1
|
Schroeder JM, Liu W, Curthoys NP. pH-responsive stabilization of glutamate dehydrogenase mRNA in LLC-PK1-F+ cells. Am J Physiol Renal Physiol 2003; 285:F258-65. [PMID: 12684230 DOI: 10.1152/ajprenal.00422.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During chronic metabolic acidosis, the adaptive increase in rat renal ammoniagenesis is sustained, in part, by increased expression of mitochondrial glutaminase (GA) and glutamate dehydrogenase (GDH) enzymes. The increase in GA activity results from the pH-responsive stabilization of GA mRNA. The 3'-untranslated region (3'-UTR) of GA mRNA contains a direct repeat of an eight-base AU-rich element (ARE) that binds zeta-crystallin/NADPH:quinone reductase (zeta-crystallin) with high affinity and functions as a pH-response element. RNA EMSAs established that zeta-crystallin also binds to the full-length 3'-UTR of GDH mRNA. This region contains four eight-base sequences that are 88% identical to one of the two GA AREs. Direct binding assays and competition studies indicate that the two individual eight-base AREs from GA mRNA and the four individual GDH sequences bind zeta-crystallin with different affinities. Insertion of the 3'-UTR of GDH cDNA into a beta-globin expression vector (pbetaG) produced a chimeric mRNA that was stabilized when LLC-PK1-F+ cells were transferred to acidic medium. A pH-responsive stabilization was also observed using a betaG construct that contained only the single GDH4 ARE and a destabilizing element from phosphoenolpyruvate carboxykinase mRNA. Therefore, during acidosis, the pH-responsive stabilization of GDH mRNA may be accomplished by the same mechanism that affects an increase in GA mRNA.
Collapse
Affiliation(s)
- Jill M Schroeder
- Department of Biochemistry and Molecular Biology, Colorado State Univ., Ft. Collins, CO 80523-1870, USA
| | | | | |
Collapse
|
2
|
Laterza OF, Curthoys NP. Specificity and functional analysis of the pH-responsive element within renal glutaminase mRNA. Am J Physiol Renal Physiol 2000; 278:F970-7. [PMID: 10836985 DOI: 10.1152/ajprenal.2000.278.6.f970] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The specificity and the functional significance of the binding of a specific cytosolic protein to a direct repeat of an eight-base AU sequence within the 3'-nontranslated region of the glutaminase (GA) mRNA were characterized. Competition experiments established that the protein that binds to this sequence is not an AUUUA binding protein. When expressed in LLC-PK(1)-F(+) cells, the half-life of a beta-globin reporter construct, betaG-phosphoenolpyruvate carboxykinase, was only slightly affected (1.3-fold) by growth in acidic (pH 6.9, 10 mM HCO(-)(3)) vs. normal (pH 7.4, 25 mM HCO(-)(3)) medium. However, insertion of short segments of GA mRNA containing the direct repeat or a single eight-base AU sequence was sufficient to impart a fivefold pH-responsive stabilization to the chimeric mRNA. Furthermore, site-directed mutation of the direct repeat of the 8-base AU sequence in a betaG-GA mRNA, which contains 956 bases of the 3'-nontranslated region of the GA mRNA, completely abolished the pH-responsive stabilization of the wild-type betaG-GA mRNA. Thus either the direct repeat or a single eight-base AU sequence is both sufficient and necessary to create a functional pH-response element.
Collapse
Affiliation(s)
- O F Laterza
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523-1870, USA
| | | |
Collapse
|
3
|
Schmitt A, Kugler P. Cellular and regional expression of glutamate dehydrogenase in the rat nervous system: non-radioactive in situ hybridization and comparative immunocytochemistry. Neuroscience 1999; 92:293-308. [PMID: 10392851 DOI: 10.1016/s0306-4522(98)00740-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the central nervous system glutamate dehydrogenase appears to be strongly involved in the metabolism of transmitter glutamate and plays a role in the pathogenesis of neurodegenerative disorders. In order to identify unequivocally the neural cell types expressing this enzyme, non-radioactive in situ hybridization, using a complementary RNA probe and oligonucleotide probes, was applied to sections of the rat central nervous system and, for comparison with peripheral neural cells, to cervical spinal ganglia. The results were complemented by immunocytochemical studies using a polyclonal antibody against purified glutamate dehydrodenase. Glutamate dehydrogenase messenger RNA was detectable at varying amounts in neurons and glial cells (i.e. astrocytes, oligodendrocytes, Bergmann glia, ependymal cells, epithelial cells of the plexus choroideus) throughout the central nervous system and in neurons and satellite cells of spinal ganglia. In some neuronal populations (e.g., pyramidal cells of the hippocampus, motoneurons of the spinal cord and spinal ganglia neurons) messenger RNA-labelling was higher than in other central nervous system neurons. This is remarkable because the immunostaining of neurons in the central nervous system regions studied was at best weak, whereas a predominantly high level of immunoreactivity was detected in astrocytes (and Bergmann glia). Thus, in neurons of the central nervous system, the detected levels of glutamate dehydrogenase messenger RNA and protein seem to be at variance whereas in peripheral neurons of spinal ganglia both in situ hybridization labelling and immunostaining are intense.
Collapse
Affiliation(s)
- A Schmitt
- Institute of Anatomy, University of Würzburg, Germany
| | | |
Collapse
|
4
|
Laterza OF, Hansen WR, Taylor L, Curthoys NP. Identification of an mRNA-binding protein and the specific elements that may mediate the pH-responsive induction of renal glutaminase mRNA. J Biol Chem 1997; 272:22481-8. [PMID: 9278399 DOI: 10.1074/jbc.272.36.22481] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Various segments of the 3'-nontranslated region of the renal glutaminase (GA) mRNA were tested for their ability to enhance turnover and pH responsiveness. The combined effects were retained in the 340-base R-2 segment. However, the combined R-1 and R-3 fragments also imparted a partial destabilization and pH responsiveness to a chimeric beta-globin mRNA. RNA electrophoretic mobility shift assays indicated that cytosolic extracts of rat renal cortex contain a protein that binds to the R-2 and R-3 RNAs. The binding observed with the R-2 RNA was mapped to a direct repeat of an 8-base AU sequence. This binding was effectively competed with an excess of the same RNA, but not by adjacent or unrelated RNAs. UV cross-linking experiments identified a 48-kDa protein that binds to the AU repeats of the R-2 RNA. The apparent binding of this protein was greatly reduced in renal cytosolic extracts prepared from acutely acidotic rats. Two related RNA sequences in the R-3 segment also exhibited specific binding. However, the latter binding was more effectively competed by R-2 RNA than by itself, indicating that the homologous sites may be weaker binding sites for the same 48-kDa protein. Thus, a single protein may bind specifically to multiple instability elements within the 3'-nontranslated region of the GA mRNA and mediate its pH-responsive stabilization.
Collapse
Affiliation(s)
- O F Laterza
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | |
Collapse
|
5
|
Cavallaro S, Meiri N, Yi CL, Musco S, Ma W, Goldberg J, Alkon DL. Late memory-related genes in the hippocampus revealed by RNA fingerprinting. Proc Natl Acad Sci U S A 1997; 94:9669-73. [PMID: 9275181 PMCID: PMC23247 DOI: 10.1073/pnas.94.18.9669] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although long-term memory is thought to require a cellular program of gene expression and increased protein synthesis, the identity of proteins critical for associative memory is largely unknown. We used RNA fingerprinting to identify candidate memory-related genes (MRGs), which were up-regulated in the hippocampus of water maze-trained rats, a brain area that is critically involved in spatial learning. Two of the original 10 candidate genes implicated by RNA fingerprinting, the rat homolog of the ryanodine receptor type-2 and glutamate dehydrogenase (EC 1.4.1.3), were further investigated by Northern blot analysis, reverse transcription-PCR, and in situ hybridization and confirmed as MRGs with distinct temporal and regional expression. Successive RNA screening as illustrated here may help to reveal a spectrum of MRGs as they appear in distinct domains of memory storage.
Collapse
Affiliation(s)
- S Cavallaro
- Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Shimizu E, Shirasawa H, Kodama K, Kuroyanagi H, Shirasawa T, Sato T, Simizu B. Glutamate dehydrogenase mRNA is immediately induced after phencyclidine treatment in the rat brain. Schizophr Res 1997; 25:251-8. [PMID: 9264180 DOI: 10.1016/s0920-9964(97)00029-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To clarify the molecular mechanism of phencyclidine (PCP)-induced schizophreniform psychosis in humans and of behavioral abnormalities in experimental animals, we used differential screening of a cDNA library from the cerebral cortex of rats treated with PCP. We identified a PCP-induced cDNA clone as the gene encoding glutamate dehydrogenase (GDH), an enzyme central to glutamate metabolism. GDH mRNA levels significantly increased as early as 15 min following PCP administration in both the cerebral cortex and the cerebellum. This effect was observed even in the presence of a protein synthesis inhibitor, cycloheximide. In contrast to a transient increase in c-fos expression, the elevation of GDH mRNA levels lasted up to 8 days after a single PCP injection. These results suggest that GDH mRNA induction may be involved in the pathology of PCP-induced psychosis, and that GDH may be one of the candidate genes that are vulnerable in subjects with schizophrenia.
Collapse
Affiliation(s)
- E Shimizu
- Department of Microbiology, School of Medicine, Chiba University, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Helou K, Das AT, Lamers WH, Hoovers JM, Szpirer C, Szpirer J, Klinga-Levan K, Levan G. FISH mapping of three ammonia metabolism genes (Glul, Cps1, Glud1) in rat, and the chromosomal localization of GLUL in human and Cps1 in mouse. Mamm Genome 1997; 8:362-4. [PMID: 9107685 DOI: 10.1007/s003359900442] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- K Helou
- Department of Genetics, Göteborg University Medicinareg. 9C, S-413 90 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Das AT, Salvadó J, Boon L, Biharie G, Moorman AF, Lamers WH. Regulation of glutamate dehydrogenase expression in the developing rat liver: control at different levels in the prenatal period. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:677-82. [PMID: 8654417 DOI: 10.1111/j.1432-1033.1996.00677.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To study the regulation of the expression of glutamate dehydrogenase (Glu-DH) in rat liver during development, the Glu-DH mRNA concentration in the liver of rats ranging in age from 14 days prenatal development to 3 months after birth was determined. This concentration increased up to two days before birth, decreased rapidly between two days before and one day after birth and increased again in the second and third postnatal week. The ratio of Glu-DH mRNA/protein decreased more than 10-fold in the prenatal period, whereas it did not change significantly after birth. Thus, whereas the ratio between the Glu-DH monomer protein molecules and Glu-DH mRNA molecules is found to be approximately 1400 at 14 days of prenatal development, it is approximately 1700 four weeks after birth. We argue than an increase in the translational efficiency after birth is the most likely cause of the observed developmental changes in Glu-DH mRNA/protein ratio. Our results suggest that the expression after birth is predominantly regulated at the pretranslational level, whereas the prenatal Glu-DH expression is regulated both at the translational level and at the pretranslational level.
Collapse
Affiliation(s)
- A T Das
- Department of Anatomy and Embryology, University of Amsterdam, Academic Medical Center, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Notenboom RG, de Boer PA, Moorman AF, Lamers WH. The establishment of the hepatic architecture is a prerequisite for the development of a lobular pattern of gene expression. Development 1996; 122:321-32. [PMID: 8565845 DOI: 10.1242/dev.122.1.321] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have studied the expression patterns of ammonia-metabolising enzymes and serum proteins in intrasplenically transplanted embryonic rat hepatocytes by in situ hybridisation and immunohistochemical analysis. The enzymic phenotype of individually settled hepatocytes was compared with that of hepatocytes being organised into a three-dimensional hepatic structure. Our results demonstrate that development towards the terminally differentiated state with zonal differences in enzyme content requires the incorporation of hepatocytes into lobular structures. Outside such an architectural context, phenotypic maturation becomes arrested and hepatocytes linger in the protodifferentiated state. These features identify the foetal period as a crucial time for normal liver development and show that the establishment of the terminally differentiated hepatocellular phenotype, beginning with the differentiation of hepatocytes from the embryonic foregut, is realised via a multistep process.
Collapse
Affiliation(s)
- R G Notenboom
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
10
|
Chávez S, Reyes JC, Chauvat F, Florencio FJ, Candau P. The NADP-glutamate dehydrogenase of the cyanobacterium Synechocystis 6803: cloning, transcriptional analysis and disruption of the gdhA gene. PLANT MOLECULAR BIOLOGY 1995; 28:173-188. [PMID: 7787182 DOI: 10.1007/bf00042048] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The gdhA gene of Synechocystis PCC 6803, which encodes an NADP-dependent glutamate dehydrogenase (NADP-GDH), has been cloned by complementation of an Escherichia coli glutamate auxotroph. This gene was found to code for a polypeptide of 428 amino acid residues, whose sequence shows high identity with those of archaebacteria (42-47%), some Gram-positive bacteria (40-44%) and mammals (37%). The minimal fragment of Synechocystis DNA required for complementation (2kb) carries the gdhA gene preceded by an open reading frame (ORF2) encoding a polypeptide of 130 amino acids. ORF2 and gdhA are co-transcribed as a 1.9 kb mRNA, but shorter transcripts including only gdhA were also detected. Two promoter regions were identified upon transcriptional fusion to the cat reporter gene of a promoter probe plasmid. Transcription from the promoter upstream of ORF2 was found to be regulated depending on the growth phase of Synechocystis, in parallel to NADP-GDH activity. This promoter is expressed in Escherichia coli too, in contrast to the second promoter, located between ORF2 and gdhA, which was silent in E. coli and did not respond to the stage of growth in Synechocystis. Disruption of the cyanobacterial gdhA gene with a chloramphenicol resistance cassette yielded a mutant strain totally lacking NADP-GDH activity, demonstrating that this gene is not essential to Synechocystis 6803 under our laboratory conditions.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Blotting, Southern
- Cloning, Molecular
- Cyanobacteria/enzymology
- Cyanobacteria/genetics
- Cyanobacteria/growth & development
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Genetic Complementation Test
- Genomic Library
- Glutamate Dehydrogenase (NADP+)/genetics
- Molecular Sequence Data
- Mutagenesis
- Open Reading Frames/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- Recombinant Proteins
- Restriction Mapping
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- S Chávez
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Spain
| | | | | | | | | |
Collapse
|
11
|
Teller JK, Baker PJ, Britton KL, Engel PC, Rice DW, Stillman TJ. Correlation of intron-exon organisation with the three-dimensional structure in glutamate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1247:231-8. [PMID: 7696313 DOI: 10.1016/0167-4838(94)00240-h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The positions of the intron-exon boundaries in the genes for glutamate dehydrogenase from Chlorella sorokiniana rat, and human have been located on the three-dimensional structure of the highly homologous enzyme from Clostridium symbiosum and analysed for their position in the protein structure. This analysis shows no correlation between the positions of these boundaries in the mammalian and Chlorella glutamate dehydrogenase genes and no correlation with units of function in the enzyme and suggests that the present day exons do not represent the protein modules of an ancestral glutamate dehydrogenase. There appears to be no clear preference for the residues at the splice junctions to be either buried or exposed to solvent. However, the frequency with which the introns appear in the loops linking elements of secondary structure, rather than in either the alpha-helical or beta-sheet segments, is higher than predicted on the basis of the proportion of residues in the loops. This is consistent with but not proof of a role for exon modification/exchange in protein evolution since changes at these positions are less likely to disturb the structure and hence maintain function.
Collapse
Affiliation(s)
- J K Teller
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | | | | | | | |
Collapse
|
12
|
Wagenaar GT, Moorman AF, Chamuleau RA, Deutz NE, De Gier C, De Boer PA, Verbeek FJ, Lamers WH. Vascular branching pattern and zonation of gene expression in the mammalian liver. A comparative study in rat, mouse, cynomolgus monkey, and pig. Anat Rec (Hoboken) 1994; 239:441-52. [PMID: 7978367 DOI: 10.1002/ar.1092390410] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND A significant part of the liver volume consists of regions in which hepatocytes are in close contact with large branches of the afferent (portal vein) or efferent (hepatic vein) vessels. As most studies have addressed zonation of gene expression around the parenchymal branches of the portal and hepatic vein only, the patterns of gene expression in hepatocytes surrounding larger vessels are largely unknown. METHODS For that reason, we studied the patterns of expression of the mRNAs and proteins of the pericentral marker enzymes glutamine synthase, ornithine aminotransferase, and glutamate dehydrogenase and the periportal marker enzymes phosphoenolpyruvate carboxykinase and carbamoylphosphate synthase in the rat liver, in relation to the branching pattern of the afferent and efferent hepatic veins with immuno and hybridocytochemical techniques. These patterns of expression were compared with those seen in mouse, monkey, and pig liver. RESULTS The distribution patterns of the genes studied appear to reflect the "intensity" of the pericentral and periportal environment, glutamine synthase and phosphoenolypyruvate carboxykinase requiring the most pronounced environment, respectively. The patterns of gene expression around the large branches of the portal and hepatic vein were found to be related to the parenchymal branches in the neighbourhood of these large blood vessels. Only the cells of the limiting plate retain their periportal and pericentral phenotype for those marker enzymes that do not require a pronounced periportal or pericentral environment to be expressed. GS-negative areas in the pericentral limiting plate appear to correlate with a local absence of draining central veins, and become more frequent and extensive around the larger branches of the hepatic vein. CONCLUSIONS The similarity of the observed patterns of gene expression of the genes studied in mouse, rat, monkey, pig, and man suggests that they reflect a general feature of gene expression in the mammalian liver. A comparison of mouse, rat, pig, and human liver suggests that the presence of glutamine synthase-negative areas reflects the branching order of the efferent hepatic blood vessel.
Collapse
Affiliation(s)
- G T Wagenaar
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
13
|
LéJohn H, Cameron L, Yang B, Rennie S. Molecular characterization of an NAD-specific glutamate dehydrogenase gene inducible by L-glutamine. Antisense gene pair arrangement with L-glutamine-inducible heat shock 70-like protein gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41809-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Das AT, Arnberg AC, Malingré H, Moerer P, Charles R, Moorman AF, Lamers WH. Isolation and characterization of the rat gene encoding glutamate dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:795-803. [PMID: 8094669 DOI: 10.1111/j.1432-1033.1993.tb17611.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The concentration of glutamate dehydrogenase (GDH) varies strongly between different organs and between different regions within organs. To permit further studies on the regulation of GDH expression, we isolated and characterized the rat gene encoding the GDH protein. This gene contains 13 exons and spans approximately 34 kbp. The GDH gene is present as a single, autosomally located copy in the Wistar rat genome, but shows an extensive restriction-fragment-length polymorphism for several enzymes. Promoter activity of the 5'-flanking sequence is shown by transient transfection experiments. The 5'-flanking sequence contains a TTAAAA sequence at position -29, instead of a consensus TATA box and, like many other TATA-less promoters, is characterized by a very high G + C content. In addition, consensus sequences for the binding sites of the transcription factors Sp1 and Zif268 are present in the G + C-rich upstream region.
Collapse
Affiliation(s)
- A T Das
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Teller JK, Smith RJ, McPherson MJ, Engel PC, Guest JR. The glutamate dehydrogenase gene of Clostridium symbiosum. Cloning by polymerase chain reaction, sequence analysis and over-expression in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:151-9. [PMID: 1587267 DOI: 10.1111/j.1432-1033.1992.tb16912.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gene encoding the NAD(+)-dependent glutamate dehydrogenase (GDH) of Clostridium symbiosum was cloned using the polymerase chain reaction (PCR) because it could not be recovered by standard techniques. The nucleotide sequence of the gdh gene was determined and it was overexpressed from the controllable tac promoter in Escherichia coli so that active clostridial GDH represented 20% of total cell protein. The recombinant plasmid complemented the nutritional lesion of an E. coli glutamate auxotroph. There was a marked difference between the nucleotide compositions of the coding region (G + C = 52%) and the flanking sequences (G + C = 30% and 37%). The structural gene encoded a polypeptide of 450 amino acid residues and relative molecular mass (M(r) 49,295 which corresponds to a single subunit of the hexameric enzyme. The DNA-derived amino acid sequence was consistent with a partial sequence from tryptic and cyanogen bromide peptides of the clostridial enzyme. The N-terminal amino acid sequence matched that of the purified protein, indicating that the initiating methionine is removed post-translationally, as in the natural host. The amino acid sequence is similar to those of other bacterial GDHs although it has a Gly-Xaa-Gly-Xaa-Xaa-Ala motif in the NAD(+)-binding domain, which is more typical of the NADP(+)-dependent enzymes. The sequence data now permit a detailed interpretation of the X-ray crystallographic structure of the enzyme and the cloning and expression of the clostridial gene will facilitate site-directed mutagenesis.
Collapse
Affiliation(s)
- J K Teller
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, England
| | | | | | | | | |
Collapse
|
16
|
Robb FT, Park JB, Adams MW. Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1120:267-72. [PMID: 1576153 DOI: 10.1016/0167-4838(92)90247-b] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glutamate dehydrogenase (L-glutamate:NAD(P)+ oxidoreductase, deaminating, EC 1.4.1.3) from the hyperthermophilic Archeon Pyrococcus furiosus was purified to homogeneity by chromatography on anion-exchange, molecular-exclusion and hydrophobic-interaction media. The purified native enzyme had an M(r) of 270,000 +/- 15,000 and was shown to be a hexamer with identical subunits of M(r) 46,000. The enzyme was exceptionally thermostable, having a half-life of 3.5 to more than 10 h at 100 degrees C, depending on the concentration of enzyme. The Km of the enzyme for ammonia was high (9.5 mM), indicating that the enzyme is probably active in the deaminating, catabolic direction. The coenzyme utilization of the enzyme resembled the equivalent enzymes from eukaryotes rather than eubacteria, since both NADH and NADPH were recognized with high affinity. The enzyme displayed a preference for NADP+ over NAD+ that was more pronounced at low assay temperatures (50-70 degrees C) compared with the optimal temperature for enzyme activity, 95 degrees C.
Collapse
Affiliation(s)
- F T Robb
- Center of Marine Biotechnology, University of Maryland, Baltimore 21202
| | | | | |
Collapse
|
17
|
Leer LM, Cammenga M, De Vijlder JJ. Methimazole and propylthiouracil increase thyroglobulin gene expression in FRTL-5 cells. Mol Cell Endocrinol 1991; 82:R25-30. [PMID: 1794603 DOI: 10.1016/0303-7207(91)90051-s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In FRTL-5 cells, methimazole (MMI) and propylthiouracil (PTU), both thyroid peroxidase (TPO) inhibitors, increase thyroglobulin (Tg) mRNA levels and Tg accumulation in the medium. An increase in Tg mRNA levels and in Tg accumulation was observed after 2-4 h and 8 h incubation with 10,000 microM MMI or PTU, respectively. Glutamate dehydrogenase mRNA levels, which corresponded with total RNA levels, were not affected. The concentrations of these drugs at which stimulation occurs are higher than the concentrations required for complete inhibition of TPO activity. The stimulatory effects of MMI and PTU can be suppressed by iodide and do not occur when protein synthesis is inhibited by cycloheximide. The effect of MMI on Tg gene expression is not dependent on thyrotropin (TSH) or insulin and MMI does not change the TSH-induced cAMP production. We conclude that MMI and PTU interfere in a regulatory pathway for Tg gene expression.
Collapse
Affiliation(s)
- L M Leer
- Department of Experimental Pediatric Endocrinology, Academic Medical Centre, Amsterdam, Netherlands
| | | | | |
Collapse
|
18
|
Leer LM, Cammenga M, van der Vorm ER, de Vijlder JJ. Methimazole increases thyroid-specific mRNA concentration in human thyroid cells and FRTL-5 cells. Mol Cell Endocrinol 1991; 78:221-8. [PMID: 1663879 DOI: 10.1016/0303-7207(91)90126-d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methimazole (1-methyl-2-mercaptoimidazole; MMI) increases thyroglobulin mRNA and thyroid peroxidase mRNA concentration in human thyroid cells and in FRTL-5 cells. MMI (1-10,000 microM) gives a dose-dependent increase of thyroglobulin concentration in the medium of human thyroid cells and FRTL-5 cells. The stimulation by MMI has no effect on the TSH-induced cAMP production and occurs in the presence or absence of thyrotropin (TSH). TSH increases the thyroglobulin and thyroid peroxidase mRNA synthesis in human thyroid cells and FRTL-5 cells. The accumulation of thyroglobulin in the medium has an optimum at 100 microU TSH/ml in FRTL-5 cells. This optimum can also be found in most human thyroid cell cultures.
Collapse
Affiliation(s)
- L M Leer
- Department of Experimental Pediatric Endocrinology, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
19
|
Tzimagiorgis G, Moschonas NK. Molecular cloning, structure and expression analysis of a full-length mouse brain glutamate dehydrogenase cDNA. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1089:250-3. [PMID: 1711373 DOI: 10.1016/0167-4781(91)90017-g] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We isolated and analysed a full-length mouse brain glutamate dehydrogenase (GLUD) cDNA as a preliminary step to use the mouse model for the investigation of GLUD function in neurotransmission and neurodegeneration. GLUD coding sequences were found highly conserved among mouse, human and rat. Northern blots revealed two transcripts with different ratios in different mouse organs implying some mechanism of tissue-specific expression. In contrast to human, mouse GLUD gene family appears not to contain an intronless member.
Collapse
|
20
|
Tzimagiorgis G, Adamson MC, Kozak CA, Moschonas NK. Chromosomal mapping of glutamate dehydrogenase gene sequences to mouse chromosomes 7 and 14. Genomics 1991; 10:83-8. [PMID: 2045113 DOI: 10.1016/0888-7543(91)90487-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glutamate dehydrogenase (GLUD) plays an important role in mammalian neuronal transmission. In human, GLUD is encoded by a small gene family. To determine whether defects in Glud genes are associated with known neurological mutations in the mouse and to contribute to the comparative mapping of homologous genes in man and mouse, the chromosomal location of genes reactive with a mouse brain GLUD cDNA were determined. Genomic Southern analysis of a well-characterized panel of Chinese hamster x mouse somatic cell hybrids identified two GLUD-reactive loci, one residing on mouse Chromosome 14 and the other on Chromosome 7. Progeny of an intersubspecies backcross were used to map one of these genes, Glud, proximal to Np-1 on Chromosome 14, but no restriction fragment polymorphisms could be identified for the second locus, Glud-2.
Collapse
Affiliation(s)
- G Tzimagiorgis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Crete, Greece
| | | | | | | |
Collapse
|
21
|
Moorman AF, De Boer PA, Das AT, Labruyère WT, Charles R, Lamers WH. Expression patterns of mRNAs for ammonia-metabolizing enzymes in the developing rat: the ontogenesis of hepatocyte heterogeneity. THE HISTOCHEMICAL JOURNAL 1990; 22:457-68. [PMID: 1979781 DOI: 10.1007/bf01007229] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The expression patterns of the mRNAs for the ammonia-metabolizing enzymes carbamoylphosphate synthetase (CPS), glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were studied in developing pre- and neonatal rat liver by in situ hybridization. In the period of 11 to 14 embryonic days (ED) the concentrations of GS and GDH mRNA increases rapidly in the liver, whereas a substantial rise of CPS mRNA in the liver does not occur until ED 18. Hepatocyte heterogeneity related to the vascular architecture can first be observed at ED 18 for GS mRNA, at ED 20 for GDH mRNA and three days after birth for CPS mRNA. The adult phenotype is gradually established during the second neonatal week, i.e. GS mRNA becomes confined to a pericentral compartment of one to two hepatocytes thickness, CPS mRNA to a large periportal compartment being no longer expressed in the pericentral compartment and GDH mRNA is expressed over the entire porto-central distance, decreasing in concentration going from central to portal. Comparison of the observed mRNA distribution patterns in the perinatal liver, with published data on the distribution of the respective proteins, points to the occurrence of posttranslational, in addition to pretranslational control mechanisms in the period of ontogenesis of hepatocyte heterogeneity. Interestingly, during development all three mRNAS are expressed outside the liver to a considerable extent and in a highly specific way, indicating that several organs are involved in the developmentally regulated expression of the mRNAs for the ammonia-metabolizing enzymes, that were hitherto not recognized as such.
Collapse
Affiliation(s)
- A F Moorman
- Department of Anatomy and Embryology, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
van de Zande L, Labruyère WT, Arnberg AC, Wilson RH, van den Bogaert AJ, Das AT, van Oorschot DA, Frijters C, Charles R, Moorman AF. Isolation and characterization of the rat glutamine synthetase-encoding gene. Gene 1990; 87:225-32. [PMID: 1970548 DOI: 10.1016/0378-1119(90)90306-c] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
From a rat genomic library in phage lambda Charon4A, a complete glutamine synthetase-encoding gene was isolated. The gene is 9.5-10 kb long, consists of seven exons, and codes for two mRNA species of 1375 nucleotides (nt) and 2787 nt, respectively. For both mRNAs, full-length cDNAs containing a short poly(A) tract were identified. The sequences of the entire mRNA and of the exon-intron transitions were determined. The smaller mRNA is identical to the 5' 1375 nt of the long mRNA and contains the entire protein-coding region. The position of the transcription start point was mapped. Within the first 118 bp of promoter sequence, a (T)ATAA-box, a CCAAT-box and an SP1-binding site were identified.
Collapse
Affiliation(s)
- L van de Zande
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|