1
|
Tong X, Lei C, Liu Y, Yin M, Peng H, Qiu Q, Feng Y, Hu X, Gong C, Zhu M. Genome-Wide Characterization of Extrachromosomal Circular DNA in the Midgut of BmCPV-Infected Silkworms and Its Potential Role in Antiviral Responses. Int J Mol Sci 2025; 26:818. [PMID: 39859532 PMCID: PMC11766159 DOI: 10.3390/ijms26020818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) has been found to be widespread and functional in various organisms. However, comparative analyses of pre- and post-infection of virus are rarely known. Herein, we investigated the changes in expression patterns of eccDNA following infection with Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) and explore the role of eccDNA in viral infection. Circle-seq was used to analyze eccDNAs in the midgut of BmCPV-infected and BmCPV-uninfected silkworms. A total of 5508 eccDNAs were identified, with sizes varying from 72 bp to 17 kb. Most of eccDNAs are between 100 to 1000 bp in size. EccDNA abundance in BmCPV-infected silkworms was significantly higher than in BmCPV-uninfected silkworms. GO and KEGG analysis of genes carried by eccDNAs reveals that most are involved in microtubule motor activity, phosphatidic acid binding, cAMP signaling pathway, and pancreatic secretion signaling pathways. Several eccDNAs contain sequences of the transcription factor SOX6, sem-2, sp8b, or Foxa2. Association analysis of eccDNA-mRNA/miRNA/circRNA revealed that some highly expressed genes are transcribed from relevant sequences of eccDNA and the transcription of protein coding genes influenced the frequency of eccDNA. BmCPV infection resulted in changes in the expression levels of six miRNAs, but no known miRNAs with altered expression levels due to changes in eccDNA abundance were identified. Moreover, it was found that 1287 and 924 sequences representing back-spliced junctions of circRNAs were shared by the junctions of eccDNAs in the BmCPV-infected and uninfected silkworms, respectively, and some eccDNAs loci were shared by circRNAs on Chromosomes 2, 7, 11, 14, and 24, suggesting some eccDNAs may exert its function by being transcribed into circRNAs. These findings suggest that BmCPV infection alter the expression pattern of eccDNAs, leading to changes in RNA transcription levels, which may play roles in regulating BmCPV replication. In the future, further experiments are needed to verify the association between eccDNA-mRNA/miRNA/circRNA and its function in BmCPV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chengliang Gong
- School of Life Sciences, Soochow University, Suzhou 215123, China
| | - Min Zhu
- School of Life Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Ling X, Jiao Q, Lin D, Chen J, Han Y, Meng J, Zhong B, Zhang H, Zhang G, Zhu F, Qin J, Ruan Y, Liu L. Extrachromosomal circular DNA containing DTX1 promotes cell growth in hydroquinone-induced malignantly transformed cells by regulating the transcription of DTX1. BMC Cancer 2024; 24:1448. [PMID: 39587541 PMCID: PMC11587744 DOI: 10.1186/s12885-024-13177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 11/09/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA), a novel class of DNA with a circular topological structure, is present in a variety of cancer cells and tissues and may play broad roles in processes ranging from aging to cancer cell heterogeneity through multiple mechanisms. EccDNA has been characterized by profile, structure and function in several prominent studies but its effect on hydroquinone (HQ)-induced malignantly transformed cells (TK6-HQ) is still elusive. METHODS Circle-seq was applied to determine the eccDNA counts and characteristics of TK6-HQ cells. DNA-fluorescence in situ hybridization was used to measure the abundance of eccDNA_DTX1. Differential gene expression analysis was carried out by RNA-seq. Gene expression was quantified by wertern blot and qPCR. Decircularization of eccDNA_DTX1 was achieved by CRISPR/Cas9. Tumorigenicity was evaluated by xenograft assay in BALB/c nude mice. RESULTS In this study, we characterized the structure of eccDNAs and the function of DTX1-containing eccDNA (eccDNA_DTX1) in TK6-HQ cells. A total of 669,179 eccDNAs were identified, including 901 eccDNAs with different counts. Most of the eccDNAs were < 1000 bp in length and were enriched in four periodic peaks starting at 186 bp with an interval of ~ 180 bp. The genomic distribution of eccDNAs confirmed that eccDNAs could be observed across all chromosomes and had greater enrichment on chromosomes 17, 19, 20, and 22, with abundant Alu repeat elements, introns and CpG islands. By combining the results of the integrated circle-seq analysis of eccDNAs with those from the RNA-seq analysis (differentially expressed genes, 1064 upregulated and 427 downregulated), the authors showed that the transcription of 20 potential coding genes might be driven by eccDNAs. Finally, the knockdown of eccDNA_DTX1 by CRISPR/Cas9 inhibited the growth of TK6-HQ cells in vitro and in vivo by inhibiting the transcription of DTX1 and promoting ferroptosis, and ferroptosis inhibior, Ferrostatin-1, abrogated the proliferation inhibition of eccDNA_DTX1 knockdown. CONCLUSIONS EccDNA_DTX1 promotes cell growth in hydroquinone-induced malignantly transformed cells by regulating the transcription of DTX1 and ferroptosis. This study profiles eccDNA characteristics and defines the role and mechanism of eccDNA_DTX1 for the first time, shedding new light on the relationship between eccDNAs and carcinogenesis.
Collapse
Affiliation(s)
- Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Qunfang Jiao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Daifan Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - He Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Gongda Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Fangling Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jiheng Qin
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Meidical University, Dongguan, 523808, P.R. China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523722, P.R. China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China.
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China.
| |
Collapse
|
3
|
Zhu Q, Chen R, Kuang M, Zhang W, Wang D, Han S. Identification and characterization of extrachromosomal circular DNA in age-related osteoporosis. Aging (Albany NY) 2023; 15:15489-15503. [PMID: 38159253 PMCID: PMC10781488 DOI: 10.18632/aging.205388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Extrachromosomal circular DNA (eccDNA) was once thought to mainly exist in tumour cells, although it was later shown to be ubiquitous in healthy tissues as well. However, the characteristics and properties of eccDNA in healthy tissue or non-cancer tissue are not well understood. This study first analyses the properties, possible formation mechanisms and potential functions of eccDNA in osteoporotic or normal bone tissue. We used circle-seq to demonstrate the expression spectrum of the eccDNA in the bone tissue. A bioinformatics analysis was performed for the differentially expressed eccDNA, and it enriched the Hippo signalling pathway, PI3K-Akt signalling pathway, Ras signal-ling pathway and other signalling pathways that are closely related to osteoporosis (OP). Then, we used real-time polymerase chain reaction and Sanger sequencing to assess human bone marrow mesenchymal stem cells and obtained the base sequence of the eccDNA cyclization site. Overall, eccDNAs in bone tissue are common and may play a significant role in pathways connected to age-related osteoporosis progression.
Collapse
Affiliation(s)
- Qingrun Zhu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| | - Rudong Chen
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| | - Mingjie Kuang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250014, Shandong, China
| | - Wen Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| | - Dachuan Wang
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Shijie Han
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| |
Collapse
|
4
|
Yüksel A, Altungöz O. Gene amplifications and extrachromosomal circular DNAs: function and biogenesis. Mol Biol Rep 2023; 50:7693-7703. [PMID: 37433908 DOI: 10.1007/s11033-023-08649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Gene amplification is an increase in the copy number of restricted chromosomal segments that contain gene(s) and frequently results in the over-expression of the corresponding gene(s). Amplification may be found in the form of extrachromosomal circular DNAs (eccDNAs) or as linear repetitive amplicon regions that are integrated into chromosomes, which may form cytogenetically observable homogeneously staining regions or may be scattered throughout the genome. eccDNAs are structurally circular and in terms of their function and content, they can be classified into various subtypes. They play pivotal roles in many physiological and pathological phenomena such as tumor pathogenesis, aging, maintenance of telomere length and ribosomal DNAs (rDNAs), and gain of resistance against chemotherapeutic agents. Amplification of oncogenes is consistently seen in various types of cancers and can be associated with prognostic factors. eccDNAs are known to be originated from chromosomes as a consequence of various cellular events such as repair processes of damaged DNA or DNA replication errors. In this review, we highlighted the role of gene amplification in cancer, the functional aspects of eccDNAs subtypes, the proposed biogenesis mechanisms, and their role in gene or segmental-DNA amplification.
Collapse
Affiliation(s)
- Ali Yüksel
- Department of Medical Biology and Genetics, Institute of Health Sciences, Dokuz Eylul University, 35330, Izmir, Turkey.
| | - Oğuz Altungöz
- Department of Medical Biology and Genetics, Institute of Health Sciences, Dokuz Eylul University, 35330, Izmir, Turkey.
- Department of Medical Biology, Dokuz Eylül Medical School, 35330, Izmir, Turkey.
| |
Collapse
|
5
|
Chamorro González R, Conrad T, Stöber MC, Xu R, Giurgiu M, Rodriguez-Fos E, Kasack K, Brückner L, van Leen E, Helmsauer K, Dorado Garcia H, Stefanova ME, Hung KL, Bei Y, Schmelz K, Lodrini M, Mundlos S, Chang HY, Deubzer HE, Sauer S, Eggert A, Schulte JH, Schwarz RF, Haase K, Koche RP, Henssen AG. Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells. Nat Genet 2023; 55:880-890. [PMID: 37142849 PMCID: PMC10181933 DOI: 10.1038/s41588-023-01386-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
Extrachromosomal DNAs (ecDNAs) are common in cancer, but many questions about their origin, structural dynamics and impact on intratumor heterogeneity are still unresolved. Here we describe single-cell extrachromosomal circular DNA and transcriptome sequencing (scEC&T-seq), a method for parallel sequencing of circular DNAs and full-length mRNA from single cells. By applying scEC&T-seq to cancer cells, we describe intercellular differences in ecDNA content while investigating their structural heterogeneity and transcriptional impact. Oncogene-containing ecDNAs were clonally present in cancer cells and drove intercellular oncogene expression differences. In contrast, other small circular DNAs were exclusive to individual cells, indicating differences in their selection and propagation. Intercellular differences in ecDNA structure pointed to circular recombination as a mechanism of ecDNA evolution. These results demonstrate scEC&T-seq as an approach to systematically characterize both small and large circular DNA in cancer cells, which will facilitate the analysis of these DNA elements in cancer and beyond.
Collapse
Affiliation(s)
- Rocío Chamorro González
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Thomas Conrad
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maja C Stöber
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Faculty of Life Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robin Xu
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Mădălina Giurgiu
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Elias Rodriguez-Fos
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Katharina Kasack
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Potsdam, Germany
| | - Lotte Brückner
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Eric van Leen
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Konstantin Helmsauer
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Heathcliff Dorado Garcia
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Maria E Stefanova
- RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Yi Bei
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Karin Schmelz
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marco Lodrini
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Mundlos
- RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hedwig E Deubzer
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
- German Cancer Consortium, partner site Berlin, and German Cancer Research Center, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Sascha Sauer
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium, partner site Berlin, and German Cancer Research Center, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium, partner site Berlin, and German Cancer Research Center, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Roland F Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Computational Cancer Biology, Center for Integrated Oncology, Cancer Research Center Cologne Essen Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Kerstin Haase
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
- German Cancer Consortium, partner site Berlin, and German Cancer Research Center, Heidelberg, Germany
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany.
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
- German Cancer Consortium, partner site Berlin, and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
6
|
Kang J, Dai Y, Li J, Fan H, Zhao Z. Investigating cellular heterogeneity at the single-cell level by the flexible and mobile extrachromosomal circular DNA. Comput Struct Biotechnol J 2023; 21:1115-1121. [PMID: 36789262 PMCID: PMC9900259 DOI: 10.1016/j.csbj.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a special class of DNA derived from linear chromosomes. It coexists independently with linear chromosomes in the nucleus. eccDNA has been identified in multiple organisms, including Homo sapiens, and has been shown to play important roles relevant to tumor progression and drug resistance. To date, computational tools developed for eccDNA detection are only applicable to bulk tissue. Investigating eccDNA at the single-cell level using a computational approach will elucidate the heterogeneous and cell-type-specific landscape of eccDNA within cellular context. Here, we performed the first eccDNA analysis at the single-cell level using data generated by single-cell Assay for Transposase-Accessible Chromatin with sequencing (scATAC-seq) in adult and pediatric glioblastoma (GBM) samples. Glioblastoma multiforme (GBM) is an aggressive tumor of the central nervous system with a poor prognosis. Our analysis provides an overview of cellular origins, genomic distribution, as well as the differential regulations between linear and circular genome under disease- and cell-type-specific conditions across the open chromatin regions in GBM. We focused on some eccDNA elements that are potential mobile enhancers acting in a trans-regulation manner. In summary, this pilot study revealed novel eccDNA features in the cellular context of brain tumor, supporting the strong need for eccDNA investigation at the single-cell level.
Collapse
Affiliation(s)
- Jiajinlong Kang
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jinze Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,Department of Epidemiology, Human Genetics, and Environment Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Huihui Fan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA,Correspondence to: Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA,Department of Epidemiology, Human Genetics, and Environment Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,Correspondence to: Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Zhao L, Jiang Y, Lei X, Yang X. Amazing roles of extrachromosomal DNA in cancer progression. Biochim Biophys Acta Rev Cancer 2023; 1878:188843. [PMID: 36464200 DOI: 10.1016/j.bbcan.2022.188843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
In cancers, extrachromosomal DNA (ecDNA) has gained renewed interest since its first discovery, presenting its roles in tumorigenesis. Because of the unique structure and genetic characteristics, extrachromosomal DNA shed new light on development, early diagnosis, treatment and prognosis of cancers. Occurs in cancer cells, extrachromosomal DNA, one dissociative circular extrachromosomal element, drives the amplification of oncogenes, promotes the transcription and lifts tumor heterogeneity to participate in tumorigenesis. Given its role act as messenger, extrachromosomal DNA is connected with drug resistance, tumor microenvironment, germline and aging. The diversity of space and time gives extrachromosomal DNA a crucial role in cancer progression that has been ignored for decades. Thus, in this review, we will focus on some unique information of extrachromosomal DNA and the regulation of oncogenes as well as its roles and possible mechanisms in tumorigenesis, which are of great significance for us to understand extrachromosomal DNA comprehensively in carcinogenic mechanism.
Collapse
Affiliation(s)
- Leilei Zhao
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China
| | - Yicun Jiang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
8
|
Wu M, Rai K. Demystifying extrachromosomal DNA circles: Categories, biogenesis, and cancer therapeutics. Comput Struct Biotechnol J 2022; 20:6011-6022. [PMID: 36382182 PMCID: PMC9647416 DOI: 10.1016/j.csbj.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022] Open
Abstract
Since the advent of sequencing technologies in the 1990s, researchers have focused on the association between aberrations in chromosomal DNA and disease. However, not all forms of the DNA are linear and chromosomal. Extrachromosomal circular DNAs (eccDNAs) are double-stranded, closed-circled DNA constructs free from the chromosome that reside in the nuclei. Although widely overlooked, the eccDNAs have recently gained attention for their potential roles in physiological response, intratumoral heterogeneity and cancer therapeutics. In this review, we summarize the history, classifications, biogenesis, and highlight recent progresses on the emerging topic of eccDNAs and comment on their potential application as biomarkers in clinical settings.
Collapse
Affiliation(s)
- Manrong Wu
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunal Rai
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Extrachromosomal circular DNA: biogenesis, structure, functions and diseases. Signal Transduct Target Ther 2022; 7:342. [PMID: 36184613 PMCID: PMC9527254 DOI: 10.1038/s41392-022-01176-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA), ranging in size from tens to millions of base pairs, is independent of conventional chromosomes. Recently, eccDNAs have been considered an unanticipated major source of somatic rearrangements, contributing to genomic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. In addition, the origin of eccDNA is considered to be associated with essential chromatin-related events, including the formation of super-enhancers and DNA repair machineries. Moreover, our understanding of the properties and functions of eccDNA has continuously and greatly expanded. Emerging investigations demonstrate that eccDNAs serve as multifunctional molecules in various organisms during diversified biological processes, such as epigenetic remodeling, telomere trimming, and the regulation of canonical signaling pathways. Importantly, its special distribution potentiates eccDNA as a measurable biomarker in many diseases, especially cancers. The loss of eccDNA homeostasis facilitates tumor initiation, malignant progression, and heterogeneous evolution in many cancers. An in-depth understanding of eccDNA provides novel insights for precision cancer treatment. In this review, we summarized the discovery history of eccDNA, discussed the biogenesis, characteristics, and functions of eccDNA. Moreover, we emphasized the role of eccDNA during tumor pathogenesis and malignant evolution. Therapeutically, we summarized potential clinical applications that target aberrant eccDNA in multiple diseases.
Collapse
|
10
|
Wu X, Li P, Yimiti M, Ye Z, Fang X, Chen P, Gu Z. Identification and Characterization of Extrachromosomal Circular DNA in Plasma of Lung Adenocarcinoma Patients. Int J Gen Med 2022; 15:4781-4791. [PMID: 35592538 PMCID: PMC9113459 DOI: 10.2147/ijgm.s363425] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xiaoqiong Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Pu Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Maimaitiaili Yimiti
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhiqiu Ye
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xuqian Fang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Peizhan Chen, Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201821, People’s Republic of China, Tel +86 13918550745, Email
| | - Zhidong Gu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Laboratory Medicine, Ruijin-Hainan Hospital, Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Shanghai, People’s Republic of China
- Correspondence: Zhidong Gu, Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201821, People’s Republic of China, Tel +86 13801653534, Email
| |
Collapse
|
11
|
Zuo S, Yi Y, Wang C, Li X, Zhou M, Peng Q, Zhou J, Yang Y, He Q. Extrachromosomal Circular DNA (eccDNA): From Chaos to Function. Front Cell Dev Biol 2022; 9:792555. [PMID: 35083218 PMCID: PMC8785647 DOI: 10.3389/fcell.2021.792555] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/16/2021] [Indexed: 11/15/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a type of double-stranded circular DNA that is derived and free from chromosomes. It has a strong heterogeneity in sequence, length, and origin and has been identified in both normal and cancer cells. Although many studies suggested its potential roles in various physiological and pathological procedures including aging, telomere and rDNA maintenance, drug resistance, and tumorigenesis, the functional relevance of eccDNA remains to be elucidated. Recently, due to technological advancements, accumulated evidence highlighted that eccDNA plays an important role in cancers by regulating the expression of oncogenes, chromosome accessibility, genome replication, immune response, and cellular communications. Here, we review the features, biogenesis, physiological functions, potential functions in cancer, and research methods of eccDNAs with a focus on some open problems in the field and provide a perspective on how eccDNAs evolve specific functions out of the chaos in cells.
Collapse
Affiliation(s)
- Shanru Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yihu Yi
- Department of Orthopaedics, Wuhan Union Hospital, Wuhan, China
| | - Chen Wang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xueguang Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Mingqing Zhou
- Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan People's Hospital, Zhongshan, China
| | - Qiyao Peng
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine and Innovation Centre for Science and Technology, Hunan University of Chinese Medicine, Changsa, China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Junhua Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yide Yang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Quanyuan He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
12
|
Ling X, Han Y, Meng J, Zhong B, Chen J, Zhang H, Qin J, Pang J, Liu L. Small extrachromosomal circular DNA (eccDNA): major functions in evolution and cancer. Mol Cancer 2021; 20:113. [PMID: 34479546 PMCID: PMC8414719 DOI: 10.1186/s12943-021-01413-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) refers to a type of circular DNA that originate from but are likely independent of chromosomes. Due to technological advancements, eccDNAs have recently emerged as multifunctional molecules with numerous characteristics. The unique topological structure and genetic characteristics of eccDNAs shed new light on the monitoring, early diagnosis, treatment, and prediction of cancer. EccDNAs are commonly observed in both normal and cancer cells and function via different mechanisms in the stress response to exogenous and endogenous stimuli, aging, and carcinogenesis and in drug resistance during cancer treatment. The structural diversity of eccDNAs contributes to the function and numerical diversity of eccDNAs and thereby endows eccDNAs with powerful roles in evolution and in cancer initiation and progression by driving genetic plasticity and heterogeneity from extrachromosomal sites, which has been an ignored function in evolution in recent decades. EccDNAs show great potential in cancer, and we summarize the features, biogenesis, evaluated functions, functional mechanisms, related methods, and clinical utility of eccDNAs with a focus on their role in evolution and cancer.
Collapse
Affiliation(s)
- Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - He Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Jiheng Qin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Jing Pang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| |
Collapse
|
13
|
Wang T, Zhang H, Zhou Y, Shi J. Extrachromosomal circular DNA: a new potential role in cancer progression. J Transl Med 2021; 19:257. [PMID: 34112178 PMCID: PMC8194206 DOI: 10.1186/s12967-021-02927-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is considered a circular DNA molecule that exists widely in nature and is independent of conventional chromosomes. eccDNA can be divided into small polydispersed circular DNA (spcDNA), telomeric circles (t-circles), microDNA, and extrachromosomal DNA (ecDNA) according to its size and sequence. Multiple studies have shown that eccDNA is the product of genomic instability, has rich and important biological functions, and is involved in the occurrence of many diseases, including cancer. In this review, we focus on the discovery history, formation process, characteristics, and physiological functions of eccDNAs; the potential functions of various eccDNAs in human cancer; and the research methods employed to study eccDNA.
Collapse
Affiliation(s)
- Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China. .,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
14
|
Shiras A, Mondal A. Extrachromosomal DNA: Redefining the pathogenesis of glioblastoma. Biochim Biophys Acta Rev Cancer 2021; 1876:188551. [PMID: 33892052 DOI: 10.1016/j.bbcan.2021.188551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma is an incurable most prevalent primary malignant brain tumor in adults. Surgery followed by radiotherapy with concomitant chemotherapy is the standard of care in patients with glioblastoma. Although, prognosis remains poor with a median survival in the range of 12-15 months. Over the decades of research has identified the gene mutation, angiogenesis, cell signaling for the development novel therapeutics. However, recent understanding on extrachromosomal DNA (ecDNA) put extra-layer of complexity in glioblastoma pathogenesis. These ecDNAs are present in significantly higher copy number in the nucleus of the cancer cells and contains several oncogenes which are instrumental for intra-tumoral genetic heterogeneity, accelerated tumor evolution and therapy resistance. In this review, we will discuss the current understanding on biogenesis, disease progression and potential therapeutic implications of ecDNAs in glioblastoma.
Collapse
Affiliation(s)
- Anjali Shiras
- Lab-03, Old Building, National Centre for Cell Science, Pune, India
| | - Abir Mondal
- Department of Life Sciences, Shiv Nadar University, India.
| |
Collapse
|
15
|
Wang M, Chen X, Yu F, Ding H, Zhang Y, Wang K. Extrachromosomal Circular DNAs: Origin, formation and emerging function in Cancer. Int J Biol Sci 2021; 17:1010-1025. [PMID: 33867825 PMCID: PMC8040306 DOI: 10.7150/ijbs.54614] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
The majority of cellular DNAs in eukaryotes are organized into linear chromosomes. In addition to chromosome DNAs, genes also reside on extrachromosomal elements. The extrachromosomal DNAs are commonly found to be circular, and they are referred to as extrachromosomal circular DNAs (eccDNAs). Recent technological advances have enriched our knowledge of eccDNA biology. There is currently increasing concern about the connection between eccDNA and cancer. Gene amplification on eccDNAs is prevalent in cancer. Moreover, eccDNAs commonly harbor oncogenes or drug resistance genes, hence providing a growth or survival advantage to cancer cells. eccDNAs play an important role in tumor heterogeneity and evolution, facilitating tumor adaptation to challenging circumstances. In addition, eccDNAs have recently been identified as cell-free DNAs in circulating system. The altered level of eccDNAs is observed in cancer patients relative to healthy controls. Particularly, eccDNAs are associated with cancer progression and poor outcomes. Thus, eccDNAs could be useful as novel biomarkers for the diagnosis and prognosis of cancer. In this review, we summarize current knowledge regarding the formation, characteristics and biological importance of eccDNAs, with a focus on the molecular mechanisms associated with their roles in cancer progression. We also discuss their potential applications in the detection and treatment of cancer. A better understanding of the functional role of eccDNAs in cancer would facilitate the comprehensive analysis of molecular mechanisms involved in cancer pathogenesis.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
16
|
Liang X, Chen H, Li L, An R, Komiyama M. Ring-Structured DNA and RNA as Key Players In Vivoand In Vitro. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
17
|
Xing J, Ning Q, Tang D, Mo Z, Lei X, Tang S. Progress on the role of extrachromosomal DNA in tumor pathogenesis and evolution. Clin Genet 2020; 99:503-512. [PMID: 33314031 DOI: 10.1111/cge.13896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022]
Abstract
The amplification of oncogenes on extrachromosomal DNA (ecDNA) provides a new mechanism for cancer cells to adapt to the changes in the tumor microenvironment and accelerate tumor evolution. These extrachromosomal elements contain oncogenes, and their chromatin structures are more open than linear chromosomes and therefore have stronger oncogene transcriptional activity. ecDNA always contains enhancer elements, and genes on ecDNA can be reintegrated into the linear genome to regulate the selective expression of genes. ecDNA lacks centromeres, and the inheritance from the parent cell to the daughter cell is uneven. This non-Mendelian genetic mechanism results in the increase of tumor heterogeneity with daughter cells that can gain a competitive advantage through a large number of copies of oncogenes. ecDNA promotes tumor invasiveness and provides a mechanism for drug resistance associated with poorer survival outcomes. Recent studies have demonstrated that the overall proportion of ecDNA in tumors is approximately 40%. In this review, we summarize the current knowledge of ecDNA in the field of tumorigenesis and development.
Collapse
Affiliation(s)
- Jichen Xing
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang, China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Diya Tang
- Department of Medical Oncology, Xiangya Hospital Central South University, Changsha, China
| | - Zhongcheng Mo
- Institute of Basic Medical Sciences, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaoyong Lei
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang, China
| | - Shengsong Tang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang, China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
18
|
Guo C, Song C, Zhang J, Gao Y, Qi Y, Zhao Z, Yuan C. Revisiting chemoresistance in ovarian cancer: Mechanism, biomarkers, and precision medicine. Genes Dis 2020; 9:668-681. [PMID: 35782973 PMCID: PMC9243319 DOI: 10.1016/j.gendis.2020.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Among the gynecological cancers, ovarian cancer is the most lethal. Its therapeutic options include a combination of chemotherapy with platinum-based compounds and cytoreductive surgery. Most ovarian cancer patients exhibit an initial response to platinum-based therapy, however, platinum resistance has led to up to 80% of this responsive cohort becoming refractory. Ovarian cancer recurrence and drug resistance to current chemotherapeutic options is a global challenge. Chemo-resistance is a complex phenomenon that involves multiple genes and signal transduction pathways. Therefore, it is important to elucidate on the underlying molecular mechanisms involved in chemo-resistance. This inform decisions regarding therapeutic management and help in the identification of novel and effective drug targets. Studies have documented the individual biomarkers of platinum-resistance in ovarian cancer that are potential therapeutic targets. This review summarizes the molecular mechanisms of platinum resistance in ovarian cancer, novel drug targets, and clinical outcomes.
Collapse
Affiliation(s)
- Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chaoying Song
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Jiali Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yuying Qi
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Zongyao Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, PR China
- Corresponding author. College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
19
|
Wei J, Wu C, Meng H, Li M, Niu W, Zhan Y, Jin L, Duan Y, Zeng Z, Xiong W, Li G, Zhou M. The biogenesis and roles of extrachromosomal oncogene involved in carcinogenesis and evolution. Am J Cancer Res 2020; 10:3532-3550. [PMID: 33294253 PMCID: PMC7716155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023] Open
Abstract
More and more extrachromosomal DNA (ecDNA) was found in human tumor cells in recent years, which has a high copy number in tumors and changes the expression of oncogenes, thus different from normal chromosomal DNA. These circular structures were identified to originate from chromosomes, and play critical roles in rapid carcinogenesis, tumor evolution and multidrug resistance. Therefore, this review mostly focuses on the biogenesis and regulation of extrachromosomal oncogene in ecDNA as well as its function and mechanism in tumors, which are of great significance for our comprehensive understanding of the role of ecDNA in tumor carcinogenic mechanism and are expected to provide ecDNA with the potential to be a new molecular target for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Chunchun Wu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Hanbing Meng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Weihong Niu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Yuting Zhan
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Long Jin
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|
20
|
Liao Z, Jiang W, Ye L, Li T, Yu X, Liu L. Classification of extrachromosomal circular DNA with a focus on the role of extrachromosomal DNA (ecDNA) in tumor heterogeneity and progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188392. [PMID: 32735964 DOI: 10.1016/j.bbcan.2020.188392] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/26/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Although the eukaryotic genome is mainly comprised of linear chromosomal DNA, genes can also be found outside of chromosomes. The unconventional presence of extrachromosomal genes is usually found to be circular, and these structures are named extrachromosomal circular DNA (eccDNA), which are often observed in cancer cells. Various types of eccDNA including small polydispersed DNA (spcDNA), telomeric cirlces, microDNA, etc. have been discovered. Among these eccDNA, extrachromosomal DNA (ecDNA), which encompasses the full spectrum of large, gene-containing extrachromosomal particles, has regained great research interest due to recent technological advances such as next-generation sequencing and super-resolution microscopy. In this review, we summarize the different types of eccDNA and discuss the role of eccDNA, especially ecDNA in tumor heterogeneity and progression. Additionally, we discuss some possible future investigative directions related to ecDNA biogenesis and its clinical application.
Collapse
Affiliation(s)
- Zhenyu Liao
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wang Jiang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Paulsen T, Kumar P, Koseoglu MM, Dutta A. Discoveries of Extrachromosomal Circles of DNA in Normal and Tumor Cells. Trends Genet 2018; 34:270-278. [PMID: 29329720 PMCID: PMC5881399 DOI: 10.1016/j.tig.2017.12.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/24/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
While the vast majority of cellular DNA in eukaryotes is contained in long linear strands in chromosomes, we have long recognized some exceptions like mitochondrial DNA, plasmids in yeasts, and double minutes (DMs) in cancer cells where the DNA is present in extrachromosomal circles. In addition, specialized extrachromosomal circles of DNA (eccDNA) have been noted to arise from repetitive genomic sequences like telomeric DNA or rDNA. Recently eccDNA arising from unique (nonrepetitive) DNA have been discovered in normal and malignant cells, raising interesting questions about their biogenesis, function and clinical utility. Here, we review recent results and future directions of inquiry on these new forms of eccDNA.
Collapse
MESH Headings
- Animals
- Chromosomes, Human/chemistry
- Chromosomes, Human/metabolism
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Chloroplast/metabolism
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA, Kinetoplast/chemistry
- DNA, Kinetoplast/genetics
- DNA, Kinetoplast/metabolism
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Eukaryotic Cells/chemistry
- Eukaryotic Cells/metabolism
- Humans
- Kinetoplastida/genetics
- Kinetoplastida/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplastic Cells, Circulating/chemistry
- Neoplastic Cells, Circulating/metabolism
- Plants/genetics
- Plants/metabolism
- Plasmids/chemistry
- Plasmids/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Telomere/chemistry
- Telomere/metabolism
Collapse
Affiliation(s)
- Teressa Paulsen
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - M Murat Koseoglu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
22
|
Cohen S, Agmon N, Sobol O, Segal D. Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells. Mob DNA 2010; 1:11. [PMID: 20226008 PMCID: PMC3225859 DOI: 10.1186/1759-8753-1-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 03/08/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Extrachomosomal circular DNA (eccDNA) is ubiquitous in eukaryotic organisms and was detected in every organism tested, including in humans. A two-dimensional gel electrophoresis facilitates the detection of eccDNA in preparations of genomic DNA. Using this technique we have previously demonstrated that most of eccDNA consists of exact multiples of chromosomal tandemly repeated DNA, including both coding genes and satellite DNA. RESULTS Here we report the occurrence of eccDNA in every tested human cell line. It has heterogeneous mass ranging from less than 2 kb to over 20 kb. We describe eccDNA homologous to human alpha satellite and the SstI mega satellite. Moreover, we show, for the first time, circular multimers of the human 5S ribosomal DNA (rDNA), similar to previous findings in Drosophila and plants. We further demonstrate structures that correspond to intermediates of rolling circle replication, which emerge from the circular multimers of 5S rDNA and SstI satellite. CONCLUSIONS These findings, and previous reports, support the general notion that every chromosomal tandem repeat is prone to generate eccDNA in eukryoric organisms including humans. They suggest the possible involvement of eccDNA in the length variability observed in arrays of tandem repeats. The implications of eccDNA on genome biology may include mechanisms of centromere evolution, concerted evolution and homogenization of tandem repeats and genomic plasticity.
Collapse
Affiliation(s)
- Sarit Cohen
- Department of Molecular Microbiology & Biotechnology Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | | | | | |
Collapse
|
23
|
Maeda T, Sakoda S, Suzuki T, Makino N. Somatic DNA recombination in the brain. Can J Physiol Pharmacol 2006; 84:319-24. [PMID: 16902579 DOI: 10.1139/y05-099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Possible somatic DNA recombination in the brain has been investigated by attempting to capture direct or indirect evidence of it. Until recently, the biological significance of the DNA event, the genes is involved in the recombination, or even whether the event actually occurs in the brain has remained unclear. The DNA-rearranged locus-oriented approach and the recombination activity-oriented approach have mutually contributed to the elucidation of the biological features of extra-immune system somatic DNA recombination. There have been only 2 loci proposed for the candidate, one is a repetitive sequence and the other DNA recombination is nonrepetitive locus. This review states conventional concepts and discussions chronologically and finally to the newest aspects of DNA rearrangement in the brain.
Collapse
Affiliation(s)
- Toyoki Maeda
- Division of Molecular and Clinical Gerontology, Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Oita, Japan.
| | | | | | | |
Collapse
|
24
|
Maeda T, Chijiiwa Y, Tsuji H, Sakoda S, Tani K, Suzuki T. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain. Biochem Biophys Res Commun 2004; 319:1117-23. [PMID: 15194483 DOI: 10.1016/j.bbrc.2004.05.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Indexed: 11/18/2022]
Abstract
In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis.
Collapse
Affiliation(s)
- Toyoki Maeda
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Higashi-ku, Maidashi, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Cohen S, Lavi S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol Cell Biol 1996; 16:2002-14. [PMID: 8628266 PMCID: PMC231187 DOI: 10.1128/mcb.16.5.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Extrachromosomal circular DNA molecules are associated with genomic instability, and circles containing inverted repeats were suggested to be the early amplification products. Here we present for the first time the use of neutral-neutral two-dimensional (2D) gel electrophoresis as a technique for the identification, isolation, and characterization of heterogeneous populations of circular molecules. Using this technique, we demonstrated that in N-methyl-N'-nitro-N-nitrosoguanidine-treated simian virus 40-transformed Chinese hamster cells (CO60 cells), the viral sequences are amplified as circular molecules of various sizes. The supercoiled circular fraction was isolated and was shown to contain molecules with inverted repeats. 2D gel analysis of extrachromosomal DNA from CHO cells revealed circular molecules containing highly repetitive DNA which are similar in size to the simian virus 40-amplified molecules. Moreover, enhancement of the amount of circular DNA was observed upon N-methyl-N'-nitro-N-nitrosoguanidine treatment of CHO cells. The implications of these findings regarding the processes of gene amplification and genomic instability and the possible use of the 2D gel technique to study these phenomena are discussed.
Collapse
MESH Headings
- Animals
- CHO Cells
- Carcinogens/toxicity
- Cell Line
- Cell Line, Transformed
- Cell Transformation, Viral
- Cricetinae
- DNA Replication/drug effects
- DNA, Circular/biosynthesis
- DNA, Circular/chemistry
- DNA, Circular/ultrastructure
- DNA, Viral/biosynthesis
- DNA, Viral/chemistry
- DNA, Viral/ultrastructure
- Methylnitronitrosoguanidine/toxicity
- Microscopy, Electron
- Models, Structural
- Nucleic Acid Conformation
- Repetitive Sequences, Nucleic Acid
- Simian virus 40/genetics
Collapse
Affiliation(s)
- S Cohen
- Department of Cell Research and Immunology, Tel Aviv University, Israel
| | | |
Collapse
|
26
|
Summers MD, Dib-Hajj SD. Polydnavirus-facilitated endoparasite protection against host immune defenses. Proc Natl Acad Sci U S A 1995; 92:29-36. [PMID: 7816835 PMCID: PMC42812 DOI: 10.1073/pnas.92.1.29] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The polydnavirus of Campoletis sonorensis has evolved with an unusual life cycle in which the virus exists as an obligate symbiont with the parasite insect and causes significant physiological and developmental alterations in the parasite's host. The segmented polydnavirus genome consists of double-stranded superhelical molecules; each segment is apparently integrated into the chromosomal DNA of each male and female wasp. The virus replicates in the nucleus of calyx cells and is secreted into the oviduct. When the virus is transferred to the host insect during oviposition, gene expression induces host immunosuppression and developmental arrest, which ensures successful development of the immature endoparasite. In the host, polydnavirus expression is detected by 2 hr and during endoparasite development. Most of the abundantly expressed viral genes expressed very early after parasitization belong to multigene families. Among these families, the "cysteine-rich" gene family is the most studied, and it may be important in inducing host manifestations resulting in parasite survival. This gene family is characterized by a similar gene structure with introns at comparable positions within the 5' untranslated sequence and just 5' to a specific cysteine codon (*C) within a cysteine motif, C-*C-CC-C-C. Another unusual feature is that the nucleotide sequences of introns 2 in the subfamily WHv1.0/WHv1.6 are more conserved than those of the flanking exons. The structures of these viral genes and possible functions for their encoded protein are considered within the context of their endoparasite and virus strategy for genetic adaptation and successful parasitization.
Collapse
Affiliation(s)
- M D Summers
- Department of Entomology, Texas A & M University, College Station 77843
| | | |
Collapse
|
27
|
Lou Z, Kastury K, Crilley P, Lasota J, Druck T, Croce CM, Huebner K. Characterization of human bone marrow-derived closed circular DNA clones. Genes Chromosomes Cancer 1993; 7:15-27. [PMID: 7688551 DOI: 10.1002/gcc.2870070104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Because of interest in mechanisms of recombination involved in chromosomal deletions in neoplastic disease, and their relation to possible rearrangements in normal tissues, we are studying circular DNA molecules from human tissue with a long-term goal of investigating them as possible by-products of physiologically relevant intrachromosomal recombination events. Covalently closed circular (ccc) DNA from human bone marrow was cloned in bacteriophage vectors, and fourteen clones chosen randomly from the cccDNA-derived library were characterized. Five clones originated from chromosome-specific centromeric alpha-satellite DNA; two clones carried highly repetitive sequences probably derived from interspersed repetitive elements; six clones were derived from single-copy chromosome-specific sequences which detected homologous rodent sequences; and one clone (EPM10) was derived from a small chromosome 11-specific sequence family which localized to chromosome regions 11cen and 11q14. Oligonucleotide primers derived from the cccDNA clones were used in polymerase chain reaction studies to show that (1) the EPM10 clone carried the circular junction, (2) several of the single-copy products could be detected in three different bone marrow cccDNA preparations, and (3) the Alu-PCR profile for bone marrow cccDNA showed distinct bands which were similar in four bone marrow cccDNA preparations.
Collapse
MESH Headings
- Acute Disease
- Adult
- Base Sequence
- Bone Marrow/pathology
- Chromosome Banding
- Chromosome Deletion
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- DNA, Circular/genetics
- DNA, Circular/isolation & purification
- DNA, Satellite/genetics
- DNA, Satellite/isolation & purification
- Female
- Gene Library
- Gene Rearrangement
- Humans
- Karyotyping
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Male
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- Polymerase Chain Reaction/methods
- Recombination, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- Z Lou
- Jefferson Cancer Institute, Thomas Jefferson Medical College, Philadelphia, PA 19107
| | | | | | | | | | | | | |
Collapse
|
28
|
Motejlek K, Schindler D, Assum G, Krone W. Increased amount and contour length distribution of small polydisperse circular DNA (spcDNA) in Fanconi anemia. Mutat Res 1993; 293:205-14. [PMID: 7679470 DOI: 10.1016/0921-8777(93)90071-n] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small polydisperse circular DNA (spcDNA) in Fanconi anemia (FA) was analyzed from cultured fibroblast-like cells by electron microscopy. Application of the mica-press adsorption technique for the semi-quantitative determination of spcDNA amounts to three FA and three normal control skin-derived fibroblast strains revealed 85-fold increased levels of spcDNA in the FA cells. An even higher excess over controls was suggested when the FA fibroblasts were propagated for up to 11 serial in vitro passages, consistent with the short replicative life-span of primary FA cells and their rapid transition into a poorly dividing state, in which spcDNA reportedly further increases. In addition, contour length distributions of gradient-purified spcDNA preparations from five FA fibroblast strains were compared with those from five normal control strains. Mean spcDNA contour lengths were significantly greater in the FA than in the control cells. The reported findings of increased spcDNA amounts and sizes in FA coincide with a similar association of chromosome instability and abnormal spcDNA formation previously observed in cultured cells derived from angiofibromas in tuberous sclerosis. Circumstantial evidence from the present study in the paradigmatic chromosome breakage syndrome FA further supports the suggestion that a common mechanism underlies chromosome instability and the surplus generation of spcDNA. Notably, this apparent mechanism is functional in homonuclear primary cell strains with a distinct inherited basis of their chromosome instability, and is not restricted to heteroploid and neoplastoid cell lines.
Collapse
Affiliation(s)
- K Motejlek
- Abteilung Humangenetik, Universität Ulm, Germany
| | | | | | | |
Collapse
|
29
|
Abstract
The ability of eukaryotic organisms of the same genotype to vary in developmental pattern or in phenotype according to varying environmental conditions is frequently associated with changes in extrachromosomal circular DNA (eccDNA) sequences. Although variable in size, sequence complexity, and copy number, the best characterized of these eccDNAs contain sequences homologous to chromosomal DNA which indicates that they might arise from genetic rearrangements, such as homologous recombination. The abundance of repetitive sequence families in eccDNAs is consistent with the notion that tandem repeats and dispersed repetitive elements participate in intrachromosomal recombination events. There is also evidence that a fraction of this DNA has characteristics similar to retrotransposons. It has been suggested that eccDNAs could reflect altered patterns of gene expression or an instability of chromosomal sequences during development and aging. This article reviews some of the findings and concepts regarding eccDNAs and sequence plasticity in eukaryotic genomes.
Collapse
Affiliation(s)
- J W Gaubatz
- Department of Biochemistry, University of South Alabama College of Medicine, Mobile 36688
| |
Collapse
|
30
|
Gaubatz JW, Flores SC. Purification of eucaryotic extrachromosomal circular DNAs using exonuclease III. Anal Biochem 1990; 184:305-10. [PMID: 2327574 DOI: 10.1016/0003-2697(90)90685-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A method for the isolation of eucaryotic extrachromosomal circular (ecc) DNA is described. Exonuclease III was used to preparatively digest linear and open circular forms of DNA; the resultant exonuclease-resistant molecules were then characterized by buoyant density gradient sedimentation and were found to be essentially covalently closed circular DNA. The efficiency of the exonuclease method was compared to ultracentrifugation techniques and was found to give yields greater than those obtained by two or more equilibrium density gradients. The utility of the exonuclease III technique was determined by purifying eccDNAs from mouse liver, brain, heart, and kidney tissues. The results showed that there are tissue-related differences in eccDNA content.
Collapse
Affiliation(s)
- J W Gaubatz
- Department of Biochemistry, University of South Alabama, College of Medicine, Mobile 36688
| | | |
Collapse
|
31
|
Gaubatz JW, Flores SC. Tissue-specific and age-related variations in repetitive sequences of mouse extrachromosomal circular DNAs. Mutat Res 1990; 237:29-36. [PMID: 2320037 DOI: 10.1016/0921-8734(90)90029-q] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extrachromosomal circular (ecc) DNA was isolated from mouse brain, liver, and heart tissues at different ages. To determine the abundance of repetitive sequences in eccDNAs, preparations were probed for short-interspersed (B1 and B2), long-interspersed (L1), endogenous retroviral-like (IAP), and tandemly repeated satellite sequences (SAT) of the mouse genome. Together these sequence families comprise approximately 15% of the mouse genome. The hybridization results showed that each tissue had a characteristic pattern of repetitive sequence elements in eccDNAs, and the abundance of repetitive sequences changed as a function of age. Repetitive sequences decreased in liver and brain eccDNAs from 1 month to 8 months of age but appeared to remain stable thereafter. In contrast, repetitive sequence families in heart eccDNAs were constant from 1 month to 16 months of age but declined in 24-month-old mice. The present studies indicate that extrachromosomal sequences exhibit greater flexibility than chromosomal sequences.
Collapse
Affiliation(s)
- J W Gaubatz
- Department of Biochemistry, University of South Alabama, College of Medicine, Mobile 36688
| | | |
Collapse
|
32
|
Adair GM, Nairn RS, Wilson JH, Seidman MM, Brotherman KA, MacKinnon C, Scheerer JB. Targeted homologous recombination at the endogenous adenine phosphoribosyltransferase locus in Chinese hamster cells. Proc Natl Acad Sci U S A 1989; 86:4574-8. [PMID: 2734308 PMCID: PMC287313 DOI: 10.1073/pnas.86.12.4574] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have developed a system that permits analysis of targeted homologous recombination at an endogenous, chromosomal gene locus in cultured mammalian cells. Using a hemizygous, adenine phosphoribosyltransferase (APRT)-deficient, Chinese hamster ovary (CHO) cell mutant as a transfection recipient, we have demonstrated correction of a nonrevertible deletion mutation by targeted homologous recombination. Transfection with a plasmid carrying a fragment of the APRT gene yielded APRT+ recombinants at a frequency of approximately 4.1 x 10(-7). The ratio of targeted recombination to nontargeted integrations of plasmid sequences was approximately 1:4000. Analysis of 31 independent APRT+ recombinants revealed conversions of the endogenous APRT gene, targeted integration at the APRT locus, and a third class of events in which the plasmid donor APRT fragment was converted to a full-length, functional gene.
Collapse
Affiliation(s)
- G M Adair
- University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957
| | | | | | | | | | | | | |
Collapse
|
33
|
Sunnerhagen P, Sjöberg RM, Bjursell G. Increase of extrachromosomal circular DNA in mouse 3T6 cells on perturbation of DNA synthesis: implications for gene amplification. SOMATIC CELL AND MOLECULAR GENETICS 1989; 15:61-70. [PMID: 2492679 DOI: 10.1007/bf01534670] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have analyzed the amount of extrachromosomal double-stranded covalently closed circular nonmitochondrial DNA in mouse 3T6 cells by Southern blotting and electron microscopy. Treatment with 7,1-dimethylbenz[a]anthracene, known to promote amplification of integrated SV40 genomes, elevated the amount of circular DNA. Inhibition of DNA synthesis with hydroxyurea, earlier shown to enhance amplification of the cellular dihydrofolate reductase gene, resulted in yet higher levels. Thus, elevation of the frequency of gene amplification and generation of extrachromosomal circular DNA seem to accompany each other in the situations studied in this paper. Two other DNA synthesis inhibitors, aphidicolin and thymidine, had markedly lesser effects on circular DNA. The significance of these findings for the mechanism of gene amplification is discussed.
Collapse
Affiliation(s)
- P Sunnerhagen
- Department of Medical Biochemistry, University of Göteborg, Sweden
| | | | | |
Collapse
|
34
|
Pont G, Degroote F, Picard G. Illegitimate recombination in the histone multigenic family generates circular DNAs in Drosophila embryos. Nucleic Acids Res 1988; 16:8817-33. [PMID: 3140219 PMCID: PMC338637 DOI: 10.1093/nar/16.18.8817] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
From extrachromosomal covalently closed circular DNA molecules purified from Drosophila melanogaster embryos, we have isolated 24 clones homologous to the histone tandemly repeated gene family. Some of the clones harbor one of the two main types of genomic repeated units of 4.8 and 5.0 kb. and probably result from homologous recombination. The remaining clones have a size ranging from 0.2 to 2.5 kb. and most of them carry a single fragment of the repeated unit. Nucleotide sequences of the junction region of six of these clones indicate they are generated by illegitimate recombination between short (8-15 bp.) imperfect direct repeats. The data suggest that most of the histone homologous circular DNA molecules are deleted histone units.
Collapse
Affiliation(s)
- G Pont
- Laboratoire de Génétique, UA 360 CNRS, Université Blaise Pascal-Clermont-Fd. II, Aubière, France
| | | | | |
Collapse
|
35
|
Ravel-Chapuis P. Nuclear rDNA in Euglena gracilis: paucity of chromosomal units and replication of extrachromosomal units. Nucleic Acids Res 1988; 16:4801-10. [PMID: 3133636 PMCID: PMC336697 DOI: 10.1093/nar/16.11.4801] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Copy number of chromosomal rDNA units was investigated in two Euglena gracilis wild-type strains. It was established by dot blot analysis that these strains possess about four integrated units per haploid genome. This is the first example of a photosynthetic cell with only a few chromosomal ribosomal genes. In addition to these units, Euglena has 800 to 4000 extrachromosomal rDNA units. Electron microscopy revealed that these free rDNA circles bear a replication origin, and intermediates of replication show a D-loop structure.
Collapse
Affiliation(s)
- P Ravel-Chapuis
- Université Lyon I, Laboratoire de Biologie Cellulaire, UA CNRS 92, Villeurbanne, France
| |
Collapse
|
36
|
Flores SC, Sunnerhagen P, Moore TK, Gaubatz JW. Characterization of repetitive sequence families in mouse heart small polydisperse circular DNAs: age-related studies. Nucleic Acids Res 1988; 16:3889-906. [PMID: 3375074 PMCID: PMC336563 DOI: 10.1093/nar/16.9.3889] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Using alkaline denaturation-renaturation, exonuclease III digestion and density gradient centrifugations, we have isolated covalently closed circular DNA (cccDNA) molecules from 1-, 8-, 16-, and 24-month C57BL/6 mouse heart tissues. Electron microscopic analyses demonstrated that all these preparations contained small polydisperse circular DNAs (spcDNAs). spcDNAs showed similar size distributions at all ages, but more discrete size classes and slightly larger circles were observed in the 24-month heart spcDNA preparations. Based upon the final yields of spcDNAs, there appeared to be no age-related changes in the quantity of these circular molecules in vivo. Furthermore, [3H]-pBR322 recovery studies revealed no endogenous factors that might have affected the yield of spcDNAs from young and old tissues. To determine if there were any age-related changes in the quantity of repetitive sequences in spcDNAs, we probed heart spcDNAs with B1, B2, IAP, L1 and satellite sequences of the mouse genome. The hybridization results showed that these sequence families were differentially represented at all ages in spcDNAs. B2 sequences were the highest across all the age groups while L1 sequences were the lowest. The quantity of B1-, B2-, IAP-, and L1-spcDNAs appeared to decrease at 24-months. Satellite sequences appeared to decrease from 1-month to 8-months, but no change beyond 8-months.
Collapse
Affiliation(s)
- S C Flores
- Department of Biochemistry, University of South Alabama, College of Medicine, Mobile 36688
| | | | | | | |
Collapse
|
37
|
Kunisada T, Yamagishi H. Sequence organization of repetitive sequences enriched in small polydisperse circular DNAs from HeLa cells. J Mol Biol 1987; 198:557-65. [PMID: 3430621 DOI: 10.1016/0022-2836(87)90199-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A total of 36 clones were randomly selected from a recombinant DNA library of small polydisperse circular DNA (spcDNA) molecules from HeLa cells and were shown to contain repetitive sequences of different reiteration frequencies that ranged from several hundred to several hundred thousand per genome. Sequencing of representative clones revealed tandem repeats of alphoid (alpha) satellite DNA, clustered repeats of the Alu family, KpnI family sequences, tandem repeats of an alpha satellite DNA specific to the X chromosome (alpha X), and A + T-rich segments carrying short stretches of poly(A) or poly(T). DNA rearrangement was frequently found in the repetitive sequences enriched in these spcDNA clones. Short regions of homology that were patchy and inverted were often found, especially at the novel joint where spcDNA sequences are circularized. The presence of these inverted repeats suggests that HeLa spcDNAs are formed by a mechanism that involves looping out of the spcDNA region and joining of the flanking DNA by illegitimate recombination.
Collapse
Affiliation(s)
- T Kunisada
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | |
Collapse
|
38
|
Flores SC, Moore TK, Gaubatz JW. Dispersed repetitive sequences of the mouse genome are differentially represented in extrachromosomal circular DNAs in vivo. Plasmid 1987; 17:257-60. [PMID: 2819911 DOI: 10.1016/0147-619x(87)90034-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Eukaryotic cells contain extrachromosomal circular (ecc) DNAs which are homologous to chromosomal sequences. We have isolated eccDNAs from whole tissues of C57BL/6 mice. Using hybridization techniques, we show that R-, MIF-, B1-, and B2-dispersed repetitive sequences of the mouse genome are differentially represented in heart, brain, and liver tissues. Moreover, we show that the relative abundance of B2 sequences in heart and liver eccDNAs is higher than the relative abundance of the other repetitive sequence families studied.
Collapse
|