1
|
Golding AE, Li W, Blank PS, Cologna SM, Zimmerberg J. Relative quantification of progressive changes in healthy and dysferlin-deficient mouse skeletal muscle proteomes. Muscle Nerve 2023; 68:805-816. [PMID: 37706611 DOI: 10.1002/mus.27975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION/AIMS Individuals with dysferlinopathies, a group of genetic muscle diseases, experience delay in the onset of muscle weakness. The cause of this delay and subsequent muscle wasting are unknown, and there are currently no clinical interventions to limit or prevent muscle weakness. To better understand molecular drivers of dysferlinopathies, age-dependent changes in the proteomic profile of skeletal muscle (SM) in wild-type (WT) and dysferlin-deficient mice were identified. METHODS Quadriceps were isolated from 6-, 18-, 42-, and 77-wk-old C57BL/6 (WT, Dysf+/+ ) and BLAJ (Dysf-/- ) mice (n = 3, 2 male/1 female or 1 male/2 female, 24 total). Whole-muscle proteomes were characterized using liquid chromatography-mass spectrometry with relative quantification using TMT10plex isobaric labeling. Principle component analysis was utilized to detect age-dependent proteomic differences over the lifespan of, and between, WT and dysferlin-deficient SM. The biological relevance of proteins with significant variation was established using Ingenuity Pathway Analysis. RESULTS Over 3200 proteins were identified between 6-, 18-, 42-, and 77-wk-old mice. In total, 46 proteins varied in aging WT SM (p < .01), while 365 varied in dysferlin-deficient SM. However, 569 proteins varied between aged-matched WT and dysferlin-deficient SM. Proteins with significant variation in expression across all comparisons followed distinct temporal trends. DISCUSSION Proteins involved in sarcolemma repair and regeneration underwent significant changes in SM over the lifespan of WT mice, while those associated with immune infiltration and inflammation were overly represented over the lifespan of dysferlin-deficient mice. The proteins identified herein are likely to contribute to our overall understanding of SM aging and dysferlinopathy disease progression.
Collapse
Affiliation(s)
- Adriana E Golding
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Paul S Blank
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Landry NM, Dixon IMC. Fibroblast mechanosensing, SKI and Hippo signaling and the cardiac fibroblast phenotype: Looking beyond TGF-β. Cell Signal 2020; 76:109802. [PMID: 33017619 DOI: 10.1016/j.cellsig.2020.109802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022]
Abstract
Cardiac fibroblast activation to hyper-synthetic myofibroblasts following a pathological stimulus or in response to a substrate with increased stiffness may be a key tipping point for the evolution of cardiac fibrosis. Cardiac fibrosis per se is associated with progressive loss of heart pump function and is a primary contributor to heart failure. While TGF-β is a common cytokine stimulus associated with fibroblast activation, a druggable target to quell this driver of fibrosis has remained an elusive therapeutic goal due to its ubiquitous use by different cell types and also in the signaling complexity associated with SMADs and other effector pathways. More recently, mechanical stimulus of fibroblastic cells has been revealed as a major point of activation; this includes cardiac fibroblasts. Further, the complexity of TGF-β signaling has been offset by the discovery of members of the SKI family of proteins and their inherent anti-fibrotic properties. In this respect, SKI is a protein that may bind a number of TGF-β associated proteins including SMADs, as well as signaling proteins from other pathways, including Hippo. As SKI is also known to directly deactivate cardiac myofibroblasts to fibroblasts, this mode of action is a putative candidate for further study into the amelioration of cardiac fibrosis. Herein we provide a synthesis of this topic and highlight novel candidate pathways to explore in the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Natalie M Landry
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
3
|
Feld C, Sahu P, Frech M, Finkernagel F, Nist A, Stiewe T, Bauer UM, Neubauer A. Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1. Nucleic Acids Res 2019; 46:3412-3428. [PMID: 29471413 PMCID: PMC5909421 DOI: 10.1093/nar/gky119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022] Open
Abstract
SKI is a transcriptional co-regulator and overexpressed in various human tumors, for example in acute myeloid leukemia (AML). SKI contributes to the origin and maintenance of the leukemic phenotype. Here, we use ChIP-seq and RNA-seq analysis to identify the epigenetic alterations induced by SKI overexpression in AML cells. We show that approximately two thirds of differentially expressed genes are up-regulated upon SKI deletion, of which >40% harbor SKI binding sites in their proximity, primarily in enhancer regions. Gene ontology analysis reveals that many of the differentially expressed genes are annotated to hematopoietic cell differentiation and inflammatory response, corroborating our finding that SKI contributes to a myeloid differentiation block in HL60 cells. We find that SKI peaks are enriched for RUNX1 consensus motifs, particularly in up-regulated SKI targets upon SKI deletion. RUNX1 ChIP-seq displays that nearly 70% of RUNX1 binding sites overlap with SKI peaks, mainly at enhancer regions. SKI and RUNX1 occupy the same genomic sites and cooperate in gene silencing. Our work demonstrates for the first time the predominant co-repressive function of SKI in AML cells on a genome-wide scale and uncovers the transcription factor RUNX1 as an important mediator of SKI-dependent transcriptional repression.
Collapse
Affiliation(s)
- Christine Feld
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.,Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Peeyush Sahu
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Miriam Frech
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.,Institute of Molecular Oncology, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| |
Collapse
|
4
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
5
|
Richards EJ, Martin CH. Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes. PLoS Genet 2017; 13:e1006919. [PMID: 28796803 PMCID: PMC5552031 DOI: 10.1371/journal.pgen.1006919] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Rapid diversification often involves complex histories of gene flow that leave variable and conflicting signatures of evolutionary relatedness across the genome. Identifying the extent and source of variation in these evolutionary relationships can provide insight into the evolutionary mechanisms involved in rapid radiations. Here we compare the discordant evolutionary relationships associated with species phenotypes across 42 whole genomes from a sympatric adaptive radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas and several outgroup pupfish species in order to understand the rarity of these trophic specialists within the larger radiation of Cyprinodon. 82% of the genome depicts close evolutionary relationships among the San Salvador Island species reflecting their geographic proximity, but the vast majority of variants fixed between specialist species lie in regions with discordant topologies. Top candidate adaptive introgression regions include signatures of selective sweeps and adaptive introgression of genetic variation from a single population in the northwestern Bahamas into each of the specialist species. Hard selective sweeps of genetic variation on San Salvador Island contributed 5 times more to speciation of trophic specialists than adaptive introgression of Caribbean genetic variation; however, four of the 11 introgressed regions came from a single distant island and were associated with the primary axis of oral jaw divergence within the radiation. For example, standing variation in a proto-oncogene (ski) known to have effects on jaw size introgressed into one San Salvador Island specialist from an island 300 km away approximately 10 kya. The complex emerging picture of the origins of adaptive radiation on San Salvador Island indicates that multiple sources of genetic variation contributed to the adaptive phenotypes of novel trophic specialists on the island. Our findings suggest that a suite of factors, including rare adaptive introgression, may be necessary for adaptive radiation in addition to ecological opportunity.
Collapse
Affiliation(s)
- Emilie J. Richards
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christopher H. Martin
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
6
|
Diaz M, Martel N, Fitzsimmons RL, Eriksson NA, Cowin GJ, Thomas GP, Cao KAL, Muscat GEO, Leong GM. Ski overexpression in skeletal muscle modulates genetic programs that control susceptibility to diet-induced obesity and insulin signaling. Obesity (Silver Spring) 2012; 20:2157-67. [PMID: 22513493 DOI: 10.1038/oby.2012.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transgenic mice overexpressing chicken Ski (c-Ski) have marked decrease in adipose mass with skeletal muscle hypertrophy. Recent evidence indicates a role for c-Ski in lipogenesis and energy expenditure. In the present study, wild type (WT) and c-Ski mice were challenged on a high-fat (HF) diet to determine whether c-Ski mice were resistant to diet-induced obesity. During the HF feeding WT mice gained significantly more weight than chow-fed animals, while c-Ski mice were partially resistant to the effects of the HF diet on weight. Body composition analysis confirmed the decreased adipose mass in c-Ski mice compared to WT mice. c-Ski mice possess a similar metabolic rate and level of food consumption to WT littermates, despite lower activity levels and on chow diet show mild glucose intolerance relative to WT littermates. On HF diet, glucose tolerance surprisingly remained unchanged in c-Ski mice, while it became worse in WT mice. Skeletal muscle of c-Ski mice exhibit impaired insulin-stimulated Akt phosphorylation and glucose uptake. In concordance, gene expression profiling of skeletal muscle of chow and HF-fed mice indicated that Ski suppresses gene expression associated with insulin signaling and glucose uptake and alters gene pathways involved in myogenesis and adipogenesis. In conclusion, c-Ski mice are partially resistant to diet-induced obesity and display aberrant insulin signaling and glucose homeostasis which is associated with alterations in gene expression that inhibit lipogenesis and insulin signaling. These results suggest Ski plays a major role in skeletal muscle metabolism and adipogenesis and hence influences risk of obesity and diabetes.
Collapse
Affiliation(s)
- Marianne Diaz
- The University of Queensland, Obesity Research Centre, Institute for Molecular Bioscience, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bonnon C, Atanasoski S. c-Ski in health and disease. Cell Tissue Res 2011; 347:51-64. [DOI: 10.1007/s00441-011-1180-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/15/2011] [Indexed: 01/28/2023]
|
8
|
Liu X, Li P, Chen XY, Zhou YG. c-Ski promotes skin fibroblast proliferation but decreases type I collagen: implications for wound healing and scar formation. Clin Exp Dermatol 2010; 35:417-24. [DOI: 10.1111/j.1365-2230.2009.03606.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Abstract
OBJECTIVE The Ski gene regulates skeletal muscle differentiation in vitro and and in vivo. In the c-Ski overexpression mouse model there occurs marked skeletal muscle hypertrophy with decreased adipose tissue mass. In this study, we have investigated the underlying molecular mechanisms responsible for the increased skeletal muscle and decreased adipose tissue mass in the c-Ski mouse. APPROACH Growth and body composition analysis (tissue weights and dual energy X-ray absorptiometry) coupled with skeletal muscle and white adipose gene expression and metabolic phenotyping in c-Ski mice and wild-type (WT) littermate controls was performed. RESULTS The growth and body composition studies confirmed the early onset of accelerated body growth, with increased lean mass and decreased fat mass in the c-Ski mice. Gene expression analysis in skeletal muscle from c-Ski mice compared with WT mice showed significant differences in myogenic and lipogenic gene expressions that are consistent with the body composition phenotype. Skeletal muscle of c-Ski mice had significantly repressed Smad1, 4, 7 and myostatin gene expression and elevated myogenin, myocyte enhancer factor 2, insulin-like growth factor-1 receptor and insulin-like growth factor-2 expression. Strikingly, expression of the mRNAs encoding the master lipogenic regulators, sterol-regulatory enhancer binding protein 1c (SREBP1c), and the nuclear receptor liver X-receptor-alpha, and their downstream target genes, SCD-1 and FAS, were suppressed in skeletal muscle of c-Ski mice, as were the expressions of other nuclear receptors involved in adipogenesis and metabolism, such as peroxisome proliferator-activated receptor-gamma, glucocorticoid receptor and retinoic acid receptor-related orphan receptor-alpha. Transfection analysis demonstrated Ski repressed the SREBP1c promoter. Moreover, palmitate oxidation and oxidative enzyme activity was increased in skeletal muscle of c-Ski mice. These results suggest that the Ski phenotype involves attenuated lipogenesis, decreased myostatin signalling, coupled to increased myogenesis and fatty acid oxidation. CONCLUSION Ski regulates several genetic programs and signalling pathways that regulate skeletal muscle and adipose mass to influence body composition development, suggesting that Ski may have a role in risk for obesity and metabolic disease.
Collapse
|
10
|
Zhang H, Stavnezer E. Ski regulates muscle terminal differentiation by transcriptional activation of Myog in a complex with Six1 and Eya3. J Biol Chem 2008; 284:2867-2879. [PMID: 19008232 DOI: 10.1074/jbc.m807526200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Overexpression of the Ski pro-oncogene has been shown to induce myogenesis in non-muscle cells, to promote muscle hypertrophy in postnatal mice, and to activate transcription of muscle-specific genes. However, the precise role of Ski in muscle cell differentiation and its underlying molecular mechanism are not fully understood. To elucidate the involvement of Ski in muscle terminal differentiation, two retroviral systems were used to achieve conditional overexpression or knockdown of Ski in satellite cell-derived C2C12 myoblasts. We found that enforced expression of Ski promoted differentiation, whereas loss of Ski severely impaired it. Compromised terminal differentiation in the absence of Ski was likely because of the failure to induce myogenin (Myog) and p21 despite normal expression of MyoD. Chromatin immunoprecipitation and transcriptional reporter experiments showed that Ski occupied the endogenous Myog regulatory region and activated transcription from the Myog regulatory region upon differentiation. Transactivation of Myog was largely dependent on a MEF3 site bound by Six1, not on the binding site of MyoD or MEF2. Activation of the MEF3 site required direct interaction of Ski with Six1 and Eya3 mediated by the evolutionarily conserved Dachshund homology domain of Ski. Our results indicate that Ski is necessary for muscle terminal differentiation and that it exerts this role, at least in part, through its association with Six1 and Eya3 to regulate the Myog transcription.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ed Stavnezer
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
11
|
Kobayashi N, Goto K, Horiguchi K, Nagata M, Kawata M, Miyazawa K, Saitoh M, Miyazono K. c-Ski activates MyoD in the nucleus of myoblastic cells through suppression of histone deacetylases. Genes Cells 2007; 12:375-85. [PMID: 17352741 DOI: 10.1111/j.1365-2443.2007.01052.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
c-Ski, originally identified as an oncogene product, induces myogenic differentiation in nonmyogenic fibroblasts through transcriptional activation of muscle regulatory factors. Although c-Ski does not bind to DNA directly, it binds to DNA through interaction with Smad proteins and regulates signaling activities of transforming growth factor-beta (TGF-beta). In the present study, we show that c-Ski activates the myogenin promoter independently of regulation of endogenous TGF-beta signaling. Expression of myogenin is regulated by a transcription factor complex containing proteins of the MyoD family and the myocyte enhancer factor 2 (MEF2) family. c-Ski acts on the MyoD-MEF2 complex and modulates the activity of MyoD in myogenin promoter regulation. Interestingly, histone deacetylase (HDAC) inhibitors up-regulated basal activity of transcription from a MyoD-responsive reporter, although c-Ski failed to further augment this transcription in the presence of HDAC inhibitors. c-Ski is observed both in the cytoplasm and in the nucleus, but its nuclear localization is required for myogenic differentiation. We conclude that c-Ski induces myogenic differentiation through acting on MyoD and inhibiting HDAC activity in the nucleus of myogenic cells.
Collapse
Affiliation(s)
- Norihiko Kobayashi
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wrighton KH, Liang M, Bryan B, Luo K, Liu M, Feng XH, Lin X. Transforming growth factor-beta-independent regulation of myogenesis by SnoN sumoylation. J Biol Chem 2007; 282:6517-24. [PMID: 17202138 DOI: 10.1074/jbc.m610206200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent progress has been made on the role of oncoproteins c-Ski and related SnoN in the control of cellular transformation. c-Ski/SnoN potently repress transforming growth factor-beta (TGF-beta) antiproliferative signaling through physical interaction with signal transducers called Smads. Overexpression of c-Ski/SnoN also induces skeletal muscle differentiation, but how c-Ski/SnoN function in myogenesis is largely unknown. During our investigation on the role of sumoylation in TGF-beta signaling, we inadvertently found that SnoN is modified by small ubiquitin-like modifier-1 (SUMO-1). Here, we biochemically characterize SnoN sumoylation in detail and report the physiological function of the modification. Sumoylation occurs primarily at lysine 50 (Lys-50). PIAS1 and PIASx proteins physically interact with SnoN to stimulate its sumoylation, thus serving as SUMO-protein isopeptide ligases (E3) for SnoN sumoylation. SnoN sumoylation does not alter its metabolic stability or its ability to repress TGF-beta signaling. Notably, loss of sumoylation in the Lys-50 site (via a Lys-to-Arg point mutation) potently activates muscle-specific gene expression and enhances myotube formation. Our study suggests a novel role for SUMO modification in the regulation of myogenic differentiation.
Collapse
Affiliation(s)
- Katharine H Wrighton
- Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Lu W, Volcik K, Zhu H, Wen S, Shaw GM, Lammer EJ, Finnell RH. Genetic variation in the proto-oncogene SKI and risk for orofacial clefting. Mol Genet Metab 2005; 86:412-6. [PMID: 16054854 DOI: 10.1016/j.ymgme.2005.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 05/31/2005] [Accepted: 06/01/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND SKI is a proto-oncogene that is required for development of the central nervous system and skeletal muscle, and is involved in specifying selected cranial neural-crest-derived craniofacial structures. To identify genetic variants within the SKI gene and investigate the potential association between SKI polymorphisms and risk for orofacial defects, we initially re-sequenced the gene. METHODS DNA re-sequencing of all seven exons of the SKI gene was performed on 100 control samples. Subsequently, we genotyped 394 samples (148 CLP cases, 99 CP cases, and 147 control infants) for a novel SNP identified in the DNA re-sequencing effort using restriction fragment length polymorphism (RFLP) analysis. RESULTS We identified one polymorphism in exon 1 of the SKI gene (257C>G) from controls. This SNP resulted in an amino acid change from alanine to glycine (A62G, GenBank Accession No. NM_003036). Among all samples genotyped by the RFLP method, variants (CG, GG) were found in 10.5% of the cases, compared to a prevalence of 17.7% in the controls. The odds ratio was calculated to be 0.6, with a 95% confidence interval (CI) of 0.3-1.0. CONCLUSION In a population of California infants with craniofacial defects, a novel polymorphism of the SKI gene was found to be associated with a decreased risk for orofacial defects. The function of this polymorphism and how it might confer protection to the embryo against craniofacial malformations is currently under investigation in our laboratory.
Collapse
Affiliation(s)
- Wei Lu
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Atanasoski S, Notterpek L, Lee HY, Castagner F, Young P, Ehrengruber MU, Meijer D, Sommer L, Stavnezer E, Colmenares C, Suter U. The Protooncogene Ski Controls Schwann Cell Proliferation and Myelination. Neuron 2004; 43:499-511. [PMID: 15312649 DOI: 10.1016/j.neuron.2004.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/29/2004] [Accepted: 07/28/2004] [Indexed: 01/11/2023]
Abstract
Schwann cell proliferation and subsequent differentiation to nonmyelinating and myelinating cells are closely linked processes. Elucidating the molecular mechanisms that control these events is key to the understanding of nerve development, regeneration, nerve-sheath tumors, and neuropathies. We define the protooncogene Ski, an inhibitor of TGF-beta signaling, as an essential component of the machinery that controls Schwann cell proliferation and myelination. Functional Ski overexpression inhibits TGF-beta-mediated proliferation and prevents growth-arrested Schwann cells from reentering the cell cycle. Consistent with these findings, myelinating Schwann cells upregulate Ski during development and remyelination after injury. Myelination is blocked in myelin-competent cultures derived from Ski-deficient animals, and genes encoding myelin components are downregulated in Ski-deficient nerves. Conversely, overexpression of Ski in Schwann cells causes an upregulation of myelin-related genes. The myelination-regulating transcription factor Oct6 is involved in a complex modulatory relationship with Ski. We conclude that Ski is a crucial signal in Schwann cell development and myelination.
Collapse
Affiliation(s)
- Suzana Atanasoski
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Costelli P, Carbó N, Busquets S, López-Soriano FJ, Baccino FM, Argilés JM. Reduced protein degradation rates and low expression of proteolytic systems support skeletal muscle hypertrophy in transgenic mice overexpressing the c-ski oncogene. Cancer Lett 2003; 200:153-60. [PMID: 14568169 DOI: 10.1016/s0304-3835(03)00415-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the protein turnover modulations involved in the hypertrophic muscle phenotype of c-ski overexpressing transgenic mice. In these animals, the body weight is increased and all the muscles examined show a definite hypertrophy. The protein degradation rate is significantly reduced in the fast twitch muscles of c-ski transgenic animals with respect to controls; in contrast, there are no detectable differences in the synthesis rates. The down-regulation of protein breakdown is paralleled by decreased expression of genes belonging to the lysosomal as well as to the ATP-ubiquitin-dependent proteolytic pathways.
Collapse
Affiliation(s)
- Paola Costelli
- Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Pearson-White S, McDuffie M. Defective T-cell activation is associated with augmented transforming growth factor Beta sensitivity in mice with mutations in the Sno gene. Mol Cell Biol 2003; 23:5446-59. [PMID: 12861029 PMCID: PMC165712 DOI: 10.1128/mcb.23.15.5446-5459.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proto-oncogene Sno has been shown to be a negative regulator of transforming growth factor beta (TGF-beta) signaling in vitro, using overexpression and artificial reporter systems. To examine Sno function in vivo, we made two targeted deletions at the Sno locus: a 5' deletion, with reduced Sno protein (hypomorph), and an exon 1 deletion removing half the protein coding sequence, in which Sno protein is undetectable in homozygotes (null). Homozygous Sno hypomorph and null mutant mice are viable without gross developmental defects. We found that Sno mRNA is constitutively expressed in normal thymocytes and splenic T cells, with increased expression 1 h following T-cell receptor ligation. Although thymocyte and splenic T-cell populations appeared normal in mutant mice, T-cell proliferation in response to activating stimuli was defective in both mutant strains. This defect could be reversed by incubation with either anti-TGF-beta antibodies or exogenous interleukin-2 (IL-2). Together, these findings suggest that Sno-dependent suppression of TGF-beta signaling is required for upregulation of growth factor production and normal T-cell proliferation following receptor ligation. Indeed, both IL-2 and IL-4 levels are reduced in response to anti-CD3 epsilon stimulation of mutant T cells, and transfected Sno activated an IL-2 reporter system in non-T cells. Mutant mouse embryo fibroblasts also exhibited a reduced cell proliferation rate that could be reversed by administration of anti-TGF-beta. Our data provide strong evidence that Sno is a significant negative regulator of antiproliferative TGF-beta signaling in both T cells and other cell types in vivo.
Collapse
Affiliation(s)
- S Pearson-White
- Department of Microbiology, Health Sciences Center, University of Virginia Medical Center, Jordan Hall, Box 800734, Room 7034, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
17
|
Medrano EE. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 2003; 22:3123-9. [PMID: 12793438 DOI: 10.1038/sj.onc.1206452] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.
Collapse
Affiliation(s)
- Estela E Medrano
- Departments of Molecural and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Prathapam T, Kühne C, Hayman M, Banks L. Ski interacts with the evolutionarily conserved SNW domain of Skip. Nucleic Acids Res 2001; 29:3469-76. [PMID: 11522815 PMCID: PMC55893 DOI: 10.1093/nar/29.17.3469] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ski interacting protein (Skip) has been found to bind to the highly conserved region of Ski, which is required for its transforming activity. Ski is a unique oncoprotein that is involved in inducing both transformation and differentiation. At the molecular level, Ski has been shown to exhibit either co-activator or co-repressor activity depending on the cellular and promoter context. We were interested in further elucidating the biological implications of the Ski-Skip interaction. Here we have identified the SNW domain of Skip as the interaction region for Ski. This domain of Skip is highly conserved in all the Skip homologues identified from different species. Using a series of reporter plasmids, we show that Skip is a potent transcriptional activator of many different promoters, the activity of which was also mapped to the conserved core SNW domain of the protein. Addition of excess Ski further augmented the transcriptional activities of Skip, suggesting that one of the ways in which Ski brings about transformation is by binding and cooperating with the SNW domain of Skip in transcriptional activation.
Collapse
Affiliation(s)
- T Prathapam
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012, Trieste, Italy
| | | | | | | |
Collapse
|
19
|
Mertani HC, Zhu T, Goh EL, Lee KO, Morel G, Lobie PE. Autocrine human growth hormone (hGH) regulation of human mammary carcinoma cell gene expression. Identification of CHOP as a mediator of hGH-stimulated human mammary carcinoma cell survival. J Biol Chem 2001; 276:21464-75. [PMID: 11297545 DOI: 10.1074/jbc.m100437200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
By use of cDNA array technology we have screened 588 genes to determine the effect of autocrine production of human growth hormone (hGH) on gene expression in human mammary carcinoma cells. We have used a previously described cellular model to study autocrine hGH function in which the hGH gene or a translation-deficient hGH gene was stably transfected into MCF-7 cells. Fifty two of the screened genes were regulated, either positively () or negatively (), by autocrine production of hGH. We have now characterized the role of one of the up-regulated genes, chop (gadd153), in the effect of autocrine production of hGH on mammary carcinoma cell number. The effect of autocrine production of hGH on the level of CHOP mRNA was exerted at the transcriptional level as autocrine hGH increased chloramphenicol acetyltransferase production from a reporter plasmid containing a 1-kilobase pair fragment of the chop promoter. The autocrine hGH-stimulated increase in CHOP mRNA also resulted in an increase in CHOP protein. As a consequence, autocrine hGH stimulation of CHOP-mediated transcriptional activation was increased. Stable transfection of human CHOP cDNA into mammary carcinoma cells demonstrated that CHOP functioned not as a mediator of hGH-stimulated mitogenesis but rather enhanced the protection from apoptosis afforded by hGH in a p38 MAPK-dependent manner. Thus transcriptional up-regulation of chop is one mechanism by which hGH regulates mammary carcinoma cell number.
Collapse
Affiliation(s)
- H C Mertani
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Isoform diversity in striated muscle is largely controlled at the level of transcription. In this review we will concentrate on studies concerning transcriptional regulation of the alkali myosin light chain 1F/3F gene. Uncoupled activity of the MLC1F and 3F promoters, together with complex patterns of transcription in developing skeletal and cardiac muscle, combine to make analysis of this gene particularly intriguing. In vitro and transgenic studies of MLC1F/3F regulatory elements have revealed an array of cis-acting modules that each drive a subset of the expression pattern of the two promoters. These cis-acting regulatory modules, including the MLC1F and 3F promoter regions and two skeletal muscle enhancers, control tissue-specificity, cell or fibre-type specificity, and the spatiotemporal regulation of gene expression, including positional information. How each of these regulatory modules acts and how their individual activites are integrated to coordinate transcription at this locus are discussed.
Collapse
Affiliation(s)
- R G Kelly
- CNRS URA 1947, Département de Biologie Moléculaire, Institut Pasteur, 75724 Paris Cedex 15, France
| | | |
Collapse
|
21
|
Xu W, Angelis K, Danielpour D, Haddad MM, Bischof O, Campisi J, Stavnezer E, Medrano EE. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc Natl Acad Sci U S A 2000; 97:5924-9. [PMID: 10811875 PMCID: PMC18535 DOI: 10.1073/pnas.090097797] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type beta transforming growth factor (TGF-beta) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-beta. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-beta-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-beta-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-beta-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-beta-mediated growth inhibition in a prostate-derived epithelial cell line.
Collapse
Affiliation(s)
- W Xu
- Huffington Center on Aging and Departments of Molecular and Cellular Biology and Dermatology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Akiyoshi S, Inoue H, Hanai J, Kusanagi K, Nemoto N, Miyazono K, Kawabata M. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem 1999; 274:35269-77. [PMID: 10575014 DOI: 10.1074/jbc.274.49.35269] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Smads are intracellular signaling mediators of the transforming growth factor-beta (TGF-beta) superfamily that regulates a wide variety of biological processes. Among them, Smads 2 and 3 are activated specifically by TGF-beta. We identified c-Ski as a Smad2 interacting protein. c-Ski is the cellular homologue of the v-ski oncogene product and has been shown to repress transcription by recruiting histone deacetylase (HDAC). Smad2/3 interacts with c-Ski through its C-terminal MH2 domain in a TGF-beta-dependent manner. c-Ski contains two distinct Smad-binding sites with different binding properties. c-Ski strongly inhibits transactivation of various reporter genes by TGF-beta. c-Ski is incorporated in the Smad DNA binding complex, interferes with the interaction of Smad3 with a transcriptional co-activator, p300, and in turn recruits HDAC. c-Ski is thus a transcriptional co-repressor that links Smads to HDAC in TGF-beta signaling.
Collapse
Affiliation(s)
- S Akiyoshi
- Department of Biochemistry, The Cancer Institute of Japanese Foundation for Cancer Research, Research for the Future Program, Japan Society for Promotion of Science, 1-37-1, Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Two classes of tilapia c-ski cDNA (accession nos. AJ012011, AJ012012), designated as tski1 and tski2, respectively encoded a 687 and a 714 AA protein and shared a 57% AA identity. Comparison with the Ski proteins of chickens, humans and Xenopus, tilapia TSki polypeptides shared a 60, 57, and 57% (TSki1) and 67, 63, and 61% (TSki2) AA identity, respectively. The most and the least abundant c-ski mRNAs are located in the brain and the skeletal muscle, respectively. Both tski1 and tski2 were widely expressed in the adult tissues examined, but tski2 transcripts were at higher levels except in the ovary and oocytes: tski1 transcripts were predominant in the ovary, whereas tski2 transcripts were predominant in the testes. In the oocytes, the tski1 mRNA was a maternally-inherited stockpile that subsequently was degraded, so that the expression ratio of tski1 to tski2 transcripts declined gradually as the fish developed from oocyte to 4-cm fry. Mol. Reprod. Dev. 54:223- 231.
Collapse
Affiliation(s)
- C J Huang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
24
|
Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF, Weinberg RA. Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling. Mol Cell 1999; 4:499-509. [PMID: 10549282 DOI: 10.1016/s1097-2765(00)80201-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TGF-beta treatment of cells induces a variety of physiologic responses, including growth inhibition, differentiation, and induction of apoptosis. TGF-beta induces phosphorylation and nuclear translocation of Smad3. We describe here the association of Smad3 with the nuclear protooncogene protein Ski in response to the activation of TGF-beta signaling. Association with Ski represses transcriptional activation by Smad3, and overexpression of Ski renders cells resistant to the growth-inhibitory effects of TGF-beta. The transcriptional repression as well as the growth resistance to TGF-beta by overexpression of Ski can be overcome by overexpression of Smad3. These results demonstrate that Ski is a novel component of the TGF-beta signaling pathway and shed light on the mechanism of action of the Ski oncoprotein.
Collapse
Affiliation(s)
- Y Sun
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
25
|
Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev 1999; 13:2196-206. [PMID: 10485843 PMCID: PMC316985 DOI: 10.1101/gad.13.17.2196] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Smad proteins are critical signal transducers downstream of the receptors of the transforming growth factor-beta (TGFbeta) superfamily. On phosphorylation and activation by the active TGFbeta receptor complex, Smad2 and Smad3 form hetero-oligomers with Smad4 and translocate into the nucleus, where they interact with different cellular partners, bind to DNA, regulate transcription of various downstream response genes, and cross-talk with other signaling pathways. Here we show that a nuclear oncoprotein, Ski, can interact directly with Smad2, Smad3, and Smad4 on a TGFbeta-responsive promoter element and repress their abilities to activate transcription through recruitment of the nuclear transcriptional corepressor N-CoR and possibly its associated histone deacetylase complex. Overexpression of Ski in a TGFbeta-responsive cell line renders it resistant to TGFbeta-induced growth inhibition and defective in activation of JunB expression. This ability to overcome TGFbeta-induced growth arrest may be responsible for the transforming activity of Ski in human and avian cancer cells. Our studies suggest a new paradigm for inactivation of the Smad proteins by an oncoprotein through transcriptional repression.
Collapse
Affiliation(s)
- K Luo
- Life Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720 USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Dahl R, Kieslinger M, Beug H, Hayman MJ. Transformation of hematopoietic cells by the Ski oncoprotein involves repression of retinoic acid receptor signaling. Proc Natl Acad Sci U S A 1998; 95:11187-92. [PMID: 9736711 PMCID: PMC21617 DOI: 10.1073/pnas.95.19.11187] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Ski oncogene has dramatic effects on the differentiation of several different cell types. It induces the differentiation of quail embryo cells into myoblasts and arrests the differentiation of chicken hematopoietic cells. The mechanism that Ski uses to carry out these disparate biological activities is unknown. However, we were struck by the similarity of these effects to those of certain members of the nuclear hormone receptor family. Both Ski and the thyroid hormone receptor-derived oncogene v-ErbA can arrest the differentiation of avian erythroblasts, and v-Ski-transformed avian multipotent progenitor cells resemble murine hematopoietic cells that express a dominant-negative form of the retinoic acid receptor, RARalpha. In this paper, we have tested the hypothesis that v-Ski and its cellular homologue c-Ski exert their effects by interfering with nuclear hormone receptor-induced transcription. We demonstrate that Ski associates with the RAR complex and can repress transcription from a retinoic acid response element. The physiological significance of this finding is demonstrated by the ability of high concentrations of a RARalpha-specific ligand to abolish v-Ski-induced transformation of the multipotent progenitors. These results strongly suggest that the ability of Ski to alter cell differentiation is caused in part by the modulation of RAR signaling pathways.
Collapse
Affiliation(s)
- R Dahl
- Department of Molecular Genetics and Microbiology and Institute of Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794-5222, USA
| | | | | | | |
Collapse
|
27
|
Nicol R, Stavnezer E. Transcriptional repression by v-Ski and c-Ski mediated by a specific DNA binding site. J Biol Chem 1998; 273:3588-97. [PMID: 9452486 DOI: 10.1074/jbc.273.6.3588] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ski oncoprotein has been shown to bind DNA and activate transcription in conjunction with other cellular factors. Because tumor cells or myogenic cells were used for those studies, it is not clear that those activities of Ski are related to its transforming ability. In this study, we use a nuclear extract of c-ski-transformed cells to identify a specific DNA binding site for Ski with the consensus sequence GTCTAGAC. We demonstrate that both c-Ski and v-Ski in nuclear extracts are components of complexes that bind specifically to this site. By evaluating the features of the sequence that are critical for binding, we show that binding is cooperative. Although Ski cannot bind to this sequence on its own, we use cross-linking with ultraviolet light to show that Ski binds to this site along with several unidentified cellular proteins. Furthermore, we find that Ski represses transcription either through upstream copies of this element or when brought to the promoter by a heterologous DNA binding domain. This is the first demonstration that Ski acts as a repressor rather than an activator and could provide new insights into regulation of gene expression by Ski.
Collapse
Affiliation(s)
- R Nicol
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | |
Collapse
|
28
|
Amaravadi LS, Neff AW, Sleeman JP, Smith RC. Autonomous neural axis formation by ectopic expression of the protooncogene c-ski. Dev Biol 1997; 192:392-404. [PMID: 9441676 DOI: 10.1006/dbio.1997.8780] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ski oncogene was originally isolated as an avian retroviral gene with the ability to induce quail embryonic cells to differentiate into muscle. Mice containing a chicken c-ski transgene exhibit postnatal hypertrophy of skeletal muscle. Xenopus ski (Xski) protein is maternal and present throughout early development. We show that overexpression of Xski RNA in Xenopus embryos results in the cell-autonomous induction of secondary neural axis formation. Injection of Xski RNA into prospective endodermal cells resulted in the formation of an ectopic neural tube-like structure and cells derived from the injected blastomeres populated the spinal cord. Injected Xski RNA was able to induce neural-specific gene expression directly in ectodermal explants in the absence of the expression of mesodermal markers. The widespread distribution of ski protein in the early gastrula embryo including the dorsal animal region supports a role for ski in neural axis formation in vivo.
Collapse
Affiliation(s)
- L S Amaravadi
- Lilly Research Laboratories, Division of Eli Lilly and Company, Greenfield, Indiana 46140, USA
| | | | | | | |
Collapse
|
29
|
Zheng G, Blumenthal KM, Ji Y, Shardy DL, Cohen SB, Stavnezer E. High affinity dimerization by Ski involves parallel pairing of a novel bipartite alpha-helical domain. J Biol Chem 1997; 272:31855-64. [PMID: 9395532 DOI: 10.1074/jbc.272.50.31855] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
c-Ski protein possesses a C-terminal dimerization domain that was deleted during the generation of v-ski, and has been implicated in the increased potency of c-ski in cellular transformation compared with the viral gene. The domain is predicted to consist of an extended alpha-helical segment made up of two motifs: a tandem repeat (TR) consisting of five imperfect repeats of 25 residues each and a leucine zipper (LZ) consisting of six heptad repeats. We have examined the structure and dimerization of TR or LZ individually or the entire TR-LZ domain. Using a quenched chemical cross-linking method, we show that the TR dimerizes with moderate efficiency (Kd = 4 x 10(-6) M), whereas LZ dimerizes poorly (Kd > 2 x 10(-5) M). However, the entire TR-LZ domain dimerizes efficiently (Kd = 2 x 10(-8) M), showing a cooperative effect of the two motifs. CD analyses indicate that all three proteins contain predominantly alpha-helices. Limited proteolysis of the TR-LZ dimer indicates that the two helical motifs are linked by a small loop. Interchain disulfide bond formation indicates that both the LZ and TR helices are oriented in parallel. We propose a model for the dimer interface in the TR region consisting of discontinuous clusters of hydrophobic residues forming "leucine buttons."
Collapse
Affiliation(s)
- G Zheng
- Department of Biochemistry, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ichikawa K, Nagase T, Ishii S, Asano A, Mimura N. Trans-regulation of myogenin promoter/enhancer activity by c-ski during skeletal-muscle differentiation: the C-terminus of the c-Ski protein is essential for transcriptional regulatory activity in myotubes. Biochem J 1997; 328 ( Pt 2):607-13. [PMID: 9371722 PMCID: PMC1218962 DOI: 10.1042/bj3280607] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
c-ski gene product is a nuclear protein with myogenesis-promoting and transforming activities. We have analysed the effects of c-ski transfection on the promoter/enhancer activity of the upstream region of the myogenin gene during in vitro myogenesis using CAT reporter assay. When co-transfected with c-ski into myogenic C2C12 cells, promoter/enhancer activity was efficiently suppressed in proliferating cells, but the myogenesis-induced increase in activity was potentiated approximately ten times more (150-fold in the ski-transfected cells) than the ordinary increase (12-fold in the mock) 48 h after induction of differentiation. In non-myogenic 10T1/2 cells, c-ski transfection caused persistent suppression of promoter/enhancer activity in both proliferating and growth-arrested (i.e. myogenesis-inducing) conditions. Thus the ski-dependent potentiation of myogenin gene transcriptional activity appears to be specific for myogenesis. The C-terminal region (amino acids 595-663) of the c-Ski protein was essential for the potentiating activity in myotubes. Other members of the ski-gene family, snoN and snoA, were ineffective in transactivation, possibly because of the defect in the corresponding C-terminal region. c-Ski protein underwent a mobility shift on SDS/PAGE after in vitro myogenesis which may explain the conversion of the activity from suppressive in myoblasts to potentiating in myotubes. Deletion analysis of the upstream region of the myogenin gene revealed that a responsive element to c-ski in myotubes is located at a distinct site upstream of the basal promoter/enhancer region.
Collapse
Affiliation(s)
- K Ichikawa
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565, Japan and AGENE Research Institute, 200 Kajiwara, Kamakura, Kanagawa 247, Japan
| | | | | | | | | |
Collapse
|
31
|
Kelder B, Richmond C, Stavnezer E, List EO, Kopchick JJ. Production, characterization and functional activities of v-Ski in cultured cells. Gene 1997; 202:15-21. [PMID: 9427540 DOI: 10.1016/s0378-1119(97)00439-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The v-ski oncogene was introduced into mammalian cells in order to study its biochemical and biological properties. v-Ski, produced at relatively high levels by mouse L cells stably transfected with this DNA, was localized to the cell nucleus, was of correct apparent molecular mass, and was capable of complexing with DNA. Transient transfection of reporter plasmids into control or Ski producing mouse L cells revealed that Ski acts as a transcriptional activator of various transcriptional regulatory elements, including CMVie, RSV LTR and SV40. These results indicate that mouse L cells contain the nuclear cofactor(s) required for the ability of v-Ski to bind to DNA and also suggest that the v-Ski present within the cells is functional.
Collapse
Affiliation(s)
- B Kelder
- Edison Biotechnology Institute, Ohio University, Athens 45701, USA.
| | | | | | | | | |
Collapse
|
32
|
Tarapore P, Richmond C, Zheng G, Cohen SB, Kelder B, Kopchick J, Kruse U, Sippel AE, Colmenares C, Stavnezer E. DNA binding and transcriptional activation by the Ski oncoprotein mediated by interaction with NFI. Nucleic Acids Res 1997; 25:3895-903. [PMID: 9380514 PMCID: PMC146989 DOI: 10.1093/nar/25.19.3895] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Ski oncoprotein has been found to bind non-specifically to DNA in association with unindentified nuclear factors. In addition, Ski has been shown to activate transcription of muscle-specific and viral promoters/enhancers. The present study was undertaken to identify Ski's DNA binding and transcriptional activation partners by identifying specific DNA binding sites. We used nuclear extracts from a v-Ski-transduced mouse L-cell line and selected Ski-bound sequences from a pool of degenerate oligonucleotides with anti-Ski monoclonal antibodies. Two sequences were identified by this technique. The first (TGGC/ANNNNNT/GCCAA) is the previously identified binding site of the nuclear factor I (NFI) family of transcription factors. The second (TCCCNNGGGA) is the binding site of Olf-1/EBF. By electophoretic mobility shift assays we find that Ski is a component of one or more NFI complexes but we fail to detect Ski in Olf-1/EBF complexes. We show that Ski binds NFI proteins and activates transcription of NFI reporters, but only in the presence of NFI. We also find that homodimerization of Ski is essential for co-activation with NFI. However, the C-terminal dimerization domain of c-Ski, which is missing in v-Ski, can be substituted by the leucine zipper domain of GCN4.
Collapse
Affiliation(s)
- P Tarapore
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Berk M, Desai SY, Heyman HC, Colmenares C. Mice lacking the ski proto-oncogene have defects in neurulation, craniofacial, patterning, and skeletal muscle development. Genes Dev 1997; 11:2029-39. [PMID: 9284043 PMCID: PMC316447 DOI: 10.1101/gad.11.16.2029] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The c-ski proto-oncogene has been implicated in the control of cell growth and skeletal muscle differentiation. To determine its normal functions in vivo, we have disrupted the mouse c-ski gene. Our results show a novel role for ski in the morphogenesis of craniofacial structures and the central nervous system, and confirm its proposed function as a player in skeletal muscle development. Homozygous mutant mice show perinatal lethality resulting from exencephaly, a defect caused by failed closure of the cranial neural tube during neurulation. The timing of the neural tube defect in ski -/- embryos coincides with excessive apoptosis in the cranial neuroepithelium, as well as in the cranial mesenchyme. Homozygous ski mutants also exhibit a dramatic reduction in skeletal muscle mass, consistent with a defect in expansion of a myogenic precursor population. Nestin is an intermediate filament expressed in highly proliferative neuroepithelial stem cells and in myogenic precursors. Interestingly, we find decreased nestin expression in both the cranial neural tube and the somites of ski -/- embryos, compared with their normal littermates, but no reduction of nestin in the caudal neural tube. These results are consistent with a model in which ski activities are required for the successful expansion of a subset of precursors in the neuroepithelial or skeletal muscle lineages.
Collapse
Affiliation(s)
- M Berk
- Department of Cancer Biology, Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | |
Collapse
|
34
|
Hodes RJ, McCormick AM, Pruzan M. Longevity assurance genes: how do they influence aging and life span? J Am Geriatr Soc 1996; 44:988-91. [PMID: 8708315 DOI: 10.1111/j.1532-5415.1996.tb01875.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R J Hodes
- National Institute on Aging, Bethesda, MD 20892, USA
| | | | | |
Collapse
|