and/or heat and significantly altered values of biomarkers of inflammation (soluble adhesion molecules, tumor necrosis factor, interleukins, and leucocyte count), vascular damage and tissue injury (pentraxin-3, vascular endothelial growth factor, and cardiac troponin T) in firefighting forces. Moreover, preliminary data of DNA damage in blood, urinary mutagenicity and 8-isoprostaglandin in exhaled breath condensate suggest that these biomarkers of oxidative stress should be further explored. However, most of the reported studies are based on cross-sectional designs, which limit full identification and characterization of the risk factors and their association with development of work-related diseases. Broader studies based on longitudinal designs and strongly supported by the analysis of several types of biomarkers in different biological fluids are further required to gain deeper insights into the firefighters occupational related health hazards and contribute to implementation of new or improved surveillance programs.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto
| | - Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto.
| |
Collapse
|
29
|
Andersen MHG, Saber AT, Frederiksen M, Clausen PA, Sejbaek CS, Hemmingsen CH, Ebbehøj NE, Catalán J, Aimonen K, Koivisto J, Loft S, Møller P, Vogel U. Occupational exposure and markers of genetic damage, systemic inflammation and lung function: a Danish cross-sectional study among air force personnel. Sci Rep 2021; 11:17998. [PMID: 34504215 PMCID: PMC8429754 DOI: 10.1038/s41598-021-97382-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/19/2021] [Indexed: 01/24/2023] Open
Abstract
Air force ground crew personnel are potentially exposed to fuels and lubricants, as raw materials, vapours and combustion exhaust emissions, during operation and maintenance of aircrafts. This study investigated exposure levels and biomarkers of effects for employees at a Danish air force military base. We enrolled self-reported healthy and non-smoking employees (n = 79) and grouped them by exposure based on job function, considered to be potentially exposed (aircraft engineers, crew chiefs, fuel operators and munition specialists) or as reference group with minimal occupational exposure (avionics and office workers). We measured exposure levels to polycyclic aromatic hydrocarbons (PAHs) and organophosphate esters (OPEs) by silicone bands and skin wipes (PAHs only) as well as urinary excretion of PAH metabolites (OH-PAHs). Additionally, we assessed exposure levels of ultrafine particles (UFPs) in the breathing zone for specific job functions. As biomarkers of effect, we assessed lung function, plasma levels of acute phase inflammatory markers, and genetic damage levels in peripheral blood cells. Exposure levels of total PAHs, OPEs and OH-PAHs did not differ between exposure groups or job functions, with low correlations between PAHs in different matrices. Among the measured job functions, the UFP levels were higher for the crew chiefs. The exposure level of the PAH fluorene was significantly higher for the exposed group than the reference group (15.9 ± 23.7 ng/g per 24 h vs 5.28 ± 7.87 ng/g per 24 h, p = 0.007), as was the OPE triphenyl phosphate (305 ± 606 vs 19.7 ± 33.8 ng/g per 24 h, p = 0.011). The OPE tris(1,3-dichlor-2-propyl)phosphate had a higher mean in the exposed group (60.7 ± 135 ng/g per 24 h) compared to the reference group (8.89 ± 15.7 ng/g per 24 h) but did not reach significance. No evidence of effects for biomarkers of systemic inflammation, genetic damage or lung function was found. Overall, our biomonitoring study show limited evidence of occupational exposure of air force ground crew personnel to UFPs, PAHs and OPEs. Furthermore, the OH-PAHs and the assessed biomarkers of early biological effects did not differ between exposed and reference groups.
Collapse
Affiliation(s)
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark
| | - Marie Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark
| | - Per Axel Clausen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark
| | - Camilla Sandal Sejbaek
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark
| | - Caroline Hallas Hemmingsen
- Department of Occupational and Environmental Medicine, Bispebjerg University Hospital, Bispebjerg Bakke 23, 2400, Copenhagen, NV, Denmark
| | - Niels E Ebbehøj
- Department of Occupational and Environmental Medicine, Bispebjerg University Hospital, Bispebjerg Bakke 23, 2400, Copenhagen, NV, Denmark
| | - Julia Catalán
- Finnish Institute of Occupational Health, P.O. Box 40, 00032, Työterveyslaitos, Helsinki, Finland.,Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013, Zaragoza, Spain
| | - Kukka Aimonen
- Finnish Institute of Occupational Health, P.O. Box 40, 00032, Työterveyslaitos, Helsinki, Finland
| | - Joonas Koivisto
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark.,ARCHE Consulting, Liefkensstraat 35D, 9032, Wondelgem, Belgium
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, 1014, Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, 1014, Copenhagen K, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen Ø, Denmark. .,Department of Health Technology, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark.
| |
Collapse
|
30
|
Scholten RH, Essig YJ, Roursgaard M, Jensen A, Krais AM, Gren L, Dierschke K, Gudmundsson A, Wierzbicka A, Møller P. Inhalation of hydrogenated vegetable oil combustion exhaust and genotoxicity responses in humans. Arch Toxicol 2021; 95:3407-3416. [PMID: 34468814 DOI: 10.1007/s00204-021-03143-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Biofuels from vegetable oils or animal fats are considered to be more sustainable than petroleum-derived diesel fuel. In this study, we have assessed the effect of hydrogenated vegetable oil (HVO) exhaust on levels of DNA damage in peripheral blood mononuclear cells (PBMCs) as primary outcome, and oxidative stress and inflammation as mediators of genotoxicity. In a randomized cross-over study, healthy humans were exposed to filtered air, inorganic salt particles, exhausts from combustion of HVO in engines with aftertreatment [i.e. emission with nitrogen oxides and low amounts of particulate matter less than 2.5 µm (approximately 1 µg/m3)], or without aftertreatment (i.e. emission with nitrogen oxides and 93 ± 13 µg/m3 of PM2.5). The subjects were exposed for 3 h and blood samples were collected before, within 1 h after the exposure and 24 h after. None of the exposures caused generation of DNA strand breaks and oxidatively damaged DNA, or affected gene expression of factors related to DNA repair (Ogg1), antioxidant defense (Hmox1) or pro-inflammatory cytokines (Ccl2, Il8 and Tnfa) in PBMCs. The results from this study indicate that short-term HVO exhaust exposure is not associated with genotoxic hazard in humans.
Collapse
Affiliation(s)
- Rebecca Harnung Scholten
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Yona J Essig
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Louise Gren
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - Katrin Dierschke
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark.
| |
Collapse
|
31
|
Møller P, Muruzabal D, Bakuradze T, Richling E, Bankoglu EE, Stopper H, Langie SAS, Azqueta A, Jensen A, Scavone F, Giovannelli L, Wojewódzka M, Kruszewski M, Valdiglesias V, Laffon B, Costa C, Costa S, Teixeira JP, Marino M, Del Bo' C, Riso P, Shaposhnikov S, Collins A. Potassium bromate as positive assay control for the Fpg-modified comet assay. Mutagenesis 2021; 35:341-348. [PMID: 32319518 DOI: 10.1093/mutage/geaa011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/27/2020] [Indexed: 01/23/2023] Open
Abstract
The comet assay is a popular assay in biomonitoring studies. DNA strand breaks (or unspecific DNA lesions) are measured using the standard comet assay. Oxidative stress-generated DNA lesions can be measured by employing DNA repair enzymes to recognise oxidatively damaged DNA. Unfortunately, there has been a tendency to fail to report results from assay controls (or maybe even not to employ assay controls). We believe this might have been due to uncertainty as to what really constitutes a positive control. It should go without saying that a biomonitoring study cannot have a positive control group as it is unethical to expose healthy humans to DNA damaging (and thus potentially carcinogenic) agents. However, it is possible to include assay controls in the analysis (here meant as a cryopreserved sample of cells i.e. included in each experiment as a reference sample). In the present report we tested potassium bromate (KBrO3) as a positive comet assay control for the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay. Ten laboratories used the same procedure for treatment of monocytic THP-1 cells with KBrO3 (0.5, 1.5 and 4.5 mM for 1 h at 37°C) and subsequent cryopreservation. Results from one laboratory were excluded in the statistical analysis because of technical issues in the Fpg-modified comet assay. All other laboratories found a concentration-response relationship in cryopreserved samples (regression coefficients from 0.80 to 0.98), although with different slopes ranging from 1.25 to 11.9 Fpg-sensitive sites (%DNA in tail) per 1 mM KBrO3. Our results demonstrate that KBrO3 is a suitable positive comet assay control.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, Denmark
| | - Damian Muruzabal
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, Pamplona, Spain
| | - Tamara Bakuradze
- Food Chemistry & Toxicology, Department of Chemistry, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Str. 52, Kaiserslautern, Germany
| | - Elke Richling
- Food Chemistry & Toxicology, Department of Chemistry, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Str. 52, Kaiserslautern, Germany
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg, Germany
| | - Sabine A S Langie
- VITO-Health, Boerentang 200, 2400 Mol, Belgium.,Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, Denmark
| | - Francesca Scavone
- Department NEUROFARBA University of Florence (Section Pharmacology and Toxicology), Viale G. Pieraccini 6, 50134 Florence, Italy
| | - Lisa Giovannelli
- Department NEUROFARBA University of Florence (Section Pharmacology and Toxicology), Viale G. Pieraccini 6, 50134 Florence, Italy
| | - Maria Wojewódzka
- Center for Radiobiology and Biological Dosimetry Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa, Poland
| | - Marcin Kruszewski
- Center for Radiobiology and Biological Dosimetry Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa, Poland.,Department of Medical Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Vanessa Valdiglesias
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain
| | - Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071, A Coruña, Spain
| | - Carla Costa
- Environmental Health Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, nº 135, 4050-600 Porto, Portugal
| | - Solange Costa
- Environmental Health Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, nº 135, 4050-600 Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, nº 135, 4050-600 Porto, Portugal
| | - Mirko Marino
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences (DeFENS), Via Giovanni Celoria 2, 20133 Milan, Italy
| | - Cristian Del Bo'
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences (DeFENS), Via Giovanni Celoria 2, 20133 Milan, Italy
| | - Patrizia Riso
- Università degli Studi di Milano, Department of Food, Environmental and Nutritional Sciences (DeFENS), Via Giovanni Celoria 2, 20133 Milan, Italy
| | - Sergey Shaposhnikov
- Department of Nutrition, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway.,NorGenotech AS, Norway
| | - Andrew Collins
- Department of Nutrition, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway.,NorGenotech AS, Norway
| |
Collapse
|
32
|
Hwang J, Xu C, Agnew RJ, Clifton S, Malone TR. Health Risks of Structural Firefighters from Exposure to Polycyclic Aromatic Hydrocarbons: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4209. [PMID: 33921138 PMCID: PMC8071552 DOI: 10.3390/ijerph18084209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023]
Abstract
Firefighters have an elevated risk of cancer, which is suspected to be caused by occupational and environmental exposure to fire smoke. Among many substances from fire smoke contaminants, one potential source of toxic exposure is polycyclic aromatic hydrocarbons (PAH). The goal of this paper is to identify the association between PAH exposure levels and contributing risk factors to derive best estimates of the effects of exposure on structural firefighters' working environment in fire. We surveyed four databases (Embase, Medline, Scopus, and Web of Science) for this systematic literature review. Generic inverse variance method for random effects meta-analysis was applied for two exposure routes-dermal and inhalation. In dermal, the neck showed the highest dermal exposure increased after the fire activity. In inhalation, the meta-regression confirmed statistically significant increases in PAH concentrations for longer durations. We also summarized the scientific knowledge on occupational exposures to PAH in fire suppression activities. More research into uncontrolled emergency fires is needed with regard to newer chemical classes of fire smoke retardant and occupational exposure pathways. Evidence-based PAH exposure assessments are critical for determining exposure-dose relationships in large epidemiological studies of occupational risk factors.
Collapse
Affiliation(s)
- Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Robert J. Agnew
- Fire Protection & Safety Engineering Technology Program, College of Engineering, Architecture and Technology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Shari Clifton
- Department of Health Sciences Library and Information Management, Graduate College, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.C.); (T.R.M.)
| | - Tara R. Malone
- Department of Health Sciences Library and Information Management, Graduate College, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.C.); (T.R.M.)
| |
Collapse
|
33
|
Celis JE, Espejo W, Paredes-Osses E, Contreras SA, Chiang G, Bahamonde P. Plastic residues produced with confirmatory testing for COVID-19: Classification, quantification, fate, and impacts on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144167. [PMID: 33333399 PMCID: PMC7726581 DOI: 10.1016/j.scitotenv.2020.144167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 05/02/2023]
Abstract
In March 2020, several international organizations started making recommendations regarding the need for prompt coronavirus-based diagnosis in order to prevent its spread among the world's population. The most widely used test for confirmation of COVID-19 is real-time PCR (RT-PCR). This technique uses plastic supplies in its procedures, which are 100% disposable to avoid cross-contamination and biological risks. The scientific community has become increasingly worried because of the environmental impacts associated with the current COVID-19 pandemic, such as medical plastic residues. We classified and estimated the amount of plastic residues generated as a consequence of COVID-19 diagnostic tests and analyzed the relationships of the plastics generated with number of confirmed cases, population size, and gross domestic product in each country. We evidenced that the RT-PCR generates 37.27 g of plastic residues per sample. All patients COVID-19 tested with RT-PCR have generated 15,439.59 tons of plastic residue worldwide, until August 2020. The plastic residues generated by the COVID-19 tests have no relation with size population or gross domestic product of the countries. There is also no relationship between the plastic residues generated by the COVID-19 tests and the confirmed cases. About 97% of the plastic residues from diagnostic tests for coronavirus are incinerated due to their hazardous nature to humans, but toxic chemicals are released into the environment during the process. In the short term, there is a need to reduce plastic waste and improve controls of gas emissions from incineration plants in countries where there is a deficit. In the long term, biodegradable biomedical manufacturing that are free of releasing toxic chemicals when they are incinerated, must be considered.
Collapse
Affiliation(s)
- José E Celis
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, P.O. Box 537, Chillán, Chile
| | - Winfred Espejo
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, P.O. Box 537, Chillán, Chile.
| | - Esteban Paredes-Osses
- Sección Microbiología de Alimentos y Aguas, Departamento de Salud Ambiental, Instituto de Salud Pública de Chile, Marathon 1000, Ñuñoa, Santiago, Chile
| | - Sonia A Contreras
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, P.O. Box 537, Chillán, Chile
| | - Gustavo Chiang
- MaREA, Laboratorio de Ecología y Salud Acuática, Santiago, Chile
| | - Paulina Bahamonde
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados - HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile; Núcleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
34
|
Chen H, Samet JM, Bromberg PA, Tong H. Cardiovascular health impacts of wildfire smoke exposure. Part Fibre Toxicol 2021; 18:2. [PMID: 33413506 PMCID: PMC7791832 DOI: 10.1186/s12989-020-00394-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, wildland fires have occurred more frequently and with increased intensity in many fire-prone areas. In addition to the direct life and economic losses attributable to wildfires, the emitted smoke is a major contributor to ambient air pollution, leading to significant public health impacts. Wildfire smoke is a complex mixture of particulate matter (PM), gases such as carbon monoxide, nitrogen oxide, and volatile and semi-volatile organic compounds. PM from wildfire smoke has a high content of elemental carbon and organic carbon, with lesser amounts of metal compounds. Epidemiological studies have consistently found an association between exposure to wildfire smoke (typically monitored as the PM concentration) and increased respiratory morbidity and mortality. However, previous reviews of the health effects of wildfire smoke exposure have not established a conclusive link between wildfire smoke exposure and adverse cardiovascular effects. In this review, we systematically evaluate published epidemiological observations, controlled clinical exposure studies, and toxicological studies focusing on evidence of wildfire smoke exposure and cardiovascular effects, and identify knowledge gaps. Improving exposure assessment and identifying sensitive cardiovascular endpoints will serve to better understand the association between exposure to wildfire smoke and cardiovascular effects and the mechanisms involved. Similarly, filling the knowledge gaps identified in this review will better define adverse cardiovascular health effects of exposure to wildfire smoke, thus informing risk assessments and potentially leading to the development of targeted interventional strategies to mitigate the health impacts of wildfire smoke.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA.
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
35
|
Banks APW, Thai P, Engelsman M, Wang X, Osorio AF, Mueller JF. Characterising the exposure of Australian firefighters to polycyclic aromatic hydrocarbons generated in simulated compartment fires. Int J Hyg Environ Health 2020; 231:113637. [PMID: 33080523 DOI: 10.1016/j.ijheh.2020.113637] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023]
Abstract
Firefighters are exposed to a wide variety of chemicals including polycyclic aromatic hydrocarbons (PAHs) while attending fire scenes. The objective of this study was to understand the exposure of firefighters to PAHs when attending simulated compartment fires that consisted of either a diesel pan or particleboard fire. Firefighters remained in the compartment fires for 15 min while using standard gear including self contained breathing apparatus (SCBA). Firefighters were able to remove firefighting clothing and shower within 10 min of leaving the burn. Air samples were collected from inside the compartment during the fire. Twenty-six (26) firefighters participated in the study providing urine and skin wipe samples collected from the wrist and neck before and after either one of the burn types. The concentrations of PAHs were measured in skin wipes and air samples, while concentrations of monohydroxy metabolites of PAHs (OH-PAHs) were measured in urine. The concentrations of all PAHs were significantly higher (p < 0.05) in the smoke layer of particleboard fires than in diesel pan fires. Correspondingly, the level of PAHs deposited on the wrists and necks of participants attending the particleboard fires was higher than those attending diesel pan fires. Urine samples from participants who attended diesel pan fires showed no significant difference (p > 0.05) in the concentration of all OH-PAHs between pre-burn and post-burn. Samples from participants who attended particleboard fires, showed no significant difference (p > 0.05) between 1-hydroxypyrene (1-OH-PYR) concentrations in urine pre- and post-burn. However, median concentrations of hydroxynaphthalenes (OH-NAPs), hydroxyfluorenes (OH-FLUs) and hydroxyphenanthrenes (OH-PHEs) increased significantly from 5.2, 0.44 and 0.88 μg g-1 creatinine pre-burn to 12, 1.4 and 1.2 μg g-1 creatinine post-burn, respectively. This suggests that in compartment burns with high concentrations of PAHs in the smoke layer, such as those created by the particleboard fires, exposure to PAHs can be observed though urinary OH-PAH metabolites. Overall, concentrations of urinary OH-PAHs were relatively low considering the potential exposure in these burns. This suggests protective equipment in combination with rapid removal of firefighting ensembles and showering are relatively effective in controlling exposure.
Collapse
Affiliation(s)
- Andrew P W Banks
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia.
| | - Phong Thai
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| | - Michelle Engelsman
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia; FRNSW, Fire and Rescue NSW, 1 Amarina Avenue, Greenacre, NSW, 2190, Australia
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| | - Andres F Osorio
- School of Civil Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
36
|
Internal exposure of firefighting instructors to polycyclic aromatic hydrocarbons (PAH) during live fire training. Toxicol Lett 2020; 331:102-111. [DOI: 10.1016/j.toxlet.2020.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023]
|
37
|
Engelsman M, Toms LML, Banks APW, Wang X, Mueller JF. Biomonitoring in firefighters for volatile organic compounds, semivolatile organic compounds, persistent organic pollutants, and metals: A systematic review. ENVIRONMENTAL RESEARCH 2020; 188:109562. [PMID: 32526498 DOI: 10.1016/j.envres.2020.109562] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Firefighters are exposed to a wide range of toxic chemicals due to combustion, with numerous biomonitoring studies completed that have assessed exposure. Many of these studies focus on individual classes of chemicals, with a few considering a broad range of systemic exposures. As yet, no review process has been undertaken to comprehensively examine these studies. The aims of this review are to: (1) ascertain whether biomonitoring studies pertaining to firefighters demonstrate occupational exposure to volatile organic compounds, semivolatile organic compounds, and metals; (2) determine and present results of biomonitoring studies; (3) provide any recommendations presented from the literature that may support exposure mitigation; and (4) suggest future study parameters that may assist in providing a greater understanding surrounding the occupational exposure of firefighters. A systematic review was undertaken with regards to firefighters and biomonitoring studies utilising the matrices of blood, urine, semen and breast milk. This yielded 5690 results. Following duplicate removal, inclusion and exclusion criteria screening and full text screening, 34 studies remained for review. Results of over 80% of studies analysed determined firefighters to experience occupational exposure. Results also show firefighters to be exposed to a wide range of toxic chemicals due to fire smoke; potentially exceeding the range of exposure of other occupations. As firefighters may face increased risk of health effects due to the additive, synergistic, and/or antagonistic effects of chemical exposure, all care must be taken to reduce exposure. This may be achieved by considering tactical decisions, increased personal hygiene, and thorough decontamination procedures. Future biomonitoring studies recognising and assessing the range of chemical exposure firefighters face would be beneficial.
Collapse
Affiliation(s)
- Michelle Engelsman
- Fire and Rescue NSW, 1 Amarina Avenue, Greenacre, NSW, 2190, Australia; QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia.
| | - Leisa-Maree L Toms
- School of Public Health and Social Work and Institute of Biomedical Health and Innovation, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Andrew P W Banks
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
38
|
Hadrup N, Zhernovkov V, Jacobsen NR, Voss C, Strunz M, Ansari M, Schiller HB, Halappanavar S, Poulsen SS, Kholodenko B, Stoeger T, Saber AT, Vogel U. Acute Phase Response as a Biological Mechanism-of-Action of (Nano)particle-Induced Cardiovascular Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907476. [PMID: 32227434 DOI: 10.1002/smll.201907476] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 05/15/2023]
Abstract
Inhaled nanoparticles constitute a potential health hazard due to their size-dependent lung deposition and large surface to mass ratio. Exposure to high levels contributes to the risk of developing respiratory and cardiovascular diseases, as well as of lung cancer. Particle-induced acute phase response may be an important mechanism of action of particle-induced cardiovascular disease. Here, the authors review new important scientific evidence showing causal relationships between inhalation of particle and nanomaterials, induction of acute phase response, and risk of cardiovascular disease. Particle-induced acute phase response provides a means for risk assessment of particle-induced cardiovascular disease and underscores cardiovascular disease as an occupational disease.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Vadim Zhernovkov
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | - Carola Voss
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sarah S Poulsen
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Boris Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
- DTU Health, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
39
|
Oliveira M, Costa S, Vaz J, Fernandes A, Slezakova K, Delerue-Matos C, Teixeira JP, Carmo Pereira M, Morais S. Firefighters exposure to fire emissions: Impact on levels of biomarkers of exposure to polycyclic aromatic hydrocarbons and genotoxic/oxidative-effects. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121179. [PMID: 31522064 DOI: 10.1016/j.jhazmat.2019.121179] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Firefighters represent one of the riskiest occupations, yet due to the logistic reasons, the respective exposure assessment is one of the most challenging. Thus, this work assessed the impact of firefighting activities on levels of urinary monohydroxyl-polycyclic aromatic hydrocarbons (OHPAHs; 1-hydroxynaphthalene, 1-hydroxyacenaphthene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene, 3-hydroxybenzo(a)pyrene) and genotoxic/oxidative-effect biomarkers (basal DNA and oxidative DNA damage) of firefighters from eight firehouses. Cardiac frequency, blood pressure and arterial oxygen saturation were also monitored. OHPAHs were determined by liquid-chromatography with fluorescence detection, while genotoxic/oxidative-effect biomarkers were assessed by the comet assay. Concentrations of total OHPAHs were up to 340% higher (p ≤ 0.05) in (non-smoking and smoking) exposed workers than in control subjects (non-smoking and non-exposed to combat activities); the highest increments were observed for 1-hydroxynaphthalene and 1-hydroxyacenaphthene (82-88% of ∑OHPAHs), and for 2-hydroxyfluorene (5-15%). Levels of biomarker for oxidative stress were increased in non-smoking exposed workers than in control group (316%; p ≤ 0.001); inconclusive results were found for DNA damage. Positive correlations were found between the cardiac frequency, ∑OHPAHs and the oxidative DNA damage of non-smoking (non-exposed and exposed) firefighters. Evidences were raised regarding the simultaneous use of these biomarkers for the surveillance of firefighters' health and to better estimate the potential short-term health risks.
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Solange Costa
- National Institute of Health, Environmental Health Department, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
| | - Josiana Vaz
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Adília Fernandes
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Klara Slezakova
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
40
|
Ma Y, Bellini N, Scholten RH, Andersen MHG, Vogel U, Saber AT, Loft S, Møller P, Roursgaard M. Effect of combustion-derived particles on genotoxicity and telomere length: A study on human cells and exposed populations. Toxicol Lett 2020; 322:20-31. [PMID: 31923465 DOI: 10.1016/j.toxlet.2020.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 11/15/2022]
Abstract
Particulate matter (PM) from combustion processes has been associated with oxidative stress to DNA, whereas effects related to telomere dysfunction are less investigated. We collected air-borne PM from a passenger cabin of a diesel-propelled train and at a training facility for smoke diving exercises. Effects on oxidative stress biomarkers, genotoxicity measured by the comet assay and telomere length in PM-exposed A549 cells were compared with the genotoxicity and telomere length in peripheral blood mononuclear cells (PBMCs) from human volunteers exposed to the same aerosol source. Although elevated levels of DNA strand breaks and oxidatively damaged DNA in terms of Fpg-sensitive sites were observed in PBMCs from exposed humans, the PM collected at same locations did not cause genotoxicity in the comet assay in A549 cells. Nevertheless, A549 cells displayed telomere length shortening after four weeks exposure to PM. This is in line with slightly shorter telomere length in PBMCs from exposed humans, although it was not statistically significant. In conclusion, the results indicate that genotoxic potency measured by the comet assay of PM in A549 cells may not predict genotoxicity in exposed humans, whereas telomere length measurements may be a novel indicator of genotoxic stress in cell cultures and humans.
Collapse
Affiliation(s)
- Yanying Ma
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Nicoletta Bellini
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Rebecca Harnung Scholten
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Maria Helena Guerra Andersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark; The National Research Centre for the Working Environment, Lersø Parkalle 105, 2100 Copenhagen Ø, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, 2100 Copenhagen Ø, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkalle 105, 2100 Copenhagen Ø, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark.
| |
Collapse
|
41
|
Hadrup N, Mielżyńska-Švach D, Kozłowska A, Campisi M, Pavanello S, Vogel U. Association between a urinary biomarker for exposure to PAH and blood level of the acute phase protein serum amyloid A in coke oven workers. Environ Health 2019; 18:81. [PMID: 31477116 PMCID: PMC6721239 DOI: 10.1186/s12940-019-0523-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/23/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Coke oven workers are exposed to both free and particle bound PAH. Through this exposure, the workers may be at increased risk of cardiovascular diseases. Systemic levels of acute phase response proteins have been linked to cardiovascular disease in epidemiological studies, suggesting it as a marker of these conditions. The aim of this study was to assess whether there was association between PAH exposure and the blood level of the acute phase inflammatory response marker serum amyloid A (SAA) in coke oven workers. METHODS A total of 87 male Polish coke oven workers from two different plants comprised the study population. Exposure was assessed by means of the individual post-shift urinary excretion of 1-hydroxypyrene, as internal dose of short-term PAH exposure, and by anti-benzo[a]pyrene diolepoxide (anti-B[a]PDE)-DNA), as a biomarker of long-term PAH exposure. Blood levels of acute phase proteins SAA and CRP were measured by immunoassay. C-reactive protein (CRP) levels were included to adjust for baseline levels of SAA. RESULTS Multiple linear regression showed that the major determinants of increased SAA levels were urinary 1-hydroxypyrene (beta = 0.56, p = 0.030) and serum CRP levels (beta = 7.08; p < 0.0001) whereas anti-B[a]PDE-DNA, the GSTM1 detoxifying genotype, diet, and smoking were not associated with SAA levels. CONCLUSIONS Urinary 1-hydroxypyrene as biomarker of short-term PAH exposure and serum levels of CRP were predictive of serum levels of SAA in coke oven workers. Our data suggest that exposure of coke oven workers to PAH can lead to increased systemic acute response and therefore potentially increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Danuta Mielżyńska-Švach
- Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
- Witold Pilecki State School of Higher Education, Nursing Institute, Oświęcim, Poland
| | - Agnieszka Kozłowska
- Witold Pilecki State School of Higher Education, Nursing Institute, Oświęcim, Poland
| | - Manuela Campisi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| |
Collapse
|
42
|
Andersen MHG, Frederiksen M, Saber AT, Wils RS, Fonseca AS, Koponen IK, Johannesson S, Roursgaard M, Loft S, Møller P, Vogel U. Health effects of exposure to diesel exhaust in diesel-powered trains. Part Fibre Toxicol 2019; 16:21. [PMID: 31182122 PMCID: PMC6558821 DOI: 10.1186/s12989-019-0306-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Short-term controlled exposure to diesel exhaust (DE) in chamber studies have shown mixed results on lung and systemic effects. There is a paucity of studies on well-characterized real-life DE exposure in humans. In the present study, 29 healthy volunteers were exposed to DE while sitting as passengers in diesel-powered trains. Exposure in electric trains was used as control scenario. Each train scenario consisted of three consecutive days (6 h/day) ending with biomarker samplings. RESULTS Combustion-derived air pollutants were considerably higher in the passenger carriages of diesel trains compared with electric trains. The concentrations of black carbon and ultrafine particles were 8.5 μg/m3 and 1.2-1.8 × 105 particles/cm3 higher, respectively, in diesel as compared to electric trains. Net increases of NOx and NO2 concentrations were 317 μg/m3 and 36 μg/m3. Exposure to DE was associated with reduced lung function and increased levels of DNA strand breaks in peripheral blood mononuclear cells (PBMCs), whereas there were unaltered levels of oxidatively damaged DNA, soluble cell adhesion molecules, acute phase proteins in blood and urinary excretion of metabolites of polycyclic aromatic hydrocarbons. Also the microvascular function was unaltered. An increase in the low frequency of heart rate variability measures was observed, whereas time-domain measures were unaltered. CONCLUSION Exposure to DE inside diesel-powered trains for 3 days was associated with reduced lung function and systemic effects in terms of altered heart rate variability and increased levels of DNA strand breaks in PBMCs compared with electric trains. TRIAL REGISTRATION ClinicalTrials.Gov ( NCT03104387 ). Registered on March 23rd 2017.
Collapse
Affiliation(s)
- Maria Helena Guerra Andersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark. .,The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark.
| | - Marie Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark.,The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Ana Sofia Fonseca
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Ismo K Koponen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Sandra Johannesson
- Department of Occupational and Environmental Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark.,DTU Health Tech., Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
43
|
Bendtsen KM, Brostrøm A, Koivisto AJ, Koponen I, Berthing T, Bertram N, Kling KI, Dal Maso M, Kangasniemi O, Poikkimäki M, Loeschner K, Clausen PA, Wolff H, Jensen KA, Saber AT, Vogel U. Airport emission particles: exposure characterization and toxicity following intratracheal instillation in mice. Part Fibre Toxicol 2019; 16:23. [PMID: 31182125 PMCID: PMC6558896 DOI: 10.1186/s12989-019-0305-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Little is known about the exposure levels and adverse health effects of occupational exposure to airplane emissions. Diesel exhaust particles are classified as carcinogenic to humans and jet engines produce potentially similar soot particles. Here, we evaluated the potential occupational exposure risk by analyzing particles from a non-commercial airfield and from the apron of a commercial airport. Toxicity of the collected particles was evaluated alongside NIST standard reference diesel exhaust particles (NIST2975) in terms of acute phase response, pulmonary inflammation, and genotoxicity after single intratracheal instillation in mice. RESULTS Particle exposure levels were up to 1 mg/m3 at the non-commercial airfield. Particulate matter from the non-commercial airfield air consisted of primary and aggregated soot particles, whereas commercial airport sampling resulted in a more heterogeneous mixture of organic compounds including salt, pollen and soot, reflecting the complex occupational exposure at an apron. The particle contents of polycyclic aromatic hydrocarbons and metals were similar to the content in NIST2975. Mice were exposed to doses 6, 18 and 54 μg alongside carbon black (Printex 90) and NIST2975 and euthanized after 1, 28 or 90 days. Dose-dependent increases in total number of cells, neutrophils, and eosinophils in bronchoalveolar lavage fluid were observed on day 1 post-exposure for all particles. Lymphocytes were increased for all four particle types on 28 days post-exposure as well as for neutrophil influx for jet engine particles and carbon black nanoparticles. Increased Saa3 mRNA levels in lung tissue and increased SAA3 protein levels in plasma were observed on day 1 post-exposure. Increased levels of DNA strand breaks in bronchoalveolar lavage cells and liver tissue were observed for both particles, at single dose levels across doses and time points. CONCLUSIONS Pulmonary exposure of mice to particles collected at two airports induced acute phase response, inflammation, and genotoxicity similar to standard diesel exhaust particles and carbon black nanoparticles, suggesting similar physicochemical properties and toxicity of jet engine particles and diesel exhaust particles. Given this resemblance as well as the dose-response relationship between diesel exhaust exposure and lung cancer, occupational exposure to jet engine emissions at the two airports should be minimized.
Collapse
Affiliation(s)
- Katja Maria Bendtsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Anders Brostrøm
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Fysikvej, Building 307, DK-2800 Kgs Lyngby, Denmark
| | - Antti Joonas Koivisto
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Ismo Koponen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
- FORCE Technology, Park Allé 345, 2605 Brøndby, Denmark
| | - Trine Berthing
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Nicolas Bertram
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Kirsten Inga Kling
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Fysikvej, Building 307, DK-2800 Kgs Lyngby, Denmark
| | - Miikka Dal Maso
- Aerosol Physics, Laboratory of Physics, Faculty of Natural Sciences, Tampere University of Technology, PO Box 527, FI-33101 Tampere, Finland
| | - Oskari Kangasniemi
- Aerosol Physics, Laboratory of Physics, Faculty of Natural Sciences, Tampere University of Technology, PO Box 527, FI-33101 Tampere, Finland
| | - Mikko Poikkimäki
- Aerosol Physics, Laboratory of Physics, Faculty of Natural Sciences, Tampere University of Technology, PO Box 527, FI-33101 Tampere, Finland
| | - Katrin Loeschner
- National Food Institute, Research Group for Nano-Bio Science, Technical University of Denmark, Kemitorvet 201, DK-2800 Kgs Lyngby, Denmark
| | - Per Axel Clausen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Henrik Wolff
- Finnish Institute of Occupational Health, P.O. Box 40, FI-00032, Työterveyslaitos, Helsinki, Finland
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
44
|
Andersen MHG, Johannesson S, Fonseca AS, Clausen PA, Saber AT, Roursgaard M, Loeschner K, Koponen IK, Loft S, Vogel U, Møller P. Exposure to Air Pollution inside Electric and Diesel-Powered Passenger Trains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4579-4587. [PMID: 30917278 DOI: 10.1021/acs.est.8b06980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diesel-powered trains are used worldwide for passenger transport. The present study aimed to assess air pollution concentrations in passenger cars from diesel and electric trains. Personal exposure monitoring (6-7 h per day) was carried out for 49 days on diesel and 22 days on electric trains. Diesel trains had higher concentrations of all the assessed air pollution components. Average increases (and fold differences) in passenger cars of diesel trains compared with electric trains were for ultrafine particles 212 000 particles/cm3 (35-fold), black carbon 8.3 μg/m3 (6-fold), NO x 316 μg/m3 (8-fold), NO2 38 μg/m3 (3-fold), PM2.5 34 μg/m3 (2-fold), and benzo( a)pyrene 0.14 ng/m3 (6-fold). From time-series data, the pull and push movement modes, the engine in use, and the distance to the locomotive influenced the concentrations inside the diesel trains. In conclusion, concentrations of all air pollutants were significantly elevated in passenger cars in diesel trains compared to electric trains.
Collapse
Affiliation(s)
- Maria Helena G Andersen
- Department of Public Health, Section of Environmental Health , University of Copenhagen , Øster Farimagsgade 5A , DK-1014 Copenhagen K , Denmark
- The National Research Centre for the Working Environment , Lersø Parkalle 105 , DK-2100 Copenhagen Ø , Denmark
| | - Sandra Johannesson
- Department of Occupational and Environmental Medicine , Sahlgrenska Academy at University of Gothenburg , 40530 Gothenburg , Sweden
| | - Ana Sofia Fonseca
- The National Research Centre for the Working Environment , Lersø Parkalle 105 , DK-2100 Copenhagen Ø , Denmark
| | - Per Axel Clausen
- The National Research Centre for the Working Environment , Lersø Parkalle 105 , DK-2100 Copenhagen Ø , Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment , Lersø Parkalle 105 , DK-2100 Copenhagen Ø , Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health , University of Copenhagen , Øster Farimagsgade 5A , DK-1014 Copenhagen K , Denmark
| | | | - Ismo K Koponen
- The National Research Centre for the Working Environment , Lersø Parkalle 105 , DK-2100 Copenhagen Ø , Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health , University of Copenhagen , Øster Farimagsgade 5A , DK-1014 Copenhagen K , Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment , Lersø Parkalle 105 , DK-2100 Copenhagen Ø , Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health , University of Copenhagen , Øster Farimagsgade 5A , DK-1014 Copenhagen K , Denmark
| |
Collapse
|
45
|
Møller P. The comet assay: ready for 30 more years. Mutagenesis 2018; 33:1-7. [PMID: 29325088 DOI: 10.1093/mutage/gex046] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
During the last 30 years, the comet assay has become widely used for the measurement of DNA damage and repair in cells and tissues. A landmark achievement was reached in 2016 when the Organization for Economic Co-operation and Development adopted a comet assay guideline for in vivo testing of DNA strand breaks in animals. However, the comet assay has much more to offer than being an assay for testing DNA strand breaks in animal organs. The use of repair enzymes increases the range of DNA lesions that can be detected with the assay. It can also be modified to measure DNA repair activity. Still, despite the long-term use of the assay, there is a need for studies that assess the impact of variation in specific steps of the procedure. This is particularly important for the on-going efforts to decrease the variation between experiments and laboratories. The articles in this Special Issue of Mutagenesis cover important technical issues of the comet assay procedure, nanogenotoxicity and ionising radiation sensitivity on plant cells. The included biomonitoring studies have assessed seasonal variation and certain predictors for the basal level of DNA damage in white blood cells. Lastly, the comet assay has been used in studies on genotoxicity of environmental and occupational exposures in human biomonitoring studies and animal models. Overall, the articles in this Special Issue demonstrate the versatility of the comet assay and they hold promise that the assay is ready for the next 30 years.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| |
Collapse
|
46
|
Andersen MHG, Saber AT, Pedersen JE, Pedersen PB, Clausen PA, Løhr M, Kermanizadeh A, Loft S, Ebbehøj NE, Hansen ÅM, Kalevi Koponen I, Nørskov EC, Vogel U, Møller P. Assessment of polycyclic aromatic hydrocarbon exposure, lung function, systemic inflammation, and genotoxicity in peripheral blood mononuclear cells from firefighters before and after a work shift. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:539-548. [PMID: 29761929 DOI: 10.1002/em.22193] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Firefighting is regarded as possibly carcinogenic, although there are few mechanistic studies on genotoxicity in humans. We investigated exposure to polycyclic aromatic hydrocarbons (PAH), lung function, systemic inflammation and genotoxicity in peripheral blood mononuclear cells (PBMC) of 22 professional firefighters before and after a 24-h work shift. Exposure was assessed by measurements of particulate matter (PM), PAH levels on skin, urinary 1-hydroxypyrene (1-OHP) and self-reported participation in fire extinguishing activities. PM measurements indicated that use of personal protective equipment (PPE) effectively prevented inhalation exposure, but exposure to PM occurred when the environment was perceived as safe and the self-contained breathing apparatuses were removed. The level of PAH on skin and urinary 1-OHP concentration were similar before and after the work shift, irrespective of self-reported participation in fire extinction activities. Post-shift, the subjects had reduced levels of oxidatively damaged DNA in PBMC, and increased plasma concentration of vascular cell adhesion molecule 1 (VCAM-1). The subjects reporting participation in fire extinction activities during the work shift had a slightly decreased lung function, increased plasma concentration of VCAM-1, and reduced levels of oxidatively damaged DNA in PBMC. Our results suggest that the firefighters were not exposed to PM while using PPE, but exposure occurred when PPE was not used. The work shift was not associated with increased levels of genotoxicity. Increased levels of VCAM-1 in plasma were observed. Environ. Mol. Mutagen. 59:539-548, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Helena Guerra Andersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, DK-1014, Denmark
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen Ø, DK-2100, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen Ø, DK-2100, Denmark
| | - Julie Elbaek Pedersen
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg University Hospital, Copenhagen, NV, DK-2400, Denmark
| | - Peter Bøgh Pedersen
- Danish Technological Institute, Teknologiparken, Kongsvang Allé 29, Aarhus C, DK-8000, Denmark
| | - Per Axel Clausen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen Ø, DK-2100, Denmark
| | - Mille Løhr
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, DK-1014, Denmark
| | - Ali Kermanizadeh
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, DK-1014, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, DK-1014, Denmark
| | - Niels E Ebbehøj
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg University Hospital, Copenhagen, NV, DK-2400, Denmark
| | - Åse Marie Hansen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen Ø, DK-2100, Denmark
- Department of Public Health, Section of Social Medicine, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, DK-1014, Denmark
| | - Ismo Kalevi Koponen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen Ø, DK-2100, Denmark
| | - Eva-Carina Nørskov
- Danish Technological Institute, Teknologiparken, Kongsvang Allé 29, Aarhus C, DK-8000, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen Ø, DK-2100, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, DK-2800 Kgs, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K, DK-1014, Denmark
| |
Collapse
|
47
|
Andersen MHG, Saber AT, Pedersen PB, Loft S, Hansen ÅM, Koponen IK, Pedersen JE, Ebbehøj N, Nørskov EC, Clausen PA, Garde AH, Vogel U, Møller P. Cardiovascular health effects following exposure of human volunteers during fire extinction exercises. Environ Health 2017; 16:96. [PMID: 28877717 PMCID: PMC5588677 DOI: 10.1186/s12940-017-0303-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/25/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND Firefighters have increased risk of cardiovascular disease and of sudden death from coronary heart disease on duty while suppressing fires. This study investigated the effect of firefighting activities, using appropriate personal protective equipment (PPE), on biomarkers of cardiovascular effects in young conscripts training to become firefighters. METHODS Healthy conscripts (n = 43) who participated in a rescue educational course for firefighting were enrolled in the study. The exposure period consisted of a three-day training course where the conscripts participated in various firefighting exercises in a constructed firehouse and flashover container. The subjects were instructed to extinguish fires of either wood or wood with electrical cords and mattresses. The exposure to particulate matter (PM) was assessed at various locations and personal exposure was assessed by portable PM samplers and urinary excretion of 1-hydroxypyrene. Cardiovascular measurements included microvascular function and heart rate variability (HRV). RESULTS The subjects were primarily exposed to PM in bystander positions, whereas self-contained breathing apparatus effectively abolished pulmonary exposure. Firefighting training was associated with elevated urinary excretion of 1-hydroxypyrene (105%, 95% CI: 52; 157%), increased body temperature, decreased microvascular function (-18%, 95% CI: -26; -9%) and altered HRV. There was no difference in cardiovascular measurements for the two types of fires. CONCLUSION Observations from this fire extinction training show that PM exposure mainly occurs in situations where firefighters removed the self-contained breathing apparatus. Altered cardiovascular disease endpoints after the firefighting exercise period were most likely due to complex effects from PM exposure, physical exhaustion and increased core body temperature.
Collapse
Affiliation(s)
- Maria Helena Guerra Andersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Peter Bøgh Pedersen
- Danish Technological Institute, Teknologiparken, Kongsvang Allé 29, DK-8000 Aarhus C, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Åse Marie Hansen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
- Department of Public Health, Section of Social Medicine, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ismo Kalevi Koponen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Julie Elbæk Pedersen
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen, NV Denmark
| | - Niels Ebbehøj
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen, NV Denmark
| | - Eva-Carina Nørskov
- Danish Technological Institute, Teknologiparken, Kongsvang Allé 29, DK-8000 Aarhus C, Denmark
| | - Per Axel Clausen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Anne Helene Garde
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
- Department of Public Health, Section of Social Medicine, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|