1
|
Llerena Schiffmacher DA, Pai YJ, Pines A, Vermeulen W. Transcription-coupled repair: tangled up in convoluted repair. FEBS J 2025. [PMID: 40272095 DOI: 10.1111/febs.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/08/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Significant progress has been made in understanding the mechanism of transcription-coupled nucleotide excision repair (TC-NER); however, numerous aspects remain elusive, including TC-NER regulation, lesion-specific and cell type-specific complex composition, structural insights, and lesion removal dynamics in living cells. This review summarizes and discusses recent advancements in TC-NER, focusing on newly identified interactors, mechanistic insights from cryo-electron microscopy (Cryo-EM) studies and live cell imaging, and the contribution of post-translational modifications (PTMs), such as ubiquitin, in regulating TC-NER. Furthermore, we elaborate on the consequences of TC-NER deficiencies and address the role of accumulated damage and persistent lesion-stalled RNA polymerase II (Pol II) as major drivers of the disease phenotype of Cockayne syndrome (CS) and its related disorders. In this context, we also discuss the severe effects of transcription-blocking lesions (TBLs) on neurons, highlighting their susceptibility to damage. Lastly, we explore the potential of investigating three-dimensional (3D) chromatin structure and phase separation to uncover further insights into this essential DNA repair pathway.
Collapse
Affiliation(s)
- Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yun Jin Pai
- Master Scientific Illustrations, Department of Anatomy and Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Datta A, Sommers JA, Jhujh SS, Harel T, Stewart GS, Brosh RM. Discovery of a new hereditary RECQ helicase disorder RECON syndrome positions the replication stress response and genome homeostasis as centrally important processes in aging and age-related disease. Ageing Res Rev 2023; 86:101887. [PMID: 36805074 PMCID: PMC10018417 DOI: 10.1016/j.arr.2023.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Characterizing the molecular deficiencies underlying human aging has been a formidable challenge as it is clear that a complex myriad of factors including genetic mutations, environmental influences, and lifestyle choices influence the deterioration responsible for human pathologies. In addition, the common denominators of human aging, exemplified by the newly updated hallmarks of aging (López-Otín et al., 2023), suggest multiple avenues and layers of crosstalk between pathways important for genome and cellular homeostasis, both of which are major determinants of both good health and lifespan. In this regard, we postulate that hereditary disorders characterized by chromosomal instability offer a unique window of insight into aging and age-related disease processes. Recently, we discovered a new RECQ helicase disorder, designated RECON syndrome attributed to bi-allelic mutations in the RECQL1 gene (Abu-Libdeh et al., 2022). Cells deficient in RECQL1 exhibit genomic instability and a compromised response to replication stress, providing further evidence for the significance of genome homeostasis to suppress disease phenotypes. Here we provide a perspective on the pathology of RECON syndrome to inform the reader as to how molecular defects in the RECQL1 gene contribute to underlying deficiencies in nucleic acid metabolism often seen in certain aging or age-related diseases.
Collapse
Affiliation(s)
- Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Joshua A Sommers
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Satpal S Jhujh
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Grant S Stewart
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Ljungman M. Transcription and genome integrity. DNA Repair (Amst) 2022; 118:103373. [PMID: 35914488 DOI: 10.1016/j.dnarep.2022.103373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
Transcription can cause genome instability by promoting R-loop formation but also act as a mutation-suppressing machinery by sensing of DNA lesions leading to the activation of DNA damage signaling and transcription-coupled repair. Recovery of RNA synthesis following the resolution of repair of transcription-blocking lesions is critical to avoid apoptosis and several new factors involved in this process have recently been identified. Some DNA repair proteins are recruited to initiating RNA polymerases and this may expediate the recruitment of other factors that participate in the repair of transcription-blocking DNA lesions. Recent studies have shown that transcription of protein-coding genes does not always give rise to spliced transcripts, opening the possibility that cells may use the transcription machinery in a splicing-uncoupled manner for other purposes including surveillance of the transcribed genome.
Collapse
Affiliation(s)
- Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Gaul L, Svejstrup JQ. Transcription-coupled repair and the transcriptional response to UV-Irradiation. DNA Repair (Amst) 2021; 107:103208. [PMID: 34416541 DOI: 10.1016/j.dnarep.2021.103208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Lesions in genes that result in RNA polymerase II (RNAPII) stalling or arrest are particularly toxic as they are a focal point of genome instability and potently block further transcription of the affected gene. Thus, cells have evolved the transcription-coupled nucleotide excision repair (TC-NER) pathway to identify damage-stalled RNAPIIs, so that the lesion can be rapidly repaired and transcription can continue. However, despite the identification of several factors required for TC-NER, how RNAPII is remodelled, modified, removed, or whether this is even necessary for repair remains enigmatic, and theories are intensely contested. Recent studies have further detailed the cellular response to UV-induced ubiquitylation and degradation of RNAPII and its consequences for transcription and repair. These advances make it pertinent to revisit the TC-NER process in general and with specific discussion of the fate of RNAPII stalled at DNA lesions.
Collapse
Affiliation(s)
- Liam Gaul
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
5
|
Datta A, Pollock KJ, Kormuth KA, Brosh RM. G-Quadruplex Assembly by Ribosomal DNA: Emerging Roles in Disease Pathogenesis and Cancer Biology. Cytogenet Genome Res 2021; 161:285-296. [PMID: 34469893 DOI: 10.1159/000516394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Unique repetitive elements of the eukaryotic genome can be problematic for cellular DNA replication and transcription and pose a source of genomic instability. Human ribosomal DNA (rDNA) exists as repeating units clustered together on several chromosomes. Understanding the molecular mechanisms whereby rDNA interferes with normal genome homeostasis is the subject of this review. We discuss the instability of rDNA as a driver of senescence and the important roles of helicases to suppress its deleterious effects. The propensity of rDNA that is rich in guanine bases to form G-quadruplexes (G4) is discussed and evaluated in disease pathogenesis. Targeting G4 in the ribosomes and other chromosomal loci may represent a useful synthetic lethal approach to combating cancer.
Collapse
Affiliation(s)
- Arindam Datta
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Kevin J Pollock
- Department of Biology, Bethany College, Bethany, West Virginia, USA
| | - Karen A Kormuth
- Department of Biology, Bethany College, Bethany, West Virginia, USA
| | - Robert M Brosh
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Tiwari V, Baptiste BA, Okur MN, Bohr VA. Current and emerging roles of Cockayne syndrome group B (CSB) protein. Nucleic Acids Res 2021; 49:2418-2434. [PMID: 33590097 DOI: 10.1093/nar/gkab085] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cockayne syndrome (CS) is a segmental premature aging syndrome caused primarily by defects in the CSA or CSB genes. In addition to premature aging, CS patients typically exhibit microcephaly, progressive mental and sensorial retardation and cutaneous photosensitivity. Defects in the CSB gene were initially thought to primarily impair transcription-coupled nucleotide excision repair (TC-NER), predicting a relatively consistent phenotype among CS patients. In contrast, the phenotypes of CS patients are pleiotropic and variable. The latter is consistent with recent work that implicates CSB in multiple cellular systems and pathways, including DNA base excision repair, interstrand cross-link repair, transcription, chromatin remodeling, RNAPII processing, nucleolin regulation, rDNA transcription, redox homeostasis, and mitochondrial function. The discovery of additional functions for CSB could potentially explain the many clinical phenotypes of CSB patients. This review focuses on the diverse roles played by CSB in cellular pathways that enhance genome stability, providing insight into the molecular features of this complex premature aging disease.
Collapse
Affiliation(s)
- Vinod Tiwari
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
7
|
Batenburg NL, Cui S, Walker JR, Schellhorn HE, Zhu XD. The Winged Helix Domain of CSB Regulates RNAPII Occupancy at Promoter Proximal Pause Sites. Int J Mol Sci 2021; 22:ijms22073379. [PMID: 33806087 PMCID: PMC8037043 DOI: 10.3390/ijms22073379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
Cockayne syndrome group B protein (CSB), a member of the SWI/SNF superfamily, resides in an elongating RNA polymerase II (RNAPII) complex and regulates transcription elongation. CSB contains a C-terminal winged helix domain (WHD) that binds to ubiquitin and plays an important role in DNA repair. However, little is known about the role of the CSB-WHD in transcription regulation. Here, we report that CSB is dependent upon its WHD to regulate RNAPII abundance at promoter proximal pause (PPP) sites of several actively transcribed genes, a key step in the regulation of transcription elongation. We show that two ubiquitin binding-defective mutations in the CSB-WHD, which impair CSB's ability to promote cell survival in response to treatment with cisplatin, have little impact on its ability to stimulate RNAPII occupancy at PPP sites. In addition, we demonstrate that two cancer-associated CSB mutations, which are located on the opposite side of the CSB-WHD away from its ubiquitin-binding pocket, impair CSB's ability to promote RNAPII occupancy at PPP sites. Taken together, these results suggest that CSB promotes RNAPII association with PPP sites in a manner requiring the CSB-WHD but independent of its ubiquitin-binding activity. These results further imply that CSB-mediated RNAPII occupancy at PPP sites is mechanistically separable from CSB-mediated repair of cisplatin-induced DNA damage.
Collapse
Affiliation(s)
| | | | | | | | - Xu-Dong Zhu
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 27737)
| |
Collapse
|
8
|
Elinoff JM, Chen LY, Dougherty EJ, Awad KS, Wang S, Biancotto A, Siddiqui AH, Weir NA, Cai R, Sun J, Preston IR, Solomon MA, Danner RL. Spironolactone-induced degradation of the TFIIH core complex XPB subunit suppresses NF-κB and AP-1 signalling. Cardiovasc Res 2019; 114:65-76. [PMID: 29036418 DOI: 10.1093/cvr/cvx198] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
Aims Spironolactone (SPL) improves endothelial dysfunction and survival in heart failure. Immune modulation, including poorly understood mineralocorticoid receptor (MR)-independent effects of SPL might contribute to these benefits and possibly be useful in other inflammatory cardiovascular diseases such as pulmonary arterial hypertension. Methods and results Using human embryonic kidney cells (HEK 293) expressing specific nuclear receptors, SPL suppressed NF-κB and AP-1 reporter activity independent of MR and other recognized nuclear receptor partners. NF-κB and AP-1 DNA binding were not affected by SPL and protein synthesis blockade did not interfere with SPL-induced suppression of inflammatory signalling. In contrast, proteasome blockade to inhibit degradation of xeroderma pigmentosum group B complementing protein (XPB), a subunit of the general transcription factor TFIIH, or XPB overexpression both prevented SPL-mediated suppression of inflammation. Similar to HEK 293 cells, a proteasome inhibitor blocked XPB loss and SPL suppression of AP-1 induced target genes in human pulmonary artery endothelial cells (PAECs). Unlike SPL, eplerenone (EPL) did not cause XPB degradation and failed to similarly suppress inflammatory signalling. SPL combined with siRNA XPB knockdown further reduced XPB protein levels and had the greatest effect on PAEC inflammatory gene transcription. Using chromatin-immunoprecipitation, PAEC target gene susceptibility to SPL was associated with low basal RNA polymerase II (RNAPII) occupancy and TNFα-induced RNAPII and XPB recruitment. XP patient-derived fibroblasts carrying an N-terminal but not C-terminal XPB mutations were insensitive to both SPL-mediated XPB degradation and TNFα-induced target gene suppression. Importantly, SPL treatment decreased whole lung XPB protein levels in a monocrotaline rat model of pulmonary hypertension and reduced inflammatory markers in an observational cohort of PAH patients. Conclusion SPL has important anti-inflammatory effects independent of aldosterone and MR, not shared with EPL. Drug-induced, proteasome-dependent XPB degradation may be a useful therapeutic approach in cardiovascular diseases driven by inflammation.
Collapse
Affiliation(s)
| | - Li-Yuan Chen
- Critical Care Medicine Department, Clinical Center
| | | | | | | | | | | | - Nargues A Weir
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Room 2C145, Bethesda, MD 20892-1662, USA.,Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Fairfax, VA, USA
| | - Rongman Cai
- Critical Care Medicine Department, Clinical Center
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center
| | - Ioana R Preston
- Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, MA 02111, USA
| | - Michael A Solomon
- Critical Care Medicine Department, Clinical Center.,Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Room 2C145, Bethesda, MD 20892-1662, USA
| | | |
Collapse
|
9
|
Sanchez-Roman I, Lautrup S, Aamann MD, Neilan EG, Østergaard JR, Stevnsner T. Two Cockayne Syndrome patients with a novel splice site mutation - clinical and metabolic analyses. Mech Ageing Dev 2018; 175:7-16. [PMID: 29944916 DOI: 10.1016/j.mad.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/11/2018] [Accepted: 06/06/2018] [Indexed: 01/03/2023]
Abstract
Cockayne Syndrome (CS) is a rare autosomal recessive disorder, which leads to neurodegeneration, growth failure and premature aging. Most of the cases are due to mutations in the ERCC6 gene, which encodes the protein CSB. CSB is involved in several functions including DNA repair and transcription. Here we describe two Danish brothers with CS. Both patients carried a novel splice site mutation (c.2382+2T>G), and a previously described nonsense mutation (c.3259C>T, p.Arg1087X) in a biallelic state. Both patients presented the cardinal features of the disease including microcephaly, congenital cataract and postnatal growth failure. In addition, their fibroblasts were hypersensitive to UV irradiation and exhibited increased superoxide levels in comparison to fibroblasts from healthy age and gender matched individuals. Metabolomic analysis revealed a distinctive metabolic profile in cells from the CS patients compared to control cells. Among others, α-ketoglutarate, hydroxyglutarate and certain amino acids (ornithine, proline and glycine) were reduced in the CS patient fibroblasts, whereas glycolytic intermediates (glucose-6-phosphate and pyruvic acid) and fatty acids (palmitic, stearic and myristic acid) were increased. Our data not only provide additional information to the database of CS mutations, but also point towards targets for potential treatment of this devastating disease.
Collapse
Affiliation(s)
- Ines Sanchez-Roman
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Department of Basic Biomedical Science, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Sofie Lautrup
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Maria Diget Aamann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Edward G Neilan
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - John R Østergaard
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Tinna Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
10
|
Nucleotide Excision Repair: From Neurodegeneration to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:17-39. [PMID: 28840550 DOI: 10.1007/978-3-319-60733-7_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA damage poses a constant threat to genome integrity taking a variety of shapes and arising by normal cellular metabolism or environmental insults. Human syndromes, characterized by increased cancer pre-disposition or early onset of age-related pathology and developmental abnormalities, often result from defective DNA damage responses and compromised genome integrity. Over the last decades intensive research worldwide has made important contributions to our understanding of the molecular mechanisms underlying genomic instability and has substantiated the importance of DNA repair in cancer prevention in the general population. In this chapter, we discuss Nucleotide Excision Repair pathway, the causative role of its components in disease-related pathology and recent technological achievements that decipher mutational landscapes and may facilitate pathological classification and personalized therapy.
Collapse
|
11
|
Vessoni AT, Herai RH, Karpiak JV, Leal AMS, Trujillo CA, Quinet A, Agnez Lima LF, Menck CFM, Muotri AR. Cockayne syndrome-derived neurons display reduced synapse density and altered neural network synchrony. Hum Mol Genet 2016; 25:1271-80. [PMID: 26755826 DOI: 10.1093/hmg/ddw008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/06/2016] [Indexed: 01/04/2023] Open
Abstract
Cockayne syndrome (CS) is a rare genetic disorder in which 80% of cases are caused by mutations in the Excision Repair Cross-Complementation group 6 gene (ERCC6). The encoded ERCC6 protein is more commonly referred to as Cockayne Syndrome B protein (CSB). Classical symptoms of CS patients include failure to thrive and a severe neuropathology characterized by microcephaly, hypomyelination, calcification and neuronal loss. Modeling the neurological aspect of this disease has proven difficult since murine models fail to mirror classical neurological symptoms. Therefore, a robust human in vitro cellular model would advance our fundamental understanding of the disease and reveal potential therapeutic targets. Herein, we successfully derived functional CS neural networks from human CS induced pluripotent stem cells (iPSCs) providing a new tool to facilitate studying this devastating disease. We identified dysregulation of the Growth Hormone/Insulin-like Growth Factor-1 (GH/IGF-1) pathway as well as pathways related to synapse formation, maintenance and neuronal differentiation in CSB neurons using unbiased RNA-seq gene expression analyses. Moreover, when compared to unaffected controls, CSB-deficient neural networks displayed altered electrophysiological activity, including decreased synchrony, and reduced synapse density. Collectively, our work reveals that CSB is required for normal neuronal function and we have established an alternative to previously available models to further study neural-specific aspects of CS.
Collapse
Affiliation(s)
- Alexandre T Vessoni
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA 92037, USA, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Roberto H Herai
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA 92037, USA, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil and
| | - Jerome V Karpiak
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - Angelica M S Leal
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA 92037, USA, Department of Cell Biology and Genetics, Center of Biosciences Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil
| | - Cleber A Trujillo
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - Annabel Quinet
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Lucymara F Agnez Lima
- Department of Cell Biology and Genetics, Center of Biosciences Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil
| | - Carlos F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA 92037, USA,
| |
Collapse
|
12
|
Abstract
Rad26p is a SWI/SNF-like ATPase in yeast, and is conserved among eukaryotes. Both Rad26p and its human homolog CSB (Cockayne syndrome group B) are involved in regulation of chromatin structure, transcription and DNA repair. Thus, mutations or malfunctions of these proteins have significant effects on cellular functions. Mutations in CSB are associated with Cockayne syndrome (CS) that is characterized by heterogeneous pathologies such as mental and physical retardation, sun sensitivity, premature aging, muscular and skeletal abnormalities, and progressive decline in neurological and cognitive functions. Therefore, many research groups focused their studies to understand the mechanisms of Rad26p/CSB functions to illuminate the molecular bases of CS. These studies have provided significant functional and mechanistic insights of Rad26p/CSB in regulation of gene expression and genome integrity as described here.
Collapse
Affiliation(s)
- Shivani Malik
- a Department of Biochemistry and Molecular Biology ; Southern Illinois University School of Medicine ; Carbondale , IL USA
| | | |
Collapse
|
13
|
UVSSA and USP7, a new couple in transcription-coupled DNA repair. Chromosoma 2013; 122:275-84. [PMID: 23760561 PMCID: PMC3714559 DOI: 10.1007/s00412-013-0420-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/23/2023]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) specifically removes transcription-blocking lesions from our genome. Defects in this pathway are associated with two human disorders: Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS). Despite a similar cellular defect in the UV DNA damage response, patients with these syndromes exhibit strikingly distinct symptoms; CS patients display severe developmental, neurological, and premature aging features, whereas the phenotype of UVSS patients is mostly restricted to UV hypersensitivity. The exact molecular mechanism behind these clinical differences is still unknown; however, they might be explained by additional functions of CS proteins beyond TC-NER. A short overview of the current hypotheses addressing possible molecular mechanisms and the proteins involved are presented in this review. In addition, we will focus on two new players involved in TC-NER which were recently identified: UV-stimulated scaffold protein A (UVSSA) and ubiquitin-specific protease 7 (USP7). UVSSA has been found to be the causative gene for UVSS and, together with USP7, is implicated in regulating TC-NER activity. We will discuss the function of UVSSA and USP7 and how the discovery of these proteins contributes to a better understanding of the molecular mechanisms underlying the clinical differences between UVSS and the more severe CS.
Collapse
|
14
|
Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. Proc Natl Acad Sci U S A 2013; 110:E2261-70. [PMID: 23733932 DOI: 10.1073/pnas.1220071110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cockayne syndrome type B ATPase (CSB) belongs to the SwItch/Sucrose nonfermentable family. Its mutations are linked to Cockayne syndrome phenotypes and classically are thought to be caused by defects in transcription-coupled repair, a subtype of DNA repair. Here we show that after UV-C irradiation, immediate early genes such as activating transcription factor 3 (ATF3) are overexpressed. Although the ATF3 target genes, including dihydrofolate reductase (DHFR), were unable to recover RNA synthesis in CSB-deficient cells, transcription was restored rapidly in normal cells. There the synthesis of DHFR mRNA restarts on the arrival of RNA polymerase II and CSB and the subsequent release of ATF3 from its cAMP response element/ATF target site. In CSB-deficient cells ATF3 remains bound to the promoter, thereby preventing the arrival of polymerase II and the restart of transcription. Silencing of ATF3, as well as stable introduction of wild-type CSB, restores RNA synthesis in UV-irradiated CSB cells, suggesting that, in addition to its role in DNA repair, CSB activity likely is involved in the reversal of inhibitory properties on a gene-promoter region. We present strong experimental data supporting our view that the transcriptional defects observed in UV-irradiated CSB cells are largely the result of a permanent transcriptional repression of a certain set of genes in addition to some defect in DNA repair.
Collapse
|
15
|
Vélez-Cruz R, Egly JM. Cockayne syndrome group B (CSB) protein: at the crossroads of transcriptional networks. Mech Ageing Dev 2013; 134:234-42. [PMID: 23562425 DOI: 10.1016/j.mad.2013.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/14/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
Cockayne syndrome (CS) is a rare genetic disorder characterized by a variety of growth and developmental defects, photosensitivity, cachectic dwarfism, hearing loss, skeletal abnormalities, progressive neurological degeneration, and premature aging. CS arises due to mutations in the CSA and CSB genes. Both gene products are required for the transcription-coupled (TC) branch of the nucleotide excision repair (NER) pathway, however, the severe phenotype of CS patients is hard to reconcile with a sole defect in TC-NER. Studies using cells from patients and mouse models have shown that the CSB protein is involved in a variety of cellular pathways and plays a major role in the cellular response to stress. CSB has been shown to regulate processes such as the transcriptional recovery after DNA damage, the p53 transcriptional response, the response to hypoxia, the response to insulin-like growth factor-1 (IGF-1), transactivation of nuclear receptors, transcription of housekeeping genes and the transcription of rDNA. Some of these processes are also affected in combined XP/CS patients. These new advances in the function(s) of CSB shed light onto the etiology of the clinical features observed in CS patients and could potentially open therapeutic avenues for these patients in the future. Moreover, the study of CS could further our knowledge of the aging process.
Collapse
Affiliation(s)
- Renier Vélez-Cruz
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université de Strasbourg, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France.
| | | |
Collapse
|
16
|
McKay BC, Cabrita MA. Arresting transcription and sentencing the cell: the consequences of blocked transcription. Mech Ageing Dev 2013; 134:243-52. [PMID: 23542592 DOI: 10.1016/j.mad.2013.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/16/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
Abstract
Bulky DNA adducts induced by agents like ultraviolet light, cisplatin and oxidative metabolism pose a block to elongation by RNA polymerase II (RNAPII). The arrested RNAPII can initiate the repair of transcription-blocking DNA lesions by transcription-coupled nucleotide excision repair (TC-NER) to permit efficient recovery of mRNA synthesis while widespread sustained transcription blocks lead to apoptosis. Therefore, RNAPII serves as a processive DNA damage sensor that identifies transcription-blocking DNA lesions. Cockayne syndrome (CS) is an autosomal recessive disorder characterized by a complex phenotype that includes clinical photosensitivity, progressive neurological degeneration and premature-aging. CS is associated with defects in TC-NER and the recovery of mRNA synthesis, making CS cells exquisitely sensitive to a variety of DNA damaging agents. These defects in the coupling of repair and transcription appear to underlie some of the complex clinical features of CS. Recent insight into the consequences of blocked transcription and their relationship to CS will be discussed.
Collapse
Affiliation(s)
- Bruce C McKay
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Canada.
| | | |
Collapse
|
17
|
Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat Genet 2012; 44:593-7. [PMID: 22466612 DOI: 10.1038/ng.2228] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/29/2012] [Indexed: 01/22/2023]
Abstract
UV-sensitive syndrome (UV(S)S) is an autosomal recessive disorder characterized by photosensitivity and deficiency in transcription-coupled repair (TCR), a subpathway of nucleotide-excision repair that rapidly removes transcription-blocking DNA damage. Cockayne syndrome is a related disorder with defective TCR and consists of two complementation groups, Cockayne syndrome (CS)-A and CS-B, which are caused by mutations in ERCC8 (CSA) and ERCC6 (CSB), respectively. UV(S)S comprises three groups, UV(S)S/CS-A, UV(S)S/CS-B and UV(S)S-A, caused by mutations in ERCC8, ERCC6 and an unidentified gene, respectively. Here, we report the cloning of the gene mutated in UV(S)S-A by microcell-mediated chromosome transfer. The predicted human gene UVSSA (formerly known as KIAA1530)(7) corrects defective TCR in UV(S)S-A cells. We identify three nonsense and frameshift UVSSA mutations in individuals with UV(S)S-A, indicating that UVSSA is the causative gene for this syndrome. The UVSSA protein forms a complex with USP7 (ref. 8), stabilizes ERCC6 and restores the hypophosphorylated form of RNA polymerase II after UV irradiation.
Collapse
|
18
|
Assfalg R, Lebedev A, Gonzalez OG, Schelling A, Koch S, Iben S. TFIIH is an elongation factor of RNA polymerase I. Nucleic Acids Res 2011; 40:650-9. [PMID: 21965540 PMCID: PMC3258137 DOI: 10.1093/nar/gkr746] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
TFIIH is a multisubunit factor essential for transcription initiation and promoter escape of RNA polymerase II and for the opening of damaged DNA double strands in nucleotide excision repair (NER). In this study, we have analyzed at which step of the transcription cycle TFIIH is essential for transcription by RNA polymerase I. We demonstrate that TFIIH associates with the rDNA promoter and gene-internal sequences and leaves the rDNA promoter in a complex with RNA polymerase I after start of transcription. Moreover, mutations in the TFIIH subunits XPB and XPD found in Cockayne syndrome impair the interaction of TFIIH with the rDNA, but do not influence initiation complex formation or promoter escape of RNA polymerase I, but preclude the productivity of the enzyme by reducing transcription elongation in vivo and in vitro. Our results implicate that reduced RNA polymerase I transcription elongation and ribosomal stress could be one factor contributing to the Cockayne syndrome phenotype.
Collapse
Affiliation(s)
- Robin Assfalg
- Department of Dermatology and Allergic Diseases, University of Ulm, James-Franck Ring N27, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Jeppesen DK, Bohr VA, Stevnsner T. DNA repair deficiency in neurodegeneration. Prog Neurobiol 2011; 94:166-200. [PMID: 21550379 PMCID: PMC3123739 DOI: 10.1016/j.pneurobio.2011.04.013] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 01/17/2023]
Abstract
Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington's disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration.
Collapse
Affiliation(s)
- Dennis Kjølhede Jeppesen
- Danish Centre for Molecular Gerontology and DanishAgingResearchCenter, University of Aarhus, Department of Molecular Biology, C. F. MoellersAllé 3, build. 1130, 8000 Aarhus C, Denmark
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institute of Health, 251 Bayview Blvd., Suite 100, Baltimore, MD21224-8626, USA
| | - Tinna Stevnsner
- Danish Centre for Molecular Gerontology and DanishAgingResearchCenter, University of Aarhus, Department of Molecular Biology, C. F. MoellersAllé 3, build. 1130, 8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Savolainen L, Cassel T, Helleday T. The XPD subunit of TFIIH is required for transcription-associated but not DNA double-strand break-induced recombination in mammalian cells. Mutagenesis 2010; 25:623-9. [PMID: 20833695 DOI: 10.1093/mutage/geq054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mutations in the XPD gene can give rise to three phenotypically distinct disorders: xeroderma pigmentosum (XP), trichothiodystrophy (TTD) or combined XP and Cockayne syndrome (CS) (XP/CS). The role of Xeroderma Pigmentosum group D protein (XPD) in nucleotide excision repair explains the increased risk of skin cancer in XP patients but not all the clinical phenotypes found in XP/CS or TTD patients. Here, we describe that the XPD-defective UV5 cell line is impaired in transcription-associated recombination (TAR), which can be reverted by the introduction of the wild-type XPD gene expressed from a vector. UV5 cells are defective in TAR, despite having intact transcription and homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Interestingly, we find reduced spontaneous HR in XPD-defective cells, suggesting that transcription underlies a portion of spontaneous HR events. We also report that transcription-coupled repair (TCR)-defective cells, mutated in the Cockayne syndrome B (CSB) protein, have a defect in TAR, but not in DSB-induced HR. However, the TAR defect may be associated with a general transcription defect in CSB-deficient cells. In conclusion, we show a novel role for the XPD protein in TAR, linking TAR with TCR.
Collapse
Affiliation(s)
- Linda Savolainen
- Department of Genetics, Microbiology and Toxicology, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
21
|
Stubbert LJ, Smith JM, McKay BC. Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin. BMC Cancer 2010; 10:207. [PMID: 20470425 PMCID: PMC2889890 DOI: 10.1186/1471-2407-10-207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 05/14/2010] [Indexed: 01/22/2023] Open
Abstract
Background One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. Methods RNA interference (RNAi) was used to reduce the transcription-coupled nucleotide excision repair (TC-NER) capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B) transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. Results These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. Conclusion The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic.
Collapse
Affiliation(s)
- Lawton J Stubbert
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | | | | |
Collapse
|
22
|
Biswas T, Pero JM, Joseph CG, Tsodikov OV. DNA-Dependent ATPase Activity of Bacterial XPB Helicases. Biochemistry 2009; 48:2839-48. [DOI: 10.1021/bi8022416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tapan Biswas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Jessica M. Pero
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Caleb G. Joseph
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Oleg V. Tsodikov
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| |
Collapse
|
23
|
|
24
|
Stevnsner T, Muftuoglu M, Aamann MD, Bohr VA. The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech Ageing Dev 2008; 129:441-8. [PMID: 18541289 PMCID: PMC2538557 DOI: 10.1016/j.mad.2008.04.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/17/2008] [Accepted: 04/22/2008] [Indexed: 11/19/2022]
Abstract
Cockayne Syndrome (CS) is a rare human genetic disorder characterized by progressive multisystem degeneration and segmental premature aging. The CS complementation group B (CSB) protein is engaged in transcription coupled and global nucleotide excision repair, base excision repair and general transcription. However, the precise molecular function of the CSB protein is still unclear. In the current review we discuss the involvement of CSB in some of these processes, with focus on the role of CSB in repair of oxidative damage, as deficiencies in the repair of these lesions may be an important aspect of the premature aging phenotype of CS.
Collapse
Affiliation(s)
- Tinna Stevnsner
- Danish Centre for Molecular Gerontology, Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
25
|
Abstract
In eukaryotes, the genes encoding ribosomal RNAs (rDNA) exist in two distinct epigenetic states that can be distinguished by a specific chromatin structure that is maintained throughout the cell cycle and is inherited from one cell to another. The fact that even in proliferating cells with a high demand of protein synthesis a fraction of rDNA is silenced provides a unique possibility to decipher the mechanism underlying epigenetic regulation of rDNA. This chapter summarizes our knowledge of the molecular mechanisms that establish and propagate the epigenetic state of rRNA genes, unraveling a complex interplay of DNA methyltransferases and histone-modifying enzymes that act in concert with chromatin remodeling complexes and RNA-guided mechanisms to define the transcriptional state of rDNA. We also review the critical role of the RNA polymerase I transcription factor UBF in the formation of active nucleolar organizer regions (NORs) and maintenance of the euchromatic state of rRNA genes.
Collapse
Affiliation(s)
- Brian McStay
- Biomedical Research Center, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, United Kingdom.
| | | |
Collapse
|
26
|
Yuan X, Feng W, Imhof A, Grummt I, Zhou Y. Activation of RNA polymerase I transcription by cockayne syndrome group B protein and histone methyltransferase G9a. Mol Cell 2007; 27:585-95. [PMID: 17707230 DOI: 10.1016/j.molcel.2007.06.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/11/2007] [Accepted: 06/12/2007] [Indexed: 12/16/2022]
Abstract
Cockayne syndrome group B (CSB) protein plays a role in both transcription-coupled DNA repair and transcriptional regulation of all three classes of nuclear RNA polymerases. Here we show that a complex consisting of CSB, RNA polymerase I (Pol I), and histone methyltransferase G9a is present at active rRNA genes. G9a methylates histone H3 on lysine 9 (H3K9me2) in the pre-rRNA coding region and facilitates the association of heterochromatin protein 1gamma (HP1gamma) with rDNA. Both H3K9 methylation and HP1gamma association require ongoing transcription. Knockdown of CSB prevents the association of Pol I with rDNA, impairs the interaction of G9a with Pol I, and inhibits pre-rRNA synthesis. Likewise, knockdown of G9a leads to decreased levels of H3K9me2 in the transcribed region and downregulation of pre-rRNA synthesis. The results reveal the mechanism underlying CSB-mediated activation of rDNA transcription and link G9a-dependent H3K9 methylation to Pol I transcription elongation through chromatin.
Collapse
Affiliation(s)
- Xuejun Yuan
- Division of Molecular Biology of the Cell II, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
27
|
Gorgels TGMF, van der Pluijm I, Brandt RMC, Garinis GA, van Steeg H, van den Aardweg G, Jansen GH, Ruijter JM, Bergen AAB, van Norren D, Hoeijmakers JHJ, van der Horst GTJ. Retinal degeneration and ionizing radiation hypersensitivity in a mouse model for Cockayne syndrome. Mol Cell Biol 2006; 27:1433-41. [PMID: 17145777 PMCID: PMC1800713 DOI: 10.1128/mcb.01037-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the CSB gene cause Cockayne syndrome (CS), a DNA repair disorder characterized by UV sensitivity and severe physical and neurological impairment. CSB functions in the transcription-coupled repair subpathway of nucleotide excision repair. This function may explain the UV sensitivity but hardly clarifies the other CS symptoms. Many of these, including retinopathy, are associated with premature aging. We studied eye pathology in a mouse model for CS. Csb(m/m) mice were hypersensitive to UV light and developed epithelial hyperplasia and squamous cell carcinomas in the cornea, which underscores the importance of transcription-coupled repair of photolesions in the mouse. In addition, we observed a spontaneous loss of retinal photoreceptor cells with age in the Csb(m/m) retina, resulting in a 60% decrease in the number of rods by the age of 18 months. Importantly, when Csb(m/m) mice (as well as Csa(-/-) mice) were exposed to 10 Gy of ionizing radiation, we noticed an increase in apoptotic photoreceptor cells, which was not observed in wild-type animals. This finding, together with our observation that the expression of established oxidative stress marker genes is upregulated in the Csb(m/m) retina, suggests that (endogenous) oxidative DNA lesions play a role in this CS-specific premature-aging feature and supports the oxidative DNA damage theory of aging.
Collapse
Affiliation(s)
- Theo G M F Gorgels
- Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Saxowsky TT, Doetsch PW. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem Rev 2006; 106:474-88. [PMID: 16464015 DOI: 10.1021/cr040466q] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tina T Saxowsky
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
29
|
Proietti-De-Santis L, Drané P, Egly JM. Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J 2006; 25:1915-23. [PMID: 16601682 PMCID: PMC1456931 DOI: 10.1038/sj.emboj.7601071] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/07/2006] [Indexed: 11/09/2022] Open
Abstract
The phenotype of the human genetic disorder Cockayne syndrome (CS) is not only due to DNA repair defect but also (and perhaps essentially) to a severe transcription initiation defect. After UV irradiation, even undamaged genes are not transcribed in CSB cells. Indeed, neither RNA pol II nor the associated basal transcription factors are recruited to the promoters of the housekeeping genes, around of which histone H4 acetylation is also deficient. Transfection of CSB restores the recruitment process of RNA pol II. On the contrary, the p53-responsive genes do not require CSB and are transcribed in both wild-type and CSB cells upon DNA damage. Altogether, our data highlight the pivotal role of CSB in initiating the transcriptional program of certain genes after UV irradiation, and also may explain some of the complex traits of CS patients.
Collapse
Affiliation(s)
- Luca Proietti-De-Santis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM, Illkirch Cedex, CU Strasbourg, France
| | - Pascal Drané
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM, Illkirch Cedex, CU Strasbourg, France
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM, Illkirch Cedex, CU Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM, BP 163, Illkirch Cedex, CU Strasbourg 67404, France. Tel.: +33 388 65 34 47; Fax: +33 388 65 32 01; E-mail:
| |
Collapse
|
30
|
Hoogervorst EM, van Steeg H, de Vries A. Nucleotide excision repair- and p53-deficient mouse models in cancer research. Mutat Res 2005; 574:3-21. [PMID: 15914203 DOI: 10.1016/j.mrfmmm.2005.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/29/2004] [Accepted: 01/10/2005] [Indexed: 05/02/2023]
Abstract
Cancer is caused by the loss of controlled cell growth due to mutational (in)activation of critical genes known to be involved in cell cycle regulation. Three main mechanisms are known to be involved in the prevention of cells from becoming cancerous; DNA repair and cell cycle control, important to remove DNA damage before it will be fixed into mutations and apoptosis, resulting in the elimination of cells containing severe DNA damage. Several human syndromes are known to have (partially) deficiencies in these pathways, and are therefore highly cancer prone. Examples are xeroderma pigmentosum (XP) caused by an inborn defect in the nucleotide excision repair (NER) pathway and the Li-Fraumeni syndrome, which is the result of a germ line mutation in the p53 gene. XP patients develop skin cancer on sun exposed areas at a relatively early age, whereas Li-Fraumeni patients spontaneously develop a wide variety of early onset tumors, including sarcomas, leukemia's and mammary gland carcinomas. Several mouse models have been generated to mimic these human syndromes, providing us information about the role of these particular gene defects in the tumorigenesis process. In this review, spontaneous phenotypes of mice deficient for nucleotide excision repair and/or the p53 gene will be described, together with their responses upon exposure to either chemical carcinogens or radiation. Furthermore, possible applications of these and newly generated mouse models for cancer will be given.
Collapse
Affiliation(s)
- Esther M Hoogervorst
- Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | |
Collapse
|
31
|
Neurodegenerative disease and the repair of oxidatively damaged DNA. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Hoogervorst EM, van Oostrom CTM, Beems RB, van Benthem J, van den Berg J, van Kreijl CF, Vos JG, de Vries A, van Steeg H. 2-AAF-induced tumor development in nucleotide excision repair-deficient mice is associated with a defect in global genome repair but not with transcription coupled repair. DNA Repair (Amst) 2005; 4:3-9. [PMID: 15533832 DOI: 10.1016/j.dnarep.2004.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Indexed: 11/24/2022]
Abstract
The nucleotide excision repair (NER) pathway comprises two sub-pathways, transcription coupled repair (TCR) and global genome repair (GGR). To establish the importance of these separate sub-pathways in tumor suppression, we exposed mice deficient for either TCR (Csb), GGR (Xpc) or both (Xpa) to 300 ppm 2-acetylaminofluorene (in feed, ad libitum) in a unique comparative exposure experiment. We found that cancer proneness was directly linked to a defect in the GGR pathway of NER as both Xpa and Xpc mice developed significantly more liver tumors upon 2-AAF exposure than wild type or Csb mice. In contrast, a defect in TCR appeared to act tumor suppressive, leading to a lower hepatocellular tumor response in Xpa mice (tumor incidence of 25%) as compared to Xpc mice (53% tumor-bearing mice). The link between deficient GGR and tumor proneness was most pronounced in the liver, but this phenomenon was also found in the urinary bladder. As tumor induction by 2-AAF appeared almost exclusively dependent on a defect in GGR, we examined whether gene mutation induction in the non-transcribed lacZ locus could reliably predict tumor risk. Interestingly, however, short-term 2-AAF exposure induced lacZ mutant levels in Csb mice almost as high as those found in Xpa or Xpc mice. This indicates that lacZ mutant frequencies are not correlated with a specific DNA repair defect and eventual tumor outcome, at least not in the experimental design presented here.
Collapse
Affiliation(s)
- Esther M Hoogervorst
- Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Scicchitano DA, Olesnicky EC, Dimitri A. Transcription and DNA adducts: what happens when the message gets cut off? DNA Repair (Amst) 2005; 3:1537-48. [PMID: 15474416 DOI: 10.1016/j.dnarep.2004.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 01/18/2023]
Abstract
DNA damage located within a gene's transcription unit can cause RNA polymerase to stall at the modified site, resulting in a truncated transcript, or progress past, producing full-length RNA. However, it is not immediately apparent why some lesions pose strong barriers to elongation while others do not. Studies using site-specifically damaged DNA templates have demonstrated that a wide range of lesions can impede the progress of elongating transcription complexes. The collected results of this work provide evidence for the idea that subtle structural elements can influence how an RNA polymerase behaves when it encounters a DNA adduct during elongation. These elements include: (1) the ability of the RNA polymerase active site to accommodate the damaged base; (2) the size and shape of the adduct, which includes the specific modified base; (3) the stereochemistry of the adduct; (4) the base incorporated into the growing transcript; and (5) the local DNA sequence.
Collapse
Affiliation(s)
- David A Scicchitano
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA.
| | | | | |
Collapse
|
34
|
de Waard H, de Wit J, Andressoo JO, van Oostrom CTM, Riis B, Weimann A, Poulsen HE, van Steeg H, Hoeijmakers JHJ, van der Horst GTJ. Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage. Mol Cell Biol 2004; 24:7941-8. [PMID: 15340056 PMCID: PMC515046 DOI: 10.1128/mcb.24.18.7941-7948.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutations in the CSA and CSB genes cause Cockayne syndrome, a rare inherited disorder characterized by UV sensitivity, severe neurological abnormalities, and progeriod symptoms. Both gene products function in the transcription-coupled repair (TCR) subpathway of nucleotide excision repair (NER), providing the cell with a mechanism to remove transcription-blocking lesions from the transcribed strands of actively transcribed genes. Besides a function in TCR of NER lesions, a role of CSB in (transcription-coupled) repair of oxidative DNA damage has been suggested. In this study we used mouse models to compare the effect of a CSA or a CSB defect on oxidative DNA damage sensitivity at the levels of the cell and the intact organism. In contrast to CSB(-/-) mouse embryonic fibroblasts (MEFs), CSA(-/-) MEFs are not hypersensitive to gamma-ray or paraquat treatment. Similar results were obtained for keratinocytes. In contrast, both CSB(-/-) and CSA(-/-) embryonic stem cells show slight gamma-ray sensitivity. Finally, CSB(-/-) but not CSA(-/-) mice fed with food containing di(2-ethylhexyl)phthalate (causing elevated levels of oxidative DNA damage in the liver) show weight reduction. These findings not only uncover a clear difference in oxidative DNA damage sensitivity between CSA- and CSB-deficient cell lines and mice but also show that sensitivity to oxidative DNA damage is not a uniform characteristic of Cockayne syndrome. This difference in the DNA damage response between CSA- and CSB-deficient cells is unexpected, since until now no consistent differences between CSA and CSB patients have been reported. We suggest that the CSA and CSB proteins in part perform separate roles in different DNA damage response pathways.
Collapse
Affiliation(s)
- Harm de Waard
- MGC, Department of Cell Biology and Genetics, Erasmus Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
van den Boom V, Citterio E, Hoogstraten D, Zotter A, Egly JM, van Cappellen WA, Hoeijmakers JHJ, Houtsmuller AB, Vermeulen W. DNA damage stabilizes interaction of CSB with the transcription elongation machinery. ACTA ACUST UNITED AC 2004; 166:27-36. [PMID: 15226310 PMCID: PMC2172148 DOI: 10.1083/jcb.200401056] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Cockayne syndrome B (CSB) protein is essential for transcription-coupled DNA repair (TCR), which is dependent on RNA polymerase II elongation. TCR is required to quickly remove the cytotoxic transcription-blocking DNA lesions. Functional GFP-tagged CSB, expressed at physiological levels, was homogeneously dispersed throughout the nucleoplasm in addition to bright nuclear foci and nucleolar accumulation. Photobleaching studies showed that GFP-CSB, as part of a high molecular weight complex, transiently interacts with the transcription machinery. Upon (DNA damage-induced) transcription arrest CSB binding these interactions are prolonged, most likely reflecting actual engagement of CSB in TCR. These findings are consistent with a model in which CSB monitors progression of transcription by regularly probing elongation complexes and becomes more tightly associated to these complexes when TCR is active.
Collapse
Affiliation(s)
- Vincent van den Boom
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The human genome, comprising three billion base pairs coding for 30000-40000 genes, is constantly attacked by endogenous reactive metabolites, therapeutic drugs and a plethora of environmental mutagens that impact its integrity. Thus it is obvious that the stability of the genome must be under continuous surveillance. This is accomplished by DNA repair mechanisms, which have evolved to remove or to tolerate pre-cytotoxic, pre-mutagenic and pre-clastogenic DNA lesions in an error-free, or in some cases, error-prone way. Defects in DNA repair give rise to hypersensitivity to DNA-damaging agents, accumulation of mutations in the genome and finally to the development of cancer and various metabolic disorders. The importance of DNA repair is illustrated by DNA repair deficiency and genomic instability syndromes, which are characterised by increased cancer incidence and multiple metabolic alterations. Up to 130 genes have been identified in humans that are associated with DNA repair. This review is aimed at updating our current knowledge of the various repair pathways by providing an overview of DNA-repair genes and the corresponding proteins, participating either directly in DNA repair, or in checkpoint control and signaling of DNA damage.
Collapse
Affiliation(s)
- Markus Christmann
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | | | | | |
Collapse
|
37
|
de Waard H, de Wit J, Gorgels TGMF, van den Aardweg G, Andressoo JO, Vermeij M, van Steeg H, Hoeijmakers JHJ, van der Horst GTJ. Cell type-specific hypersensitivity to oxidative damage in CSB and XPA mice. DNA Repair (Amst) 2003; 2:13-25. [PMID: 12509265 DOI: 10.1016/s1568-7864(02)00188-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mutations in the CSB gene cause Cockayne syndrome (CS), a rare inherited disorder, characterized by UV-sensitivity, severe neurodevelopmental and progeroid symptoms. CSB functions in the transcription-coupled repair (TCR) sub-pathway of nucleotide excision repair (NER), responsible for the removal of UV-induced and other helix-distorting lesions from the transcribed strand of active genes. Several lines of evidence support the notion that the CSB TCR defect extends to other non-NER type transcription-blocking lesions, notably various kinds of oxidative damage, which may provide an explanation for part of the severe CS phenotype. We used genetically defined mouse models to examine the relationship between the CSB defect and sensitivity to oxidative damage in different cell types and at the level of the intact organism. The main conclusions are: (1) CSB(-/-) mouse embryo fibroblasts (MEFs) exhibit a clear hypersensitivity to ionizing radiation, extending the findings in genetically heterogeneous human CSB fibroblasts to another species. (2) CSB(-/-) MEFs are highly sensitive to paraquat, strongly indicating that the increased cytotoxicity is due to oxidative damage. (3) The hypersenstivity is independent of genetic background and directly related to the CSB defect and is not observed in totally NER-deficient XPA MEFs. (4) Wild type embryonic stem (ES) cells display an increased sensitivity to ionizing radiation compared to fibroblasts. Surprisingly, the CSB deficiency has only a very minor additional effect on ES cell sensitivity to oxidative damage and is comparable to that of an XPA defect, indicating cell type-specific differences in the contribution of TCR and NER to cellular survival. (5) Similar to ES cells, CSB and XPA mice both display a minor sensitivity to whole-body X-ray exposure. This suggests that the response of an intact organism to radiation is largely determined by the sensitivity of stem cells, rather than differentiated cells. These findings establish the role of transcription-coupled repair in resistance to oxidative damage and reveal a cell- and organ-specific impact of this repair pathway to the clinical phenotype of CS and XP.
Collapse
Affiliation(s)
- Harm de Waard
- MGC, Department of Cell Biology and Genetics, Erasmus Mc, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stevnsner T, Nyaga S, de Souza-Pinto NC, van der Horst GTJ, Gorgels TGMF, Hogue BA, Thorslund T, Bohr VA. Mitochondrial repair of 8-oxoguanine is deficient in Cockayne syndrome group B. Oncogene 2002; 21:8675-82. [PMID: 12483520 DOI: 10.1038/sj.onc.1205994] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Revised: 08/19/2002] [Accepted: 08/20/2002] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species, which are prevalent in mitochondria, cause oxidative DNA damage including the mutagenic DNA lesion 7,8-dihydroxyguanine (8-oxoG). Oxidative damage to mitochondrial DNA has been implicated as a causative factor in a wide variety of degenerative diseases, and in cancer and aging. 8-oxoG is repaired efficiently in mammalian mitochondrial DNA by enzymes in the base excision repair pathway, including the 8-oxoguanine glycosylase (OGG1), which incizes the lesion in the first step of repair. Cockayne syndrome (CS) is a segmental premature aging syndrome in humans that has two complementation groups, CSA and CSB. Previous studies showed that CSB-deficient cells have reduced capacity to repair 8-oxoG. This study examines the role of the CSB gene in regulating repair of 8-oxoG in mitochondrial DNA in human and mouse cells. 8-oxoG repair was measured in liver cells from CSB deficient mice and in human CS-B cells carrying expression vectors for wild type or mutant forms of the human CSB gene. For the first time we report that CSB stimulates repair of 8-oxoG in mammalian mitochondrial DNA. Furthermore, evidence is presented to support the hypothesis that wild type CSB regulates expression of OGG1.
Collapse
Affiliation(s)
- Tinna Stevnsner
- Danish Center for Molecular Gerontology, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mo X, Dynan WS. Subnuclear localization of Ku protein: functional association with RNA polymerase II elongation sites. Mol Cell Biol 2002; 22:8088-99. [PMID: 12391174 PMCID: PMC134733 DOI: 10.1128/mcb.22.22.8088-8099.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ku is an abundant nuclear protein with an essential function in the repair of DNA double-strand breaks. Various observations suggest that Ku also interacts with the cellular transcription machinery, although the mechanism and significance of this interaction are not well understood. In the present study, we investigated the subnuclear distribution of Ku in normally growing human cells by using confocal microscopy, chromatin immunoprecipitation, and protein immunoprecipitation. All three approaches indicated association of Ku with RNA polymerase II (RNAP II) elongation sites. This association occurred independently of the DNA-dependent protein kinase catalytic subunit and was highly selective. There was no detectable association with the initiating isoform of RNAP II or with the general transcription initiation factors. In vitro protein-protein interaction assays demonstrated that the association of Ku with elongation proteins is mediated, in part, by a discrete C-terminal domain in the Ku80 subunit. Functional disruption of this interaction with a dominant-negative mutant inhibited transcription in vitro and in vivo and suppressed cell growth. These results suggest that association of Ku with transcription sites is important for maintenance of global transcription levels. Tethering of double-strand break repair proteins to defined subnuclear structures may also be advantageous in maintenance of genome stability.
Collapse
Affiliation(s)
- Xianming Mo
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | |
Collapse
|
40
|
Yamada A, Masutani C, Hanaoka F. Detection of reduced RNA synthesis in UV-irradiated Cockayne syndrome group B cells using an isolated nuclear system. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:129-34. [PMID: 12379475 DOI: 10.1016/s0167-4889(02)00292-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cockayne syndrome (CS) is a human hereditary disorder characterized by UV sensitivity, developmental abnormalities and premature aging. CS cells display a selective deficiency in transcription-coupled repair (TCR), a subpathway of nucleotide excision repair (NER) that preferentially removes lesions from transcribed strands. Following UV irradiation, the recovery of RNA synthesis is abnormally delayed in CS cells in conjunction with TCR deficiency. To date, TCR has been detected in cultured cells, but not in cell-free systems. In this study, we constructed an assay system using isolated nuclei. RNA synthesis catalyzed by RNA polymerases (pol I and II) was measured in nuclei prepared from UV-irradiated cells. In nuclei isolated from HeLa and xeroderma pigmentosum (XP) group C cells, RNA synthesis was relatively resistant to UV irradiation. In contrast, RNA synthesis by pol I and, in particular, pol II in CS-B nuclei was significantly inhibited upon UV irradiation. Our data support the utility of this assay system for the in vitro detection of the recovery of RNA synthesis in cultured cells.
Collapse
Affiliation(s)
- Ayumi Yamada
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Japan
| | | | | |
Collapse
|
41
|
Bradsher J, Auriol J, Proietti de Santis L, Iben S, Vonesch JL, Grummt I, Egly JM. CSB is a component of RNA pol I transcription. Mol Cell 2002; 10:819-29. [PMID: 12419226 DOI: 10.1016/s1097-2765(02)00678-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutation in the CSB gene results in the human Cockayne's syndrome (CS). Here, we provide evidence that CSB is found not only in the nucleoplasm but also in the nucleolus within a complex (CSB IP/150) that contains RNA pol I, TFIIH, and XPG and promotes efficient rRNA synthesis. CSB is active in in vitro RNA pol I transcription and restores rRNA synthesis when transfected in CSB-deficient cells. We also show that mutations in CSB, as well as in XPB and XPD genes, all of which confer CS, disturb the RNA pol I/TFIIH interaction within the CSB IP/150. In addition to revealing an unanticipated function for CSB in rRNA synthesis, we show that the fragility of this complex could be one factor contributing to the CS phenotype.
Collapse
Affiliation(s)
- John Bradsher
- Institut de Genetique et de Biologie Moleculaire et Cellulaire (CNRS/INSERM/ULP), F-67404, Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Sunesen M, Stevnsner T, Brosh RM, Dianov GL, Bohr VA. Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product. Oncogene 2002; 21:3571-8. [PMID: 12032859 DOI: 10.1038/sj.onc.1205443] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2001] [Revised: 02/11/2002] [Accepted: 02/21/2002] [Indexed: 11/09/2022]
Abstract
Cockayne syndrome (CS) is an autosomal recessive human disease characterized by UV-sensitivity as well as neurological and developmental abnormalities. Two complementation groups have been established, designated CS-A and CS-B. Traditionally, CSA and CSB have been ascribed a function in the transcription-coupled repair (TCR) pathway of nucleotide excision repair (NER) that efficiently removes bulky lesions from the transcribed strand of RNA polymerase II transcribed genes. To assess the role of the CSB protein in the repair of the highly mutagenic base lesion 7,8-dihydro-8-oxoguanine (8-oxoG), we have investigated the removal of this lesion using an in vitro incision approach with cell extracts as well as an in vivo approach with a modified protocol of the gene-specific repair assay, which allows the measurement of base lesion repair in intragenomic sequences. Our results demonstrate that the integrity of the CSB protein is pivotal for processes leading to incision at the site of 8-oxoG and that the global genome repair (GGR) of this lesion requires a functional CSB gene product in vivo.
Collapse
Affiliation(s)
- Morten Sunesen
- Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
43
|
Dubaele S, Egly JM. Cockayne syndrome, between transcription and DNA repair defects. J Eur Acad Dermatol Venereol 2002; 16:220-6. [PMID: 12195559 DOI: 10.1046/j.1468-3083.2002.00453.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Abstract
Several types of helix-distorting DNA lesions block the passage of elongating RNA polymerase II. Surprisingly, such transcription-blocking lesions are usually repaired considerably faster than non-obstructive lesions in the non-transcribed strand or in the genome overall. In this review, our knowledge of eukaryotic transcription-coupled repair (TCR) will be considered from the point of view of transcription, and current models for the mechanism of TCR will be discussed.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
45
|
Garfinkel DJ, Bailis AM. Nucleotide Excision Repair, Genome Stability, and Human Disease: New Insight from Model Systems. J Biomed Biotechnol 2002; 2:55-60. [PMID: 12488584 PMCID: PMC153785 DOI: 10.1155/s1110724302201023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Nucleotide excision repair (NER) is one of several DNA repair pathways that are universal throughout phylogeny. NER has a broad substrate specificity and is capable of removing several classes of lesions to the DNA, including those that accumulate upon exposure to UV radiation. The loss of this activity in NER-defective mutants gives rise to characteristic sensitivities to UV that, in humans, is manifested as a greatly elevated sensitivity to exposure to the sun. Xeroderma pigmentosum (XP), Cockaynes syndrome (CS), and trichothiodystrophy (TTD) are three, rare, recessively inherited human diseases that are linked to these defects. Interestingly, some of the symptoms in afflicted individuals appear to be due to defects in transcription, the result of the dual functionality of several components of the NER apparatus as parts of transcription factor IIH (TFIIH). Studies with several model systems have revealed that the genetic and biochemical features of NER are extraordinarily conserved in eukaryotes. One system that has been studied very closely is the budding yeast Saccharomyces cerevisiae. While many yeast NER mutants display the expected increases in UV sensitivity and defective transcription, other interesting phenotypes have also been observed. Elevated mutation and recombination rates, as well as increased frequencies of genome rearrangement by retrotransposon movement and recombination between short genomic sequences have been documented. The potential relevance of these novel phenotypes to disease in humans is discussed.
Collapse
Affiliation(s)
- David J. Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, NCI at Frederick, Frederick, MD 21702, USA
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
46
|
Maeda T, Chua PP, Chong MT, Sim AB, Nikaido O, Tron VA. Nucleotide excision repair genes are upregulated by low-dose artificial ultraviolet B: evidence of a photoprotective SOS response? J Invest Dermatol 2001; 117:1490-7. [PMID: 11886513 DOI: 10.1046/j.0022-202x.2001.01562.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nucleotide excision repair is a major mechanism of defense against the carcinogenic effects of ultraviolet light. Ultraviolet B causes sunburn and DNA damage in human skin. Nucleotide excision repair has been studied extensively and described in detail at the molecular level, including identification of many nucleotide excision repair-specific proteins and the genes encoding nucleotide excision repair proteins. In this study, normal human keratinocytes were exposed to increasing doses of ultraviolet B from fluorescent sunlamps, and the effect of this exposure on expression of nucleotide excision repair genes was examined. An RNase protection assay was performed to quantify transcripts from nucleotide excision repair genes, and a slot blot DNA repair activity assay was used to assess induction of the nucleotide excision repair pathway. The activity assay demonstrated that cyclobutane pyrimidine dimers were removed efficiently after exposure to low doses of ultraviolet B, but this activity was delayed significantly at higher doses. All nucleotide excision repair genes examined demonstrated a similar trend: ultraviolet B induces expression of nucleotide excision repair genes at low doses, but downregulates expression at higher doses. In addition, we show that pre-exposure of cells to low-dose ultraviolet protected keratinocytes from apoptosis following high-dose exposure. These data support the notion that nucleotide excision repair is induced in cells exposed to low doses of ultraviolet B, which may protect damaged keratinocytes from cell death; however, exposure to high doses of ultraviolet B downregulates nucleotide excision repair genes and is associated with cell death.
Collapse
Affiliation(s)
- T Maeda
- Department of Laboratory Medicine and Pathology, University of Alberta, Faculty of Medicine, Mackenzie Health Science Center, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Lee SK, Yu SL, Prakash L, Prakash S. Requirement for yeast RAD26, a homolog of the human CSB gene, in elongation by RNA polymerase II. Mol Cell Biol 2001; 21:8651-6. [PMID: 11713297 PMCID: PMC100025 DOI: 10.1128/mcb.21.24.8651-8656.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2001] [Accepted: 09/19/2001] [Indexed: 11/20/2022] Open
Abstract
Mutations in the human CSB gene cause Cockayne syndrome (CS). In addition to increased photosensitivity, CS patients suffer from severe developmental abnormalities, including growth retardation and mental retardation. Whereas a deficiency in the preferential repair of UV lesions from the transcribed strand accounts for the increased photosensitivity of CS patients, the reason for developmental defects in these individuals has remained unclear. Here we provide in vivo evidence for a role of RAD26, the counterpart of the CSB gene in Saccharomyces cerevisiae, in transcription elongation by RNA polymerase II, and in addition we show that under conditions requiring rapid synthesis of new mRNAs, growth is considerably reduced in cells lacking RAD26. These findings implicate a role for CSB in transcription elongation, and they strongly suggest that impaired transcription elongation is the underlying cause of the developmental problems in CS patients.
Collapse
Affiliation(s)
- S K Lee
- Sealy Center for Molecular Science, University of Texas Medical Branch, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA
| | | | | | | |
Collapse
|
48
|
Woodard RL, Lee KJ, Huang J, Dynan WS. Distinct roles for Ku protein in transcriptional reinitiation and DNA repair. J Biol Chem 2001; 276:15423-33. [PMID: 11278739 DOI: 10.1074/jbc.m010752200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional reinitiation is a distinct phase of the RNA polymerase II transcription cycle. Prior work has shown that reinitiation is deficient in nuclear extracts from Chinese hamster ovary cells lacking the 80-kDa subunit of Ku, a double-strand break repair protein, and that activity is rescued by expression of the corresponding cDNA. We now show that Ku increases the amount or availability of a soluble factor that is limiting for reinitiation, that the factor increases the number of elongation complexes associated with the template at all times during the reaction, and that the factor itself does not form a tight complex with DNA. The factor may consist of a preformed complex of transcription proteins that is stabilized by Ku. A Ku mutant, lacking residues 687-728 in the 80-kDa subunit, preferentially suppresses transcription in Ku-containing extracts, suggesting that Ku interacts directly with proteins required for reinitiation. The Ku mutant functions normally in a DNA end-joining system, indicating that the functions of Ku in transcription and repair are genetically separable. Based on our results, we present a model in which Ku is capable of undergoing a switch between a transcription factor-associated and a repair-active state.
Collapse
Affiliation(s)
- R L Woodard
- Gene Regulation Program, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
49
|
Lu Y, Lian H, Sharma P, Schreiber-Agus N, Russell RG, Chin L, van der Horst GT, Bregman DB. Disruption of the Cockayne syndrome B gene impairs spontaneous tumorigenesis in cancer-predisposed Ink4a/ARF knockout mice. Mol Cell Biol 2001; 21:1810-8. [PMID: 11238917 PMCID: PMC86742 DOI: 10.1128/mcb.21.5.1810-1818.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2000] [Accepted: 11/30/2000] [Indexed: 11/20/2022] Open
Abstract
Cells isolated from individuals with Cockayne syndrome (CS) have a defect in transcription-coupled DNA repair, which rapidly corrects certain DNA lesions located on the transcribed strand of active genes. Despite this DNA repair defect, individuals with CS group A (CSA) or group B (CSB) do not exhibit an increased spontaneous or UV-induced cancer rate. In order to investigate the effect of CSB deficiency on spontaneous carcinogenesis, we crossed CSB(-/-) mice with cancer-prone mice lacking the p16(Ink4a)/p19(ARF) tumor suppressor locus. CSB(-/-) mice are sensitive to UV-induced skin cancer but show no increased rate of spontaneous cancer. CSB(-/-) Ink4a/ARF(-/-) mice developed 60% fewer tumors than Ink4a/ARF(-/-) animals and demonstrated a longer tumor-free latency time (260 versus 150 days). Moreover, CSB(-/-) Ink4a/ARF(-/-) mouse embryo fibroblasts (MEFs) exhibited a lower colony formation rate after low-density seeding, a lower rate of H-Ras-induced transformation, slower proliferation, and a lower mRNA synthesis rate than Ink4a/ARF(-/-) MEFs. CSB(-/-) Ink4a/ARF(-/-) MEFs were also more sensitive to UV-induced p53 induction and UV-induced apoptosis than were Ink4a/ARF(-/-) MEFs. In order to investigate whether the apparent antineoplastic effect of CSB gene disruption was caused by sensitization to genotoxin-induced (p53-mediated) apoptosis or by p53-independent sequelae, we also generated p53(-/-) and CSB(-/-) p53(-/-) MEFs. The CSB(-/-) p53(-/-) MEFs demonstrated lower colony formation efficiency, a lower proliferation rate, a lower mRNA synthesis rate, and a higher rate of UV-induced cell death than p53(-/-) MEFs. Collectively, these results indicate that the antineoplastic effect of CSB gene disruption is at least partially p53 independent; it may result from impaired transcription or from apoptosis secondary to environmental or endogenous DNA damage.
Collapse
Affiliation(s)
- Y Lu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sunesen M, Selzer RR, Brosh RM, Balajee AS, Stevnsner T, Bohr VA. Molecular characterization of an acidic region deletion mutant of Cockayne syndrome group B protein. Nucleic Acids Res 2000; 28:3151-9. [PMID: 10931931 PMCID: PMC108419 DOI: 10.1093/nar/28.16.3151] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cockayne syndrome (CS) is a human genetic disorder characterized by post-natal growth failure, neurological abnormalities and premature aging. CS cells exhibit high sensitivity to UV light, delayed RNA synthesis recovery after UV irradiation and defective transcription-coupled repair (TCR). Two genetic complementation groups of CS have been identified, designated CS-A and CS-B. The CSB gene encodes a helicase domain and a highly acidic region N-terminal to the helicase domain. This study describes the genetic characterization of a CSB mutant allele encoding a full deletion of the acidic region. We have tested its ability to complement the sensitivity of UV61, the hamster homolog of human CS-B cells, to UV and the genotoxic agent N-acetoxy-2-acetylaminofluorene (NA-AAF). Deleting 39 consecutive amino acids, of which approximately 60% are negatively charged, did not impact on the ability of the protein to complement the sensitive phenotype of UV61 cells to either UV or NA-AAF. Our data indicate that the highly acidic region of CSB is not essential for the TCR and general genome repair pathways of UV- and NA-AAF-induced DNA lesions.
Collapse
Affiliation(s)
- M Sunesen
- Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|