1
|
Qu C, Li N, Liu T, He Y, Miao J. Preparation of CPD Photolyase Nanoliposomes Derived from Antarctic Microalgae and Their Effect on UVB-Induced Skin Damage in Mice. Int J Mol Sci 2022; 23:ijms232315148. [PMID: 36499473 PMCID: PMC9738781 DOI: 10.3390/ijms232315148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
UVB radiation is known to trigger the block of DNA replication and transcription by forming cyclobutane pyrimidine dimer (CPD), which results in severe skin damage. CPD photolyase, a kind of DNA repair enzyme, can efficiently repair CPDs that are absent in humans and mice. Although exogenous CPD photolyases have beneficial effects on skin diseases, the mechanisms of CPD photolyases on the skin remain unknown. Here, this study prepared CPD photolyase nanoliposomes (CPDNL) from Antarctic Chlamydomonas sp. ICE-L, which thrives in harsh, high-UVB conditions, and evaluated their protective mechanisms against UVB-induced damage in mice. CPDNL were optimized using response surface methodology, characterized by a mean particle size of 105.5 nm, with an encapsulation efficiency of 63.3%. Topical application of CPDNL prevented UVB-induced erythema, epidermal thickness, and wrinkles in mice. CPDNL mitigated UVB-induced DNA damage by significantly decreasing the CPD concentration. CPDNL exhibited antioxidant properties as they reduced the production of reactive oxygen species (ROS) and malondialdehyde. Through activation of the NF-κB pathway, CPDNL reduced the expression of pro-inflammatory cytokines including IL-6, TNF-α, and COX-2. Furthermore, CPDNL suppressed the MAPK signaling activation by downregulating the mRNA and protein expression of ERK, JNK, and p38 as well as AP-1. The MMP-1 and MMP-2 expressions were also remarkably decreased, which inhibited the collagen degradation. Therefore, we concluded that CPDNL exerted DNA repair, antioxidant, anti-inflammation, and anti-wrinkle properties as well as collagen protection via regulation of the NF-κB/MAPK/MMP signaling pathways in UVB-induced mice, demonstrating that Antarctic CPD photolyases have the potential for skincare products against UVB and photoaging.
Collapse
Affiliation(s)
- Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products Research and Development Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Nianxu Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Tianlong Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products Research and Development Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
- Correspondence: ; Tel.: +86-532-88967430
| |
Collapse
|
2
|
- R, Mondal S, Pathak J, Singh PR, Singh SP, Sinha RP. Computational Studies on Photolyase (Phr) Proteins of Cyanobacteria. Can J Microbiol 2021; 68:111-137. [PMID: 34587467 DOI: 10.1139/cjm-2021-0167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Photolyases (Phrs) are enzymes that utilize blue/ultraviolet (UV-A) region of light for repairing UV-induced cyclopyramidine dimer. We have studied Phr groups by bioinformatic analyses as well as active-site and structural modeling. The analysis of 238 amino acid sequences from 85 completely sequenced cyanobacterial genomes revealed five classes of Phrs, i.e., CPD Gr I, 6-4 Phrs/cryptochrome, Cry-DASH, Fe-S bacteria Phrs, and a group having fewer number of amino acids (276-385) in length. Distribution of Phr groups in cyanobacteria belonging to the order Synechococcales was found to be influenced by the habitats of the organisms. Class V Phrs were exclusively present in cyanobacteria. Unique motif and binding sites were reported in Group II and III. Fe-S protein binding site was only present in Group V. Active site residues and putative CPD/6-4pp binding residues are charged amino acids which were present on the surface of the proteins. Majority of hydrophilic amino acid residues were present on surface of Phrs. Sequence analysis confirmed the diverse nature of Phrs, though, sequence diversity does not affect their overall 3D structure. Protein-ligand interaction analysis identified novel CPD/6-4PP binding sites on Phrs. This structural information of Phrs can be used for the preparation of efficient Phr based formulations.
Collapse
Affiliation(s)
- Rajneesh -
- Banaras Hindu University Faculty of Science, 163931, Varanasi, Uttar Pradesh, India;
| | - Soumila Mondal
- Banaras Hindu University Faculty of Science, 163931, Varanasi, Uttar Pradesh, India;
| | - Jainendra Pathak
- Pt Jawaharlal Nehru College (Affiliated to Bundelkhand University Jhansi), Department of Botany, Banda, India;
| | - Prashant R Singh
- Banaras Hindu University Faculty of Science, 163931, Varanasi, Uttar Pradesh, India;
| | - Shailendra P Singh
- Banaras Hindu University Faculty of Science, 163931, Varanasi, Uttar Pradesh, India;
| | - Rajeshwar P Sinha
- Banaras Hindu University Faculty of Science, 163931, Varanasi, India, 221005;
| |
Collapse
|
3
|
Allnoch L, Köstlinger S, Steffensen N, Hewicker-Trautwein M, Lehmbecker A. Amelanotic Malignant Melanoma in a Himalayan Rex Guinea Pig (Cavia porcellus). J Comp Pathol 2020; 181:13-17. [PMID: 33288145 DOI: 10.1016/j.jcpa.2020.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/29/2020] [Accepted: 09/20/2020] [Indexed: 11/17/2022]
Abstract
A Himalayan Rex guinea pig was presented with a history of nodular, partially ulcerated masses in the subcutis of the left shoulder. Histological examination revealed a garland-like to nodular, infiltrative neoplastic mass of the epidermis and hair follicle epithelium, which obscured the dermoepidermal junction. Neoplastic cells were immunopositive for S100, PNL-2, vimentin and melan-A antigens. No immunolabelling of CD3, CD79, Iba-1 or pancytokeratin was observed. This is the first detailed description of spontaneous amelanotic malignant melanoma in this species.
Collapse
Affiliation(s)
- Lisa Allnoch
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Saskia Köstlinger
- Clinic for Small Home Animals, Reptiles and Birds, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole Steffensen
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Annika Lehmbecker
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
4
|
Formation and Recognition of UV-Induced DNA Damage within Genome Complexity. Int J Mol Sci 2020; 21:ijms21186689. [PMID: 32932704 PMCID: PMC7555853 DOI: 10.3390/ijms21186689] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Ultraviolet (UV) light is a natural genotoxic agent leading to the formation of photolesions endangering the genomic integrity and thereby the survival of living organisms. To prevent the mutagenetic effect of UV, several specific DNA repair mechanisms are mobilized to accurately maintain genome integrity at photodamaged sites within the complexity of genome structures. However, a fundamental gap remains to be filled in the identification and characterization of factors at the nexus of UV-induced DNA damage, DNA repair, and epigenetics. This review brings together the impact of the epigenomic context on the susceptibility of genomic regions to form photodamage and focuses on the mechanisms of photolesions recognition through the different DNA repair pathways.
Collapse
|
5
|
Núñez-Pons L, Avila C, Romano G, Verde C, Giordano D. UV-Protective Compounds in Marine Organisms from the Southern Ocean. Mar Drugs 2018; 16:E336. [PMID: 30223486 PMCID: PMC6165330 DOI: 10.3390/md16090336] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
Solar radiation represents a key abiotic factor in the evolution of life in the oceans. In general, marine, biota-particularly in euphotic and dysphotic zones-depends directly or indirectly on light, but ultraviolet radiation (UV-R) can damage vital molecular machineries. UV-R induces the formation of reactive oxygen species (ROS) and impairs intracellular structures and enzymatic reactions. It can also affect organismal physiologies and eventually alter trophic chains at the ecosystem level. In Antarctica, physical drivers, such as sunlight, sea-ice, seasonality and low temperature are particularly influencing as compared to other regions. The springtime ozone depletion over the Southern Ocean makes organisms be more vulnerable to UV-R. Nonetheless, Antarctic species seem to possess analogous UV photoprotection and repair mechanisms as those found in organisms from other latitudes. The lack of data on species-specific responses towards increased UV-B still limits the understanding about the ecological impact and the tolerance levels related to ozone depletion in this region. The photobiology of Antarctic biota is largely unknown, in spite of representing a highly promising reservoir in the discovery of novel cosmeceutical products. This review compiles the most relevant information on photoprotection and UV-repair processes described in organisms from the Southern Ocean, in the context of this unique marine polar environment.
Collapse
Affiliation(s)
- Laura Núñez-Pons
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Giovanna Romano
- Department of Marine Biotechnology (Biotech), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italia.
| | - Cinzia Verde
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Daniela Giordano
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
6
|
The transcriptomes of cave and surface populations of Gammarus minus (Crustacea: Amphipoda) provide evidence for positive selection on cave downregulated transcripts. PLoS One 2017; 12:e0186173. [PMID: 29016667 PMCID: PMC5633187 DOI: 10.1371/journal.pone.0186173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/26/2017] [Indexed: 11/23/2022] Open
Abstract
Gammarus minus, a freshwater amphipod living in the cave and surface streams in the eastern USA, is an excellent model for investigating evolutionary adaptation to the subterranean environment. RNA-Seq was conducted on one pair of morphologically distinct sister populations inhabiting surface and cave habitats to identify genes that were differentially expressed in the two populations, as well as to compare levels and patterns of genetic variation within and between populations. Of the 104,630 transcripts identified in the transcriptome assembly, 57% had higher average levels of expression in the cave population. After Benjamini-Hochberg correction for multiple tests, 1517 and 551 transcripts were significantly upregulated or downregulated, respectively, in the cave population, indicating an almost three-fold enrichment of cave-upregulated genes. The average level of nucleotide diversity across all transcripts was significantly lower in the cave population. Within the cave population, where the average nucleotide diversity of cave-downregulated transcripts was 75% that of the cave-upregulated transcripts, a highly significant difference, whereas within the spring population the nucleotide diversities of cave-downregulated and cave-upregulated transcripts was virtually identical. Three lines of evidence suggest that the reduced variation in cave downregulated transcripts is due to positive selection in the cave population: 1) the average neutrality index of cave-downregulated genes was < 1, consistent with positive selection, and significantly less than that of cave-upregulated genes; 2) Tajima’s D was positively correlated with the cave:surface expression ratio, and 3) cave-downregulated transcripts were significantly more likely to be highly diverged from their surface homologs than cave-upregulated transcripts. Five transcripts had fixed premature termination codons in the cave population. The expression patterns and sequence variation in one such transcript, encoding the DNA repair protein photolyase, were examined in more detail and provide the first evidence for the relaxation of functional constraint in this light-dependent protein in a subterranean population.
Collapse
|
7
|
Hanna ZR, Henderson JB, Wall JD, Emerling CA, Fuchs J, Runckel C, Mindell DP, Bowie RCK, DeRisi JL, Dumbacher JP. Northern Spotted Owl (Strix occidentalis caurina) Genome: Divergence with the Barred Owl (Strix varia) and Characterization of Light-Associated Genes. Genome Biol Evol 2017; 9:2522-2545. [PMID: 28992302 PMCID: PMC5629816 DOI: 10.1093/gbe/evx158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
We report here the assembly of a northern spotted owl (Strix occidentalis caurina) genome. We generated Illumina paired-end sequence data at 90× coverage using nine libraries with insert lengths ranging from ∼250 to 9,600 nt and read lengths from 100 to 375 nt. The genome assembly is comprised of 8,108 scaffolds totaling 1.26 × 109 nt in length with an N50 length of 3.98 × 106 nt. We calculated the genome-wide fixation index (FST) of S. o. caurina with the closely related barred owl (Strix varia) as 0.819. We examined 19 genes that encode proteins with light-dependent functions in our genome assembly as well as in that of the barn owl (Tyto alba). We present genomic evidence for loss of three of these in S. o. caurina and four in T. alba. We suggest that most light-associated gene functions have been maintained in owls and their loss has not proceeded to the same extent as in other dim-light-adapted vertebrates.
Collapse
Affiliation(s)
- Zachary R. Hanna
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - James B. Henderson
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - Jeffrey D. Wall
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Christopher A. Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Jérôme Fuchs
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- UMR 7205 Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
| | - Charles Runckel
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
- Runckel & Associates, Portland, Oregon, USA
| | - David P. Mindell
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
| | - Rauri C. K. Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - John P. Dumbacher
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| |
Collapse
|
8
|
Emerling CA. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes. Mol Phylogenet Evol 2017; 115:40-49. [PMID: 28739369 DOI: 10.1016/j.ympev.2017.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/16/2017] [Accepted: 07/13/2017] [Indexed: 01/11/2023]
Abstract
Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes.
Collapse
|
9
|
Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:235-263. [PMID: 28485537 PMCID: PMC5474181 DOI: 10.1002/em.22087] [Citation(s) in RCA: 1188] [Impact Index Per Article: 148.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 05/08/2023]
Abstract
Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. Environ. Mol. Mutagen. 58:235-263, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
10
|
Wang J, Du X, Pan W, Wang X, Wu W. Photoactivation of the cryptochrome/photolyase superfamily. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Karentz D. Beyond xeroderma pigmentosum: DNA damage and repair in an ecological context. A tribute to James E. Cleaver. Photochem Photobiol 2014; 91:460-74. [PMID: 25395165 DOI: 10.1111/php.12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022]
Abstract
The ability to repair DNA is a ubiquitous characteristic of life on Earth and all organisms possess similar mechanisms for dealing with DNA damage, an indication of a very early evolutionary origin for repair processes. James E. Cleaver's career (initiated in the early 1960s) has been devoted to the study of mammalian ultraviolet radiation (UVR) photobiology, specifically the molecular genetics of xeroderma pigmentosum and other human diseases caused by defects in DNA damage recognition and repair. This work by Jim and others has influenced the study of DNA damage and repair in a variety of taxa. Today, the field of DNA repair is enhancing our understanding of not only how to treat and prevent human disease, but is providing insights on the evolutionary history of life on Earth and how natural populations are coping with UVR-induced DNA damage from anthropogenic changes in the environment such as ozone depletion.
Collapse
Affiliation(s)
- Deneb Karentz
- Department of Biology, University of San Francisco, San Francisco, CA
| |
Collapse
|
12
|
Kiontke S, Gnau P, Haselsberger R, Batschauer A, Essen LO. Structural and evolutionary aspects of antenna chromophore usage by class II photolyases. J Biol Chem 2014; 289:19659-69. [PMID: 24849603 DOI: 10.1074/jbc.m113.542431] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Light-harvesting and resonance energy transfer to the catalytic FAD cofactor are key roles for the antenna chromophores of light-driven DNA photolyases, which remove UV-induced DNA lesions. So far, five chemically diverse chromophores have been described for several photolyases and related cryptochromes, but no correlation between phylogeny and used antenna has been found. Despite a common protein topology, structural analysis of the distantly related class II photolyase from the archaeon Methanosarcina mazei (MmCPDII) as well as plantal orthologues indicated several differences in terms of DNA and FAD binding and electron transfer pathways. For MmCPDII we identify 8-hydroxydeazaflavin (8-HDF) as cognate antenna by in vitro and in vivo reconstitution, whereas the higher plant class II photolyase from Arabidopsis thaliana fails to bind any of the known chromophores. According to the 1.9 Å structure of the MmCPDII·8-HDF complex, its antenna binding site differs from other members of the photolyase-cryptochrome superfamily by an antenna loop that changes its conformation by 12 Å upon 8-HDF binding. Additionally, so-called N- and C-motifs contribute as conserved elements to the binding of deprotonated 8-HDF and allow predicting 8-HDF binding for most of the class II photolyases in the whole phylome. The 8-HDF antenna is used throughout the viridiplantae ranging from green microalgae to bryophyta and pteridophyta, i.e. mosses and ferns, but interestingly not in higher plants. Overall, we suggest that 8-hydroxydeazaflavin is a crucial factor for the survival of most higher eukaryotes which depend on class II photolyases to struggle with the genotoxic effects of solar UV exposure.
Collapse
Affiliation(s)
- Stephan Kiontke
- From the Biomedical Research Centre/FB15, Unit for Structural Biochemistry, Philipps-University, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | - Petra Gnau
- From the Biomedical Research Centre/FB15, Unit for Structural Biochemistry, Philipps-University, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | - Reinhard Haselsberger
- the School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Nanyang Technological University, SPMS-PAP-03-11, 21 Nanyang Link, Singapore 637371, and
| | - Alfred Batschauer
- the Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University, Karl-von-Frisch-Strasse 8, D-35032 Marburg, Germany
| | - Lars-Oliver Essen
- From the Biomedical Research Centre/FB15, Unit for Structural Biochemistry, Philipps-University, Hans-Meerwein-Strasse, D-35032 Marburg, Germany,
| |
Collapse
|
13
|
Hitomi K, Arvai AS, Yamamoto J, Hitomi C, Teranishi M, Hirouchi T, Yamamoto K, Iwai S, Tainer JA, Hidema J, Getzoff ED. Eukaryotic class II cyclobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants. J Biol Chem 2011; 287:12060-9. [PMID: 22170053 DOI: 10.1074/jbc.m111.244020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ozone depletion increases terrestrial solar ultraviolet B (UV-B; 280-315 nm) radiation, intensifying the risks plants face from DNA damage, especially covalent cyclobutane pyrimidine dimers (CPD). Without efficient repair, UV-B destroys genetic integrity, but plant breeding creates rice cultivars with more robust photolyase (PHR) DNA repair activity as an environmental adaptation. So improved strains of Oryza sativa (rice), the staple food for Asia, have expanded rice cultivation worldwide. Efficient light-driven PHR enzymes restore normal pyrimidines to UV-damaged DNA by using blue light via flavin adenine dinucleotide to break pyrimidine dimers. Eukaryotes duplicated the photolyase gene, producing PHRs that gained functions and adopted activities that are distinct from those of prokaryotic PHRs yet are incompletely understood. Many multicellular organisms have two types of PHR: (6-4) PHR, which structurally resembles bacterial CPD PHRs but recognizes different substrates, and Class II CPD PHR, which is remarkably dissimilar in sequence from bacterial PHRs despite their common substrate. To understand the enigmatic DNA repair mechanisms of PHRs in eukaryotic cells, we determined the first crystal structure of a eukaryotic Class II CPD PHR from the rice cultivar Sasanishiki. Our 1.7 Å resolution PHR structure reveals structure-activity relationships in Class II PHRs and tuning for enhanced UV tolerance in plants. Structural comparisons with prokaryotic Class I CPD PHRs identified differences in the binding site for UV-damaged DNA substrate. Convergent evolution of both flavin hydrogen bonding and a Trp electron transfer pathway establish these as critical functional features for PHRs. These results provide a paradigm for light-dependent DNA repair in higher organisms.
Collapse
Affiliation(s)
- Kenichi Hitomi
- Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kuraku S, Kuratani S. Genome-wide detection of gene extinction in early mammalian evolution. Genome Biol Evol 2011; 3:1449-62. [PMID: 22094861 PMCID: PMC3296468 DOI: 10.1093/gbe/evr120] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Detecting gene losses is a novel aspect of evolutionary genomics that has been made feasible by whole-genome sequencing. However, research to date has concentrated on elucidating evolutionary patterns of genomic components shared between species, rather than identifying disparities between genomes. In this study, we searched for gene losses in the lineage leading to eutherian mammals. First, as a pilot analysis, we selected five gene families (Wnt, Fgf, Tbx, TGFβ, and Frizzled) for molecular phylogenetic analyses, and identified mammalian lineage-specific losses of Wnt11b, Tbx6L/VegT/tbx16, Nodal-related, ADMP1, ADMP2, Sizzled, and Crescent. Second, automated genome-wide phylogenetic screening was implemented based on this pilot analysis. As a result, we detected 147 chicken genes without eutherian orthologs, which resulted from 141 gene loss events. Our inventory contained a group of regulatory genes governing early embryonic axis formation, such as Noggins, and multiple members of the opsin and prolactin-releasing hormone receptor (“PRLHR”) gene families. Our findings highlight the potential of genome-wide gene phylogeny (“phylome”) analysis in detecting possible rearrangement of gene networks and the importance of identifying losses of ancestral genomic components in analyzing the molecular basis underlying phenotypic evolution.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan.
| | | |
Collapse
|
15
|
Nalcacioglu R, Dizman YA, Vlak JM, Demirbag Z, van Oers MM. Amsacta moorei entomopoxvirus encodes a functional DNA photolyase (AMV025). J Invertebr Pathol 2010; 105:363-5. [DOI: 10.1016/j.jip.2010.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|
16
|
Abstract
The genome of all organisms is constantly attacked by a variety of environmental and endogenous mutagens that cause cell death, apoptosis, senescence, genetic diseases and cancer. To mitigate these deleterious endpoints of genotoxic reactions, living organisms have evolved one or more mechanisms for repairing every type of naturally occurring DNA lesion. For example, double-strand breaks are rapidly religated by non-homologous end-joining. Homologous recombination is used for the high-fidelity repair of interstrand cross-links, double-strand breaks and other DNA injuries that disrupt the replication fork. Some genotoxic lesions inflicted by alkylating agents can be repaired by direct reversal of DNA damage. The base excision repair pathway takes advantage of multiple DNA glycosylases to remove modified or incorrect bases. Finally, the nucleotide excision repair machinery provides a versatile strategy to monitor DNA quality and eliminate all forms of helix-distorting DNA lesions, including a wide diversity of carcinogen adducts. The efficiency of DNA repair responses is enhanced by their coupling to transcription and coordination with the cell cycle circuit.
Collapse
|
17
|
Zhu SY, Yi JP, Shen WD, Wang LQ, He HG, Wang Y, Li B, Wang WB. Genomic sequence, organization and characteristics of a new nucleopolyhedrovirus isolated from Clanis bilineata larva. BMC Genomics 2009; 10:91. [PMID: 19243590 PMCID: PMC2650706 DOI: 10.1186/1471-2164-10-91] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 02/25/2009] [Indexed: 12/03/2022] Open
Abstract
Background Baculoviruses are well known for their potential as biological agents for controlling agricultural and forest pests. They are also widely used as expression vectors in molecular cloning studies. The genome sequences of 48 baculoviruses are currently available in NCBI databases. As the number of sequenced viral genomes increases, it is important for the authors to present sufficiently detailed analyses and annotations to advance understanding of them. In this study, the complete genome of Clanis bilineata nucleopolyhedrovirus (ClbiNPV) has been sequenced and analyzed in order to understand this virus better. Results The genome of ClbiNPV contains 135,454 base pairs (bp) with a G+C content of 37%, and 139 putative open reading frames (ORFs) of at least 150 nucleotides. One hundred and twenty-six of these ORFs have homologues with other baculovirus genes while the other 13 are unique to ClbiNPV. The 30 baculovirus core genes are all present in ClbiNPV. Phylogenetic analysis based on the combined pif-2 and lef-8 sequences places ClbiNPV in the Group II Alphabaculoviruses. This result is consistent with the absence of gp64 from the ClbiNPV genome and the presence instead of a fusion protein gene, characteristic of Group II. Blast searches revealed that ClbiNPV encodes a photolyase-like gene sequence, which has a 1-bp deletion when compared with photolyases of other baculoviruses. This deletion disrupts the sequence into two small photolyase ORFs, designated Clbiphr-1 and Clbiphr-2, which correspond to the CPD-DNA photolyase and FAD-binding domains of photolyases, respectively. Conclusion ClbiNPV belongs to the Group II Alphabaculoviruses and is most closely related to OrleNPV, LdMNPV, TnSNPV, EcobNPV and ChchNPV. It contains a variant DNA photolyase gene, which only exists in ChchNPV, TnSNPV and SpltGV among the baculoviruses.
Collapse
Affiliation(s)
- Shan-Ying Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lucas-Lledó JI, Lynch M. Evolution of mutation rates: phylogenomic analysis of the photolyase/cryptochrome family. Mol Biol Evol 2009; 26:1143-53. [PMID: 19228922 DOI: 10.1093/molbev/msp029] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photoreactivation, one of the first DNA repair pathways to evolve, is the direct reversal of premutagenic lesions caused by ultraviolet (UV) irradiation, catalyzed by photolyases in a light-dependent, single-enzyme reaction. It has been experimentally shown that photoreactivation prevents UV mutagenesis in a broad range of species. In the absence of photoreactivation, UV-induced photolesions are repaired by the more complex and much less efficient nucleotide excision repair pathway. Despite their obvious beneficial effects, several lineages, including placental mammals, lost photolyase genes during evolution. In this study, we ask why photolyase genes have been lost in those lineages and discuss the significance of these losses in the context of the evolution of the genomic mutation rates. We first perform an extensive phylogenomic analysis of the photolyase/cryptochrome family, to assess what species lack each kind of photolyase gene. Then, we estimate the ratio of nonsynonymous to synonymous substitution rates in several groups of photolyase genes, as a proxy of the strength of purifying natural selection, and we ask whether less evolutionarily constrained photolyase genes are more likely lost. We also review functional data and compare the efficiency of different kinds of photolyases. We find that eukaryotic photolyases are, on average, less evolutionarily constrained than eubacterial ones and that the strength of natural selection is correlated with the affinity of photolyases for their substrates. We propose that the loss of photolyase genes in eukaryotic species may be due to weak natural selection and may result in a deleterious increase of their genomic mutation rates. In contrast, the loss of photolyase genes in prokaryotes may not cause an increase in the mutation rate and be neutral in most cases.
Collapse
|
19
|
Active DNA photolyase encoded by a baculovirus from the insect Chrysodeixis chalcites. DNA Repair (Amst) 2008; 7:1309-18. [PMID: 18547877 DOI: 10.1016/j.dnarep.2008.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
The genome of Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) contains two open reading frames, Cc-phr1 and Cc-phr2, which encode putative class II CPD-DNA photolyases. CPD-photolyases repair UV-induced pyrimidine cyclobutane dimers using visible light as an energy source. Expression of Cc-phr2 provided photolyase deficient Escherichia coli cells with photoreactivating activity indicating that Cc-phr2 encodes an active photolyase. In contrast, Cc-phr1 did not rescue the photolyase deficiency. Cc-phr2 was overexpressed in E. coli and the resulting photolyase was purified till apparent homogeneity. Spectral measurements indicated the presence of FAD, but a second chromophore appeared to be absent. Recombinant Cc-phr2 photolyase was found to bind specifically F0 (8-hydroxy-7,8-didemethyl-5-deazariboflavin), which is an antenna chromophore present in various photolyases.. After reconstitution, FAD and F0 were present in approximately equimolar amounts. In reconstituted photolyase the F0 chromophore is functionally active as judged from the increase in the in vitro repair activity. This study demonstrates for the first time that a functional photolyase is encoded by an insect virus, which may have implications for the design of a new generation of baculoviruses with improved performance in insect pest control.
Collapse
|
20
|
Yamamoto A, Tanbir N, Hirouchi T, Teranishi M, Hidema J, Morioka H, Yamamoto K. Temperature-sensitive photoreactivation of cyclobutane thymine dimer in soybean. JOURNAL OF RADIATION RESEARCH 2008; 49:189-96. [PMID: 18270478 DOI: 10.1269/jrr.07091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
UV radiation induces the formation of two classes of photoproducts in DNA, the cyclobutane pyrimidine dimer (CPD) and the pyrimidine 6-4 pyrimidone photoproduct. CPDs in plants are repaired by class II CPD photolyase via a UV-A/blue light-dependent mechanism. The genes for the class II CPD photolyase have been cloned from higher plants such as Arabidopsis, Cucumis sativus (cucumber), Oryza sativa (rice) and Spinacia oleracea (spinach). Flavin adenine dinucleotide (FAD) has been identified as a cofactor. Here we report the isolation and characterization of the CPD photolyase cDNA from soybean (Glycin max). The sequence of amino acids predicted from the cDNA sequence was highly homologous to sequences of higher plant class II CPD photolyases. When the cDNA was expressed in a photolyase-deficient Escherichia coli, photoreactivation activity was partially restored by illumination with a fluorescent light. The purified enzyme showed CPD binding and light-dependent photoreactivation activities in vitro. When soybean CPD photolyase was heat-treated in vitro from 25 degrees C to 45 degrees C for 3 min, thymine dimer-binding activity and photoreactivation activity were decreased, and FAD was released from the enzyme. On the other hand, when the enzyme-CPD complex was heat-treated, photoreactivation activity was stable. We argue that FAD in the soybean CPD photolyase is labile for temperature, but once the enzyme-CPD complex has formed, FAD becomes tightly bound to the enzyme or complex.
Collapse
Affiliation(s)
- Ayumi Yamamoto
- Graduate School of Life Sciences, Tohoku University, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Yamamoto A, Hirouchi T, Mori T, Teranishi M, Hidema J, Morioka H, Kumagai T, Yamamoto K. Biochemical and biological properties of DNA photolyases derived from utraviolet-sensitive rice cultivars. Genes Genet Syst 2008; 82:311-9. [PMID: 17895582 DOI: 10.1266/ggs.82.311] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Class I and class II CPD photolyases are enzymes which repair pyrimidine dimers using visible light. A detailed characterization of class I CPD photolyases has been carried out, but little is known about the class II enzymes. Photolyases from rice are suitable for functional analyses because systematic breeding for long periods in Asian countries has led to the selection of naturally occurring mutations in the CPD photolyase gene. We report the biochemical characterization of rice mutant CPD photolyases purified as GST-form from Escherichia coli. We identified three amino acid changes, Gln126Arg, Gly255Ser, and Gln296His, among which Gln but not His at 296 is important for complementing phr-defective E. coli, binding UV-damage in E. coli, and binding thymine dimers in vitro. The photolyase with Gln at 296 has an apoenzyme:FAD ratio of 1 : 0.5 and that with His at 296 has an apoenzyme:FAD ratio of 1 : 0.12-0.25, showing a role for Gln at 296 in the binding of FAD not in the binding of thymine dimer. Concerning Gln or Arg at 126, the biochemical activity of the photolyases purified from E. coli and complementing activity for phr-defective E. coli are similarly proficient. However, the sensitivity to UV of cultivars differs depending on whether Gln or Arg is at 126. The role of Gln and Arg at 126 for photoreactivation in rice is discussed.
Collapse
Affiliation(s)
- Ayumi Yamamoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yoshihara R, Nakane C, Sato R, Yasuda A, Takimoto K. Silencing of CPD Photolyase Makes Arabidopsis Hypersensitive and Hypermutable in Response to UV-B Radiation. Genes Environ 2008. [DOI: 10.3123/jemsge.30.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Weber S, Bittl R. Studies of Organic Protein Cofactors Using Electron Paramagnetic Resonance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.2270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S, Garber M, Gentles AJ, Goodstadt L, Heger A, Jurka J, Kamal M, Mauceli E, Searle SMJ, Sharpe T, Baker ML, Batzer MA, Benos PV, Belov K, Clamp M, Cook A, Cuff J, Das R, Davidow L, Deakin JE, Fazzari MJ, Glass JL, Grabherr M, Greally JM, Gu W, Hore TA, Huttley GA, Kleber M, Jirtle RL, Koina E, Lee JT, Mahony S, Marra MA, Miller RD, Nicholls RD, Oda M, Papenfuss AT, Parra ZE, Pollock DD, Ray DA, Schein JE, Speed TP, Thompson K, VandeBerg JL, Wade CM, Walker JA, Waters PD, Webber C, Weidman JR, Xie X, Zody MC, Broad Institute Genome Sequencing Platform, Broad Institute Whole Genome Assembly Team, Graves JAM, Ponting CP, Breen M, Samollow PB, Lander ES, Lindblad-Toh K. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 2007; 447:167-77. [PMID: 17495919 DOI: 10.1038/nature05805] [Citation(s) in RCA: 522] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 04/03/2007] [Indexed: 12/15/2022]
Abstract
We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation.
Collapse
Affiliation(s)
- Tarjei S Mikkelsen
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, Bloch G. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genes Dev 2006; 16:1352-65. [PMID: 17065608 PMCID: PMC1626637 DOI: 10.1101/gr.5094806] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 05/18/2006] [Indexed: 12/30/2022]
Abstract
The circadian clock of the honey bee is implicated in ecologically relevant complex behaviors. These include time sensing, time-compensated sun-compass navigation, and social behaviors such as coordination of activity, dance language communication, and division of labor. The molecular underpinnings of the bee circadian clock are largely unknown. We show that clock gene structure and expression pattern in the honey bee are more similar to the mouse than to Drosophila. The honey bee genome does not encode an ortholog of Drosophila Timeless (Tim1), has only the mammalian type Cryptochrome (Cry-m), and has a single ortholog for each of the other canonical "clock genes." In foragers that typically have strong circadian rhythms, brain mRNA levels of amCry, but not amTim as in Drosophila, consistently oscillate with strong amplitude and a phase similar to amPeriod (amPer) under both light-dark and constant darkness illumination regimes. In contrast to Drosophila, the honey bee amCYC protein contains a transactivation domain and its brain transcript levels oscillate at virtually an anti-phase to amPer, as it does in the mouse. Phylogenetic analyses indicate that the basal insect lineage had both the mammalian and Drosophila types of Cry and Tim. Our results suggest that during evolution, Drosophila diverged from the ancestral insect clock and specialized in using a set of clock gene orthologs that was lost by both mammals and bees, which in turn converged and specialized in the other set. These findings illustrate a previously unappreciated diversity of insect clockwork and raise critical questions concerning the evolution and functional significance of species-specific variation in molecular clockwork.
Collapse
Affiliation(s)
- Elad B. Rubin
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yair Shemesh
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mira Cohen
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sharona Elgavish
- The Bioinformatics Unit, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Guy Bloch
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
26
|
Mu W, Han Q, Luo Z, Wang Y. Production of cis-syn thymine-thymine cyclobutane dimer oligonucleotide in the presence of acetone photosensitizer. Anal Biochem 2006; 353:117-23. [PMID: 16581009 DOI: 10.1016/j.ab.2006.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 02/18/2006] [Accepted: 03/03/2006] [Indexed: 11/17/2022]
Abstract
cis-syn Cyclobutane pyrimidine dimer (CPD) oligonucleotide was produced by UV irradiation in the presence of acetone photosensitizer. Acetone could enhance the productivity but evidently induced the photocleavage of oligonucleotide under a long time irradiation. A statistical approach of orthogonal design was applied to optimize the preparation condition for the production of the modified oligonucleotide. Optimal conditions for maximal cis-syn CPD oligonucleotide productivity were determined based on three factors: acetone concentration, initial oligonucleotide concentration, and irradiation time at several different levels. The optimal modified oligonucleotide that this optimization could produce was 32.7%. Through analysis of 20% polyacrylamide gel electrophoresis, it was found that modified oligonucleotide migrated slightly more slowly than the parent oligonucleotide. The photoreactivation of cis-syn thymine-thymine dimer oligonucleotide displayed the selectivity of the substrate specificity of DNA photolyase with high-performance liquid chromatography (HPLC) analysis.
Collapse
Affiliation(s)
- Wanmeng Mu
- School of Life Sciences, University of Science and Technology of China, Hefei
| | | | | | | |
Collapse
|
27
|
Daiyasu H, Ishikawa T, Kuma KI, Iwai S, Todo T, Toh H. Identification of cryptochrome DASH from vertebrates. Genes Cells 2005; 9:479-95. [PMID: 15147276 DOI: 10.1111/j.1356-9597.2004.00738.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new type of cryptochrome, CRY-DASH, has been recently identified. The CRY-DASH proteins constitute the fifth subfamily of the photolyase/cryptochrome family. CRY-DASHs have been identified from Synechocystis sp. PCC 6803, Vibrio cholerae, and Arabidopsis thaliana. The Synechocystis CRY-DASH was the first cryptochrome identified from bacteria, and its biochemical features and tertiary structure have been extensively investigated. To determine how broadly the subfamily is distributed within living organisms, we searched for new CRY-DASH candidates within several databases. We found five sequences as new CRY-DASH candidates, which are derived from four marine bacteria and Neurospora crassa. We also found many CRY-DASH candidates from the EST databases, which included sequences from fish and amphibians. We cloned and sequenced the cDNAs of the zebrafish and Xenopus laevis candidates, based on the EST sequences. The proteins encoded by the two genes were purified and characterized. Both proteins contained folate and flavin cofactors, and have a weak DNA photolyase activity. A phylogenetic analysis revealed that the seven candidates actually belong to the new type of cryptochrome subfamily. This is the first report of the CRY-DASH members from vertebrates and fungi.
Collapse
Affiliation(s)
- Hiromi Daiyasu
- Bioinformatics Centre, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Yoshihara R, Imaki T, Hori M, Watanabe C, Yamamoto K, Takimoto K. CPD photolyase gene from Spinacia oleracea: repair of UV-damaged DNA and expression in plant organs. JOURNAL OF RADIATION RESEARCH 2005; 46:157-64. [PMID: 15988133 DOI: 10.1269/jrr.46.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The UV-B radiation contained in solar radiation has deleterious effects on plant growth, development and physiology. Specific damage to DNA caused by UV radiation involves the cyclobutyl pyrimidine dimers (CPD) and the pyrimidine (6-4) pyrimidone photoproducts. CPDs are repaired by CPD photolyase via a UV-A/blue light-dependent mechanism. The gene for the class II CPD photolyase has been cloned from higher plants such as Arabidopsis, cucumbers and rice. We isolated and characterized the cDNA and a genomic clone encoding the spinach class II CPD photolyase. The gene consisted of 3777 bases and 9 exons. The sequence of amino acids predicted from the nucleotide sequence of the cDNA of the gene was highly homologous to that of the higher plants listed above. When a photolyase-deficient Escherichia coli strain was transformed with the cDNA, photoreactivation activity was partially restored, by the illumination with photoreactivating light, resulting in an increased survival and decreased content of CPDs in the Escherichia coli genome. In both the male and female plants, the gene was highly expressed in leaves and flowers under the condition of 14-h light and 10-h dark cycle. The expression in the roots was quite low compared with the other organs.
Collapse
Affiliation(s)
- Ryouhei Yoshihara
- The United Graduate School of Agricultural Sciences, Tottori University, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Nakayama T, Todo T, Notsu S, Nakazono M, Zaitsu K. Assay method for Escherichia coli photolyase activity using single-strand cis-syn cyclobutane pyrimidine dimer DNA as substrate. Anal Biochem 2005; 329:263-8. [PMID: 15158485 DOI: 10.1016/j.ab.2004.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Indexed: 11/21/2022]
Abstract
A high-performance liquid chromatography method for the assay of Escherichia coli photolyase activity was developed. When cis-syn cyclobutane pyrimidine dimer was used as substrate, the Michaelis constant (K(m)) value for the photolyase activity was 100 nM. The linear range of the calibration curve of the photolyase activity was 0.026-6.64 microU/assay tube. The correlation coefficient for this linearity was 0.998. The limit of detection (S/N = 3) was 26 nU/assay tube. The photolyase activity was increased 1.6-fold in the presence of 5,10-methenyltetrahydrofolic acid in the enzyme reaction mixture.
Collapse
Affiliation(s)
- Takuya Nakayama
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
30
|
van Oers MM, Herniou EA, Usmany M, Messelink GJ, Vlak JM. Identification and characterization of a DNA photolyase-containing baculovirus from Chrysodeixis chalcites. Virology 2005; 330:460-70. [PMID: 15567439 DOI: 10.1016/j.virol.2004.09.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 09/20/2004] [Accepted: 09/22/2004] [Indexed: 11/17/2022]
Abstract
A hitherto unknown single nucleocapsid nucleopolyhedrovirus (SNPV) with a unique property was isolated from larvae of the looper Chrysodeixis chalcites (Lepidoptera, Noctuidae, Plusiinae). Polyhedrin, lef-8, and pif-2 gene sequences were obtained by PCR with degenerate primers and used for phylogenetic analysis. ChchNPV belonged to class II NPVs and its polyhedrin sequence was most similar to that of class II NPVs of other members of the subfamily Plusiinae. Further genetic characterization involved the random cloning of HindIII fragments into a plasmid vector and analysis by end-in sequencing. A gene so far unique to baculoviruses was identified, which encodes a putative DNA repair enzyme: cyclobutane pyrimidine dimer (CPD) DNA photolyase (dpl). The transcriptional activity of this gene was demonstrated in both ChchNPV-infected C. chalcites larvae and infected Trichoplusia ni High Five cells by RT-PCR and 5' and 3' RACE analysis. The possible role of this gene in the biology of the virus is discussed.
Collapse
Affiliation(s)
- Monique M van Oers
- Laboratory of Virology, Wageningen University, 6709 PD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Samollow PB, Kammerer CM, Mahaney SM, Schneider JL, Westenberger SJ, VandeBerg JL, Robinson ES. First-generation linkage map of the gray, short-tailed opossum, Monodelphis domestica, reveals genome-wide reduction in female recombination rates. Genetics 2004; 166:307-29. [PMID: 15020427 PMCID: PMC1470690 DOI: 10.1534/genetics.166.1.307] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gray, short-tailed opossum, Monodelphis domestica, is the most extensively used, laboratory-bred marsupial resource for basic biologic and biomedical research worldwide. To enhance the research utility of this species, we are building a linkage map, using both anonymous markers and functional gene loci, that will enable the localization of quantitative trait loci (QTL) and provide comparative information regarding the evolution of mammalian and other vertebrate genomes. The current map is composed of 83 loci distributed among eight autosomal linkage groups and the X chromosome. The autosomal linkage groups appear to encompass a very large portion of the genome, yet span a sex-average distance of only 633.0 cM, making this the most compact linkage map known among vertebrates. Most surprising, the male map is much larger than the female map (884.6 cM vs. 443.1 cM), a pattern contrary to that in eutherian mammals and other vertebrates. The finding of genome-wide reduction in female recombination in M. domestica, coupled with recombination data from two other, distantly related marsupial species, suggests that reduced female recombination might be a widespread metatherian attribute. We discuss possible explanations for reduced female recombination in marsupials as a consequence of the metatherian characteristic of determinate paternal X chromosome inactivation.
Collapse
Affiliation(s)
- Paul B Samollow
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, 78245-0549, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Slamovits CH, Keeling PJ. Class II photolyase in a microsporidian intracellular parasite. J Mol Biol 2004; 341:713-21. [PMID: 15288781 DOI: 10.1016/j.jmb.2004.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 06/11/2004] [Accepted: 06/14/2004] [Indexed: 11/22/2022]
Abstract
Photoreactivation is the repair of DNA damage induced by ultraviolet light radiation using the energy contained in visible-light photons. The process is carried out by a single enzyme, photolyase, which is part of a large and ancient photolyase/cryptochrome gene family. We have characterised a photolyase gene from the microsporidian parasite, Antonospora locustae (formerly Nosema locustae) and show that it encodes a functional photoreactivating enzyme and is expressed in the infectious spore stage of the parasite's life cycle. Sequence and phylogenetic analyses show that it belongs to the class II subfamily of cyclobutane pyrimidine dimer repair enzymes. No photolyase is present in the complete genome sequence of the distantly related microsporidian, Encephalitozoon cuniculi, and this class of photolyase has never yet been described in fungi, the closest relatives of Microsporidia, raising questions about the evolutionary origin of this enzyme. This is the second environmental stress enzyme to be found in A.locustae but absent in E.cuniculi, and in the other case (catalase), the gene is derived by lateral transfer from a bacterium. It appears that A.locustae spores deal with environmental stress differently from E.cuniculi, these results lead to the prediction that they are more robust to environmental damage.
Collapse
Affiliation(s)
- Claudio H Slamovits
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
33
|
Menzies SW, Greenoak GE, Abeywardana CM, Crotty KA, O'Neill ME. UV light from 290 to 325 nm, but not broad-band UVA or visible light, augments the formation of melanocytic nevi in a guinea-pig model for human nevi. J Invest Dermatol 2004; 123:354-60. [PMID: 15245436 DOI: 10.1111/j.0022-202x.2004.23206.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously described a guinea-pig model where pigmented nevi similar to human nevi can be produced by application of low-dose topical 7,12-dimethylbenzanthracene (DMBA) followed by solar-simulated light. Five groups of guinea-pigs were used to test the effect of various spectral bands of solar-simulated light on low-dose DMBA-induced melanocytic nevi. Animals were irradiated with either UVB to near UVA2 (290-325 nm), UVA, visible light, full solar spectrum or no irradiation three times per wk for 12 mo to determine the broad-band effect of nevi-inducing irradiation. There was a significant increase in nevi/animal in the UVB-treated group (mean 1.53) compared with all groups (versus UVA 0.3, p<0.001; versus visible light 0.24, p<0.001; versus full spectrum (UVB+UVA+visible) 0.68, p=0.02; versus control (nil irradiation) 0.37, p=0.01). No differences in skin thickness were found between any group (p=0.11). In conclusion, we present a report of the active waveband of melanocytic nevi induction; where UVB to near UVA2 is the likely responsible waveband. Furthermore, because there was a significant decrease in nevi/animal receiving the full solar spectrum compared with the UVB group, it is possible that broad-band UVA and or visible light may be inhibitory wavebands for nevi induction.
Collapse
Affiliation(s)
- Scott W Menzies
- Sydney Melanoma Diagnostic Centre, Sydney Cancer Institute, Royal Prince Alfred Hospital and Faculty of Medicine, University of Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
34
|
Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 2003; 103:2203-37. [PMID: 12797829 DOI: 10.1021/cr0204348] [Citation(s) in RCA: 956] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, Mary Ellen Jones Building, CB 7260, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
35
|
Thompson CL, Sancar A. Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock. Oncogene 2002; 21:9043-56. [PMID: 12483519 DOI: 10.1038/sj.onc.1205958] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Blue light governs a number of cellular responses in bacteria, plants, and animals, including photoreactivation, plant development, and circadian photoentrainment. These activities are mediated by a family of highly conserved flavoproteins, the photolyase/cryptochrome family. Photolyase binds to UV photoproducts in DNA and repairs them in a process called photoreactivation in which blue light is used to initiate a cyclic electron transfer to break bonds and restore the integrity of DNA. Cryptochrome, which has a high degree of sequence identity to photolyase, works as the main circadian photoreceptor and as a component of the molecular clock in animals, including mammals, and regulates growth and development in plants.
Collapse
Affiliation(s)
- Carol L Thompson
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, NC 27599-7260, USA
| | | |
Collapse
|
36
|
Affiliation(s)
- Paul B. Samollow
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, USA
| |
Collapse
|
37
|
Hitomi K, Nakamura H, Kim ST, Mizukoshi T, Ishikawa T, Iwai S, Todo T. Role of two histidines in the (6-4) photolyase reaction. J Biol Chem 2001; 276:10103-9. [PMID: 11124949 DOI: 10.1074/jbc.m008828200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reaction mechanism of Xenopus (6-4) photolyase was investigated using several mutant enzymes. In the active site, which is homologous between the cis,syn-cyclobutane pyrimidine dimer and (6-4) photolyases, four amino acid residues that are specific to (6-4) photolyase, Gln(288), His(354), Leu(355), and His(358), and two conserved tryptophans, Trp(291) and Trp(398), were substituted with alanine. Only the L355A mutant had a lower affinity for the substrate, which suggested a hydrophobic interaction with the (6-4) photoproduct. Both the H354A and H358A mutations resulted in an almost complete loss of the repair activity, although the Trp(291) and Trp(398) mutants retained some activity. Taking the pH profile of the (6-4) photolyase reaction into consideration with this observation, we propose a mechanism in which these histidines catalyze the formation of the four-membered ring intermediate in the repair process of this enzyme. When deuterium oxide was used as a solvent, the repair activity was decreased. The proton transfer shown by this isotope effect supports the proposed mechanism. The substrate binding and the reaction mechanism are discussed in detail using a molecular model.
Collapse
Affiliation(s)
- K Hitomi
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Srinivasan V, Schnitzlein WM, Tripathy DN. Fowlpox virus encodes a novel DNA repair enzyme, CPD-photolyase, that restores infectivity of UV light-damaged virus. J Virol 2001; 75:1681-8. [PMID: 11160666 PMCID: PMC114077 DOI: 10.1128/jvi.75.4.1681-1688.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fowlpox virus (FPV), a pathogen of poultry, can persist in desiccated scabs shed from infected hosts. Although the mechanisms which ensure virus survival are unknown, it is likely that some type of remedial action against environmentally induced damage is required. In this regard, we have identified an open reading frame (ORF) coding for a putative class II cyclobutane pyrimidine dimer (CPD)-photolyase in the genome of FPV. This enzyme repairs the UV light-induced formation of CPDs in DNA by using blue light as an energy source and thus could enhance the viability of FPV during its exposure to sunlight. Based on transcriptional analyses, the photolyase gene was found to be expressed late during the FPV replicative cycle. That the resultant protein retained DNA repair activity was demonstrated by the ability of the corresponding FPV ORF to complement functionally a photolyase-deficient Escherichia coli strain. Interestingly, insertional inactivation of the FPV photolyase gene did not impair the replication of such a genetically altered virus in cultured cells. However, greater sensitivity of this mutant than of the parental virus to UV light irradiation was evident when both were subsequently photoreactivated in the absence of host participation. Therefore, FPV appears to incorporate its photolyase into mature virions where the enzyme can promote their survival in the environment. Although expression of a homologous protein has been predicted for some chordopoxviruses, this report is the first to demonstrate that a poxvirus can utilize light to repair damage to its genome.
Collapse
Affiliation(s)
- V Srinivasan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois 61802, USA
| | | | | |
Collapse
|
39
|
Hitomi K, Okamoto K, Daiyasu H, Miyashita H, Iwai S, Toh H, Ishiura M, Todo T. Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. PCC6803. Nucleic Acids Res 2000; 28:2353-62. [PMID: 10871367 PMCID: PMC102721 DOI: 10.1093/nar/28.12.2353] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Photolyase is a DNA repair enzyme that reverses UV-induced photoproducts in DNA in a light-dependent manner. Recently, photolyase homologs were identified in higher eukaryotes. These homologs, termed crypto-chromes, function as blue light photoreceptors or regulators of circadian rhythm. In contrast, most bacteria have only a single photolyase or photolyase-like gene. Unlike other microbes, the chromosome of the cyanobacterium SYNECHOCYSTIS: sp. PCC6803 contains two ORFs (slr0854 and sll1629) with high similarities to photolyases. We have characterized both genes. The slr0854 gene product exhibited specific, light-dependent repair activity for a cyclo-butane pyrimidine dimer (CPD), whereas the sll1629 gene product lacks measurable affinity for DNA in vitro. Disruption of either slr0854 or sll1629 had little or no effect on the growth rate of the cyanobacterium. A mutant lacking the slr0854 gene showed severe UV sensitivity, in contrast to a mutant lacking sll1629. Phylogenetic analysis showed that sll1629 is more closely related to the cryptochromes than photolyases. We conclude that sll1629 is a bacterial cryptochrome. To our knowledge, this is the first description of a bacterial cryptochrome.
Collapse
Affiliation(s)
- K Hitomi
- Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kusewitt DF, Preble NE, Bonnett CD. Photoreactivation does not alterras andp53 mutation spectra in ultraviolet radiation-induced corneal sarcomas ofMonodelphis domestica. Mol Carcinog 2000. [DOI: 10.1002/(sici)1098-2744(200002)27:2<117::aid-mc7>3.0.co;2-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Asahina H, Han Z, Kawanishi M, Kato T, Ayaki H, Todo T, Yagi T, Takebe H, Ikenaga M, Kimura SH. Expression of a mammalian DNA photolyase confers light-dependent repair activity and reduces mutations of UV-irradiated shuttle vectors in xeroderma pigmentosum cells. Mutat Res 1999; 435:255-62. [PMID: 10606816 DOI: 10.1016/s0921-8777(99)00051-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photoreactivation is one of the DNA repair mechanisms to remove UV lesions from cellular DNA with a function of the DNA photolyase and visible light. Two types of photolyase specific for cyclobutane pyrimidine dimers (CPD) and for pyrimidine (6-4) pyrimidones (6-4PD) are found in nature, but neither is present in cells from placental mammals. To investigate the effect of the CPD-specific photolyase on killing and mutations induced by UV, we expressed a marsupial DNA photolyase in DNA repair-deficient group A xeroderma pigmentosum (XP-A) cells. Expression of the photolyase and visible light irradiation removed CPD from cellular DNA and elevated survival of the UV-irradiated XP-A cells, and also reduced mutation frequencies of UV-irradiated shuttle vector plasmids replicating in XP-A cells. The survival of UV-irradiated cells and mutation frequencies of UV-irradiated plasmids were not completely restored to the unirradiated levels by the removal of CPD. These results suggest that both CPD and other UV damage, probably 6-4PD, can lead to cell killing and mutations.
Collapse
Affiliation(s)
- H Asahina
- Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
We have determined the complete DNA sequence of the Leporipoxvirus Shope fibroma virus (SFV). The SFV genome spans 159.8 kb and encodes 165 putative genes of which 13 are duplicated in the 12.4-kb terminal inverted repeats. Although most SFV genes have homologs encoded by other Chordopoxvirinae, the SFV genome lacks a key gene required for the production of extracellular enveloped virus. SFV also encodes only the smaller ribonucleotide reductase subunit and has a limited nucleotide biosynthetic capacity. SFV preserves the Chordopoxvirinae gene order from S012L near the left end of the chromosome through to S142R (homologs of vaccinia F2L and B1R, respectively). The unique right end of SFV appears to be genetically unstable because when the sequence is compared with that of myxoma virus, five myxoma homologs have been deleted (C. Cameron, S. Hota-Mitchell, L. Chen, J. Barrett, J.-X. Cao, C. Macaulay, D. Willer, D. Evans, and G. McFadden, 1999, Virology 264, 298-318). Most other differences between these two Leporipoxviruses are located in the telomeres. Leporipoxviruses encode several genes not found in other poxviruses including four small hydrophobic proteins of unknown function (S023R, S119L, S125R, and S132L), an alpha 2, 3-sialyltransferase (S143R), a protein belonging to the Ig-like protein superfamily (S141R), and a protein resembling the DNA-binding domain of proteins belonging to the HIN-200 protein family S013L). SFV also encodes a type II DNA photolyase (S127L). Melanoplus sanguinipes entomopoxvirus encodes a similar protein, but SFV is the first mammalian virus potentially capable of photoreactivating ultraviolet DNA damage.
Collapse
Affiliation(s)
- D O Willer
- Department of Molecular Biology, The University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|
43
|
Affiliation(s)
- T Todo
- Radiation Biology Center, Kyoto University, Japan.
| |
Collapse
|
44
|
Kobayashi K, Kanno S, Smit B, van der Horst GT, Takao M, Yasui A. Characterization of photolyase/blue-light receptor homologs in mouse and human cells. Nucleic Acids Res 1998; 26:5086-92. [PMID: 9801304 PMCID: PMC147960 DOI: 10.1093/nar/26.22.5086] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We isolated and characterized mouse photolyase-like genes, mCRY1 (mPHLL1) and mCRY2 (mPHLL2), which belong to the photolyase family including plant blue-light receptors. The mCRY1 and mCRY2 genes are located on chromosome 10C and 2E, respectively, and are expressed in all mouse organs examined. We raised antibodies specific against each gene product using its C-terminal sequence, which differs completely between the genes. Immunofluorescent staining of cultured mouse cells revealed that mCRY1 is localized in mitochondria whereas mCRY2 was found mainly in the nucleus. The subcellular distribution of CRY proteins was confirmed by immunoblot analysis of fractionated mouse liver cell extracts. Using green fluorescent protein fused peptides we showed that the C-terminal region of the mouse CRY2 protein contains a unique nuclear localization signal, which is absent in the CRY1 protein. The N-terminal region of CRY1 was shown to contain the mitochondrial transport signal. Recombinant as well as native CRY1 proteins from mouse and human cells showed a tight binding activity to DNA Sepharose, while CRY2 protein did not bind to DNA Sepharose at all under the same condition as CRY1. The different cellular localization and DNA binding properties of the mammalian photolyase homologs suggest that despite the similarity in the sequence the two proteins have distinct function(s).
Collapse
Affiliation(s)
- K Kobayashi
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, 980 8575 Sendai, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Griffiths HR, Mistry P, Herbert KE, Lunec J. Molecular and cellular effects of ultraviolet light-induced genotoxicity. Crit Rev Clin Lab Sci 1998; 35:189-237. [PMID: 9663376 DOI: 10.1080/10408369891234192] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exposure to the solar ultraviolet spectrum that penetrates the Earth's stratosphere (UVA and UVB) causes cellular DNA damage within skin cells. This damage is elicited directly through absorption of energy (UVB), and indirectly through intermediates such as sensitizer radicals and reactive oxygen species (UVA). DNA damage is detected as strand breaks or as base lesions, the most common lesions being 8-hydroxydeoxyguanosine (8OHdG) from UVA exposure and cyclobutane pyrimidine dimers from UVB exposure. The presence of these products in the genome may cause misreading and misreplication. Cells are protected by free radical scavengers that remove potentially mutagenic radical intermediates. In addition, the glutathione-S-transferase family can catalyze the removal of epoxides and peroxides. An extensive repair capacity exists for removing (1) strand breaks, (2) small base modifications (8OHdG), and (3) bulky lesions (cyclobutane pyrimidine dimers). UV also stimulates the cell to produce early response genes that activate a cascade of signaling molecules (e.g., protein kinases) and protective enzymes (e.g., haem oxygenase). The cell cycle is restricted via p53-dependent and -independent pathways to facilitate repair processes prior to replication and division. Failure to rescue the cell from replication block will ultimately lead to cell death, and apoptosis may be induced. The implications for UV-induced genotoxicity in disease are considered.
Collapse
|
46
|
Nakajima S, Sugiyama M, Iwai S, Hitomi K, Otoshi E, Kim ST, Jiang CZ, Todo T, Britt AB, Yamamoto K. Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana. Nucleic Acids Res 1998; 26:638-44. [PMID: 9421527 PMCID: PMC147282 DOI: 10.1093/nar/26.2.638] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
UV radiation induces two major classes of pyrimidine dimers: the pyrimidine [6-4] pyrimidone photoproduct (6-4 product) and the cyclobutane pyrimidine dimer (CPD). Many organisms produce enzymes, termed photolyases, that specifically bind to these damage products and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. A gene that expresses a protein with 6-4 photolyase activity in vitro was recently cloned from Drosophila melanogaster and Xenopus laevis. We report here the isolation of a homolog of this gene, cloned on the basis of sequence similarity, from the higher plant Arabidopsis thaliana. This cloned gene produces a protein with 6-4 photolyase activity when expressed in Escherichia coli. We also find that a previously described mutant of Arabidopsis (uvr3) that is defective in photoreactivation of 6-4 products carries a nonsense mutation in this 6-4 photolyase homolog. We have therefore termed this gene UVR3. Although homologs of this gene have previously been shown to produce a functional 6-4 photolyase when expressed in heterologous systems, this is the first demonstration of a requirement for this gene for photoreactivation of 6-4 products in vivo.
Collapse
Affiliation(s)
- S Nakajima
- Biological Institute, Graduate School of Science, Tohoku University, Sendai 980-77, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hitomi K, Kim ST, Iwai S, Harima N, Otoshi E, Ikenaga M, Todo T. Binding and catalytic properties of Xenopus (6-4) photolyase. J Biol Chem 1997; 272:32591-8. [PMID: 9405474 DOI: 10.1074/jbc.272.51.32591] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Xenopus (6-4) photolyase binds with high affinity to DNA bearing a (6-4) photoproduct and repairs it in a light-dependent reaction. To clarify its repair mechanism of (6-4) photolyase, we determined its binding and catalytic properties using synthetic DNA substrate which carries a photoproduct at a single location. The (6-4) photolyase binds to T[6-4]T in double-stranded DNA with high affinity (KD = 10(-9)) and to T[6-4]T in single-stranded DNA and T[Dewar]T in double- and single-stranded DNA although with slightly lower affinity (KD = approximately 2 x 10(-8)). Majority of the T[6-4]T-(6-4) photolyase complex dissociates very slowly (koff = 2.9 x 10(-5) s-1). Its absolute action spectrum without a second chromophore in the 350-600 nm region closely matches the absorption spectrum of the enzyme. The quantum yield (phi) of repair is approximately 0.11. The fully reduced form (E-FADH-) of (6-4) photolyase is catalytically active. Direct analysis of the photoreactivated product showed that (6-4) photolyase restores the original pyrimidines. These findings demonstrate that cis, syn-cyclobutane pyrimidine dimer photolyase and (6-4) photolyase are quite similar, but they are different with regard to the binding properties.
Collapse
Affiliation(s)
- K Hitomi
- Radiation Biology Center, Kyoto University, Yoshida konoe-cho, Sakyo-ku, Kyoto 606-01, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Todo T, Tsuji H, Otoshi E, Hitomi K, Kim ST, Ikenaga M. Characterization of a human homolog of (6-4) photolyase. Mutat Res 1997; 384:195-204. [PMID: 9330615 DOI: 10.1016/s0921-8777(97)00032-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
(6-4)Photolyase catalyzes light-dependent repair of UV-induced pyrimidine (6-4) pyrimidone photoproducts. A human cDNA clone which has high sequence homology to the (6-4)photolyase gene (H64PRH gene) was identified. In this paper we also isolated a genomic clone corresponding to the H64PRH cDNA and mapped it to chromosome 12q24.1 by fluorescence in situ hybridization (FISH). Northern-blot analysis revealed transcription of this gene in all human tissues examined. The H64PRH protein was overproduced in E. coli, partially purified and characterized. Like (6-4)photolyase, the enzyme contains two chromophores, one of which is FAD. However, the enzyme does not show any detectable photolyase activity.
Collapse
Affiliation(s)
- T Todo
- Radiation Biology Center, Kyoto University, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Black HS, deGruijl FR, Forbes PD, Cleaver JE, Ananthaswamy HN, deFabo EC, Ullrich SE, Tyrrell RM. Photocarcinogenesis: an overview. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1997; 40:29-47. [PMID: 9301042 DOI: 10.1016/s1011-1344(97)00021-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Photocarcinogenesis represents the sum of a complex of simultaneous and sequential biochemical events that ultimately lead to the occurrence of skin cancer. These events, initiated by UV radiation of appropriate wavelength, include the formation of DNA photoproducts: DNA repair; mutation of proto-oncogenes and tumor suppressor genes; UV-production of radical species with subsequent effects on mutation and extra-nuclear function; and other epigenetic events that influence the course of carcinogenesis. The epigenetic influences may include immunological responses, antioxidant defenses, and dietary factors. This review represents an effort to provide current research results in the aforementioned areas and an attempt to meld these events into a comprehensive overview of photocarcinogenesis. If effective prevention and intervention strategies for skin cancer are to developed, a more thorough understanding of the disease process is imperative.
Collapse
Affiliation(s)
- H S Black
- Photobiology Laboratory, Veterans Affairs Medical Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyes cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosphila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system.
Collapse
Affiliation(s)
- C Z Jiang
- Section of Plant Biology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|