1
|
Hermant C, Torres-Padilla ME. TFs for TEs: the transcription factor repertoire of mammalian transposable elements. Genes Dev 2021; 35:22-39. [PMID: 33397727 PMCID: PMC7778262 DOI: 10.1101/gad.344473.120] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, Hermant and Torres-Padilla summarize and discuss the transcription factors known to be involved in the sequence-specific recognition and transcriptional activation of specific transposable element families or subfamilies. Transposable elements (TEs) are genetic elements capable of changing position within the genome. Although their mobilization can constitute a threat to genome integrity, nearly half of modern mammalian genomes are composed of remnants of TE insertions. The first critical step for a successful transposition cycle is the generation of a full-length transcript. TEs have evolved cis-regulatory elements enabling them to recruit host-encoded factors driving their own, selfish transcription. TEs are generally transcriptionally silenced in somatic cells, and the mechanisms underlying their repression have been extensively studied. However, during germline formation, preimplantation development, and tumorigenesis, specific TE families are highly expressed. Understanding the molecular players at stake in these contexts is of utmost importance to establish the mechanisms regulating TEs, as well as the importance of their transcription to the biology of the host. Here, we review the transcription factors known to be involved in the sequence-specific recognition and transcriptional activation of specific TE families or subfamilies. We discuss the diversity of TE regulatory elements within mammalian genomes and highlight the importance of TE mobilization in the dispersal of transcription factor-binding sites over the course of evolution.
Collapse
Affiliation(s)
- Clara Hermant
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany.,Faculty of Biology, Ludwig-Maximilians Universität München, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Cervantes-Ayalc A, Ruiz Esparza-Garrido R, Velázquez-Flores MÁ. Long Interspersed Nuclear Elements 1 (LINE1): The chimeric transcript L1-MET and its involvement in cancer. Cancer Genet 2020; 241:1-11. [PMID: 31918342 DOI: 10.1016/j.cancergen.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 11/19/2022]
Abstract
Long interspersed nuclear elements 1 (LINE1) are non-LTR retrotransposons that represent the greatest remodeling force of the human genome during evolution. Genomically, LINE1 are constituted by a 5´ untranslated region (UTR), where the promoter regions are located, three open reading frames (ORF0, ORF1, and ORF2) and one 3´UTR, which has a poly(A) tail that harbors the short interspersed nuclear elements (SINEs) Alu and SVA. Although the intrinsic nature of LINE1 is to be copied and inserted into the genome, an increase in their mobility produces genomic instability. In response to this, the cell has "designed" many mechanisms controlling the retrotransposition levels of LINE1; however, alterations in these regulation systems can increase LINE1 mobility and the formation of chimeric genes. Evidence indicates that 988 human genes have LINE1 inserted in their sequence, resulting in the transcriptional control of genes by their own promoters, as well as by the LINE1 antisense promoter (ASP). To date, very little is known about the biologic impact of this and the L1-MET chimera is a more or less studied case. ASP hypomethylation has been observed in all studied cancer types, leading to increased L1-MET expression. In specific types of cancer, this L1-MET increase controls both low and high MET protein levels. It remains to be clarified if this protein product is a chimeric protein.
Collapse
Affiliation(s)
- Andrea Cervantes-Ayalc
- Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX 06720, México.
| | - Ruth Ruiz Esparza-Garrido
- Catedrática CONACyT, Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX 06720, México; Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX 06720, México.
| | - Miguel Ángel Velázquez-Flores
- Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX 06720, México; Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico.
| |
Collapse
|
3
|
Zhou M, Smith AD. Subtype classification and functional annotation of L1Md retrotransposon promoters. Mob DNA 2019; 10:14. [PMID: 31007728 PMCID: PMC6454616 DOI: 10.1186/s13100-019-0156-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND L1Md retrotransposons are the most abundant and active transposable elements in the mouse genome. The promoters of many L1Md retrotransposons are composed of tandem repeats called monomers. The number of monomers varies between retrotransposon copies, thus making it difficult to annotate L1Md promoters. Duplication of monomers contributes to the maintenance of L1Md promoters during truncation-prone retrotranspositions, but the associated mechanism remains unclear. Since the current classification of monomers is based on limited data, a comprehensive monomer annotation is needed for supporting functional studies of L1Md promoters genome-wide. RESULTS We developed a pipeline for de novo monomer detection and classification. Identified monomers are further classified into subtypes based on their sequence profiles. We applied this pipeline to genome assemblies of various rodent species. A major monomer subtype of the lab mouse was also found in other Mus species, implying that such subtype has emerged in the common ancestor of involved species. We also characterized the positioning pattern of monomer subtypes within individual promoters. Our analyses indicate that the subtype composition of an L1Md promoter can be used to infer its transcriptional activity during male germ cell development. CONCLUSIONS We identified subtypes for all monomer types using comprehensive data, greatly expanding the spectrum of monomer variants. The analysis of monomer subtype positioning provides evidence supporting both previously proposed models of L1Md promoter expansion. The transcription silencing of L1Md promoters differs between promoter types, which supports a model involving distinct suppressive pathways rather than a universal mechanism for retrotransposon repression in gametogenesis.
Collapse
Affiliation(s)
- Meng Zhou
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Andrew D. Smith
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, USA
| |
Collapse
|
4
|
Dai Q, Shen Y, Wang Y, Wang X, Francisco JC, Luo Z, Lin C. Striking a balance: regulation of transposable elements by Zfp281 and Mll2 in mouse embryonic stem cells. Nucleic Acids Res 2017; 45:12301-12310. [PMID: 29036642 PMCID: PMC5716208 DOI: 10.1093/nar/gkx841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/12/2017] [Indexed: 01/22/2023] Open
Abstract
Transposable elements (TEs) compose about 40% of the murine genome. Retrotransposition of active TEs such as LINE-1 (L1) tremendously impacts genetic diversification and genome stability. Therefore, transcription and transposition activities of retrotransposons are tightly controlled. Here, we show that the Krüppel-like zinc finger protein Zfp281 directly binds and suppresses a subset of retrotransposons, including the active young L1 repeat elements, in mouse embryonic stem (ES) cells. In addition, we find that Zfp281-regulated L1s are highly enriched for 5-hydroxymethylcytosine (5hmC) and H3K4me3. The COMPASS-like H3K4 methyltransferase Mll2 is the major H3K4me3 methylase at the Zfp281-regulated L1s and required for their proper expression. Our studies also reveal that Zfp281 functions partially through recruiting the L1 regulators DNA hydroxymethylase Tet1 and Sin3A, and restricting Mll2 at these active L1s, leading to their balanced expression. In summary, our data indicate an instrumental role of Zfp281 in suppressing the young active L1s in mouse ES cells.
Collapse
Affiliation(s)
- Qian Dai
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Yang Shen
- Bioinformatics Group, A*STAR Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Yan Wang
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xin Wang
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Joel Celio Francisco
- Transcriptional Control in Development and Disease Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Zhuojuan Luo
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Chengqi Lin
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.,Transcriptional Control in Development and Disease Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| |
Collapse
|
5
|
Murata Y, Bundo M, Ueda J, Kubota-Sakashita M, Kasai K, Kato T, Iwamoto K. DNA methylation and hydroxymethylation analyses of the active LINE-1 subfamilies in mice. Sci Rep 2017; 7:13624. [PMID: 29051587 PMCID: PMC5648895 DOI: 10.1038/s41598-017-14165-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/06/2017] [Indexed: 11/17/2022] Open
Abstract
Retrotransposon long interspersed nuclear element-1 (LINE-1) occupies a large proportion of the mammalian genome, comprising approximately 100,000 genomic copies in mice. Epigenetic status of the 5′ untranslated region (5′-UTR) of LINE-1 is critical for its promoter activity. DNA methylation levels in the 5′-UTR of human active LINE-1 subfamily can be measured by well-established methods, such as a pyrosequencing-based assay. However, because of the considerable sequence and structural diversity in LINE-1 among species, methods for such assays should be adapted for the species of interest. Here we developed pyrosequencing-based assays to examine methylcytosine (mC) and hydroxymethylcytosine (hmC) levels of the three active LINE-1 subfamilies in mice (TfI, A, and GfII). Using these assays, we quantified mC and hmC levels in four brain regions and four nonbrain tissues including tail, heart, testis, and ovary. We observed tissue- and subfamily-specific mC and hmC differences. We also found that mC levels were strongly correlated among different brain regions, but mC levels of the testis showed a poor correlation with those of other tissues. Interestingly, mC levels in the A and GfII subfamilies were highly correlated, possibly reflecting their close evolutionary relationship. Our assays will be useful for exploring the epigenetic regulation of the active LINE-1 subfamilies in mice.
Collapse
Affiliation(s)
- Yui Murata
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi City, Saitama, 332-0012, Japan
| | - Junko Ueda
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Mie Kubota-Sakashita
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.
| |
Collapse
|
6
|
Richardson SR, Gerdes P, Gerhardt DJ, Sanchez-Luque FJ, Bodea GO, Muñoz-Lopez M, Jesuadian JS, Kempen MJHC, Carreira PE, Jeddeloh JA, Garcia-Perez JL, Kazazian HH, Ewing AD, Faulkner GJ. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Genome Res 2017; 27:1395-1405. [PMID: 28483779 PMCID: PMC5538555 DOI: 10.1101/gr.219022.116] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
LINE-1 (L1) retrotransposons are a noted source of genetic diversity and disease in mammals. To expand its genomic footprint, L1 must mobilize in cells that will contribute their genetic material to subsequent generations. Heritable L1 insertions may therefore arise in germ cells and in pluripotent embryonic cells, prior to germline specification, yet the frequency and predominant developmental timing of such events remain unclear. Here, we applied mouse retrotransposon capture sequencing (mRC-seq) and whole-genome sequencing (WGS) to pedigrees of C57BL/6J animals, and uncovered an L1 insertion rate of ≥1 event per eight births. We traced heritable L1 insertions to pluripotent embryonic cells and, strikingly, to early primordial germ cells (PGCs). New L1 insertions bore structural hallmarks of target-site primed reverse transcription (TPRT) and mobilized efficiently in a cultured cell retrotransposition assay. Together, our results highlight the rate and evolutionary impact of heritable L1 retrotransposition and reveal retrotransposition-mediated genomic diversification as a fundamental property of pluripotent embryonic cells in vivo.
Collapse
Affiliation(s)
- Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,Invenra, Incorporated, Madison, Wisconsin 53719, USA
| | - Francisco J Sanchez-Luque
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Gabriela-Oana Bodea
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Martin Muñoz-Lopez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - J Samuel Jesuadian
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | | | - Patricia E Carreira
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | | | - Jose L Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain.,Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Haig H Kazazian
- Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,School of Biomedical Sciences.,Queensland Brain Institute, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
7
|
Jachowicz JW, Torres-Padilla ME. LINEs in mice: features, families, and potential roles in early development. Chromosoma 2015; 125:29-39. [PMID: 25975894 DOI: 10.1007/s00412-015-0520-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 01/08/2023]
Abstract
Approximately half of the mammalian genome is composed of repetitive elements, including LINE-1 (L1) elements. Because of their potential ability to transpose and integrate into other regions of the genome, their activation represents a threat to genome stability. Molecular pathways have emerged to tightly regulate and repress their transcriptional activity, including DNA methylation, histone modifications, and RNA pathways. It has become evident that Line-L1 elements are evolutionary diverse and dedicated repression pathways have been recently uncovered that discriminate between evolutionary old and young elements, with RNA-directed silencing mechanisms playing a prominent role. During periods of epigenetic reprogramming in development, specific classes of repetitive elements are upregulated, presumably due to the loss of most heterochromatic marks in this process. While we have learnt a lot on the molecular mechanisms that regulate Line-L1 expression over the last years, it is still unclear whether reactivation of Line-L1 after fertilization serves a functional purpose or it is a simple side effect of reprogramming.
Collapse
Affiliation(s)
- Joanna W Jachowicz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, 67404, Illkirch, France
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, 67404, Illkirch, France.
| |
Collapse
|
8
|
A novel indel in exon 9 of APC upregulates a 'skip exon 9' isoform and causes very severe familial adenomatous polyposis. Eur J Hum Genet 2013; 22:833-6. [PMID: 24169521 DOI: 10.1038/ejhg.2013.245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/23/2013] [Accepted: 09/27/2013] [Indexed: 11/08/2022] Open
Abstract
Germline mutation in the adenomatous polyposis coli (APC) gene causes the majority (80%) of familial adenomatous polyposis (FAP), an autosomal dominantly inherited form of colorectal cancer (CRC). Mutation in 5'end of exon 9 of APC usually results in an attenuated form of FAP (aFAP), characterized by later age of onset and fewer polyps. The presence of exon 9a, an in-frame isoform with exon 8 spliced to 3'end of exon 9, modulates any deleterious effect of the mutation. A third lowly expressed isoform that completely skips exon 9 is present in both healthy individuals and FAP patients. We report here an interesting case of a proband with an APC mutation in 5'end of exon 9 that presented with six synchronous advanced CRCs at age 37. The novel insertion-deletion (indel) at codon 409, c.1226-1229delTTTTinsAAA, caused upregulation of the 'skip exon 9' isoform, r934-1312del, resulting in a premature stop codon at exon 10 and a truncated protein that removed all of the β-catenin (CTNNB1) binding motifs, thus activating the downstream T-cell transcription factor (Tcf) pathway. Exon 9a isoform was concomitantly downregulated. This finding emphasizes the necessity of examining the various isoforms of exon 9 to avoid clinical mismanagement and counseling based on just the mutation site by genomic DNA sequencing alone.
Collapse
|
9
|
Sookdeo A, Hepp CM, McClure MA, Boissinot S. Revisiting the evolution of mouse LINE-1 in the genomic era. Mob DNA 2013; 4:3. [PMID: 23286374 PMCID: PMC3600994 DOI: 10.1186/1759-8753-4-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background LINE-1 (L1) is the dominant category of transposable elements in placental mammals. L1 has significantly affected the size and structure of all mammalian genomes and understanding the nature of the interactions between L1 and its mammalian host remains a question of crucial importance in comparative genomics. For this reason, much attention has been dedicated to the evolution of L1. Among the most studied elements is the mouse L1 which has been the subject of a number of studies in the 1980s and 1990s. These seminal studies, performed in the pre-genomic era when only a limited number of L1 sequences were available, have significantly improved our understanding of L1 evolution. Yet, no comprehensive study on the evolution of L1 in mouse has been performed since the completion of this genome sequence. Results Using the Genome Parsing Suite we performed the first evolutionary analysis of mouse L1 over the entire length of the element. This analysis indicates that the mouse L1 has recruited novel 5’UTR sequences more frequently than previously thought and that the simultaneous activity of non-homologous promoters seems to be one of the conditions for the co-existence of multiple L1 families or lineages. In addition the exchange of genetic information between L1 families is not limited to the 5’UTR as evidence of inter-family recombination was observed in ORF1, ORF2, and the 3’UTR. In contrast to the human L1, there was little evidence of rapid amino-acid replacement in the coiled-coil of ORF1, although this region is structurally unstable. We propose that the structural instability of the coiled-coil domain might be adaptive and that structural changes in this region are selectively equivalent to the rapid evolution at the amino-acid level reported in the human lineage. Conclusions The pattern of evolution of L1 in mouse shows some similarity with human suggesting that the nature of the interactions between L1 and its host might be similar in these two species. Yet, some notable differences, particularly in the evolution of ORF1, suggest that the molecular mechanisms involved in host-L1 interactions might be different in these two species.
Collapse
Affiliation(s)
- Akash Sookdeo
- Department of Biology, Queens College, the City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367-1597, USA.
| | | | | | | |
Collapse
|
10
|
Rosser JM, An W. L1 expression and regulation in humans and rodents. Front Biosci (Elite Ed) 2012; 4:2203-25. [PMID: 22202032 DOI: 10.2741/537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long interspersed elements type 1 (LINE-1s, or L1s) have impacted mammalian genomes at multiple levels. L1 transcription is mainly controlled by its 5' untranslated region (5'UTR), which differs significantly among active human and rodent L1 families. In this review, L1 expression and its regulation are examined in the context of human and rodent development. First, endogenous L1 expression patterns in three different species-human, rat, and mouse-are compared and contrasted. A detailed account of relevant experimental evidence is presented according to the source material, such as cell lines, tumors, and normal somatic and germline tissues from different developmental stages. Second, factors involved in the regulation of L1 expression at both transcriptional and posttranscriptional levels are discussed. These include transcription factors, DNA methylation, PIWI-interacting RNAs (piRNAs), RNA interference (RNAi), and posttranscriptional host factors. Similarities and differences between human and rodent L1s are highlighted. Third, recent findings from transgenic mouse models of L1 are summarized and contrasted with those from endogenous L1 studies. Finally, the challenges and opportunities for L1 mouse models are discussed.
Collapse
Affiliation(s)
- James M Rosser
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|
11
|
Montoya-Durango DE, Ramos KS. Retinoblastoma family of proteins and chromatin epigenetics: a repetitive story in a few LINEs. Biomol Concepts 2011; 2:233-45. [DOI: 10.1515/bmc.2011.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/31/2011] [Indexed: 12/20/2022] Open
Abstract
AbstractThe retinoblastoma (RB) protein family in mammals is composed of three members: pRB (or RB1), p107, and p130. Although these proteins do not directly bind DNA, they associate with the E2F family of transcription factors which function as DNA sequence-specific transcription factors. RB proteins alter gene transcription via direct interference with E2F functions, as well as recruitment of transcriptional repressors and corepressors that silence gene expression through DNA and histone modifications. E2F/RB complexes shape the chromatin landscape through recruitment to CpG-rich regions in the genome, thus making E2F/RB complexes function as local and global regulators of gene expression and chromatin dynamics. Recruitment of E2F/pRB to the long interspersed nuclear element (LINE1) promoter enhances the role that RB proteins play in genome-wide regulation of heterochromatin. LINE1 elements are dispersed throughout the genome and therefore recruitment of RB to the LINE1 promoter suggests that LINE1 could serve as the scaffold on which RB builds up heterochromatic regions that silence and shape large stretches of chromatin. We suggest that mutations in RB function might lead to global rearrangement of heterochromatic domains with concomitant retrotransposon reactivation and increased genomic instability. These novel roles for RB proteins open the epigenetic-based way for new pharmacological treatments of RB-associated diseases, namely inhibitors of histone and DNA methylation, as well as histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Diego E. Montoya-Durango
- 1Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kenneth S. Ramos
- 1Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
12
|
Germline bone morphogenesis protein receptor 1A mutation causes colorectal tumorigenesis in hereditary mixed polyposis syndrome. Am J Gastroenterol 2009; 104:3027-33. [PMID: 19773747 DOI: 10.1038/ajg.2009.542] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Hereditary mixed polyposis syndrome (HMPS) is characterized by polyps of mixed adenomatous/hyperplastic/atypical juvenile histology that are autosomal dominantly inherited and that eventually lead to colorectal cancer (CRC). Although CRC with adenomatous polyps is initiated by inactivating adenomatous polyposis coli (APC), the initiating event of CRC with mixed polyps remains unclear. We aimed to identify the underlying germline defect in HMPS. METHODS We screened for bone morphogenesis protein receptor 1A (BMPR1A) mutation by exonic sequencing, reverse-transcriptase polymerase chain reaction (PCR) followed by cDNA sequencing, and multiplex ligation-dependent probe amplification (MLPA) analysis in eight Singapore Chinese HMPS families. RESULTS Germline BMPR1A defects were found in four (50%) families. In two families, it is shown to co-segregate with the disease phenotype in all affected members over three generations, indicating that it is the disease-causing mutation. CRC incidence is 75%. The most defining characteristic is the presence of mixed hyperplastic-adenomatous polyps. Juvenile polyps are rarely reported, and if present, are usually of mixed components. Detailed histology of the polyps from one patient over 11 years distinguishes HMPS from juvenile polyposis syndrome (JPS). We report further the first cases of Wilms' tumor and papillary thyroid carcinoma associated with BMPR1A germline defect. CONCLUSIONS Germline BMPR1A defect is the disease-causing mutation in 50% of the HMPS families. If patients present with mixed morphology polyps in the large bowel that are autosomal dominantly inherited and corresponding absence of upper gastrointestinal abnormalities, the gene to begin mutation screening should be BMPR1A rather than APC.
Collapse
|
13
|
|
14
|
Kirilyuk A, Tolstonog GV, Damert A, Held U, Hahn S, Löwer R, Buschmann C, Horn AV, Traub P, Schumann GG. Functional endogenous LINE-1 retrotransposons are expressed and mobilized in rat chloroleukemia cells. Nucleic Acids Res 2007; 36:648-65. [PMID: 18073200 PMCID: PMC2241872 DOI: 10.1093/nar/gkm1045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
LINE-1 (L1) is a highly successful autonomous non-LTR retrotransposon and a major force shaping mammalian genomes. Although there are about 600 000 L1 copies covering 23% of the rat genome, full-length rat L1s (L1Rn) with intact open reading frames (ORFs) representing functional master copies for retrotransposition have not been identified yet. In conjunction with studies to elucidate the role of L1 retrotransposons in tumorigenesis, we isolated and characterized 10 different cDNAs from transcribed full-length L1Rn elements in rat chloroleukemia (RCL) cells, each encoding intact ORF1 proteins (ORF1p). We identified the first functional L1Rn retrotransposon from this pool of cDNAs, determined its activity in HeLa cells and in the RCL cell line the cDNAs originated from and demonstrate that it is mobilized in the tumor cell line in which it is expressed. Furthermore, we generated monoclonal antibodies directed against L1Rn ORF1 and ORF2-encoded recombinant proteins, analyzed the expression of L1-encoded proteins and found ORF1p predominantly in the nucleus. Our results support the hypothesis that the reported explosive amplification of genomic L1Rn sequences after their transcriptional activation in RCL cells is based on L1 retrotransposition. Therefore, L1 activity might be one cause for genomic instability observed during the progression of leukemia.
Collapse
Affiliation(s)
- Alexander Kirilyuk
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cao X, Hong Y, Eu KW, Loi C, Cheah PY. Singapore familial adenomatous polyposis (FAP) patients with classical adenomatous polyposis but undetectable APC mutations have accelerated cancer progression. Am J Gastroenterol 2006; 101:2810-7. [PMID: 17026565 DOI: 10.1111/j.1572-0241.2006.00842.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Germline mutation in adenomatous polyposis coli (APC) is detected in up to 80% of familial adenomatous polyposis (FAP) patients worldwide. In this study, we evaluated clinical features and APC mutations of Singapore FAP patients and contrasted genotype-phenotype correlation with Caucasians from other regions of the world and between FAP patients with and without detectable APC mutations. METHODS We screened 242 members from 57 unrelated FAP families using a combination of cDNA protein truncation test, multiplex ligation-dependent probe amplification, and differential expression techniques. RESULTS APC germline mutations were detected in 50 families. In contrast to Caucasians, fundic gland polyposis in Singapore patients was associated with APC mutations throughout the coding region and osteomas were also not confined to codon 767-1573. There was also no FAP-associated hepatoblastoma or medullablastoma. APC mutation-negative patients from four families with mixed (adenomatous/hyperplastic/atypical juvenile) polyps were subsequently reclassified as hereditary mixed polyposis syndrome (HMPS) patients. APC mutation-negative patients with classical adenomatous polyposis were negative for MYH, beta-catenin, and Axin 1 mutations. These patients had a significantly older age at diagnosis (P < 0.001) and more colorectal cancers (P= 0.017) than patients with APC mutations. CONCLUSIONS We achieved a 94% (50/53) APC mutation detection rate via a combination of techniques, suggesting that the current detection rate is probably not exhaustive. Singapore patients have some features similar to and other features distinct from Caucasians. Furthermore, APC mutation-negative patients have accelerated cancer progression that merits closer surveillance.
Collapse
Affiliation(s)
- Xia Cao
- Department of Colorectal Surgery, Singapore General Hospital, Singapore
| | | | | | | | | |
Collapse
|
16
|
Fedorov AV, Lukyanov DV, Podgornaya OI. Identification of the proteins specifically binding to the rat LINE1 promoter. Biochem Biophys Res Commun 2005; 340:553-9. [PMID: 16378599 DOI: 10.1016/j.bbrc.2005.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 12/07/2005] [Indexed: 11/25/2022]
Abstract
The initial step of LINE1 retrotransposons dissemination requires transcription from species-specific promoter located within 5'-untranslated region of LINE1. Although the 5'-untranslated region of the rat LINE1 element shows promoter activity, no promoter-binding proteins have been discovered so far. Using an EMSA and Southwestern blotting methods, we identified Sp1 and Sp3 proteins, which specifically bind to the rat LINE1 promoter in vitro. The Sp1/Sp3-binding motif within rat LINE1 promoter is located downstream of the major predicted transcription initiation site.
Collapse
Affiliation(s)
- Anton V Fedorov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, 194064 St-Petersburg, Russia.
| | | | | |
Collapse
|
17
|
Khan H, Smit A, Boissinot S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res 2005; 16:78-87. [PMID: 16344559 PMCID: PMC1356131 DOI: 10.1101/gr.4001406] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the evolution of the families of LINE-1 (L1) retrotransposons that have amplified in the human lineage since the origin of primates. We identified two phases in the evolution of L1. From approximately 70 million years ago (Mya) until approximately 40 Mya, three distinct L1 lineages were simultaneously active in the genome of ancestral primates. In contrast, during the last 40 million years (Myr), i.e., during the evolution of anthropoid primates, a single lineage of families has evolved and amplified. We found that novel (i.e., unrelated) regulatory regions (5'UTR) have been frequently recruited during the evolution of L1, whereas the two open-reading frames (ORF1 and ORF2) have remained relatively conserved. We found that L1 families coexisted and formed independently evolving L1 lineages only when they had different 5'UTRs. We propose that L1 families with different 5'UTR can coexist because they don't rely on the same host-encoded factors for their transcription and therefore do not compete with each other. The most prolific L1 families (families L1PA8 to L1PA3) amplified between 40 and 12 Mya. This period of high activity corresponds to an episode of adaptive evolution in a segment of ORF1. The correlation between the high activity of L1 families and adaptive evolution could result from the coevolution of L1 and a host-encoded repressor of L1 activity.
Collapse
Affiliation(s)
- Hameed Khan
- Department of Biology, Queens College, the City University of New York, Flushing, New York 11367, USA
| | | | | |
Collapse
|
18
|
Ashton KA, Meldrum CJ, McPhillips ML, Kairupan CF, Scott RJ. Frequency of the Common MYH Mutations (G382D and Y165C) in MMR Mutation Positive and Negative HNPCC Patients. Hered Cancer Clin Pract 2005; 3:65-70. [PMID: 20223032 PMCID: PMC2837300 DOI: 10.1186/1897-4287-3-2-65] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 05/10/2005] [Indexed: 01/14/2023] Open
Abstract
Recently mutations in the MYH gene have been associated with a milder form of adenomatous polyposis which is characterized by a variable level of colonic polyps ranging from a few to several hundred. In the context of HNPCC it is not unusual to identify patients with a smattering of polyps. The MYH gene product is involved in DNA repair and indeed the hMSH2/hMSH6 complex (both genes being essential elements of the DNA mismatch repair pathway) is required to stimulate MYH activity. We reasoned that because of the clinical similarity of a subset of HNPCC patients to those described with MYH mutations and the role of the hMSH2/hMSH6 complex in the activation of MYH protein that MYH mutations may account for a small proportion of HNPCC patients. In a study of 442 HNPCC patients we identified MYH mutations at the same frequency as that expected in the general population. Nevertheless, two HNPCC families were identified harbouring biallelic changes in MYH.
Collapse
Affiliation(s)
- Katie A Ashton
- Discipline of Medical Genetics, School of Biomedical Sciences, Faculty of Health, University of Newcastle and the Hunter Medical Research Institute, Newcastle, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
19
|
Kairupan CF, Meldrum CJ, Crooks R, Milward EA, Spigelman AD, Burgess B, Groombridge C, Kirk J, Tucker K, Ward R, Williams R, Scott RJ. Mutation analysis of theMYH gene in an Australian series of colorectal polyposis patients with or without germlineAPC mutations. Int J Cancer 2005; 116:73-7. [PMID: 15761860 DOI: 10.1002/ijc.20983] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The MYH gene has recently been shown to be associated with a recessive form of colorectal adenomatous polyposis. Two common mutations in the MYH gene have been identified that lend themselves to rapid screening. We have examined a series of 302 individuals comprising 120 control subjects, 120 patients diagnosed with adenomatous polyposis but without germline mutations in the APC gene and 62 patients diagnosed with familial adenomatous polyposis all harbouring confirmed causative APC germline mutations. The results reveal that MYH accounts for 16 percent of polyposis patients without germline mutations in the APC gene and that it does not appear to be a modifier gene in FAP patients diagnosed with APC germline mutations.
Collapse
Affiliation(s)
- Carla F Kairupan
- Discipline of Medical Genetics, School of Biomedical Sciences, Faculty of Health, University of Newcastle and the Hunter Medical Research Institute, Newcastle, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ostertag EM, DeBerardinis RJ, Goodier JL, Zhang Y, Yang N, Gerton GL, Kazazian HH. A mouse model of human L1 retrotransposition. Nat Genet 2002; 32:655-60. [PMID: 12415270 DOI: 10.1038/ng1022] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 09/24/2002] [Indexed: 11/09/2022]
Abstract
The L1 retrotransposon has had an immense impact on the size and structure of the human genome through a variety of mechanisms, including insertional mutagenesis. To study retrotransposition in a living organism, we created a mouse model of human L1 retrotransposition. Here we show that L1 elements can retrotranspose in male germ cells, and that expression of a human L1 element under the control of its endogenous promoter is restricted to testis and ovary. In the mouse line with the highest level of L1 expression, we found two de novo L1 insertions in 135 offspring. Both insertions were structurally indistinguishable from natural endogenous insertions. This suggests that an individual L1 element can have substantial mutagenic potential. In addition to providing a valuable in vivo model of retrotransposition in mammals, these mice are an important step in the development of a new random mutagenesis system.
Collapse
Affiliation(s)
- Eric M Ostertag
- Department of Genetics and University of Pennsylvania School of Medicine, 475 Clinical Research Bldg., 415 Curie Blvd., Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Scott RJ, Vajdic CM, Armstrong BK, Ainsworth CJ, Meldrum CJ, Aitken JF, Kricker A. BRCA2 mutations in a population-based series of patients with ocular melanoma. Int J Cancer 2002; 102:188-91. [PMID: 12385017 DOI: 10.1002/ijc.10693] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We studied the BRCA2 gene for germline mutations in 71 of 99 patients (72%) with ocular melanoma who were diagnosed consecutively in Australia in 1997 and 1998. Patients considered for our study fulfilled one of the following critiera: (i) were 50 years of age or less at diagnosis; (ii) had bilateral disease (2 patients); (iii) reported a family history of ocular melanoma (4 patients). Mutation detection was performed using the protein truncation test and denaturing high-performance liquid chromatography with primers designed to include intron-exon boundaries. Six DNA changes were found of which 2 were exonic, in exons 14 (A>C in nucleotide 7244 leading to His>Arg) and 27 (base pair substitution in nucleotide 9976 leading to a stop codon). One exonic change has been reported previously. None of the intronic mutations were deemed to affect splicing efficiency. Neither exonic mutation was in a person with bilateral ocular melanoma or a family history of cutaneous melanoma. We estimated the prevalence of possible loss of function changes in BRCA2 in patients with ocular melanoma at 3% (95% CI 0-10%). This figure was similar to previous estimates of 2.8% and 2% in nonrepresentative samples of patients with ocular melanoma and 2.1% in a representative sample of young women with breast cancer.
Collapse
Affiliation(s)
- Rodney J Scott
- Discipline of Medical Genetics, Faculty of Health, University of Newcastle, Callaghan, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Benihoud K, Bonardelle D, Soual-Hoebeke E, Durand-Gasselin I, Emilie D, Kiger N, Bobé P. Unusual expression of LINE-1 transposable element in the MRL autoimmune lymphoproliferative syndrome-prone strain. Oncogene 2002; 21:5593-600. [PMID: 12165858 DOI: 10.1038/sj.onc.1205730] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 05/22/2002] [Accepted: 06/07/2002] [Indexed: 11/08/2022]
Abstract
LINE-1 are endogenous mobile genetic elements that have dispersed and accumulated in the genomes of eukaryotes via germline transposition, with up to 100,000 copies in mammalian genomes. LINE-1 elements transpose by reverse transcription of their own transcript. Transposition requires synthesis of a full-length, sense-strand transcripts and proteins encoded by open reading frame (ORF) 1 and ORF2. Although severely repressed in most normal tissues, LINE-1 occasionally leads to disease by insertional mutagenesis. In the present study, Northern blot and in situ hybridization analyses revealed a template-strand transcription of LINE-1 ORF2 (encoding reverse transcriptase, RT) in lymphoid organs and the liver from MRL-+/+ and Fas-deficient MRL/lpr strains and their normal ancestors. While these sense transcripts are restricted to the nucleus in hepatocytes, they are also found in the cytoplasm in splenocytes. In contrast to transcription, ORF2 translation was detected only in MRL strains, as shown by the cytoplasmic labelling of splenic cells obtained with a monoclonal antibody recognizing the LINE-1 RT. This antibody coprecipitated two proteins of 45 and 12 kDa from MRL/lpr lymphoid organ lysates that were removed by pretreatment with anti-beta2-microglobulin antiserum, suggesting a structural association between a LINE-1 product and a major histocompatibility complex class I or class I-like molecule.
Collapse
Affiliation(s)
- Karim Benihoud
- INSERM U 267, 14, avenue Paul-Vaillant-Couturier, 94807 Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
L1 retrotransposons comprise 17% of the human genome. Although most L1s are inactive, some elements remain capable of retrotransposition. L1 elements have a long evolutionary history dating to the beginnings of eukaryotic existence. Although many aspects of their retrotransposition mechanism remain poorly understood, they likely integrate into genomic DNA by a process called target primed reverse transcription. L1s have shaped mammalian genomes through a number of mechanisms. First, they have greatly expanded the genome both by their own retrotransposition and by providing the machinery necessary for the retrotransposition of other mobile elements, such as Alus. Second, they have shuffled non-L1 sequence throughout the genome by a process termed transduction. Third, they have affected gene expression by a number of mechanisms. For instance, they occasionally insert into genes and cause disease both in humans and in mice. L1 elements have proven useful as phylogenetic markers and may find other practical applications in gene discovery following insertional mutagenesis in mice and in the delivery of therapeutic genes.
Collapse
Affiliation(s)
- E M Ostertag
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
24
|
Chen HH, Liu TYC, Huang CJ, Choo KB. Generation of two homologous and intronless zinc-finger protein genes, zfp352 and zfp353, with different expression patterns by retrotransposition. Genomics 2002; 79:18-23. [PMID: 11827453 DOI: 10.1006/geno.2001.6664] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported a mouse zinc-finger protein gene, Zfp352 (formerly 2czf48), that is expressed in early mouse embryos. Here, we report the genomic structure of Zfp352 and its lung-specific homolog, Zfp353. The two genes map on different chromosomes at 4C6 and 8B3.1. Both genes are intronless, except for the presence of a single 4.6-kb intron in the 5' untranslated region of Zfp352. The genes use different RNA start sites located 1.2 kb apart within the 5' homologous region. LINE1 sequences are structurally associated with the genes and form an integral part of Zfp353 transcripts, suggesting previous retrotransposition events. We propose a model of evolution of the genes. The main feature of the model is the presence of a fortuitous upstream promoter and an intron in the first retrotransposition site, creating a pre-Zfp352 gene with a 5' untranslated region intron. A second retrotransposition event copying from the pre-Zfp352 retroposon and removing the fortuitous intron resulted in the intronless Zfp353 at a different chromosomal location and with a different mode of expression. The model may be applicable to other genes with a similar structure with a single intron in the 5' untranslated region. The exact role of LINE1 in the retrotransposition events remains to be elucidated.
Collapse
Affiliation(s)
- Huang-Hui Chen
- Recombinant DNA Laboratory, Department of Medical Research and Education, Veterans General Hospital-Taipei, Shih Pai, Taipei, Taiwan 11217
| | | | | | | |
Collapse
|
25
|
Goodier JL, Ostertag EM, Du K, Kazazian HH. A novel active L1 retrotransposon subfamily in the mouse. Genome Res 2001; 11:1677-85. [PMID: 11591644 PMCID: PMC311137 DOI: 10.1101/gr.198301] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Unlike human L1 retrotransposons, the 5' UTR of mouse L1 elements contains tandem repeats of approximately 200 bp in length called monomers. Multiple L1 subfamilies exist in the mouse which are distinguished by their monomer sequences. We previously described a young subfamily, called the T(F) subfamily, which contains approximately 1800 active elements among its 3000 full-length members. Here we characterize a novel subfamily of mouse L1 elements, G(F), which has unique monomer sequence and unusual patterns of monomer organization. A majority of these G(F) elements also have a unique length polymorphism in ORF1. Polymorphism analysis of G(F) elements in various mouse subspecies and laboratory strains revealed that, like T(F), the G(F) subfamily is young and expanding. About 1500 full-length G(F) elements exist in the diploid mouse genome and, based on the results of a cell culture assay, approximately 400 G(F) elements are potentially capable of retrotransposition. We also tested 14 A-type subfamily elements in the assay and estimate that about 900 active A elements may be present in the mouse genome. Thus, it is now known that there are three large active subfamilies of mouse L1s; T(F), A, and G(F), and that in total approximately 3000 full-length elements are potentially capable of active retrotransposition. This number is in great excess to the number of L1 elements thought to be active in the human genome.
Collapse
Affiliation(s)
- J L Goodier
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
26
|
Scott RJ, Meldrum C, Crooks R, Spigelman AD, Kirk J, Tucker K, Koorey D. Familial adenomatous polyposis: more evidence for disease diversity and genetic heterogeneity. Gut 2001; 48:508-14. [PMID: 11247895 PMCID: PMC1728257 DOI: 10.1136/gut.48.4.508] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Familial adenomatous polyposis (FAP) is characterised by the presence of profuse colonic carpeting of adenomas throughout the entire colon and rectum. The genetic basis of FAP has been shown to be primarily associated with germline mutations in the APC gene. Notwithstanding, several reports have been published indicating that there is genetic heterogeneity in FAP and that the most likely explanation is the existence of another gene. In this report we further delineate the genotype/phenotype correlation in families that harbour germline mutations in the APC gene and identify some previously unreported changes in the APC gene which predispose to an attenuated disease phenotype. From 53 index patients diagnosed with either FAP or attenuated FAP, 27 harboured changes in the APC gene. The remaining 26 patients were further subgrouped according to their colonic phenotype. There were nine patients with a mixed hyperplastic/adenomatous colonic phenotype and there were 17 patients with an adenomatous colonic phenotype. Evaluation of the disease characteristics of these patients and their families is presented which may aid in the identification of new genes associated with colonic polyposis.
Collapse
Affiliation(s)
- R J Scott
- Hunter Area Pathology Service, Locked Bag No 1, Hunter Regional Mail Centre, Newcastle NSW 2310, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Furano AV. The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:255-94. [PMID: 10697412 DOI: 10.1016/s0079-6603(00)64007-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mammalian LINE-1 (L1) elements belong to the superfamily of autonomously replicating retrotransposable elements that lack the long terminal repeated (LTR) sequences typical of retroviruses and retroviral-like retrotransposons. The non-LTR superfamily is very ancient and L1-like elements are ubiquitous in nature, having been found in plants, fungi, invertebrates, and various vertebrate classes from fish to mammals. L1 elements have been replicating and evolving in mammals for at least the past 100 million years and now constitute 20% or more of some mammalian genomes. Therefore, L1 elements presumably have had a profound, perhaps defining, effect on the evolution, structure, and function of mammalian genomes. L1 elements contain regulatory signals and encode two proteins: one is an RNA-binding protein and the second one presumably functions as an integrase-replicase, because it has both endonuclease and reverse transcriptase activities. This work reviews the structure and biological properties of L1 elements, including their regulation, replication, evolution, and interaction with their mammalian hosts. Although each of these processes is incompletely understood, what is known indicates that they represent challenging and fascinating biological phenomena, the resolution of which will be essential for fully understanding the biology of mammals.
Collapse
Affiliation(s)
- A V Furano
- Section on Genomic Structure and Function, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Cao X, Eu KW, Seow-Choen F, Cheah PY. Germline mutations are frequent in the APC gene but absent in the beta-catenin gene in familial adenomatous polyposis patients. Genes Chromosomes Cancer 1999; 25:396-398. [PMID: 10398435 DOI: 10.1002/(sici)1098-2264(199908)25:4<396::aid-gcc13>3.0.co;2-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inactivation of the adenomatous polyposis coli (APC) gene has been shown to initiate the majority of colorectal cancer (CRC), including a familial form called familial adenomatous polyposis (FAP). One consequence of the APC mutation is the activation of the beta-catenin (CTNNB1)/T-cell transcription factor (Tcf) pathway. A recent study has shown that about half of the sporadic CRC lacking APC mutation has CTNNB1 mutation, suggesting that CTNNB1 mutation can substitute for APC mutation in the initiation of colorectal tumorigenesis. However, the frequency of CTNNB1 germline mutation in FAP has not been reported. In the present study, we investigated the frequencies of APC and CTNNB1 germline mutations in 26 unrelated FAP families. We used the Protein Truncation Test (PTT) to screen the entire coding region of APC and found germline mutations in twenty families. We then screened for CTNNB1 germline mutations in the rest of the families lacking detectable APC mutations. No missense mutations at GSK-3beta phosphorylation sites or interstitial deletion of exon 3 of CTNNB1 was found. Our results indicate that APC germline mutations are frequent but CTNNB1 germline mutations are rare in FAP patients, suggesting that CTNNB1 mutation cannot substitute for APC mutation in the initiation of FAP. Genes Chromosomes Cancer 25:396-398, 1999.
Collapse
Affiliation(s)
- X Cao
- Department of Colorectal Surgery, Singapore General Hospital, Outram Road, Republic of Singapore
| | | | | | | |
Collapse
|
29
|
DeBerardinis RJ, Kazazian HH. Analysis of the promoter from an expanding mouse retrotransposon subfamily. Genomics 1999; 56:317-23. [PMID: 10087199 DOI: 10.1006/geno.1998.5729] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse genome contains several subfamilies of the retrotransposon L1. One subfamily, TF, contains 4000-5000 full-length members and is expanding due to retrotransposition of a large number of active elements. Here we studied the TF 5' untranslated region (UTR), which contains promoter activity required for subfamily expression. Using reporter assays, we show that promoter activity is derived from TF-specific monomer sequences and is proportional to the number of monomers in the 5' UTR. These data suggest that nearly all full-length TF elements in the mouse genome are currently competent for expression. We aligned the sequences of 53 monomers to generate a consensus TF monomer and determined that most TF elements are truncated near a potential binding site for a transcription initiation factor. We also determined that much of the sequence variation among TF monomers results from transition mutations at CpG dinucleotides, suggesting that genomic TF 5' UTRs are methylated at CpGs.
Collapse
Affiliation(s)
- R J DeBerardinis
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
30
|
DeBerardinis RJ, Goodier JL, Ostertag EM, Kazazian HH. Rapid amplification of a retrotransposon subfamily is evolving the mouse genome. Nat Genet 1998; 20:288-90. [PMID: 9806550 DOI: 10.1038/3104] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retrotransposition affects genome structure by increasing repetition and producing insertional mutations. Dispersion of the retrotransposon L1 throughout mammalian genomes suggests that L1 activity might be an important evolutionary force. Here we report that L1 retrotransposition contributes to rapid genome evolution in the mouse, because a number of L1 sequences from the T(F) subfamily are retrotransposition competent. We show that the T(F) subfamily is large, young and expanding, containing approximately 4,800 full-length members in strain 129. Eleven randomly isolated, full-length T(F) elements averaged 99.8% sequence identity to each other, and seven of these retrotransposed in cultured cells. Thus, we estimate that the mouse genome contains approximately 3,000 active T(F) elements, 75 times the estimated number of active human L1s. Moreover, as T(F) elements are polymorphic among closely related mice, they have retrotransposed recently, implying rapid amplification of the subfamily to yield genomes with different patterns of interspersed repetition. Our data show that mice and humans differ considerably in the number of active L1s, and probably differ in the contribution of retrotransposition to ongoing sequence evolution.
Collapse
Affiliation(s)
- R J DeBerardinis
- Department of Genetics, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
31
|
Naas TP, DeBerardinis RJ, Moran JV, Ostertag EM, Kingsmore SF, Seldin MF, Hayashizaki Y, Martin SL, Kazazian HH. An actively retrotransposing, novel subfamily of mouse L1 elements. EMBO J 1998; 17:590-7. [PMID: 9430649 PMCID: PMC1170408 DOI: 10.1093/emboj/17.2.590] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retrotransposition of LINEs and other retroelements increases repetition in mammalian genomes and can cause deleterious mutations. Recent insertions of two full-length L1s, L1spa and L1Orl, caused the disease phenotypes of the spastic and Orleans reeler mice respectively. Here we show that these two recently retrotransposed L1s are nearly identical in sequence, have two open reading frames and belong to a novel subfamily related to the ancient F subfamily. We have named this new subfamily TF (for transposable) and show that many full-length members of this family are present in the mouse genome. The TF 5' untranslated region has promoter activity, and TF-type RNA is abundant in cytoplasmic ribonucleoprotein particles, which are likely intermediates in retrotransposition. Both L1spa and L1Orl have reverse transcriptase activity in a yeast-based assay and retrotranspose at high frequency in cultured cells. Together, our data indicate that the TF subfamily of L1s contains a major class of mobile elements that is expanding in the mouse genome.
Collapse
Affiliation(s)
- T P Naas
- Department of Genetics, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Verneau O, Catzeflis F, Furano AV. Determination of the evolutionary relationships in Rattus sensu lato (Rodentia : Muridae) using L1 (LINE-1) amplification events. J Mol Evol 1997; 45:424-36. [PMID: 9321421 DOI: 10.1007/pl00006247] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We determined approximately 215 bp of DNA sequence from the 3'-untranslated region (UTR) of 240 cloned L1 (LINE-1) elements isolated from 22 species of Rattus sensu lato and Rattus sensu stricto murine rodents. The sequences were sorted into different L1 subfamilies, and oligonucleotides cognate to them were hybridized to genomic DNA of various taxa. From the distribution of the L1 subfamilies in the various species, we inferred the partial phylogeny of Rattus sensu lato. The four Maxomys species comprise a well-defined clade separate from a monophyletic cluster that contains the two Leopoldamys and four Niviventer species. The Niviventer/Leopoldamys clade, in turn, shares a node with the clade that contains Berylmys, Sundamys, Bandicota, and Rattus sensu stricto. The evolutionary relationships that we deduced agree with and significantly extend the phylogeny of Rattus sensu lato established by other molecular criteria. Furthermore, the L1 amplification events scored here produced a unique phylogenetic tree, that is, in no case did a character (a given L1 amplification event) appear on more than one branch. The lack of homoplasy found in this study supports the robustness of L1 amplification events as phylogenetic markers for the study of mammalian evolution.
Collapse
Affiliation(s)
- O Verneau
- Section on Genomic Structure and Function, NIDDK, NIH, Bethesda, MD 20892-0830, USA
| | | | | |
Collapse
|
33
|
Cabot EL, Angeletti B, Usdin K, Furano AV. Rapid evolution of a young L1 (LINE-1) clade in recently speciated Rattus taxa. J Mol Evol 1997; 45:412-23. [PMID: 9321420 DOI: 10.1007/pl00006246] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
L1 elements are retrotransposons that have been replicating and evolving in mammalian genomes since before the mammalian radiation. Rattus norvegicus shares the young L1mlvi2 clade only with its sister taxon, Rattus cf moluccarius. Here we compared the L1mlvi2 clade in these recently diverged species and found that it evolved rapidly into closely related but distinct clades: the L1mlvi2-rm clade (or subfamily), characterized here from R. cf moluccarius, and the L1mlvi2-rn clade, originally described in R. norvegicus. In addition to other differences, these clades are distinguished by a cluster of amino acid replacement substitutions in ORF I. Both rat species contain the L1mlvi2-rm clade, but the L1mlvi2-rn clade is restricted to R. norvegicus. Therefore, the L1mlvi2-rm clade arose prior to the divergence of R. norvegicus and R. cf moluccarius, and the L1mlvi2-rn clade amplified after their divergence. The total number of L1mlvi2-rm elements in R. cf moluccarius is about the same as the sum of the L1mlvi2-rm and L1mlvi2-rn elements in R. norvegicus. The possibility that L1 amplification is in some way limited so that the two clades compete for replicative supremacy as well as the implications of the other distinguishing characteristic of the L1mlvi2-rn and L1mlvi2-rm clades are discussed.
Collapse
Affiliation(s)
- E L Cabot
- Section on Genomic Structure and Function, NIDDK, NIH, Bethesda, MD 20892-0830, USA.
| | | | | | | |
Collapse
|
34
|
Hayward BE, Zavanelli M, Furano AV. Recombination creates novel L1 (LINE-1) elements in Rattus norvegicus. Genetics 1997; 146:641-54. [PMID: 9178013 PMCID: PMC1208004 DOI: 10.1093/genetics/146.2.641] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian L1 (long interspersed repeated DNA. LINE-1) retrotransposons consist of a 5' untranslated region (UTR) with regulatory properties, two protein encoding regions (ORF I, ORF II, which encodes a reverse transcriptase) and a 3' UTR. L1 elements have been evolving in mammals for > 100 million years and this process continues to generate novel L1 subfamilies in modern species. Here we characterized the youngest known subfamily in Rattus norvegicus, L1mlvi2, and unexpectedly found that this element has a dual ancestry. While its 3' UTR shares the same lineage as its nearest chronologically antecedent subfamilies, L13 and L14, its ORF I sequence does not. The L1mlvi2 ORF I was derived from an ancestral ORF I sequence that was the evolutionary precursor of the L13 and L14 ORF I. We suggest that an ancestral ORF I sequence was recruited into the modern L1mlvi2 subfamily by recombination that possibly could have resulted from template strand switching by the reverse transcriptase during L1 replication. This mechanism could also account for some of the structural features of rodent L1 5' UTR and ORF I sequences including one of the more dramatic features of L1 evolution in mammals, namely the repeated acquisition of novel 5' UTRs.
Collapse
Affiliation(s)
- B E Hayward
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Maryland 20892-0830, USA
| | | | | |
Collapse
|
35
|
Dobbie Z, Spycher M, Mary JL, Häner M, Guldenschuh I, Hürliman R, Amman R, Roth J, Müller H, Scott RJ. Correlation between the development of extracolonic manifestations in FAP patients and mutations beyond codon 1403 in the APC gene. J Med Genet 1996; 33:274-80. [PMID: 8730280 PMCID: PMC1050574 DOI: 10.1136/jmg.33.4.274] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The APC gene was investigated in 31 unrelated polyposis coli families by SSCP analysis and the protein truncation test. Twenty-three germline mutations were identified which gave rise to a variety of different phenotypes. Some of these mutations have already been described; however we report six previously unpublished mutations. Typical disease symptoms were observed in families who harboured mutations between exon 4 (codon 169) and codon 1393 of exon 15. Mutations beyond codon 1403 were associated with more varied phenotype with respect to the development of extracolonic symptoms. In this report we provide support for the notion that there appears to be a correlation between the location of an APC mutation (beyond codon 1403) and extracolonic manifestations of familial adenomatous polyposis.
Collapse
Affiliation(s)
- Z Dobbie
- Department of Research, University Clinics Basle, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Furano AV, Usdin K. DNA "fossils" and phylogenetic analysis. Using L1 (LINE-1, long interspersed repeated) DNA to determine the evolutionary history of mammals. J Biol Chem 1995; 270:25301-4. [PMID: 7592685 DOI: 10.1074/jbc.270.43.25301] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- A V Furano
- Section on Genomic Structure and Function, NIDDK, National Institutes of Health, Bethesda, Maryland 20893-0830, USA
| | | |
Collapse
|
37
|
Scott RJ, van der Luijt R, Spycher M, Mary JL, Müller A, Hoppeler T, Haner M, Müller H, Martinoli S, Brazzola PL. Novel germline APC gene mutation in a large familial adenomatous polyposis kindred displaying variable phenotypes. Gut 1995; 36:731-6. [PMID: 7797123 PMCID: PMC1382678 DOI: 10.1136/gut.36.5.731] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The APC gene is mutated in the germline of people from families where there is a predisposition to develop polyposis coli. Many mutations have been described but the relation between their site and the phenotypic expression of the disease remains unclear. The most commonly seen mutation occurs at codon 1309. Many other mutations have been described towards the 5' end of exon 15 of the APC gene but comparatively few have been seen towards the 3' end. Recent reports have indicated the possibility of a functional boundary with respect to severity and age of onset of disease, which lies towards the 5' end of the gene. This report describes a large family whose affected members present with a very variable phenotype ranging from an early onset and severe form to a comparatively mild later onset one. The mutation that predisposes to disease in this family is at a previously undescribed site that lies towards the 3' end of exon 15 of the APC gene, which results in a stop codon. Interestingly, the stop codon is 63 codons downstream of the mutation and therefore may affect the expression of the disease. The addition of this mutation to the growing list of mutations described in the APC gene may provide some insight into the genotype/phenotype relation of the disease thus contributing to the understanding and significance of mutations at specific sites in the APC gene.
Collapse
Affiliation(s)
- R J Scott
- Department of Forschung, Kantonsspital Basle, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Deininger PL, Batzer MA, Hutchison CA, Edgell MH. Master genes in mammalian repetitive DNA amplification. Trends Genet 1995; 8:307-11. [PMID: 1365396 DOI: 10.1016/0168-9525(92)90262-3] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The analysis of species-specific subfamilies of both the LINE and SINE mammalian repetitive DNA families suggests that such subfamilies have arisen by amplification of an extremely small group of 'master' genes. In contrast to the master genes, the vast majority of both SINEs and LINEs appear to behave like psudogenes in their inability to undergo extensive amplification.
Collapse
Affiliation(s)
- P L Deininger
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112
| | | | | | | |
Collapse
|
39
|
Biessmann H, Kasravi B, Bui T, Fujiwara G, Champion LE, Mason JM. Comparison of two active HeT-A retroposons of Drosophila melanogaster. Chromosoma 1994; 103:90-8. [PMID: 8055715 DOI: 10.1007/bf00352317] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
HeT-A elements are Drosophila melanogaster LINE-like retroposons that transpose to broken chromosome ends by attaching themselves with an oligo(A) tail. Since this family of elements is believed to be involved in the vital function of telomere elongation in Drosophila, it is important to understand their transposition mechanism and the molecular aspects of activity. By comparison of several elements we have defined here the unit length of HeT-A elements to be approximately 6 kb. Also, we studied an active HeT-A element that had transposed very recently to the end of a terminally deleted X chromosome. The 12 kb of newly transposed DNA consisted of a tandem array of three different HeT-A elements joined by oligo(A) tails to each other and to the chromosome end broken in the yellow gene. Such an array may have transposed as a single unit or resulted from rapid successive transpositions of individual HeT-A elements. By sequence comparison with another recently transposed HeT-A element, conserved domains in the single open reading frame (ORF), encoding a gag-like polypeptide, of these elements were defined. We conclude that for transposition an intact ORF is required in cis, while the reverse transcriptase is not encoded on the HeT-A element but is provided in trans. This would make HeT-A elements dependent on an external reverse transcriptase for transposition and establish control of the genome over the activity of HeT-A elements. This distinguishes the Drosophila HeT-A element, which has been implicated in Drosophila telomere elongation, from the other, 'selfish' LINE-like elements.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92717
| | | | | | | | | | | |
Collapse
|
40
|
Adey NB, Tollefsbol TO, Sparks AB, Edgell MH, Hutchison CA. Molecular resurrection of an extinct ancestral promoter for mouse L1. Proc Natl Acad Sci U S A 1994; 91:1569-73. [PMID: 8108446 PMCID: PMC43201 DOI: 10.1073/pnas.91.4.1569] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The F-type subfamily of LINE-1 or L1 retroposons [for long interspersed (repetitive) element 1] was dispersed in the mouse genome several million years ago. This subfamily appears to be both transcriptionally and transpositionally inactive today and therefore may be considered evolutionarily extinct. We hypothesized that these F-type L1s are inactive because of the accumulation of mutations. To test this idea we used phylogenetic analysis to deduce the sequence of a transpositionally active ancestral F-type promoter, resurrected it by chemical synthesis, and showed that it has promoter activity. In contrast, F-type sequences isolated from the modern genome are inactive. This approach, in which the automated DNA synthesizer is used as a "time machine," should have broad application in testing models derived from evolutionary studies.
Collapse
Affiliation(s)
- N B Adey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill 27599
| | | | | | | | | |
Collapse
|
41
|
Kass DH, Berger FG, Dawson WD. The evolution of coexisting highly divergent LINE-1 subfamilies within the rodent genus Peromyscus. J Mol Evol 1992; 35:472-85. [PMID: 1474601 DOI: 10.1007/bf00160208] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two distinct members of the LINE-1 (L1) family in Peromyscus were characterized. The two clones, denoted L1Pm55 and L1Pm62, were 1.5 kb and 1.8 kb in length, respectively, and align to the identical region of the L1 sequence of Mus domesticus. Sequence similarity was on the order of 70% between L1Pm55 and L1Pm62, which approximates that between either Peromyscus sequence and Mus L1. L1Pm62 represents a more prevalent subfamily than L1Pm55. L1Pm62 exists in about 500 copies per haploid genome, while L1Pm55 exists in about 100 copies. The existence of major and minor subpopulations of L1 within Peromyscus is in contrast to murine rodents and higher primates, where L1 copy number is on the order of 20,000 to 100,000, and where levels of intraspecific divergence among L1 elements are typically less than 15-20%. Additional Peromyscus clones are similarly divergent from both L1Pm62 and L1Pm55, implying the existence of more than two distinct L1 subfamilies. The highly divergent L1 subfamilies in Peromyscus apparently have been evolving independently for more than 25 million years, preceding the divergence of cricetine and murine rodents. Investigations of the evolution of L1 within Peromyscus by restriction and Southern analysis was performed using species groups represented by the partially interfertile species pairs P. maniculatus-P. polionotus, P. leucopus-P. gossypinus, and P. truei-P. difficilis of the nominate subgenus and P. californicus of the Haplomylomys subgenus. Changes in L1 and species group taxonomic boundaries frequently coincided. The implications for phylogeny are discussed.
Collapse
Affiliation(s)
- D H Kass
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | |
Collapse
|
42
|
Distinct families of site-specific retrotransposons occupy identical positions in the rRNA genes of Anopheles gambiae. Mol Cell Biol 1992. [PMID: 1328871 DOI: 10.1128/mcb.12.11.5102] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two distinct site-specific retrotransposon families, named RT1 and RT2, from the sibling mosquito species Anopheles gambiae and A. arabiensis, respectively, were previously identified. Both were shown to occupy identical nucleotide positions in the 28S rRNA gene and to be flanked by identical 17-bp target site duplications. Full-length representatives of each have been isolated from a single species, A. gambiae, and the nucleotide sequences have been analyzed. Beyond insertion specificity, RT1 and RT2 share several structural and sequence features which show them to be members of the LINE-like, or non-long-terminal-repeat retrotransposon, class of reverse transcriptase-encoding mobile elements. These features include two long overlapping open reading frames (ORFs), poly(A) tails, the absence of long terminal repeats, and heterogeneous 5' truncation of most copies. The first ORF of both elements, particularly ORF1 of RT1, is glutamine rich and contains long tracts of polyglutamine reminiscent of the opa repeat. Near the carboxy ends, three cysteine-histidine motifs occur in ORF1 and one occurs in ORF2. In addition, each ORF2 contains a region of sequence similarity to reverse transcriptases and integrases. Alignments of the protein sequences from RT1 and RT2 reveal 36% identity over the length of ORF1 and 60% identity over the length of ORF2, but the elements cannot be aligned in the 5' and 3' noncoding regions. Unlike that of RT2, the 5' noncoding region of RT1 contains 3.5 copies of a 500-bp subrepeat, followed by a poly(T) tract and two imperfect 55-bp subrepeats, the second spanning the beginning of ORF1. The pattern of distribution of these elements among five siblings species in the A. gambiae complex is nonuniform. RT1 is present in laboratory and wild A. gambiae, A. arabiensis, and A. melas but has not been detected in A. quadriannulatus or A. merus. RT2 has been detected in all available members of the A. gambiae complex except A. merus. Copy number fluctuates, even among the offspring of individual wild female A. gambiae mosquitoes. These findings reflect a complex evolutionary history balancing gain and loss of copies against the coexistence of two elements competing for a conserved target site in the same species for perhaps millions of years.
Collapse
|
43
|
Besansky NJ, Paskewitz SM, Hamm DM, Collins FH. Distinct families of site-specific retrotransposons occupy identical positions in the rRNA genes of Anopheles gambiae. Mol Cell Biol 1992; 12:5102-10. [PMID: 1328871 PMCID: PMC360444 DOI: 10.1128/mcb.12.11.5102-5110.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two distinct site-specific retrotransposon families, named RT1 and RT2, from the sibling mosquito species Anopheles gambiae and A. arabiensis, respectively, were previously identified. Both were shown to occupy identical nucleotide positions in the 28S rRNA gene and to be flanked by identical 17-bp target site duplications. Full-length representatives of each have been isolated from a single species, A. gambiae, and the nucleotide sequences have been analyzed. Beyond insertion specificity, RT1 and RT2 share several structural and sequence features which show them to be members of the LINE-like, or non-long-terminal-repeat retrotransposon, class of reverse transcriptase-encoding mobile elements. These features include two long overlapping open reading frames (ORFs), poly(A) tails, the absence of long terminal repeats, and heterogeneous 5' truncation of most copies. The first ORF of both elements, particularly ORF1 of RT1, is glutamine rich and contains long tracts of polyglutamine reminiscent of the opa repeat. Near the carboxy ends, three cysteine-histidine motifs occur in ORF1 and one occurs in ORF2. In addition, each ORF2 contains a region of sequence similarity to reverse transcriptases and integrases. Alignments of the protein sequences from RT1 and RT2 reveal 36% identity over the length of ORF1 and 60% identity over the length of ORF2, but the elements cannot be aligned in the 5' and 3' noncoding regions. Unlike that of RT2, the 5' noncoding region of RT1 contains 3.5 copies of a 500-bp subrepeat, followed by a poly(T) tract and two imperfect 55-bp subrepeats, the second spanning the beginning of ORF1. The pattern of distribution of these elements among five siblings species in the A. gambiae complex is nonuniform. RT1 is present in laboratory and wild A. gambiae, A. arabiensis, and A. melas but has not been detected in A. quadriannulatus or A. merus. RT2 has been detected in all available members of the A. gambiae complex except A. merus. Copy number fluctuates, even among the offspring of individual wild female A. gambiae mosquitoes. These findings reflect a complex evolutionary history balancing gain and loss of copies against the coexistence of two elements competing for a conserved target site in the same species for perhaps millions of years.
Collapse
Affiliation(s)
- N J Besansky
- Division of Parasitic Diseases, Centers for Disease Control, Atlanta, Georgia 30333
| | | | | | | |
Collapse
|
44
|
Price DK, Ayres JA, Pasqualone D, Cabell CH, Miller W, Hardison RC. The 5' ends of LINE1 repeats in rabbit DNA define subfamilies and reveal a short sequence conserved between rabbits and humans. Genomics 1992; 14:320-31. [PMID: 1427848 DOI: 10.1016/s0888-7543(05)80222-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The 5' ends of five full-length LINE1 (L1) repeats from the rabbit genome (L1Oc) were mapped and their nucleotide sequences determined. Computer-generated alignments showed that these five L1Oc repeats can be divided into subfamilies, each of which has a characteristic sequence upstream of the first open reading frame (ORF1). These five L1Ocs range in size from 6.5 to 7.3 kb, with 5' ends located 76 to 1125 bp upstream of ORF1. Two of these subfamilies appear to have diverged from a common ancestor at least 66 million years ago. Comparisons of the 5' ends of L1s from rabbit, human, mouse, and rat show no common sequence 5' to ORF1, except for a 22-bp sequence that is found near the beginning of all characterized full-length L1s from rabbit and human. A statistical analysis indicates that this 22-bp aligned block is highly significant. Part of this 22-bp sequence matches the microE1 binding site in immunoglobulin gene enhancers. This strong conservation suggests that the microE1 binding site may be part of a transcriptional regulatory element at the 5' ends of rabbit and human L1 repeats.
Collapse
Affiliation(s)
- D K Price
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | | | | | |
Collapse
|
45
|
Schichman SA, Severynse DM, Edgell MH, Hutchison CA. Strand-specific LINE-1 transcription in mouse F9 cells originates from the youngest phylogenetic subgroup of LINE-1 elements. J Mol Biol 1992; 224:559-74. [PMID: 1314898 DOI: 10.1016/0022-2836(92)90544-t] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
LINE-1 (L1) is a mammalian family of highly repeated DNA sequences that are members of a class of transposable elements whose movement involves an RNA intermediate. Both structural and evolutionary data indicate that the L1 family consists of a small number of active transposable elements interspersed with a large number of L1 pseudogenes. In the mouse, the longest, characterized L1 sequences span about 7000 base-pairs and contain two long open reading frames. Two subfamilies of mouse L1 elements, A and F, have been defined on the basis of the type of putative transcriptional regulatory sequence found at the 5' end. In order to identify a transcribed subset of L1 elements in mouse F9 teratocarcinoma cells, we have examined the strand-specificity of L1 transcription by Northern analysis and compared the open reading frame-1 sequences of ten A-type cDNAs with fifteen genomic A-type L1 elements. Transcripts containing A-type sequence are far more abundant than those containing F-type sequence. Although the majority of L1 RNA in F9 cells appears to be transcribed non-specifically from both strands, our results provide evidence for a subpopulation of variable length, strand-specific transcripts arising from A-type transcriptional regulatory sequences. F9 cell cDNA sequences, which share greater than 99.5% sequence identity with one another, represent a homogeneous subset of the genomic L1 population. Examination of genomic mouse L1 sequences reveals three types of length polymorphism in a defined segment of the first open reading frame. Phylogenetic analysis shows a correlation between the type of length polymorphism in the first open reading frame and the relative age of an individual A-type genomic L1 element. Comparison of the cDNA and genomic sequences indicates that the youngest subgroup of A-type L1 elements is preferentially transcribed in F9 cells. This subgroup may be currently dominating the L1 dispersal process in mice.
Collapse
Affiliation(s)
- S A Schichman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill 27599
| | | | | | | |
Collapse
|
46
|
Adey NB, Schichman SA, Hutchison CA, Edgell MH. Composite of A and F-type 5' terminal sequences defines a subfamily of mouse LINE-1 elements. J Mol Biol 1991; 221:367-73. [PMID: 1920423 DOI: 10.1016/0022-2836(91)80057-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 5' terminus of full-length L1 elements contains transcriptional control sequences. In mouse L1 (L1Md) elements, these sequences exist as an array of tandem direct repeats. Two types of repeat units, termed A-monomers and F-monomers, have been reported. Both monomers are about 200 bp in length but share no significant sequence homology. Previous studies have identified L1Md elements containing either A or F-monomers but not both. Here we describe three "composite" L1Md elements that contain both types of monomer sequence. Two of these composite L1Md elements are highly homologous and share the same structural rearrangements, implying that they arose from a common ancestor that has the same composite 5' end.
Collapse
Affiliation(s)
- N B Adey
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill 72599
| | | | | | | |
Collapse
|
47
|
Adey NB, Comer MB, Edgell MH, Hutchison CA. Nucleotide sequence of a mouse full-length F-type L1 element. Nucleic Acids Res 1991; 19:2497. [PMID: 1645871 PMCID: PMC329465 DOI: 10.1093/nar/19.9.2497] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- N B Adey
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill 27599
| | | | | | | |
Collapse
|
48
|
Severynse DM, Hutchison CA, Edgell MH. Identification of transcriptional regulatory activity within the 5' A-type monomer sequence of the mouse LINE-1 retroposon. Mamm Genome 1991; 2:41-50. [PMID: 1311970 DOI: 10.1007/bf00570439] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
LINE-1 (L1) is a retroposon found in all mammals. In the mouse, approximately 10% of L1 elements are full-length and can be grouped into two classes, A or F, based upon the type of monomer sequence repeated at the 5' end. In order to test for promoter activity in the 5' end of the A-type mouse L1 element, we cloned several different A-monomers into a promoterless chloramphenicol acetyltransferase (CAT) vector. The A-monomer constructs varied in their ability to regulate transcription of the CAT gene, exhibiting CAT activity 16-37% of that detected with the Rous sarcoma virus promoter and enhancer. A series of A-monomer deletions were tested for their ability to regulate CAT expression and gel retardation experiments were performed to identify regions of the A-monomer that may be involved in L1 transcriptional regulation. A-monomer sequences are usually found repeated 2-5 times at the 5' end of a full-length mouse L1. In the absence of long terminal repeats or an internal promoter, the tandem array of A-monomers may provide a mechanism for A-type L1 elements to generate transcripts containing transcriptional regulatory sequences.
Collapse
Affiliation(s)
- D M Severynse
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill 27599
| | | | | |
Collapse
|
49
|
Abstract
Members of two related families of transposable elements, Tx1 and Tx2, were isolated from the genome of Xenopus laevis and characterized. In both families, two versions of the elements were found. The smaller version in each family (Tx1d and Tx2d) consisted largely of two types of 400-base-pair tandem internal repeats. These elements had discrete ends and short inverted terminal repeats characteristic of mobile DNAs that are presumed to move via DNA intermediates, e.g., Drosophila P and maize Ac elements. The longer versions (Tx1c and Tx2c) differed from Tx1d and Tx2d by the presence of a 6.9-kilobase-pair internal segment that included two long open reading frames (ORFs). ORF1 had one cysteine-plus-histidine-rich sequence of the type found in retroviral gag proteins. ORF2 showed more substantial homology to retroviral pol genes and particularly to the analogs of pol found in a subclass of mobile DNAs that are supposed retrotransposons, such as mammalian long interspersed repetitive sequences, Drosophila I factors, silkworm R1 elements, and trypanosome Ingi elements. Thus, the Tx1 elements present a paradox by exhibiting features of two classes of mobile DNAs that are thought to have very different modes of transposition. Two possible resolutions are considered: (i) the composite versions are actually made up of two independent elements, one of the retrotransposon class, which has a high degree of specificity for insertion into a target within the other, P-like element; and (ii) the composite elements are intact, autonomous mobile DNAs, in which the pol-like gene product collaborates with the terminal inverted repeats to cause transposition of the entire unit.
Collapse
|
50
|
Crowther PJ, Cartwright AL, Hocking A, Jefferson S, Ford MD, Woodcock DM. The effect of E. coli host strain on the consensus sequence of regions of the human L1 transposon. Nucleic Acids Res 1989; 17:7229-39. [PMID: 2552406 PMCID: PMC334803 DOI: 10.1093/nar/17.18.7229] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have used highly methylation tolerant host strains to clone hyper- and hypo-methylated genomic elements from different regions of the same family of long interspersed repetitive elements from human DNA, specifically the 1.8 kilobase (kb) and 1.2kb KpnI fragments from members of the L1 family of transposable elements in which respectively some 18% and 2.7% of cytosines are methylated in vivo in human spleen DNA. The consensus of the DNA sequences of the ends of 13 clones from the hypomethylated region of human L1 agreed exactly with the consensus derived previously from clones made using conventional host strains. However the sequences of 18 of our clones from the 5' end of the hypermethylated region differed significantly from the sequences of clones made using conventional hosts (P less than 0.0001). The 5' region of the 1.8kb L1 region is a CpG island which, in human somatic tissue, appears to be maintained in a highly methylated state, including methylation at sites other than CpG dinucleotides. The consensus sequence of this region also has features suggestive of a previously unrecognized open reading frame.
Collapse
Affiliation(s)
- P J Crowther
- Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|