1
|
Eller CH, Lomax JE, Raines RT. Bovine brain ribonuclease is the functional homolog of human ribonuclease 1. J Biol Chem 2014; 289:25996-26006. [PMID: 25078100 DOI: 10.1074/jbc.m114.566166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence suggests that human pancreatic ribonuclease (RNase 1) plays important roles in vivo, ranging from regulating blood clotting and inflammation to directly counteracting tumorigenic cells. Understanding these putative roles has been pursued with continual comparisons of human RNase 1 to bovine RNase A, an enzyme that appears to function primarily in the ruminant gut. Our results imply a different physiology for human RNase 1. We demonstrate distinct functional differences between human RNase 1 and bovine RNase A. Moreover, we characterize another RNase 1 homolog, bovine brain ribonuclease, and find pronounced similarities between that enzyme and human RNase 1. We report that human RNase 1 and bovine brain ribonuclease share high catalytic activity against double-stranded RNA substrates, a rare quality among ribonucleases. Both human RNase 1 and bovine brain RNase are readily endocytosed by mammalian cells, aided by tight interactions with cell surface glycans. Finally, we show that both human RNase 1 and bovine brain RNase are secreted from endothelial cells in a regulated manner, implying a potential role in vascular homeostasis. Our results suggest that brain ribonuclease, not RNase A, is the true bovine homolog of human RNase 1, and provide fundamental insight into the ancestral roles and functional adaptations of RNase 1 in mammals.
Collapse
Affiliation(s)
- Chelcie H Eller
- Departments of Biochemistry and University of Wisconsin, Madison, Wisconsin 53706
| | - Jo E Lomax
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706
| | - Ronald T Raines
- Departments of Biochemistry and University of Wisconsin, Madison, Wisconsin 53706; Departments of Chemistry, and University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
2
|
Zhang R, Tian G, Zhao Y, Zhao L, Wang H, Gong Z, Ng TB. A novel ribonuclease with HIV-1 reverse transcriptase inhibitory activity purified from the fungusRamaria formosa. J Basic Microbiol 2014; 55:269-75. [DOI: 10.1002/jobm.201300876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/13/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Rui Zhang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology; China Agricultural University; Beijing China
| | - Guoting Tian
- Institute of Biotechnology and Germplasmic Resource; Yunnan Academy of Agricultural Science; Kunming China
| | - Yongchang Zhao
- Institute of Biotechnology and Germplasmic Resource; Yunnan Academy of Agricultural Science; Kunming China
| | - Liyan Zhao
- College of Food Science and Technology; Nanjing Agricultural University; Weigang Nanjing China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology; China Agricultural University; Beijing China
| | - Zhiyuan Gong
- Institute of Agricultural Resources and Environment; Shandong Academy of Agricultural Sciences; Jinan Shandong China
| | - Tzi Bun Ng
- Faculty of Medicine; School of Biomedical Sciences; The Chinese University of Hong Kong; Shatin New Territories Hong Kong China
| |
Collapse
|
3
|
Sekete M, Ma D, Wang B, Wang H, Ng T. First biochemical characterization of a novel ribonuclease from wild mushroom Amanita hemibapha. SPRINGERPLUS 2012; 1:79. [PMID: 23419979 PMCID: PMC3568466 DOI: 10.1186/2193-1801-1-79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/04/2012] [Indexed: 12/05/2022]
Abstract
A 45-kDa ribonuclease (RNase) was purified from dried fruiting bodies of the wild mushroom Amanita hemibapha. It was adsorbed on DEAE-cellulose, S-sepharose, and finally purified on Superdex 75. The RNase exhibited maximal RNase activity at pH 5 and in a temperature range between 60-70°C. It demonstrated no ribonucleolytic activity toward four polyhomoribonucleotides. The amino acid sequence analysis (GDDETFWEHEWAK) showed this RNase was a ribonuclease T2-like RNase. It exhibited strong inhibitory activity against HIV-1 reverse transcriptase (HIV-1 RT) with an IC50 of 17 μM.
Collapse
|
4
|
Zhao YC, Zhang GQ, Ng TB, Wang HX. A novel ribonuclease with potent HIV-1 reverse transcriptase inhibitory activity from cultured mushroom Schizophyllum commune. J Microbiol 2011; 49:803-8. [PMID: 22068498 DOI: 10.1007/s12275-011-1098-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/25/2011] [Indexed: 01/02/2023]
Abstract
A 20-kDa ribonuclease (RNase) was purified from fresh fruiting bodies of cultured Schizophyllum commune mushrooms. The RNase was not adsorbed on Affi-gel blue gel but adsorbed on DEAE-cellulose and CM-cellulose. It exhibited maximal RNase activity at pH 6.0 and 70°C. It demonstrated the highest ribonucleolytic activity toward poly (U) (379.5 μ/mg), the second highest activity toward poly (C) (244.7 μ/mg), less activity toward poly (A) (167.4 μ/mg), and much weaker activity toward poly (G) (114.5 μ/mg). The RNase inhibited HIV-1 reverse transcriptase with an IC(50) of 65 μM. No effect on [(3)H-methyl]-thymidine uptake by lymphoma MBL2 cells and leukemia L1210 cells was observed at 100 μM concentration of the RNase. A comparison of RNases from S. commune and Volvariella volvacea revealed that they demonstrated some similarities in N-terminal amino acid sequence, optimum pH and polyhomoribonucleotide specificity. However, some differences in chromatographic behavior and molecular mass were observed.
Collapse
Affiliation(s)
- Yong-Chang Zhao
- Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Science, Kunming, 650223, P. R. China
| | | | | | | |
Collapse
|
5
|
Zhang RY, Zhang GQ, Hu DD, Wang HX, Ng TB. A Novel Ribonuclease with Antiproliferative Activity from Fresh Fruiting Bodies of the Edible Mushroom Lyophyllum shimeiji. Biochem Genet 2010; 48:658-68. [DOI: 10.1007/s10528-010-9347-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/24/2010] [Indexed: 11/30/2022]
|
6
|
Duplication and functional diversification of pancreatic ribonuclease (RNASE1) gene. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-009-0717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Wu X, Zheng S, Cui L, Wang H, Ng TB. Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor. J GEN APPL MICROBIOL 2010; 56:231-9. [DOI: 10.2323/jgam.56.231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Affiliation(s)
- S S Moore
- CSIRO, University of Queensland, St Lucia, Australia
| | | |
Collapse
|
9
|
Abstract
A ribonuclease, with a molecular mass of 9 kDa and an N-terminal sequence resembling the sequence of a fragment of tRNA/rRNA cytosine-C5-methylase and a fragment of a alanyl-tRNA synthetase, was isolated from fresh fruiting bodies of the brown oyster mushroom Pleurotus ostreatus. The ribonuclease was purified using a very simple protocol that comprised ion-exchange chromatography on carboxymethyl (CM)-cellulose and affinity chromatography on Affi-gel blue gel. Subsequent gel filtration by fast protein liquid chromatography on Superdex 75 and sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis revealed that the ribonuclease was purified after the first two chromatographic steps. The ribonuclease was adsorbed on CM-cellulose and Affi-gel blue gel. The ribonuclease exhibited the highest activity toward poly A, lower activity toward poly C, slight activity toward poly G, and indiscernible activity toward poly U. The enzyme was stimulated upon exposure to 1 microm Mg2+ and 10 microm Zn2+, but was inhibited by the following ions at 10 mm: Ca2+, Mg2+, Zn2+, Cu2+, Fe2+, Mn2+, and Fe3+. The ribonuclease required a pH of 8.0 and a temperature of 50-70 degrees C to express maximal activity. It had a Km of 60 microm toward yeast tRNA. It lacked mitogenic and HIV-1 reverse transcriptase inhibiting activities, but exerted antiproliferative activity toward leukemia L1210 cells.
Collapse
Affiliation(s)
- L Xia
- Department of Life Sciences, Shenzhen University, Shenzhen, China
| | | | | |
Collapse
|
10
|
Guan G, Wang H, Ng T. A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochim Biophys Acta Gen Subj 2007; 1770:1593-7. [DOI: 10.1016/j.bbagen.2007.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 07/27/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
|
11
|
Schienman JE, Holt RA, Auerbach MR, Stewart CB. Duplication and divergence of 2 distinct pancreatic ribonuclease genes in leaf-eating African and Asian colobine monkeys. Mol Biol Evol 2006; 23:1465-79. [PMID: 16751256 DOI: 10.1093/molbev/msl025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unique among primates, the colobine monkeys have adapted to a predominantly leaf-eating diet by evolving a foregut that utilizes bacterial fermentation to breakdown and absorb nutrients from such a food source. It has been hypothesized that pancreatic ribonuclease (pRNase) has been recruited to perform a role as a digestive enzyme in foregut fermenters, such as artiodactyl ruminants and the colobines. We present molecular analyses of 23 pRNase gene sequences generated from 8 primate taxa, including 2 African and 2 Asian colobine species. The pRNase gene is single copy in all noncolobine primate species assayed but has duplicated more than once in both the African and Asian colobine monkeys. Phylogenetic reconstructions show that the pRNase-coding and noncoding regions are under different evolutionary constraints, with high levels of concerted evolution among gene duplicates occurring predominantly in the noncoding regions. Our data suggest that 2 functionally distinct pRNases have been selected for in the colobine monkeys, with one group adapting to the role of a digestive enzyme by evolving at an increased rate with loss of positive charge, namely arginine residues. Conclusions relating our data to general hypotheses of evolution following gene duplication are discussed.
Collapse
Affiliation(s)
- John E Schienman
- Department of Biological Sciences, University at Albany, State University of New York, USA.
| | | | | | | |
Collapse
|
12
|
Wang HX, Ng TB. A novel ribonuclease from fresh fruiting bodies of the portabella mushroom Agaricus bisporus. Biochem Cell Biol 2006; 84:178-83. [PMID: 16609698 DOI: 10.1139/o06-033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A 14 kDa ribonuclease with a novel N-terminal sequence was isolated from fresh fruiting bodies of the portabella mushroom. It was adsorbed on DEAE-cellulose and carboxymethyl-cellulose, and demonstrated the highest ribonucleolytic potency toward poly (A), 60% as much activity toward poly (C), 40% as much activity toward poly (U), and the least activity (7% as much) toward poly (G). It exhibited a pH optimum at pH 4.5 and a temperature optimum at 60 °C. Its activity at 100 °C was higher than that at 20 °C.Key words: ribonuclease, portabella mushroom, isolation.
Collapse
Affiliation(s)
- H X Wang
- Department of Microbiology, China Agricultural University, Beijing and State Key Laboratory for Agrobiotechnology, China
| | | |
Collapse
|
13
|
Wang H, Ng TB. A ribonuclease from the wild mushroom Boletus griseus. Appl Microbiol Biotechnol 2006; 72:912-6. [PMID: 16544139 DOI: 10.1007/s00253-006-0385-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 01/18/2006] [Accepted: 02/18/2006] [Indexed: 11/28/2022]
Abstract
A ribonuclease (RNase) with a molecular mass of 29 kDa and cospecific for poly A and poly U was isolated from fruiting bodies of the mushroom Boletus griseus. Its N-terminal sequence exhibited some similarity to those of RNases from the mushrooms Irpex lacteus and Lentinus edodes. The RNase was adsorbed on diethylaminoethyl-cellulose, Q-Sepharose, and Affi-gel blue gel and was unadsorbed on CM-cellulose. The enzyme exhibited a temperature optimum between 60 and 70 degrees C and a pH optimum at 3.5.
Collapse
Affiliation(s)
- Hexiang Wang
- State Key Laboratory of Agrobiotechnology, Department of Microbiology, College of Biological Science, China Agricultural University, Beijing, China
| | | |
Collapse
|
14
|
Wang HX, Ng TB. Purification of a novel ribonuclease from dried fruiting bodies of the edible wild mushroom Thelephora ganbajun. Biochem Biophys Res Commun 2004; 324:855-9. [PMID: 15474506 DOI: 10.1016/j.bbrc.2004.09.132] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Indexed: 11/29/2022]
Abstract
A ribonuclease, with a molecular mass of 30 kDa and a potent inhibitory activity toward HIV-1 reverse transcriptase (IC50=300 nM), was isolated from dried fruiting bodies of the edible wild mushroom Thelephora ganbajun. The ribonuclease exhibited a unique polyhomoribonucleotide specificity, with the highest activity toward poly(U), about 50% and 25% as much activity toward poly(A) and poly(C), respectively, and minimal activity toward poly(G). Unlike other mushroom RNases, the ribonuclease was adsorbed on DEAE-cellulose and Q-Sepharose, and unadsorbed on CM-cellulose. A temperature of 40 degrees C and a pH of 6-7 were required for maximal activity of the enzyme. The enzyme was characterized by an N-terminal sequence without any homology to known proteins.
Collapse
Affiliation(s)
- H X Wang
- Department of Microbiology, China Agricultural University, Beijing and State Key Laboratory for Agrobiotechnology, Beijing, China.
| | | |
Collapse
|
15
|
Wang H, Ng TB. A ribonuclease with distinctive features from the wild green-headed mushroom Russulus virescens. Biochem Biophys Res Commun 2004; 312:965-8. [PMID: 14651965 DOI: 10.1016/j.bbrc.2003.10.201] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A ribonuclease with an N-terminal sequence different from those of other ribonucleases has been purified from fruiting bodies of the mushroom Russula virescens. The RNase was adsorbed on DEAE-cellulose and Q-Sepharose in 10mM Tris-HCl buffer (pH 7.1-7.3) and on CM-Sepharose in 10mM NH(4)OAc buffer (pH 4.6), unlike other mushroom ribonucleases which are unadsorbed on DEAE-cellulose. The RNase demonstrated a molecular mass of 28kDa in both gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In contrast to other mushroom ribonucleases which are monospecific, it exhibited co-specificity towards poly A and poly C. It demonstrated a pH optimum of 4.5, which is lower than values reported for other mushroom ribonucleases, and a temperature optimum of 60 degrees C.
Collapse
Affiliation(s)
- Hexiang Wang
- Department of Microbiology, College of Biological Science, China Agricultural University, and State Key Laboratory of Agrobiotechnology, Beijing, China
| | | |
Collapse
|
16
|
Ngai PHK, Ng TB. A ribonuclease with antimicrobial, antimitogenic and antiproliferative activities from the edible mushroom Pleurotus sajor-caju. Peptides 2004; 25:11-7. [PMID: 15003351 DOI: 10.1016/j.peptides.2003.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 11/25/2003] [Indexed: 11/16/2022]
Abstract
A 12 kDa ribonuclease preferential for poly U and with much lower activity toward poly A, poly G and poly C was isolated from fresh fruiting bodies of the mushroom Pleurotus sajor-caju. A purification procedure involving ion exchange chromatography on CM-cellulose, affinity chromatography on Red-Sepharose and Heparin-Sepharose, and fast protein liquid chromatography-gel filtration on Superdex 75 was used. The ribonuclease was adsorbed on all of the first three types of chromatographic media. It exhibited some activity toward herring sperm DNA and calf thymus DNA. The ribonuclease activity was unaffected in the presence of KCl (10 and 100 mM) and NaCl (100 mM and 1 M), but was strongly inhibited by CuSO4 (0.01 and 0.1 mM) and less potently inhibited by other divalent salts including MgCl2, CaCl2, ZnCl2, ZnSO4 and FeSO4. The optimal pH was 5.5 and the ribonuclease was stable up to 60 degrees C for 1 h. The ribonuclease inhibited mycelial growth in the fungi Fusarium oxysporum and Mycosphaerella arachidicola with an IC50 value of 95 and 72 microM, respectively. Out of the 12 species of bacteria tested, only Pseudomonas aeruginosa and Staphylococcus aureus were inhibited in growth by the ribonuclease. Viability of the tumor cells HepG2 (hepatoma) and L1210 (leukemia) was reduced with an IC50 of 0.22 and 0.1 microM, respectively in the presence of the ribonuclease. The ribonuclease inhibited translation in a cell-free rabbit reticulocyte lysate system with an IC50 of 158 nM and 3H-methyl-thymidine uptake by murine splenocytes with an IC50 of 65 nM.
Collapse
Affiliation(s)
- Patrick H K Ngai
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
17
|
Ye XY, Ng TB. Purification and characterization of a new ribonuclease from fruiting bodies of the oyster mushroom Pleurotus ostreatus. J Pept Sci 2003; 9:120-4. [PMID: 12630697 DOI: 10.1002/psc.437] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A ribonuclease (RNase), possessing an N-terminal sequence disparate from those of ribonucleases from other mushrooms and previously isolated Pleuotus ostreatus RNases, was purified from the fruiting bodies of the edible mushroom Pleurotus ostreatus. The N-terminal sequence of Pleurotus ostreatus RNase did not manifest homology even to a previously reported RNase from the same mushroom. The ribonuclease was adsorbed on CM-Sepharose and Mono S. It exhibited a molecular mass of 12 kDa in both sodium dodecyl sulphate-polyacrylamide gel electrophoresis and gel filtration on Superdex 75. The ribonuclease displayed an activity of 11490 U/mg on yeast tRNA. The highest ribonuclease activity was exhibited toward poly U, followed by poly A and poly C. No activity was shown toward poly G. The optimal pH for its activity was 7 and the optimal temperature was 55 degrees C. It inhibited cell-free translation in a rabbit reticulocyte lysate with an IC50 of 240 nM.
Collapse
Affiliation(s)
- X Y Ye
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
18
|
Beintema JJ, Breukelman HJ, Dubois JYF, Warmels HW. Phylogeny of ruminants secretory ribonuclease gene sequences of pronghorn (Antilocapra americana). Mol Phylogenet Evol 2003; 26:18-25. [PMID: 12470934 DOI: 10.1016/s1055-7903(02)00295-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phylogenetic analyses based on primary structures of mammalian ribonucleases, indicated that three homologous enzymes (pancreatic, seminal and brain ribonucleases) present in the bovine species are the results of gene duplication events, which occurred in the ancestor of the ruminants after divergence from other artiodactyls. In this paper sequences are presented of genes encoding pancreatic and brain-type ribonuclease genes of pronghorn (Antilocapra americana). The seminal-type ribonuclease gene could not be detected in this species, neither by PCR amplification nor by Southern blot analyses, indicating that it may be deleted completely in this species. Previously we demonstrated of a study of amino acid sequences of pancreatic ribonucleases of a large number of ruminants the monophyly of bovids and cervids, and that pronghorn groups with giraffe. Here we present phylogenetic analyses of nucleotide sequences of ribonucleases and other molecules from ruminant species and compare these with published data. Chevrotain (Tragulus) always groups with the other ruminants as separate taxon from the pecora or true ruminants. Within the pecora the relationships between Bovidae, Cervidae, Giraffidae, and pronghorn (Antilocapra) cannot be decided with certainty, although in the majority of analyses Antilocapra diverges first, separately or joined with giraffe. Broad taxon sampling and investigation of specific sequence features may be as important for reliable conclusions in phylogeny as the lengths of analyzed sequences.
Collapse
Affiliation(s)
- Jaap J Beintema
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Ye XY, Ng TB. A novel and potent ribonuclease from fruiting bodies of the mushroom Pleurotus pulmonarius. Biochem Biophys Res Commun 2002; 293:857-61. [PMID: 12054550 DOI: 10.1016/s0006-291x(02)00301-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A ribonuclease (RNase), with an N-terminal sequence different from those of ribonucleases from the mushrooms Irpex lacteus, Lentinus edodes, Pleurotus ostreatus, Pleurotus tuber-regium, and Volvariella volvacea, was purified from fruiting bodies of the edible mushroom Pleurotus pulmonarius. The N-terminal sequence of P. pulmonarius RNase manifested homology to a portion of the sequences of ribosome inactivating protein abrin-b, abrin-c, and abrin-d, and Bacillus subtilis transcriptional regulator. The ribonuclease was adsorbed on Affi-gel blue gel, CM-Sepharose, and Mono S. It displayed a molecular mass of 14.4 kDa in both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration on Superdex 75. The ribonuclease exhibited an activity of 25 114 U/mg on yeast tRNA. The highest ribonucleolytic activity was demonstrated toward poly C, followed by poly A, and then by poly G. There was no activity toward poly U. The optimal pH for its activity was 7 and the optimal temperature was 55 degrees C. It inhibited cell-free translation in a rabbit reticulocyte lysate with an IC50 of 0.33 nM.
Collapse
Affiliation(s)
- X Y Ye
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
20
|
Breukelman HJ, Jekel PA, Dubois JY, Mulder PP, Warmels HW, Beintema JJ. Secretory ribonucleases in the primitive ruminant chevrotain (Tragulus javanicus). EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3890-7. [PMID: 11453981 DOI: 10.1046/j.1432-1327.2001.02294.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phylogenetic analyses of secretory ribonucleases or RNases 1 have shown that gene duplication events, giving rise to three paralogous genes (pancreatic, seminal and brain RNase), occurred during the evolution of ancestral ruminants. A higher number of paralogous sequences are present in chevrotain (Tragulus javanicus), the earliest diverged taxon within the ruminants. Two pancreatic RNase sequences were identified, one encoding the pancreatic enzyme, the other encoding a pseudogene. The identity of the pancreatic enzyme was confirmed by isolation of the protein and N-terminal sequence analysis. It is the most acidic pancreatic ribonuclease identified so far. Formation of the mature enzyme requires cleavage by signal peptidase of a peptide bond between two glutamic acid residues. The seminal-type RNase gene shows features of a pseudogene, like orthologous genes in other ruminants investigated with the exception of the bovine species. The brain-type RNase gene of chevrotain is expressed in brain tissue. A hybrid gene with a pancreatic-type N-terminal and a brain-type C-terminal sequence has been identified but nothing is known about its expression. Phylogenetic analysis of RNase 1 sequences of six ruminant, three other artiodactyl and two whale species support previous findings that two gene duplications occurred in a ruminant ancestor. Three distinct groups of pancreatic, seminal-type and brain-type RNases have been identified and within each group the chevrotain sequence it the first to diverge. In taxa with duplications of the RNase gene (ruminants and camels) the gene evolved at twice as fast than in taxa in which only one gene could be demonstrated; in ruminants there was an approximately fourfold increase directly after the duplications and then a slowing in evolutionary rate.
Collapse
Affiliation(s)
- H J Breukelman
- Department of Biochemistry, University of Groningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Zhao W, Confalone E, Breukelman HJ, Sasso MP, Jekel PA, Hodge E, Furia A, Beintema JJ. Ruminant brain ribonucleases: expression and evolution. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:95-103. [PMID: 11343795 DOI: 10.1016/s0167-4838(01)00173-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Molecular evolutionary analyses of mammalian ribonucleases have shown that gene duplication events giving rise to three paralogous genes occurred in ruminant ancestors. One of these genes encodes a ribonuclease identified in bovine brain. A peculiar feature of this enzyme and orthologous sequences in other ruminants are C-terminal extensions consisting of 17-27 amino acid residues. Evidence was obtained by Western blot analysis for the presence of brain-type ribonucleases in brain tissue not only of ox, but also of sheep, roe deer and chevrotain (Tragulus javanicus), a member of the earliest diverged taxon of the ruminants. The C-terminal extension of brain-type ribonuclease from giraffe deviates much in sequence from orthologues in other ruminants, due to a change of reading frame. However, the gene encodes a functional enzyme, which could be expressed in heterologous systems. The messenger RNA of bovine brain ribonuclease is not only expressed at a high level in brain tissue but also in lactating mammary gland. The enzyme was isolated and identified from this latter tissue, but was not present in bovine milk, although pancreatic ribonucleases A and B could be isolated from both sources. This suggests different ways of secretion of the two enzyme types, possibly related to structural differences. The sequence of the brain-type RNase from chevrotain suggests that the C-terminal extensions of ruminant brain-type ribonucleases originate from deletions in the ancestral DNA (including a region with stop codons), followed by insertion of a 5-8-fold repeated hexanucleotide sequence, coding for a proline-rich polypeptide.
Collapse
Affiliation(s)
- W Zhao
- Department of Biochemistry, University of Groningen, Nijenborgh, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sasso MP, Lombardi M, Confalone E, Carsana A, Palmieri M, Furia A. The differential pattern of tissue-specific expression of ruminant pancreatic type ribonucleases may help to understand the evolutionary history of their genes. Gene 1999; 227:205-12. [PMID: 10023061 DOI: 10.1016/s0378-1119(98)00586-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Molecular evolutionary analyses of mammalian ribonucleases have shown that gene duplication events giving three paralogous genes occurred in ruminant ancestors. The enzymes of the bovine species encoded by these genes, isolated from pancreas, brain and seminal vesicles, present similar enzymological properties but distinct structural features. In other ruminant species, genomic sequences orthologous to the bovine genes of pancreas and brain ribonucleases encode active enzymes. In mammalian species other than ruminant artiodactyls, only one gene encoding ribonuclease of the pancreatic type is generally present. In this work, we describe a differential pattern of transcriptional expression of the pancreas and brain ribonuclease genes in the ox species and report transcription of the human ribonuclease gene in brain as well as in pancreas and in mammary gland. We also report the molecular cloning of the gene encoding the bovine seminal ribonuclease in which the structural organization already described for the two paralogous genes is conserved. The seminal RNAase is exclusively expressed in seminal vesicles of Bos taurus, whereas in other ruminant species, the orthologous sequence is a pseudogene. Previous studies from a number of research groups demonstrated that, unlike other mammalian ribonucleases, the seminal enzyme is a covalent dimer, and its unique quaternary structure correlates with special biological activities. The major determinant of dimer formation, i.e. the presence of two adjacent cysteine residues, is absent in the pseudogenes. We advance the hypothesis that the differentiation of distinct expression patterns could represent an important evolutionary determinant for the genes encoding pancreas and brain ribonucleases in ruminants, whereas the differentiation of a quaternary structure endowed with new biological functions could be the main determinant for the evolutionary success of the seminal gene in the bovine species.
Collapse
Affiliation(s)
- M P Sasso
- Department of Organic and Biological Chemistry, University Federico II of Naples, via Mezzocannone 16, 80134, Naples, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Breukelman HJ, van der Munnik N, Kleineidam RG, Furia A, Beintema JJ. Secretory ribonuclease genes and pseudogenes in true ruminants. Gene 1998; 212:259-68. [PMID: 9611269 DOI: 10.1016/s0378-1119(98)00177-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian pancreatic ribonucleases (RNase) form a family of extensively studied homologous proteins. Phylogenetic analyses, based on the primary structures of these enzymes, indicated that the presence of three homologous enzymes (pancreatic, seminal and brain ribonucleases) in the bovine species is due to gene duplication events, which occurred during the evolution of ancestral ruminants. In this paper the sequences are reported of the coding regions of the orthologues of the three bovine secretory ribonucleases in hog deer and roe deer, two deer species belonging to two different subfamilies of the family Cervidae. The sequences of the 3' untranslated regions of the three different secretory RNase genes of these two deer species and giraffe are also presented. Comparison of these and previously determined sequences of ruminant ribonucleases showed that the brain-type enzymes of giraffe and these deer species exhibit variations in their C-terminal extensions. The seminal-type genes of giraffe, hog deer and roe deer show all the features of pseudogenes. Phylogenetic analyses, based on the complete coding regions and parts of the 3' untranslated regions of the three different secretory ribonuclease genes of ox, sheep, giraffe and the two deer species, show that pancreatic, seminal- and brain-type RNases form three separate groups.
Collapse
Affiliation(s)
- H J Breukelman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Deming MS, Dyer KD, Bankier AT, Piper MB, Dear PH, Rosenberg HF. Ribonuclease k6: chromosomal mapping and divergent rates of evolution within the RNase A gene superfamily. Genome Res 1998; 8:599-607. [PMID: 9647635 DOI: 10.1101/gr.8.6.599] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have localized the gene encoding human RNase k6 to within approximately 120 kb on the long (q) arm of chromosome 14 by HAPPY mapping. With this information, the relative positions of the six human RNase A ribonucleases that have been mapped to this locus can be inferred. To further our understanding of the individual lineages comprising the RNase A superfamily, we have isolated and characterized 10 novel genes orthologous to that encoding human RNase k6 from Great Ape, Old World, and New World monkey genomes. Each gene encodes a complete ORF with no less than 86% amino acid sequence identity to human RNase k6 with the eight cysteines and catalytic histidines (H15 and H123) and lysine (K38) typically observed among members of the RNase A superfamily. Interesting trends include an unusually low number of synonymous substitutions (Ks) observed among the New World monkey RNase k6 genes. When considering nonsilent mutations, RNase k6 is a relatively stable lineage, with a nonsynonymous substitution rate of 0.40 x 10(-9) nonsynonymous substitutions/nonsynonymous site/year (ns/ns/yr). These results stand in contrast to those determined for the primate orthologs of the two closely related ribonucleases, the eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP), which have incorporated nonsilent mutations at very rapid rates (1.9 x 10(-9) and 2.0 x 10(-9) ns/ns/yr, respectively). The uneventful trends observed for RNase k6 serve to spotlight the unique nature of EDN and ECP and the unusual evolutionary constraints to which these two ribonuclease genes must be responding. [The sequence data described in this paper have been submitted to the GenBank data library under accession nos. AF037081-AF037090.]
Collapse
Affiliation(s)
- M S Deming
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
25
|
Huang HC, Wang SC, Leu YJ, Lu SC, Liao YD. The Rana catesbeiana rcr gene encoding a cytotoxic ribonuclease. Tissue distribution, cloning, purification, cytotoxicity, and active residues for RNase activity. J Biol Chem 1998; 273:6395-401. [PMID: 9497370 DOI: 10.1074/jbc.273.11.6395] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rana catesbeiana ribonuclease (RC-RNase) is a pyrimidine-guanine sequence-specific ribonuclease found in R. catesbeiana (bullfrog) oocytes. It possesses both ribonuclease activity and cytotoxicity against tumor cells. We report here for the first time the cloning of RC-RNase cDNA from liver rather than from oocytes where RC-RNase is stored. An internal fragment of cDNA was obtained by reverse transcription-PCR using deduced oligonucleotides as primers. Full-length cDNA was obtained by 5'- and 3'-RACE technique. The cDNA clone, named rcr gene, contained a 5'-untranslated region, a putative signal peptide (22 amino acids), a mature protein (111 amino acids), a 3'-untranslated region, and a polyadenylation site. The cDNA which encoded the mature protein was fused upstream with a modified pelB signal peptide DNA and inserted into pET11d for expression in Escherichia coli strain BL21(DE3). The secretory RC-RNase in the culture medium was enzymatically active and was purified to homogeneity. The recombinant RC-RNase had the same amino acid sequence, specific activity, substrate specificity, antigenicity, and cytotoxicity as that of native RC-RNase from frog oocytes. Amino acid residues His-10, Lys-35, and His-103 are involved in RC-RNase catalytic activity. Ribonucleolytic activity was involved in and may be essential for RC-RNase cytotoxicity. DNA sequence analysis showed that RC-RNase had approximately 45% identity to that of RNase superfamily genes. This indicates that RC-RNase is a distinct ribonuclease gene in the RNase superfamily.
Collapse
Affiliation(s)
- H C Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Fraboulet S, Boudouresque F, Delfino C, Ouafik L. Identification of a novel cis-element in the 3'-untranslated region of mammalian peptidylglycine alpha-amidating monooxygenase messenger ribonucleic acid. Endocrinology 1998; 139:894-904. [PMID: 9492018 DOI: 10.1210/endo.139.3.5784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the COOH-terminal alpha-amidation of peptidylglycine substrates, yielding amidated products. Growing evidence suggests that the metabolism of PAM messenger RNAs (mRNAs) can be regulated within the cytoplasm. To understand the mechanisms controlling the metabolism of PAM mRNAs, we sought to identify cis elements of the 3'-untranslated region (3'-UTR) of PAM mRNA that are recognized by cytoplasmic factors. From gel retardation assays, one sequence element is shown to form a specific RNA-protein complex. The protein-binding site of the complex was determined by ribonuclease T1 mapping, by blocking the putative binding site with antisense oligonucleotide, and by competition assays. Using 3'-end-labeled RNA in gel shift and UV cross-linking analyses, we detected in the 3'-UTR a novel 20-nucleotide cis element that interacted with a widely distributed cellular cytosolic protease-sensitive factor(s) to form a 60-kDa PAM mRNA-binding protein complex. The binding activity was redox sensitive. Tissue distribution of the protein in the rat showed a marked tissue-specific expression, with ovary, testis, lung, heart septum, anterior pituitary and hypothalamus containing large amounts compared with liver, ventricle, atrium, and neurointermediate lobe. No binding activity was detectable in pancreas, intestine, or kidney extracts. Northwestern blot analysis of AtT-20 (mouse corticotrope tumor cell line) cytoplasmic extracts revealed a protein of 46 kDa. Thus, we have identified a widely distributed cellular protein that binds to a conserved domain within the 3'-UTR of PAM mRNA from many animal species. Although these data suggest that cis element-binding activity could be a cytoplasmic regulator of PAM mRNA metabolism, the functional consequences of this binding remain to be determined.
Collapse
Affiliation(s)
- S Fraboulet
- INSERM U-297, Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | | | | | | |
Collapse
|
27
|
Batten D, Dyer KD, Domachowske JB, Rosenberg HF. Molecular cloning of four novel murine ribonuclease genes: unusual expansion within the ribonuclease A gene family. Nucleic Acids Res 1997; 25:4235-9. [PMID: 9336452 PMCID: PMC147033 DOI: 10.1093/nar/25.21.4235] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have characterized four novel murine ribonuclease genes that, together with the murine eosinophil-associated ribonucleases 1 and 2, form a distinct and unusual cluster within the RNase A gene superfamily. Three of these genes (mR-3, mR-4, mR-5) include complete open reading frames, encoding ribonucleases with eight cysteines and appropriately spaced histidines (His11 and His124) and lysine (Lys35) that are characteristic of this enlarging protein family; the fourth sequence encodes a non-functional pseudogene (mR-6P). Although the amino acid sequence similarities among these murine ribonucleases varies from 60 to 94%, they form a unique cluster, as each sequence is found to be more closely related to another of this group than to either murine angiogenin or to murine pancreatic ribonuclease. Interestingly, the relationship between the six genes in this 'mR cluster' and the defined lineages of the RNase A gene family could not be determined by amino acid sequence homology, suggesting the possibility that there are one or more additional ribonuclease lineages that have yet to be defined. Although the nature of the evolutionary constraints promoting this unusual expansion and diversification remain unclear, the implications with respect to function are intriguing.
Collapse
Affiliation(s)
- D Batten
- The Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
28
|
Moenner M, Hatzi E, Badet J. Secretion of ribonucleases by normal and immortalized cells grown in serum-free culture conditions. In Vitro Cell Dev Biol Anim 1997; 33:553-61. [PMID: 9282316 DOI: 10.1007/s11626-997-0098-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The requirement of serum in cell culture is a major limitation for studies on secreted ribonucleases (RNases) because serum contains a high amount of ribonucleolytic activity. Defined culture condition is thus of interest to improve our knowledge of the RNase biology. We report here that cells from three different types and origins, Chinese hamster lung fibroblasts, bovine smooth muscle cells, and human endothelium-derived EA.hy926 cells, proliferate consistently in the presence of a basal medium supplemented with bovine serum albumin, high-density lipoproteins, basic fibroblast growth factor, insulin, and transferrin. Using a new quantitative radio-RNase inhibitor assay, two distinct ribonucleolytic assays, and a radioimmunoassay against angiogenin, it is shown that RNases became apparent in media conditioned by cell monolayers. Both the hamster lung fibroblast and the EA.hy926 cell lines secreted larger amounts of RNase inhibitor-interacting factors and RNase activity than normal smooth muscle cells. The serum-free medium represents an alternative way to grow these cells and allows investigation of biosynthesis and functions of RNases in culture. It should be useful to identify and quantitate unambiguously specific members of the RNase family secreted by normal versus tumor cells in culture.
Collapse
Affiliation(s)
- M Moenner
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Unité 1813, Université de Paris XII-Val de Morne, France
| | | | | |
Collapse
|
29
|
Futami J, Tsushima Y, Murato Y, Tada H, Sasaki J, Seno M, Yamada H. Tissue-specific expression of pancreatic-type RNases and RNase inhibitor in humans. DNA Cell Biol 1997; 16:413-9. [PMID: 9150428 DOI: 10.1089/dna.1997.16.413] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The tissue-specific expression of five human pancreatic-type RNases and RNase inhibitor was analyzed by Northern hybridization against poly(A)+ RNA prepared from 16 normal tissues. The widespread expression of RNase 1 was observed in almost all of the tissues. RNase 4 and angiogenin showed a similar distribution of expression abundantly present in the liver. This suggested the identity of the cell types producing these two molecules. However, no relativity appeared to be present between the vascularization of the tissues and the angiogenin expression. A narrow range of expression of the eosinophil-derived neurotoxin gene was observed. This localization seems related to the phagocytic cells in the tissues. The undetectable level of the eosinophil cationic protein mRNA in normal tissues suggests that the differentiation of eosinophils, triggered by inflammation and/or atopy, is required. The expression of RNase inhibitor was found to be ubiquitous. The regulatory function of inhibitor against RNases in the cell should be considered in studying the physiological significance of the pancreatic-type RNase family.
Collapse
Affiliation(s)
- J Futami
- Department of Bioengineering Science, Faculty of Engineering, Okayama University, Tsushima-Naka, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Rosenberg HF, Dyer KD. Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family. Nucleic Acids Res 1996; 24:3507-13. [PMID: 8836175 PMCID: PMC146131 DOI: 10.1093/nar/24.18.3507] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The discovery of Ribonuclease k6 (RNase k6) was an unexpected result of our ongoing efforts to trace the evolutionary history of the ribonuclease gene family. The open reading frame of RNase k6, amplified from human genomic DNA, encodes a 150 amino acid polypeptide with eight cysteines and histidine and lysine residues corresponding to those found in the active site of the prototype, ribonuclease A. The single-copy gene encoding RNase k6 maps to human chromosome 14 and orthologous sequences were detected in both primate and non-primate mammalian species. A single mRNA transcript (1.5 kb) was detected in all human tissues tested, with lung representing the most abundant source. At the cellular level, transcripts encoding RNase k6 were detected in normal human monocytes and neutrophils (but not in eosinophils) suggesting a role for this ribonuclease in host defense. Of the five previously identified human ribonucleases of this group, RNase k6 is most closely related to eosinophil-derived neurotoxin (EDN), with 47% amino acid sequence identity; slight cross-reactivity between RNase k6 and EDN was observed on Western blots probed with polyclonal anti-EDN antiserum. The catalytic constants determined, Km = 5.0 microM and Kcat = 0.13 s-1, indicate that recombinant RNase k6 has approximately 40-fold less ribonuclease activity than recombinant EDN. The identification and characterization of RNase k6 has extended the ribonuclease gene family and suggests the possibility that there are others awaiting discovery.
Collapse
Affiliation(s)
- H F Rosenberg
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
31
|
Confalone E, Beintema JJ, Sasso MP, Carsana A, Palmieri M, Vento MT, Furia A. Molecular evolution of genes encoding ribonucleases in ruminant species. J Mol Evol 1995; 41:850-8. [PMID: 8587129 DOI: 10.1007/bf00173164] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phylogenetic analysis, based on the primary structures of mammalian pancreatic-type ribonucleases, indicated that gene duplication events, which occurred during the evolution of ancestral ruminants, gave rise to the three paralogous enzymes present in the bovine species. Herein we report data that demonstrate the existence of the orthologues of the bovine pancreatic, seminal, and cerebral ribonucleases coding sequences in the genomes of giraffe and sheep. The "seminal" sequence is a pseudogene in both species. We also report an analysis of the transcriptional expression of ribonuclease genes in sheep tissues. The data presented support a model for positive selection acting on the molecular evolution of ruminant ribonuclease genes.
Collapse
Affiliation(s)
- E Confalone
- Department of Organic and Biological Chemistry, University Federico II of Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Rosenberg HF, Dyer KD. Human ribonuclease 4 (RNase 4): coding sequence, chromosomal localization and identification of two distinct transcripts in human somatic tissues. Nucleic Acids Res 1995; 23:4290-5. [PMID: 7501448 PMCID: PMC307382 DOI: 10.1093/nar/23.21.4290] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have isolated a unique genomic fragment encoding human ribonuclease 4 (RNase 4) of the mammalian ribonuclease gene family, whose members include pancreatic ribonuclease, eosinophil-derived neurotoxin, eosinophil cationic protein and angiogenin. We have determined that the coding sequence of RNase 4 resides on a single exon found on human chromosome 14. The mRNA encoding RNase 4 was detected by Northern analysis in a number of human somatic tissues, including pancreas, lung, skeletal muscle, heart, kidney and placenta, but not brain; liver represents the most abundant source. Interestingly, the mRNA encoding RNase 4 is approximately 2 kb in length, which is approximately twice as large as the mRNAs encoding other members of this gene family. A larger (approximately 2.4 kb), second transcript was detected in hepatic, pancreatic and renal tissues. The approximately 2 kb RNase 4 mRNA was detected in cells of the human promyelocytic leukemia line, HL-60, that had been treated with dibutyryl-cAMP to promote neutrophilic differentiation. In contrast, no mRNA encoding RNase 4 could be detected in cells treated with phorbol myristic acid (PMA), an agent promoting differentiation toward monocyte/macrophages, suggesting the existence of elements regulating tissue specific expression of this gene.
Collapse
Affiliation(s)
- H F Rosenberg
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
33
|
Microsatellite DNA Polymorphism Analysis in a Case of an Illegal Cattle Purchase. J Forensic Sci 1995. [DOI: 10.1520/jfs13853j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Zaidi S, Denman R, Malter J. Multiple proteins interact at a unique cis-element in the 3'-untranslated region of amyloid precursor protein mRNA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51038-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SL, Hawkins GA, Toldo SS, Fries R, Grosz MD, Yoo J. A genetic linkage map for cattle. Genetics 1994; 136:619-39. [PMID: 7908653 PMCID: PMC1205813 DOI: 10.1093/genetics/136.2.619] [Citation(s) in RCA: 535] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report the most extensive physically anchored linkage map for cattle produced to date. Three-hundred thirteen genetic markers ordered in 30 linkage groups, anchored to 24 autosomal chromosomes (n = 29), the X and Y chromosomes, four unanchored syntenic groups and two unassigned linkage groups spanning 2464 cM of the bovine genome are summarized. The map also assigns 19 type I loci to specific chromosomes and/or syntenic groups and four cosmid clones containing informative microsatellites to chromosomes 13, 25 and 29 anchoring syntenic groups U11, U7 and U8, respectively. This map provides the skeletal framework prerequisite to development of a comprehensive genetic map for cattle and analysis of economic trait loci (ETL).
Collapse
Affiliation(s)
- M D Bishop
- USDA, ARS, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933-0166
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Breukelman HJ, Beintema JJ, Confalone E, Costanzo C, Sasso MP, Carsana A, Palmieri M, Furia A. Sequences related to the ox pancreatic ribonuclease coding region in the genomic DNA of mammalian species. J Mol Evol 1993; 37:29-35. [PMID: 8360916 DOI: 10.1007/bf00170459] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mammalian pancreatic ribonucleases form a family of homologous proteins that has been extensively investigated. The primary structures of these enzymes were used to derive phylogenetic trees. These analyses indicate that the presence of three strictly homologous enzymes in the bovine species (the pancreatic, seminal, and cerebral ribonucleases) is due to gene duplication events which occurred during the evolution of ancestral ruminants. In this paper we present evidence that confirms this finding and that suggests an overall structural conservation of the putative ribonuclease genes in ruminant species. We could also demonstrate that the sequences related to ox ribonuclease coding regions present in genomic DNA of the giraffe species are the orthologues of the bovine genes encoding the three ribonucleases mentioned above.
Collapse
Affiliation(s)
- H J Breukelman
- Dipartimento di Chimica Organica e Biologica, Università di Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:935-58. [PMID: 1542609 PMCID: PMC312073 DOI: 10.1093/nar/20.4.935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|