1
|
Liu X, Wang J, Li F, Timchenko N, Tsai RYL. Transcriptional control of a stem cell factor nucleostemin in liver regeneration and aging. PLoS One 2024; 19:e0310219. [PMID: 39259742 PMCID: PMC11389944 DOI: 10.1371/journal.pone.0310219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Nucleostemin (NS) plays a role in liver regeneration, and aging reduces its expression in the baseline and regenerating livers following 70% partial hepatectomy (PHx). Here we interrogate the mechanism controlling NS expression during liver regeneration and aging. The NS promoter was analyzed by TRANSFAC. Functional studies were performed using cell-based luciferase assay, endogenous NS expression in Hep3B cells, mouse livers with a gain-of-function mutation of C/EBPα (S193D), and mouse livers with C/EBPα knockdown. We found a CAAT box with four C/EBPα binding sites (-1216 to -735) and a GC box with consensus binding sites for c-Myc, E2F1, and p300-associated protein complex (-633 to -1). Age-related changes in NS expression correlated positively with the expression of c-Myc, E2F1, and p300, and negatively with that of C/EBPα and C/EBPβ. PHx upregulated NS expression at 1d, coinciding with an increase in E2F1 and a decrease in C/EBPα. C/EBPα bound to the consensus sequences found in the NS promoter in vitro and in vivo, inhibited its transactivational activity in a binding site-dependent manner, and decreased the expression of endogenous NS in Hep3B cells. In vivo activation of C/EBPα by the S193D mutation resulted in a 4th-day post-PHx reduction of NS, a feature shared by 16-m/o livers. Finally, C/EBPα knockdown increased its expression in aged (24-m/o) livers under both baseline and regeneration conditions. This study reports the C/EBPα suppression of NS expression in aged livers, providing a new perspective on the mechanistic orchestration of tissue homeostasis in aging.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Bryan, TX, United States of America
| | - Junying Wang
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
| | - Fang Li
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
| | - Nikolai Timchenko
- Department of Surgery, Cincinnati Children Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States of America
| | - Robert Y L Tsai
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Bryan, TX, United States of America
| |
Collapse
|
2
|
Wang J, Zhang W, Liu X, Kim M, Zhang K, Tsai RYL. Epigenome-wide analysis of aging effects on liver regeneration. BMC Biol 2023; 21:30. [PMID: 36782243 PMCID: PMC9926786 DOI: 10.1186/s12915-023-01533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Aging is known to exert an effect on liver regeneration, with the ability of liver to regenerate displaying a significant decline over time. Liver physiological parameters such as liver volume, blood flow, and metabolism, as well as the ability to regenerate after injury have all been shown to decrease at old age in humans and model systems, with a number of molecular mechanisms proposed to be involved, including DNA methylation-dependent genome remodeling. To address how changes in DNA methylation mediate the adverse aging effect on liver regeneration, we searched for differentially methylated genomic regions (DMRs) in mouse livers co-regulated by aging and regeneration and determined their associated genes and enriched pathways. RESULTS DMRs were identified using whole-genome bisulfite sequencing (WGBS). Pathway analysis of aging DMR-mapped genes revealed two distinct phases of aging, 2-to-8 and 8-to-16 months old (m/o). Regenerative DMR-mapped differentially expressed genes (DEGs) were enriched in pathways controlling cell proliferation and differentiation. Most DMRs shared by both aging and regeneration changed in the same methylation direction between 2 and 8 m/o but in the opposite direction between 8 and 16 m/o. Regenerative DMRs inversely affected by aging during 8-to-16 m/o were found in the promoter/gene regions of 12 genes. Four regenerative DEGs were synchronously regulated by early aging and inversely regulated by mid-to-late aging DMRs. Lead DMR-mapped genes were validated by their expression profiles in liver aging and regeneration. CONCLUSIONS Our study has uncovered new DMRs and gene targets inversely affected by liver aging and regeneration to explain the adverse aging effect on liver regeneration. These findings will be of fundamental importance to understand the epigenomic changes underlying the biology of aging on liver regeneration.
Collapse
Affiliation(s)
- Junying Wang
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Wen Zhang
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Xiaoqin Liu
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Minjee Kim
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Ke Zhang
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA ,grid.412408.bDepartment of Translational Medical Sciences, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Robert Y. L. Tsai
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA ,grid.412408.bDepartment of Translational Medical Sciences, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| |
Collapse
|
3
|
Liver Regeneration: Changes in Oxidative Stress, Immune System, Cytokines, and Epigenetic Modifications Associated with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9018811. [PMID: 35936214 PMCID: PMC9352489 DOI: 10.1155/2022/9018811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/25/2022] [Accepted: 06/29/2022] [Indexed: 01/10/2023]
Abstract
The regenerative capacity of the liver decreases with increase in age. In recent years, studies in mice have found that the regenerative capacity of the liver is associated with changes in the immune system of the liver, cytokines in the body, aging-related epigenetic modifications in the cell, and intracellular signaling pathways. In the immune system of the aging liver, monocytes and macrophages play an important role in tissue repair. During tissue repair, monocytes and macrophages undergo a series of functional and phenotypic changes to initiate and maintain tissue repair. Studies have discovered that knocking out macrophages in the liver during the repair phase results in significant impairment of liver regeneration. Furthermore, as the body ages, the secretion and function of cytokines undergo a series of changes. For example, the levels of interleukin-6, transforming growth factor-alpha, hepatocyte growth factor, and vascular endothelial growth factor undergo changes that alter hepatocyte regulation, thereby affecting its proliferation. In addition, body aging is accompanied by cellular aging, which leads to changes in gene expression and epigenetic modifications. Additionally, this in turn causes alterations in cell function, morphology, and division and affects the regenerative capacity of the liver. As the body ages, the activity of associated functional proteins, such as CCAAT-enhancer-binding proteins, p53, and switch/sucrose nonfermentable complex, changes in the liver, leading to alterations in several signaling pathways, such as the Hippo, PI3K-Akt, mTOR, and STAT3 pathways. Therefore, in recent years, research on aging and liver regeneration has primarily focused on the immune system, signaling pathways, epigenetic changes of senescent cells, and cytokine secretion in the liver. Hence, this review details the roles of these influencing factors in liver regeneration and impact of aging-related factors.
Collapse
|
4
|
Maeso‐Díaz R, Dalton GD, Oh S, Du K, Tang L, Chen T, Dutta RK, Hartman JH, Meyer JN, Diehl A. Aging reduces liver resiliency by dysregulating Hedgehog signaling. Aging Cell 2022; 21:e13530. [PMID: 34984806 PMCID: PMC8844109 DOI: 10.1111/acel.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/02/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022] Open
Abstract
Older age is a major risk factor for damage to many tissues, including liver. Aging undermines resiliency and impairs liver regeneration. The mechanisms whereby aging reduces resiliency are poorly understood. Hedgehog is a signaling pathway with critical mitogenic and morphogenic functions during development. Recent studies indicate that Hedgehog regulates metabolic homeostasis in adult liver. The present study evaluates the hypothesis that Hedgehog signaling becomes dysregulated in hepatocytes during aging, resulting in decreased resiliency and therefore, impaired regeneration and enhanced vulnerability to damage. Partial hepatectomy (PH) was performed on young and old wild‐type mice and Smoothened (Smo)‐floxed mice treated with viral vectors to conditionally delete Smo and disrupt Hedgehog signaling specifically in hepatocytes. Changes in signaling were correlated with changes in regenerative responses and compared among groups. Old livers had fewer hepatocytes proliferating after PH. RNA sequencing identified Hedgehog as a top downregulated pathway in old hepatocytes before and after the regenerative challenge. Deleting Smo in young hepatocytes before PH prevented Hedgehog pathway activation after PH and inhibited regeneration. Gene Ontogeny analysis demonstrated that both old and Smo‐deleted young hepatocytes had activation of pathways involved in innate immune responses and suppression of several signaling pathways that control liver growth and metabolism. Hedgehog inhibition promoted telomere shortening and mitochondrial dysfunction in hepatocytes, consequences of aging that promote inflammation and impair tissue growth and metabolic homeostasis. Hedgehog signaling is dysregulated in old hepatocytes. This accelerates aging, resulting in decreased resiliency and therefore, impaired liver regeneration and enhanced vulnerability to damage.
Collapse
Affiliation(s)
- Raquel Maeso‐Díaz
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - George D. Dalton
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - Sehhoon Oh
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - Kuo Du
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - Linda Tang
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - Tianyi Chen
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - Rajesh K. Dutta
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| | - Jessica H. Hartman
- Nicholas School of the Environment Duke University Durham North Carolina USA
| | - Joel N. Meyer
- Nicholas School of the Environment Duke University Durham North Carolina USA
| | - Anna Mae Diehl
- Division of Gastroenterology Department of Medicine Duke University Health System Durham North Carolina USA
| |
Collapse
|
5
|
Abstract
Significance: During aging, excessive production of reactive species in the liver leads to redox imbalance with consequent oxidative damage and impaired organ homeostasis. Nevertheless, slight amounts of reactive species may modulate several transcription factors, acting as second messengers and regulating specific signaling pathways. These redox-dependent alterations may impact the age-associated decline in liver regeneration. Recent Advances: In the last few decades, relevant findings related to redox alterations in the aging liver were investigated. Consistently, recent research broadened understanding of redox modifications and signaling related to liver regeneration. Other than reporting the effect of oxidative stress, epigenetic and post-translational modifications, as well as modulation of specific redox-sensitive cellular signaling, were described. Among them, the present review focuses on Wnt/β-catenin, the nuclear factor (erythroid-derived 2)-like 2 (NRF2), members of the Forkhead box O (FoxO) family, and the p53 tumor suppressor. Critical Issues: Even though alteration in redox homeostasis occurs both in aging and in impaired liver regeneration, the associative mechanisms are not clearly defined. Of note, antioxidants are not effective in slowing hepatic senescence, and do not clearly improve liver repopulation after hepatectomy or transplant in humans. Future Directions: Further investigations are needed to define mutual redox-dependent molecular pathways involved both in aging and in the decline of liver regeneration. Preclinical studies aimed at the characterization of these pathways would define possible therapeutic targets for human trials. Antioxid. Redox Signal. 35, 832-847.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
6
|
Abstract
Aging increases the incidence of chronic liver disease (CLD), worsens its prognosis, and represents the predominant risk factor for its development at all different stages. The hepatic sinusoid, which is fundamental for maintaining liver homeostasis, is composed by hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages. During CLD progression, hepatic cells suffer deregulations in their phenotype, which ultimately lead to disease development. The effects of aging on the hepatic sinusoid phenotype and function are not well understood, nevertheless, studies performed in experimental models of liver diseases and aging demonstrate alterations in all hepatic sinusoidal cells. This review provides an updated description of age-related changes in the hepatic sinusoid and discusses the implications for CLD development and treatment. Lastly, we propose aging as a novel therapeutic target to treat liver diseases and summarize the most promising therapies to prevent or improve CLD and extend healthspan.
Collapse
Affiliation(s)
- Raquel Maeso-Díaz
- Division of Gastroenterology, Department of Medicine, Duke University Health System, Durham, North Carolina
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain.,Division of Hepatology, Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Dickson KM, Martins PN. Implications of liver donor age on ischemia reperfusion injury and clinical outcomes. Transplant Rev (Orlando) 2020; 34:100549. [PMID: 32498978 DOI: 10.1016/j.trre.2020.100549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
The aging process causes detrimental changes in a variety of organ systems. These changes include: lesser ability to cope with stress, impaired repair mechanisms and decreased cellular functional reserve capacity. Not surprisingly, aging has been associated with increased susceptibility of donor heart and kidneys grafts to ischemia reperfusion injury (IRI). In the context of liver transplantation, however, the effect of donor age seems to be less influential in predisposing the graft to IRI. In fact, a widely comprehensive understanding of IRI in the aged liver has yet to be agreed upon in the literature. Nevertheless, there have been many reported implications of increased liver donor age with poor clinical outcomes besides IRI. These other poor outcomes include: earlier HCV recurrence, increased rates of acute rejection and greater resistance to tolerance induction. While these other correlations have been identified, it is important to re-emphasize the fact that a unified consensus in regard to liver donor age and IRI has not yet been reached among researchers in this field. Many researchers have even demonstrated that the extent of IRI in aged livers can be ameliorated by careful donor selection, strict allocation or novel therapeutic modalities to decrease IRI. Thus, the goals of this review paper are twofold: 1) To delineate and summarize the conflicting data in regard to liver donor age and IRI. 2) Suggest that careful donor selection, appropriate allocation and strategic effort to minimize IRI can reduce the frequency of a variety of poor outcomes with aged liver donations.
Collapse
Affiliation(s)
- Kevin M Dickson
- Department of Surgery, Division of Transplantation, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA 01605, USA.
| | - Paulo N Martins
- Department of Surgery, Division of Transplantation, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA 01605, USA.
| |
Collapse
|
8
|
Pibiri M. Liver regeneration in aged mice: new insights. Aging (Albany NY) 2019; 10:1801-1824. [PMID: 30157472 PMCID: PMC6128415 DOI: 10.18632/aging.101524] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
The regenerative capacity of the liver after resection is reduced with aging. Recent studies on rodents revealed that both intracellular and extracellular factors are involved in the impairment of liver mass recovery during aging. Among the intracellular factors, age-dependent decrease of BubR1 (budding uninhibited by benzimidazole-related 1), YAP (Yes-associated protein) and SIRT1 (Sirtuin-1) have been associated to dampening of tissue reconstitution and inhibition of cell cycle genes following partial hepatectomy. Extra-cellular factors, such as age-dependent changes in hepatic stellate cells affect liver regeneration through inhibition of progenitor cells and reduction of liver perfusion. Furthermore, chronic release of pro-inflammatory proteins by senescent cells (SASP) affects cell proliferation suggesting that senescent cell clearance might improve tissue regeneration. Accordingly, young plasma restores liver regeneration in aged animals through autophagy re-establishment. This review will discuss how intracellular and extracellular factors cooperate to guarantee a proper liver regeneration and the possible causes of its impairment during aging. The possibility that an improvement of the liver regenerative capacity in elderly might be achieved through elimination of senescent cells via autophagy or by administration of direct mitogenic agents devoid of cytotoxicity will also be entertained.
Collapse
Affiliation(s)
- Monica Pibiri
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cagliari 09124, Italy
| |
Collapse
|
9
|
Apte U, Bhushan B, Dadhania V. Hepatic Defenses Against Toxicity: Liver Regeneration and Tissue Repair. COMPREHENSIVE TOXICOLOGY 2018:368-396. [DOI: 10.1016/b978-0-12-801238-3.64918-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Bloomer SA, Kregel KC, Brown KE. Heat stress stimulates hepcidin mRNA expression and C/EBPα protein expression in aged rodent liver. Arch Gerontol Geriatr 2013; 58:145-52. [PMID: 23993269 DOI: 10.1016/j.archger.2013.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/08/2013] [Accepted: 07/30/2013] [Indexed: 02/08/2023]
Abstract
Elevations in hepatic iron content occur with aging and physiological stressors, which may promote oxidative injury to the liver. Since dysregulation of the iron regulatory hormone, hepcidin, can cause iron accumulation, our goal was to characterize the regulation of hepcidin in young (6 mo) and old (24 mo) Fischer 344 rats exposed to environmental heat stress. Liver and blood samples were taken in the control condition and after heating. Hepcidin expression did not differ between young and old rats in the control condition, despite higher levels of hepatic iron and IL-6 mRNA in the latter. Following heat stress, pSTAT3 increased in both groups, but C/EBPα and hepcidin mRNA increased only in old rats. Despite this, serum iron decreased in both age groups 2 h after heat stress, suggesting hepcidin-independent hypoferremia in the young rats. The differential regulation of hepcidin between young and old rats after hyperthermia may be due to the enhanced expression of C/EBPα protein in old rats. These data support the concept of "inflammaging" and suggest that repeated exposures to stressors may contribute to the development of anemia in older individuals.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State Abington College, Abington, PA, United States; Department of Health and Human Physiology, The University of Iowa, Iowa City, IA 52242, United States.
| | | | | |
Collapse
|
11
|
Lee J, Lee J, Jung E, Cho JY, Park D. Artemisinic acid inhibits melanogenesis through downregulation of C/EBP α-dependent expression of HMG-CoA reductase gene. Food Chem Toxicol 2012; 51:225-30. [PMID: 23063590 DOI: 10.1016/j.fct.2012.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/14/2012] [Accepted: 10/01/2012] [Indexed: 12/16/2022]
Abstract
Cholesterol is associated with the regulation of melanogenesis which is the major physiological defense against solar irradiation. The present study was designed to determine the effects of artemisinic acid on melanogenesis and its mechanisms of action in human epidermal melanocytes. In this study, we found that artemisinic acid inhibited melanin content. The mRNA levels of microphthalmia-associated transcription factor (MITF) and its downstream genes tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 were reduced by artemisinic acid treatment. Additionally, the mRNA levels of melanogenesis-related genes (c-KIT, stem cell factor (SCF), and macrophage migration inhibitory factor (MIF)) were down-regulated by artemisinic acid. Furthermore, cAMP production and protein kinase A (PKA) activity were suppressed by artemisinic acid. Moreover, attempts to elucidate a possible mechanism underlying the artemisinic acid-mediated effects revealed that artemisinic acid regulated melanogenesis by inhibiting cholesterol synthesis through downregulation of the hydroxymethylglutaryl CoA (HMG CoA) reductase gene, which was mediated through reduced expression of the CCAAT/enhancer-binding protein (C/EBP) α gene. Taken together, these findings indicate that the inhibition of melanogenesis by artemisinic acid occurs through reduced expression of the HMG CoA reductase gene, which is mediated by C/EBP α inhibition and suggest that artemisinic acid may be useful as a hyperpigmentation inhibitor.
Collapse
Affiliation(s)
- Jongsung Lee
- Department of Dermatological Health Management, College of Health Science, Eulji University, 461-713 Gyeonggi Do, Republic of Korea.
| | | | | | | | | |
Collapse
|
12
|
Sato A, Xu Y, Whitsett JA, Ikegami M. CCAAT/enhancer binding protein-α regulates the protease/antiprotease balance required for bronchiolar epithelium regeneration. Am J Respir Cell Mol Biol 2012; 47:454-63. [PMID: 22652201 DOI: 10.1165/rcmb.2011-0239oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Many transcription factors that regulate lung morphogenesis during development are reactivated to mediate repairs of the injured adult lung. We hypothesized that CCAAT/enhancer binding protein-α (C/EBPα), a transcription factor critical for perinatal lung maturation, regulates genes required for the normal repair of the bronchiolar epithelium after injury. Transgenic Cebpα(Δ/Δ) mice, in which Cebpa was conditionally deleted from Clara cells and Type II cells after birth, were used in this study. Airway injury was induced in mice by the intraperitoneal administration of naphthalene to ablate bronchiolar epithelial cells. Although the deletion of C/EBPα did not influence lung structure and function under unstressed conditions, C/EBPα was required for the normal repair of terminal bronchiolar epithelium after naphthalene injury. To identify cellular processes that are influenced by C/EBPα during repair, mRNA microarray was performed on terminal bronchiolar epithelial cells isolated by laser-capture microdissection. Normal repair of the terminal bronchiolar epithelium was highly associated with the mRNAs regulating antiprotease activities, and their induction required C/EBPα. The defective deposition of fibronectin in Cebpα(Δ/Δ) mice was associated with increased protease activity and delayed differentiation of FoxJ1-expressing ciliated cells. The fibronectin and ciliated cells were restored by the intratracheal treatment of Cebpα(Δ/Δ) mice with the serine protease inhibitor. In conclusion, C/EBPα regulates the expression of serine protease inhibitors that are required for the normal increase of fibronectin and the restoration of ciliated cells after injury. Treatment with serine protease inhibitor may aid in the recovery of injured bronchiolar epithelial cells, and prevent common chronic lung diseases.
Collapse
Affiliation(s)
- Atsuyasu Sato
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
13
|
Functional Relationships between Lipid Metabolism and Liver Regeneration. Int J Hepatol 2012; 2012:549241. [PMID: 22319652 PMCID: PMC3272806 DOI: 10.1155/2012/549241] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/27/2011] [Accepted: 10/24/2011] [Indexed: 12/30/2022] Open
Abstract
The regenerative capacity of the liver is well known, and the mechanisms that regulate this process have been extensively studied using experimental model systems including surgical resection and hepatotoxin exposure. The response to primary mitogens has also been used to investigate the regulation of hepatocellular proliferation. Such analyses have identified many specific cytokines and growth factors, intracellular signaling events, and transcription factors that are regulated during and necessary for normal liver regeneration. Nevertheless, the nature and identities of the most proximal events that initiate hepatic regeneration as well as those distal signals that terminate this process remain unknown. Here, we review the data implicating acute alterations in lipid metabolism as important determinants of experimental liver regeneration and propose a novel metabolic model of regeneration based on these data. We also discuss the association between chronic hepatic steatosis and impaired regeneration in animal models and humans and consider important areas for future research.
Collapse
|
14
|
Menthena A, Koehler CI, Sandhu JS, Yovchev MI, Hurston E, Shafritz DA, Oertel M. Activin A, p15INK4b signaling, and cell competition promote stem/progenitor cell repopulation of livers in aging rats. Gastroenterology 2011; 140:1009-20. [PMID: 21147108 PMCID: PMC3087123 DOI: 10.1053/j.gastro.2010.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 11/17/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Highly proliferative fetal liver stem/progenitor cells (FLSPCs) repopulate livers of normal recipients by cell competition. We investigated the mechanisms by which FLSPCs repopulate livers of older compared with younger rats. METHODS Fetal liver cells were transplanted from DPPIV(+) F344 rats into DPPIV(-) rats of different ages (2, 6, 14, or 18 months); liver tissues were analyzed 6 months later. Cultured cells and liver tissues were analyzed by reverse transcription polymerase chain reaction, immunoblot, histochemistry, laser-capture microscopy, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling analyses. RESULTS We observed 4- to 5-fold increases in liver repopulation when FLSPCs were transplanted into older compared with younger rats. Messenger RNA levels of cyclin-dependent kinase inhibitors increased progressively in livers of older rats; hepatocytes from 20-month-old rats had 6.1-fold higher expression of p15INK4b and were less proliferative in vitro than hepatocytes from 2-month-old rats. Expression of p15INK4b in cultured hepatocytes was up-regulated by activin A, which increased in liver during aging. Activin A inhibited proliferation of adult hepatocytes, whereas FLSPCs were unresponsive because they had reduced expression of activin receptors (eg, ALK-4). In vivo, expanding cell clusters derived from transplanted FLSPCs had lower levels of ALK-4 and p15INK4b and increased levels of Ki-67 compared with the host parenchyma. Liver tissue of older rats had 3-fold more apoptotic cells than that of younger rats. CONCLUSIONS FLSPCs, resistant to activin A signaling, repopulate livers of older rats; hepatocytes in older rats have less proliferation because of increased activin A and p15INK4b levels and increased apoptosis than younger rats. These factors and cell types might be manipulated to improve liver cell transplantation strategies in patients with liver diseases in which activin A levels are increased.
Collapse
Affiliation(s)
- Anuradha Menthena
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Diseases, Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Yu Y, Ping J, Chen H, Jiao L, Zheng S, Han ZG, Hao P, Huang J. A comparative analysis of liver transcriptome suggests divergent liver function among human, mouse and rat. Genomics 2010; 96:281-9. [PMID: 20800674 DOI: 10.1016/j.ygeno.2010.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 07/04/2010] [Accepted: 08/13/2010] [Indexed: 01/13/2023]
Abstract
The human liver plays a vital role in meeting the body's metabolic needs and maintaining homeostasis. To address the molecular mechanisms of liver function, we integrated multiple gene expression datasets from microarray, MPSS, SAGE and EST platforms to generate a transcriptome atlas of the normal human liver. Our results show that 17396 genes are expressed in the human liver. 238 genes were identified as liver enrichment genes, involved in the functions of immune response and metabolic processes, from the MPSS and EST datasets. A comparative analysis of liver transcriptomes was performed in humans, mice and rats with microarray datasets shows that the expression profile of homologous genes remains significantly different between mouse/rat and human, suggesting a functional variance and regulation bias of genes expressed in the livers. The integrated liver transcriptome data should provide a valuable resource for the in-depth understanding of human liver biology and liver disease.
Collapse
Affiliation(s)
- Yao Yu
- Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Weymann A, Hartman E, Gazit V, Wang C, Glauber M, Turmelle Y, Rudnick DA. p21 is required for dextrose-mediated inhibition of mouse liver regeneration. Hepatology 2009; 50:207-15. [PMID: 19441104 PMCID: PMC2705473 DOI: 10.1002/hep.22979] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED The inhibitory effect of dextrose supplementation on liver regeneration was first described more than 4 decades ago. Nevertheless, the molecular mechanisms responsible for this observation have not been elucidated. We investigated these mechanisms using the partial hepatectomy model in mice given standard or 10% dextrose (D10)-supplemented drinking water. The results showed that D10-treated mice exhibited significantly reduced hepatic regeneration compared with controls, as assessed by hepatocellular bromodeoxyuridine (BrdU) incorporation and mitotic frequency. D10 supplementation did not suppress activation of hepatocyte growth factor (HGF), induction of transforming growth factor alpha (TGF-alpha) expression, or tumor necrosis factor alpha-interleukin-6 cytokine signaling, p42/44 extracellular signal-regulated kinase (ERK) activation, immediate early gene expression, or expression of CCAAT/enhancer binding protein beta (C/EBPbeta), but did augment expression of the mito-inhibitory factors C/EBPalpha, p21(Waf1/Cip1), and p27(Kip1). In addition, forkhead box M1 (FoxM1) expression, which is required for normal liver regeneration, was suppressed by D10 treatment. Finally, D10 did not suppress either FoxM1 expression or hepatocellular proliferation in p21 null mice subjected to partial hepatectomy, establishing the functional significance of these events in mediating the effects of D10 on liver regeneration. CONCLUSION These data show that the inhibitory effect of dextrose supplementation on liver regeneration is associated with increased expression of C/EBPalpha, p21, and p27, and decreased expression of FoxM1, and that D10-mediated inhibition of liver regeneration is abrogated in p21-deficient animals. Our observations are consistent with a model in which hepatic sufficiency is defined by homeostasis between the energy-generating capacity of the liver and the energy demands of the body mass, with liver regeneration initiated when the functional liver mass is no longer sufficient to meet such demand.
Collapse
Affiliation(s)
- Alexander Weymann
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric Hartman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Vered Gazit
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Connie Wang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Martin Glauber
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Yumirle Turmelle
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - David A. Rudnick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
18
|
Jin J, Wang GL, Timchenko L, Timchenko NA. GSK3beta and aging liver. Aging (Albany NY) 2009; 1:582-5. [PMID: 20157540 PMCID: PMC2806031 DOI: 10.18632/aging.100060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/20/2009] [Indexed: 01/10/2023]
Abstract
The loss of
regenerative capacity of tissues is one of the major characteristics of
aging. Liver represents a powerful system for investigations of mechanisms
by which aging reduces regenerative capacity of tissues. The studies within
last five years revealed critical role of epigenetic silencing in the
inhibition of liver proliferation in old mice. These studies have shown
that a number of cell cycle proteins are silenced in livers of old mice by
C/EBPα-HDAC1-Brm
complex and that old liver fails to reduce the complex and activate these
genes in response to proliferative stimulus such as partial hepatectomy.
The complex modifies histone H3 on the promoters of c-myc and FoxM1B in the
manner which prevents expression of these genes. Despite this progress,
little is known about mechanisms by which aging causes this epigenetic
silencing. We have recently discovered signal transduction pathways which
operate upstream of the C/EBPα-HDAC1-Brm complex. These pathways
involve communications of growth hormone, GSK3β and cyclin D3.
In addition to the liver, GH-GSK3β-cyclin D3
pathway is also changed with age in lung, brain and adipose tissues. We
suggest that other age-associated alterations in these tissues might be
mediated by the reduced levels of GSK3β and by elevation of cyclin D3. In
this review, we summarize these new data and discuss the role of such
alterations in the development of aging phenotype in the liver and in other
tissues.
Collapse
Affiliation(s)
- Jingling Jin
- Huffington Center on Aging and Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
19
|
Timchenko NA. Aging and liver regeneration. Trends Endocrinol Metab 2009; 20:171-6. [PMID: 19359195 DOI: 10.1016/j.tem.2009.01.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 12/12/2022]
Abstract
The loss of regenerative capacity is the most dramatic age-associated alteration in the liver. Although this phenomenon was reported over 50 years ago, the molecular basis for the loss of regenerative capacity of aged livers has not been fully elucidated. Aging causes alterations of several signal-transduction pathways and changes in the expression of CCAAT/enhancer-binding protein (C/EBP) and chromatin-remodeling proteins. Consequently, aging livers accumulate a multi-protein C/EBPalpha-Brm-HDAC1 complex that occupies and silences E2F-dependent promoters, reducing the regenerative capacity of livers in older mice. Recent studies have provided evidence for the crucial role of epigenetic silencing in the age-dependent inhibition of liver proliferation. This review focuses on mechanisms of age-dependent inhibition of liver proliferation and approaches for correcting liver regeneration in the elderly.
Collapse
Affiliation(s)
- Nikolai A Timchenko
- Department of Pathology and Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Kamat A, Ghosh PM, Glover RL, Zhu B, Yeh CK, Choudhury GG, Katz MS. Reduced expression of epidermal growth factor receptors in rat liver during aging. J Gerontol A Biol Sci Med Sci 2008; 63:683-92. [PMID: 18693222 DOI: 10.1093/gerona/63.7.683] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proliferative responsiveness of hepatocytes to epidermal growth factor (EGF) declines during aging. The role of EGF receptors in mediating age-dependent changes of EGF-induced mitogenic signaling in liver remains incompletely understood. We assessed EGF receptor expression levels in whole liver specimens as well as in freshly isolated and cultured hepatocytes from young adult and senescent Fischer 344 male rats. Hepatic EGF receptor messenger RNA and protein levels, and the number of high- and low-affinity receptor binding sites, decreased with aging. Ligand-induced EGF receptor activation, determined by receptor dimerization and tyrosine phosphorylation, was reduced in old animals in parallel with the age-related decline in receptor expression. Stimulation of the extracellular signal-regulated kinase pathway by EGF was also attenuated in hepatocytes from old animals. Our results implicate decreased expression of EGF receptors as a key determinant of reduced mitogenic signaling responsive to EGF stimulation of liver during aging.
Collapse
Affiliation(s)
- Amrita Kamat
- Geriatric Research Education and Clinical Center (182), Audie L Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang GL, Salisbury E, Shi X, Timchenko L, Medrano EE, Timchenko NA. HDAC1 promotes liver proliferation in young mice via interactions with C/EBPbeta. J Biol Chem 2008; 283:26179-87. [PMID: 18622014 DOI: 10.1074/jbc.m803545200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HDAC1 (histone deacetylase 1) regulates a number of biological processes in cells. Our previous studies revealed that HDAC1 inhibits proliferation of the livers in old mice. We have surprisingly observed that HDAC1 is also increased in young livers proliferating after partial hepatectomy (PH) and in human liver tumors. Increased levels of HDAC1 after PH lead to its interaction with a member of the C/EBP family, C/EBPbeta, which is also elevated after PH. At early time points after PH, the HDAC1-C/EBPbeta complex binds to the C/EBPalpha promoter and represses expression of C/EBPalpha. A detailed analysis of the role of HDAC1 and C/EBPbeta proteins in the regulation of C/EBPalpha promoter showed that, whereas C/EBPbeta alone activates the promoter, HDAC1 represses the promoter in a C/EBPbeta-dependent manner. The inhibition of HDAC1 in the livers of young mice inhibits liver proliferation after PH, which is associated with high levels of C/EBPalpha. Consistent with the positive role of HDAC1-C/EBPbeta complexes in liver proliferation, we have found that the CUGBP1-HDAC1-C/EBPbeta pathway is activated in human tumor liver samples, suggesting that HDAC1-C/EBPbeta complexes are involved in the development of liver tumors. The causal role of the CUGBP1-HDAC1 pathway in liver proliferation was examined in CUGBP1 transgenic mice, which display high levels of the CUGBP1-eIF2 complex. We have demonstrated that elevation of the HDAC1-C/EBPbeta complexes in CUGBP1 transgenic mice reduces expression of C/EBPalpha and increases the rate of liver proliferation. Thus, these studies have identified a new pathway that promotes liver proliferation in young mice and might contribute to the malignant transformations in the liver.
Collapse
Affiliation(s)
- Guo-Li Wang
- Huffington Center on Aging and Department of Pathology, Department of Medicine, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
22
|
Wang GL, Salisbury E, Shi X, Timchenko L, Medrano EE, Timchenko NA. HDAC1 cooperates with C/EBPalpha in the inhibition of liver proliferation in old mice. J Biol Chem 2008; 283:26169-78. [PMID: 18622015 DOI: 10.1074/jbc.m803544200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epigenetic control of liver proliferation involves cooperation between transcription factors and chromatin-remodeling proteins. In this work, we found that the levels of HDAC1 (histone deacetylase 1) are increased in quiescent livers of old mice. The elevation of HDAC1 in liver is mediated by the RNA-binding protein CUGBP1. We found that the age-associated CUGBP1-eIF2 complex binds to the 5' region of HDAC1 mRNA and increases translation of HDAC1 in the liver. Further analyses showed that CUGBP1 also increases expression of HDAC1 in cultured cells, in the livers of CUGBP1 transgenic mice, and in the livers of mice injected with cyclin D3, which enhances the formation of the CUGBP1-eIF2 complex. In livers of old mice, HDAC1 interacts with the transcription factor C/EBPalpha and is recruited by this protein to E2F-dependent promoters as a component of high M(r) C/EBPalpha-Brm complexes. The recruitment of HDAC1 to c-Myc and FoxM1B promoters leads to deacetylation of histone H3 at Lys-9 on these E2F-dependent promoters. We show that HDAC1 is an important mediator of growth-inhibitory activity of C/EBPalpha and that small interfering RNA-mediated inhibition of HDAC1 reduces the ability of C/EBPalpha to inhibit cell proliferation. In addition, we have found that both elevation of HDAC1 and interaction of C/EBPalpha with HDAC1 are controlled by cyclin D3-dependent mechanisms. Treatment of old mice with growth hormone, which reduces cyclin D3 levels, leads to the reduction of the CUGBP1-eIF2 complex, normalization of HDAC1 levels, and inhibition of interactions of HDAC1 with C/EBPalpha-Brm complexes. Thus, our data demonstrate that translational elevation of HDAC1 in livers of old mice is involved in the assembly of high M(r) protein-protein complexes that inhibit liver proliferation.
Collapse
Affiliation(s)
- Guo-Li Wang
- Huffington Center on Aging and Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
23
|
Baiocchi L, Angelico M, Petrolati A, Perrone L, Palmieri G, Battista S, Carbone M, Tariciotti L, Longhi C, Orlando G, Tisone G. Correlation between liver fibrosis and inflammation in patients transplanted for HCV liver disease. Am J Transplant 2008; 8:673-678. [PMID: 18294164 DOI: 10.1111/j.1600-6143.2007.02107.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatitis C virus (HCV) re-infection after liver transplantation (LT) is characterized by an accelerated disease progression in recent years with unclear mechanisms. We evaluate the relationship between progression of liver fibrosis and histological necro-inflammation in HCV recipients, according to age of transplant. Fifty-five patients transplanted (1993-2002) for HCV liver disease, were included in the study. Recipients were retrospectively stratified in three different age of transplant, of 40 months each: group 1) from January 1993 to May 1996; group 2) from June 1996 to august 1999; group 3) from September 1999 to December 2002. Grading (necro-inflammation) and staging (fibrosis) scores were evaluated in liver biopsies at 1, 2 and 3 years from LT (Ishak classification). For all age of transplant the main factor associated with fibrosis progression, was grading score (p < 0.05). However mean staging score for each point of grading increased from 0.3 +/- 0.2 in older LT to 0.7 +/- 0.5 in newer ones (p = 0.01). In conclusion in HCV-LT patients (1) liver fibrosis is strictly associated to histological necro-inflammation; (2) the proportion of this relationship has been changing in recent years since newer LT patients, show an increased amount of fibrosis in comparison with the older ones, for similar grading score.
Collapse
Affiliation(s)
- L Baiocchi
- Hepatology Unit, Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Gilgenkrantz H, Guidotti JE. [Decline of liver'age-dependent regenerative capacities: some molecular tracks]. Med Sci (Paris) 2007; 23:1082-4. [PMID: 18154706 DOI: 10.1051/medsci/200723121082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Wang GL, Shi X, Salisbury E, Sun Y, Albrecht JH, Smith RG, Timchenko NA. Growth hormone corrects proliferation and transcription of phosphoenolpyruvate carboxykinase in livers of old mice via elimination of CCAAT/enhancer-binding protein alpha-Brm complex. J Biol Chem 2006; 282:1468-78. [PMID: 17107955 DOI: 10.1074/jbc.m608226200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Growth hormone (GH), which is reduced with age, corrects the impaired proliferative capacity of livers of old animals. In this paper, we present a mechanism by which GH eliminates age-dependent negative control of proliferation and increases transcription of liver-specific genes in livers of old mice. The reduced proliferative capacities of the liver of old animals are associated with the CCAAT/enhancer-binding protein alpha (C/EBPalpha)-Brm complex, which inhibits E2F-dependent promoters. We found that a sequestration of C/EBPalpha into complexes with Brm leads to a weak interaction of C/EBPalpha with promoters of liver-specific genes, expression of which is reduced in old animals. Injection of either GH or the regulator of the amplitude of endogenous GH release, ghrelin, reduces the C/EBPalpha-Brm complex in livers of old mice, leading to a derepression of E2F targets, to increased interactions of C/EBPalpha with promoters of liver-specific genes, and to correction of their expression. GH-dependent elimination of the complex is mediated by the inhibition of cyclin D3-CDK4 activity and by elevation of a phosphatase, protein phosphatase 2A, which dephosphorylates C/EBPalpha and dissociates the complex.
Collapse
Affiliation(s)
- Guo-Li Wang
- Huffington Center on Aging and Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Yang J, Croniger CM, Lekstrom-Himes J, Zhang P, Fenyus M, Tenen DG, Darlington GJ, Hanson RW. Metabolic response of mice to a postnatal ablation of CCAAT/enhancer-binding protein alpha. J Biol Chem 2005; 280:38689-99. [PMID: 16166091 DOI: 10.1074/jbc.m503486200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although CCAAT/enhancer-binding protein alpha (C/EBPalpha) is essential for initiating or sustaining several metabolic processes during the perinatal period, the consequences of total ablation of C/EBPalpha during postnatal development have not been investigated. We have created a conditional knock-out model in which the administration of poly(I:C) caused a virtually total deletion of c/ebpalpha (C/EBPalpha(Delta/-) mice) in the liver, spleen, white and brown adipose tissues, pancreas, lung, and kidney of the mice. C/EBPalpha itself was completely ablated in the liver by day 4 after the injection of poly(I:C). There was no noticeable change in phenotype during the first 15 days after the injection. The mice maintained a normal level of fasting blood glucose and responded to the diabetogenic action of streptozotocin. From day 16 onward, the mice developed hypophagia, exhibited severe weight loss, lost triglyceride in white but not brown adipose tissue, became hypoglycemic and hypoinsulinemic, depleted their hepatic glycogen, and developed fatty liver. They also exhibited lowered plasma levels of free fatty acid, triglyceride, and cholesterol, as well as marked changes in hepatic mRNA for C/EBPdelta, peroxisome proliferator-activated receptor alpha, sterol regulatory element-binding protein 1, hydroxymethylglutaryl-coenzyme A reductase, and apolipoproteins. Although basal levels of hepatic mRNA for the cytosolic isoform of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase were reduced, transcription of the genes for these enzymes was inducible by dibutyryl cyclic AMP in C/EBPalpha(Delta/-) mice. The animals died about 1 month after the injection of poly(I:C). These findings demonstrate that C/EBPalpha is essential for the survival of animals during postnatal life and that its ablation leads to distinct biphasic change in metabolic processes.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Alleles
- Animals
- Apolipoproteins/chemistry
- Blood Glucose/metabolism
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Body Weight
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- CCAAT-Enhancer-Binding Protein-alpha/physiology
- CCAAT-Enhancer-Binding Protein-delta/metabolism
- Cholesterol/metabolism
- Crosses, Genetic
- Cyclic AMP/metabolism
- Cytosol/chemistry
- Fatty Liver/metabolism
- Gene Deletion
- Genotype
- Glucokinase/metabolism
- Glucose/metabolism
- Glucose-6-Phosphatase/chemistry
- Glucose-6-Phosphate/metabolism
- Glycogen/metabolism
- Hydroxymethylglutaryl CoA Reductases/metabolism
- Kinetics
- Liver/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Transgenic
- Models, Genetic
- Oligonucleotide Array Sequence Analysis
- PPAR alpha/metabolism
- Phosphoenolpyruvate Carboxykinase (ATP)/chemistry
- Poly C
- Poly I
- Polymerase Chain Reaction
- Protein Isoforms
- RNA, Messenger/metabolism
- Streptozocin/pharmacology
- Time Factors
- Tissue Distribution
- Transcription, Genetic
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Jianqi Yang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Longo CR, Patel VI, Shrikhande GV, Scali ST, Csizmadia E, Daniel S, Sun DW, Grey ST, Arvelo MB, Ferran C. A20 protects mice from lethal radical hepatectomy by promoting hepatocyte proliferation via a p21waf1-dependent mechanism. Hepatology 2005; 42:156-64. [PMID: 15962316 DOI: 10.1002/hep.20741] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The liver has a remarkable regenerative capacity, allowing recovery following injury. Regeneration after injury is contingent on maintenance of healthy residual liver mass, otherwise fulminant hepatic failure (FHF) may arise. Understanding the protective mechanisms safeguarding hepatocytes and promoting their proliferation is critical for devising therapeutic strategies for FHF. We demonstrate that A20 is part of the physiological response of hepatocytes to injury. In particular, A20 is significantly upregulated in the liver following partial hepatectomy. A20 protects hepatocytes from apoptosis and ongoing inflammation by inhibiting NF-kappaB. Hepatic expression of A20 in BALB/c mice dramatically improves survival following extended and radical lethal hepatectomy. A20 expression in the liver limits hepatocellular damage hence maintains bilirubin clearance and the liver synthetic function. In addition, A20 confers a proliferative advantage to hepatocytes via decreased expression of the cyclin-dependent kinase inhibitor p21(waf1). In conclusion, A20 provides a proliferative advantage to hepatocytes. By combining anti-inflammatory, antiapoptotic and pro-proliferative functions, A20-based therapies could be beneficial in prevention and treatment of FHF.
Collapse
Affiliation(s)
- Christopher R Longo
- Immunobiology Research Center, Division of Vascular Surgery, and the Transplant Center, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lunz JG, Tsuji H, Nozaki I, Murase N, Demetris AJ. An inhibitor of cyclin-dependent kinase, stress-induced p21Waf-1/Cip-1, mediates hepatocyte mito-inhibition during the evolution of cirrhosis. Hepatology 2005; 41:1262-71. [PMID: 15880761 DOI: 10.1002/hep.20709] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the evolution of cirrhosis, there is a relative decrease in volume percentage of hepatocytes and a relative increase in biliary epithelial cells and myofibroblasts. This is recognized histopathologically as a ductular reaction and leads to gradual distortion of the normal hepatic architecture. The final or decompensated stage of cirrhosis is characterized by a further decline in hepatocyte proliferation and loss of functional liver mass that manifests clinically as ascites, encephalopathy, and other signs of liver failure. In this report, we tested the hypothesis that p21-mediated hepatocyte mito-inhibition accelerates the evolution of cirrhosis using an established mouse model of decompensated biliary cirrhosis, p21-deficient mice, and liver tissue from humans awaiting liver replacement. Despite the same insult of long-term (12-week) bile duct ligation, mice prone to decompensation showed significantly more oxidative stress and hepatocyte nuclear p21 expression, which resulted in less hepatocyte proliferation, an exaggerated ductular reaction, and more advanced disease compared with compensation-prone controls. Mice deficient in p21 were better able than wild-type controls to compensate for long-term bile duct ligation because of significantly greater hepatocyte proliferation, which led to a larger liver mass and less architectural distortion. Mito-inhibitory hepatocyte nuclear p21 expression in humans awaiting liver replacement directly correlated with pathological disease stage and model of end-stage liver disease scoring. In conclusion, stress-induced upregulation of hepatocyte p21 inhibits hepatocyte proliferation during the evolution of cirrhosis. These findings have implications for understanding the evolution of cirrhosis and associated carcinogenesis. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html).
Collapse
Affiliation(s)
- John G Lunz
- Thomas E. Starzl Transplantation Institute, Division of Transplantation, University of Pittsburgh Medical Center, Pittsburgh, PA 15213-2582, USA
| | | | | | | | | |
Collapse
|
30
|
Woo CWH, Siow YL, Pierce GN, Choy PC, Minuk GY, Mymin D, O K. Hyperhomocysteinemia induces hepatic cholesterol biosynthesis and lipid accumulation via activation of transcription factors. Am J Physiol Endocrinol Metab 2005; 288:E1002-10. [PMID: 15644462 DOI: 10.1152/ajpendo.00518.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperhomocysteinemia is an independent risk factor for cardiovascular disorders. Elevated plasma homocysteine (Hcy) concentration is associated with other cardiovascular risk factors. We previously reported that Hcy stimulated cholesterol biosynthesis in HepG2 cells. In the present study, we investigated the underlying mechanisms of Hcy-induced hepatic cholesterol biosynthesis in an animal model. Hyperhomocysteinemia was induced in Sprague-Dawley rats by feeding a high-methionine diet for 4 wk. The mRNA expression and the enzyme activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase were significantly increased in livers of hyperhomocysteinemic rats. There were marked hepatic lipid accumulation and an elevation of plasma cholesterol concentration in hyperhomocysteinemic rats. Three transcription factors, namely, sterol regulatory element-binding protein-2 (SREBP-2), cAMP response element-binding protein (CREB), and nuclear factor Y (NF-Y) were activated in livers of hyperhomocysteinemic rats. Upon Hcy treatment of hepatocytes, there was a significant increase in HMG-CoA reductase mRNA expression in these cells. The activation of SREBP-2, CREB, and NF-Y preceded the increase in HMG-CoA reductase expression in Hcy-treated cells. Pretreatment of hepatocytes with inhibitors for transcription factors not only blocked the activation of SREBP-2, CREB, and NF-Y but also attenuated Hcy-induced HMG-CoA reductase mRNA expression. These results suggested that hyperhomocysteinemia-induced activation of SREBP-2, CREB, and NF-Y was responsible for increased cholesterol biosynthesis by transcriptionally regulating HMG-CoA reductase expression in the liver leading to hepatic lipid accumulation and subsequently hypercholesterolemia. In conclusion, the stimulatory effect of Hcy on hepatic cholesterol biosynthesis may represent an important mechanism for hepatic lipid accumulation and cardiovascular disorder associated with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Connie W H Woo
- Department of Physiology, St. Boniface Hospital Research Centre, Faculty of Medicine, R4032, 351 Tache Ave., Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | | | | | | | |
Collapse
|
31
|
Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005; 433:760-4. [PMID: 15716955 DOI: 10.1038/nature03260] [Citation(s) in RCA: 1620] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 12/09/2004] [Indexed: 02/07/2023]
Abstract
The decline of tissue regenerative potential is a hallmark of ageing and may be due to age-related changes in tissue-specific stem cells. A decline in skeletal muscle stem cell (satellite cell) activity due to a loss of Notch signalling results in impaired regeneration of aged muscle. The decline in hepatic progenitor cell proliferation owing to the formation of a complex involving cEBP-alpha and the chromatin remodelling factor brahma (Brm) inhibits the regenerative capacity of aged liver. To examine the influence of systemic factors on aged progenitor cells from these tissues, we established parabiotic pairings (that is, a shared circulatory system) between young and old mice (heterochronic parabioses), exposing old mice to factors present in young serum. Notably, heterochronic parabiosis restored the activation of Notch signalling as well as the proliferation and regenerative capacity of aged satellite cells. The exposure of satellite cells from old mice to young serum enhanced the expression of the Notch ligand (Delta), increased Notch activation, and enhanced proliferation in vitro. Furthermore, heterochronic parabiosis increased aged hepatocyte proliferation and restored the cEBP-alpha complex to levels seen in young animals. These results suggest that the age-related decline of progenitor cell activity can be modulated by systemic factors that change with age.
Collapse
Affiliation(s)
- Irina M Conboy
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
32
|
Mountford JC, Vanin EF, Hayden RE, Bunce CM. All-trans retinoic acid increases transgene expression in MSCV-transduced cells, via a mechanism that is retinoid receptor dependent but independent of cellular differentiation. Hum Gene Ther 2005; 16:132-8. [PMID: 15703496 DOI: 10.1089/hum.2005.16.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Treatment of MSCV-GFP-transduced HL60 promyelocytic cells with all-trans retinoic acid (ATRA) resulted in a significant increase in GFP expression. The increased GFP expression was observed by 16 hr and was dependent on de novo protein production. This effect was specific to ATRA and unrelated to cell differentiation because it was not induced by dimethyl sulfoxide. Furthermore, a similar increase in GFP expression was observed in MSCV-GFP-transfected K562 cells, which do not differentiate when exposed to ATRA. Significantly increased GFP expression was seen at doses as low as 0.5 nM ATRA and was abrogated by AGN193109, an antagonist of retinoid signaling. We therefore conclude that this increase in gene expression is mediated by retinoic acid receptors. The long terminal repeat (LTR) region of MSCV contains candidate retinoic acid response elements and response elements for the ATRA-inducible transcription factor C/EBPalpha. We suggest that the increase in GFP expression is driven by the action of ATRA-activated host cell transcription factors. These findings offer a method to increase the expression of retroviral transgenes either in vitro or in vivo by treatment with low doses of retinoic acid that are clinically achievable and well tolerated. This use of inducible host cell transcription factors offers an alternative to engineering novel LTR regulatory sequences in order to increase transgene expression.
Collapse
Affiliation(s)
- Joanne C Mountford
- Section of Experimental Haematology and Haemopoietic Stem Cells, Division of Cancer Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom.
| | | | | | | |
Collapse
|
33
|
Luedde T, Duderstadt M, Streetz KL, Tacke F, Kubicka S, Manns MP, Trautwein C. C/EBP beta isoforms LIP and LAP modulate progression of the cell cycle in the regenerating mouse liver. Hepatology 2004; 40:356-65. [PMID: 15368440 DOI: 10.1002/hep.20333] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The CCAAT enhancer-binding protein (C/EBP) beta gene can produce several N-terminally truncated isoforms. Liver-enriched activator protein (LAP) is a transcriptional activator in many systems, whereas liver-enriched inhibitory protein (LIP) is regarded as a functional LAP antagonist. In this study, we examined the impact of these two proteins on cell cycle progression in the regenerating liver. Adenoviral overexpression of LAP, in addition to its role as a transactivator of liver-specific genes, led to a delayed S-phase entry of hepatocytes after partial hepatectomy (PH) in vivo. This delay was accompanied by decreased expression of cyclin A and E as well as proliferating cell nuclear antigen and decreased cyclin-dependent kinase 2 activity at the G1/S boundary. This observation is not explained by increased p21(CIP1/Waf1) expression or lack of phosphorylation of external LAP, but LAP overexpression triggered a decreased C/EBP-alpha/C/EBP-alpha-30 ratio and a reduced basal c-jun level in the liver. In contrast, adenoviral overexpression of LIP resulted in a stronger and earlier induction of cyclin A and E after PH, but did not change the timing and extent of cyclin-dependent kinase 2 activity or the amount of hepatocytes that entered S phase in this model. In the LIP expressing group, both C/EBP-alpha isoforms and c-jun were more strongly induced after PH. In conclusion, the LAP/LIP ratio is an important modulator of cell cycle progression during liver regeneration. In the context of previous studies, our results demonstrate that LAP, through a dose-dependent effect, withholds a dual activating and inhibiting role on hepatocyte proliferation in vivo.
Collapse
Affiliation(s)
- Tom Luedde
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev 2004; 56:291-330. [PMID: 15169930 DOI: 10.1124/pr.56.2.5] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the first part of our review (see Pharmacol Rev 2002;54:129-158), we discussed the basic principles of gene transcription and the complex interactions within the network of hepatocyte nuclear factors, coactivators, ligands, and corepressors in targeted liver-specific gene expression. Now we summarize the role of basic region/leucine zipper protein family members and particularly the albumin D site-binding protein (DBP) and the CAAT/enhancer-binding proteins (C/EBPs) for their importance in liver-specific gene expression and their role in liver function and development. Specifically, regulatory networks and molecular interactions were examined in detail, and the experimental findings summarized in this review point to pivotal roles of DBP and C/EBPs in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. These regulatory proteins are therefore of great importance in liver physiology, liver disease, and liver development. Furthermore, interpretation of the vast data generated by novel genomic platform technologies requires a thorough understanding of regulatory networks and particularly the hierarchies that govern transcription and translation of proteins as well as intracellular protein modifications. Thus, this review aims to stimulate discussions on directions of future research and particularly the identification of molecular targets for pharmacological intervention of liver disease.
Collapse
Affiliation(s)
- Harald Schrem
- Center for Drug Research and Medical Biotechnology, Fraunhofer Institut für Toxikologie und Experimentelle Medizin, Nicolai Fuchs Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
35
|
Krupczak-Hollis K, Wang X, Dennewitz MB, Costa RH. Growth hormone stimulates proliferation of old-aged regenerating liver through forkhead box m1b. Hepatology 2003; 38:1552-62. [PMID: 14647066 DOI: 10.1016/j.hep.2003.08.052] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Forkhead Box (Fox) proteins are an extensive family of transcription factors that shares homology in the winged helix DNA-binding domain and the members of which play essential roles in cellular proliferation, differentiation, and longevity. Reduced cellular proliferation during aging is associated with a progressive decline in both growth hormone (GH) secretion and Foxm1b expression. Liver regeneration studies with 12-month-old (old-aged) transgenic mice indicated that increased hepatocyte expression of Foxm1b alone is sufficient to restore hepatocyte proliferation to levels found in 2-month-old (young) regenerating liver. GH therapy in older people has been shown to cause an increase in cellular proliferation, but the transcription factors that mediated this stimulation in proliferation remain uncharacterized. In this study, we showed that human GH administration to old-aged Balb/c mice dramatically increased both expression of Foxm1b and regenerating hepatocyte proliferation. This increase in old-aged regenerating hepatocyte proliferation was associated with elevated protein expression of Cdc25A, Cdc25B, and cyclin B1, with reduced protein levels of cyclin-dependent kinase inhibitor p27(Kip1) (p27). GH treatment also was found to stimulate hepatocyte proliferation and expression of Foxm1b protein without partial hepatectomy (PHx). Furthermore, GH treatment of young Foxm1b -/- mice failed to restore regenerating hepatocyte DNA replication and mitosis caused by Foxm1b deficiency. These genetic studies provided strong evidence that the presence of Foxm1b is essential for GH to stimulate regenerating hepatocyte proliferation. In conclusion, our old-aged liver regeneration studies show that increased Foxm1b levels are essential for GH to stimulate hepatocyte proliferation, thus providing a mechanism for GH action in the elderly.
Collapse
Affiliation(s)
- Katherine Krupczak-Hollis
- Department of Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL 60607-7170, USA
| | | | | | | |
Collapse
|
36
|
Locker J, Tian J, Carver R, Concas D, Cossu C, Ledda-Columbano GM, Columbano A. A common set of immediate-early response genes in liver regeneration and hyperplasia. Hepatology 2003; 38:314-25. [PMID: 12883475 DOI: 10.1053/jhep.2003.50299] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Partial hepatectomy (PH) and some tumor-promoting agents stimulate hepatocyte cell proliferation, but each treatment acts through distinct transcription factors. We compared mouse immediate-early gene expression changes after PH with those induced by 1,4-bis[2-(3,5-dichoropyridyloxy)]benzene (TCPOBOP), a tumor-promoting liver mitogen. PH activates nuclear factor kappa B (NF-kappa B) and Stat3, whereas TCPOBOP is a ligand for the nuclear receptor, constitutive androstane receptor (CAR). RNA from 1 and 3 hours after each treatment was hybridized to a 9,000 complementary DNA (cDNA) microarray. Of about 6,000 messenger RNAs that had detectable expression, 127 showed reproducible up-regulation or down-regulation at a significant level. The TCPOBOP response was more discrete than the PH response; they amounted to 1% and 1.9% of positive hybridizations, respectively. Twenty-three genes were regulated only by TCPOBOP, 57 only by PH, and 59 by both treatments. More detailed analysis defined 16 clusters with common patterns of expression. These patterns and quantification of hybridization levels on the array were confirmed by Northern blots. TCPOBOP selectively activated expression of a number of detoxification enzymes. In conclusion, the genes that were regulated by both treatments suggest down-regulation of apoptosis, altered signal transduction, and early biogenesis of critical cell components.
Collapse
Affiliation(s)
- Joseph Locker
- Department of Pathology and the Marion Bessin Liver Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Iakova P, Awad SS, Timchenko NA. Aging reduces proliferative capacities of liver by switching pathways of C/EBPalpha growth arrest. Cell 2003; 113:495-506. [PMID: 12757710 DOI: 10.1016/s0092-8674(03)00318-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The liver is capable of completely regenerating itself in response to injury and after partial hepatectomy. In liver of old animals, the proliferative response is dramatically reduced, the mechanism for which is unknown. The liver specific protein, C/EBPalpha, normally arrests proliferation of hepatocytes through inhibiting cyclin dependent kinases (cdks). We present evidence that aging switches the liver-specific pathway of C/EBPalpha growth arrest to repression of E2F transcription. We identified an age-specific C/EBPalpha-Rb-E2F4 complex that binds to E2F-dependent promoters and represses these genes. The C/EBPalpha-Rb-E2F4 complex occupies the c-myc promoter and blocks induction of c-myc in livers of old animals after partial hepatectomy. Our results show that the age-dependent switch from cdk inhibition to repression of E2F transcription causes a loss of proliferative response in the liver because of an inability to induce E2F target genes after partial hepatectomy providing a possible mechanism for the age-dependent loss of liver regenerative capacity.
Collapse
Affiliation(s)
- Polina Iakova
- Huffington Center on Aging, Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
38
|
Thomas RP, Slogoff M, Smith FW, Evers BM. Effect of aging on the adaptive and proliferative capacity of the small bowel. J Gastrointest Surg 2003; 7:88-95. [PMID: 12559189 DOI: 10.1016/s1091-255x(02)00128-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our society is aging at a rapid rate; the effects of aging on physiologic functions (e.g., small bowel adaptation) are poorly understood. The purpose of this study was to determine the ability of the aged small bowel mucosa to adapt after resection. Young (2-month-old) and aged (24-month-old) F344 rats underwent massive (70%) proximal small bowel resection (SBR) or sham operation; rats were killed at 9 or 16 days after surgery. The remnant small bowel and corresponding sham segments were harvested, weighed, and analyzed for DNA content and villus height. To determine whether the adaptive response after SBR could be enhanced, aged rats underwent SBR or sham operation and were treated with either neurotensin or saline solution (control). SBR resulted in adaptive hyperplasia in the remaining small bowel remnant in both young and aged rats at 9 and 16 days compared with sham animals. At 9 days, significant increases were noted in weight, villus height, and DNA content of the distal remnant in young and aged rats after SBR; the increases were similar in both young and aged rats. At 16 days, both young and aged rats displayed significant increases in remnant weight after SBR. Administration of neurotensin increased the weight of the remnant intestine in aged rats after SBR compared with saline treatment. Our findings demonstrate that aged small bowel mucosa exhibits a proliferative and adaptive capacity in response to SBR that was similar to that of the young animals. In addition, neurotensin administration enhanced the normal adaptive response of the small bowel in aged rats, providing further evidence that neurotensin may be therapeutically useful to augment mucosal regeneration in the early periods after massive SBR.
Collapse
Affiliation(s)
- Robert P Thomas
- Department of Surgery, The University of Texas Medical Branch, 301 University Blvd., 77555-0536, Galveston, TX
| | - Michele Slogoff
- Department of Surgery, The University of Texas Medical Branch, 301 University Blvd., 77555-0536, Galveston, TX
| | - Farin W Smith
- Department of Surgery, The University of Texas Medical Branch, 301 University Blvd., 77555-0536, Galveston, TX
| | - B Mark Evers
- Department of Surgery, The University of Texas Medical Branch, 301 University Blvd., 77555-0536, Galveston, TX.
| |
Collapse
|
39
|
Borger P, Black JL, Roth M. Asthma and the CCAAT-enhancer binding proteins: a holistic view on airway inflammation and remodeling. J Allergy Clin Immunol 2002; 110:841-6. [PMID: 12464948 DOI: 10.1067/mai.2002.130047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asthma is an airway disease with increasing prevalence characterized by intermittent reversible airway obstruction, airway inflammation, and airway wall remodeling. The disease is generally triggered by inhalation of allergens, but nonallergic asthma triggers are quite common. The pathogenesis of asthma is well documented, and a great deal of research has been carried out to elucidate the underlying mechanisms. A multitude of articles have focused on cells alleged to be involved in the pathogenesis, including circulating cells from the immunologic compartment (ie, eosinophils and T lymphocytes) and resident cells, such as fibroblasts, airway smooth muscle cells, and, more recently, the airway epithelium. Despite the enormous amount of research, it is still unclear what exactly causes asthma. A general feature of most studies is an enhanced activation status of asthmatic cells, suggesting a general defect with respect to regulation of cellular responses. Here we discuss the ubiquitous transcription factor family of CCAAT-enhancer binding proteins (C/EBPs) and its involvement in inflammation and proliferation. We propose that an imbalance of C/EBP isoform expression might lead to an enhanced activity of asthmatic cells and provide an overall hypothesis that both airway inflammation and remodeling can be conceived as the result of an imbalance of C/EBP isoform expression.
Collapse
Affiliation(s)
- Peter Borger
- Department of Pharmacology and the Woolcock Institute of Medical Research, Royal Prince Alfred Hospital, University of Sydney, Australia
| | | | | |
Collapse
|
40
|
Ross SE, Erickson RL, Gerin I, DeRose PM, Bajnok L, Longo KA, Misek DE, Kuick R, Hanash SM, Atkins KB, Andresen SM, Nebb HI, Madsen L, Kristiansen K, MacDougald OA. Microarray analyses during adipogenesis: understanding the effects of Wnt signaling on adipogenesis and the roles of liver X receptor alpha in adipocyte metabolism. Mol Cell Biol 2002; 22:5989-99. [PMID: 12138207 PMCID: PMC133961 DOI: 10.1128/mcb.22.16.5989-5999.2002] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Wnt signaling maintains preadipocytes in an undifferentiated state. When Wnt signaling is enforced, 3T3-L1 preadipocytes no longer undergo adipocyte conversion in response to adipogenic medium. Here we used microarray analyses to identify subsets of genes whose expression is aberrant when differentiation is blocked through enforced Wnt signaling. Furthermore, we used the microarray data to identify potentially important adipocyte genes and chose one of these, the liver X receptor alpha (LXR alpha), for further analyses. Our studies indicate that enforced Wnt signaling blunts the changes in gene expression that correspond to mitotic clonal expansion, suggesting that Wnt signaling inhibits adipogenesis in part through dysregulation of the cell cycle. Experiments designed to uncover the potential role of LXR alpha in adipogenesis revealed that this transcription factor, unlike CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma, is not adipogenic but rather inhibits adipogenesis if inappropriately expressed and activated. However, LXR alpha has several important roles in adipocyte function. Our studies show that this nuclear receptor increases basal glucose uptake and glycogen synthesis in 3T3-L1 adipocytes. In addition, LXR alpha increases cholesterol synthesis and release of nonesterified fatty acids. Finally, treatment of mice with an LXR alpha agonist results in increased serum levels of glycerol and nonesterified fatty acids, consistent with increased lipolysis within adipose tissue. These findings demonstrate new metabolic roles for LXR alpha and increase our understanding of adipogenesis.
Collapse
Affiliation(s)
- Sarah E Ross
- Department of Physiology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hui TT, Mizuguchi T, Sugiyama N, Avital I, Rozga J, Demetriou AA. Immediate early genes and p21 regulation in liver of rats with acute hepatic failure. Am J Surg 2002; 183:457-463. [PMID: 11975936 DOI: 10.1016/s0002-9610(02)00822-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has been observed that liver regeneration in acute hepatic failure (AHF) is suppressed [Eguchi et al. Hepatology 1996;24(6):1452-9]. The molecular mechanism regulating this inhibition is not known. We previously reported that in AHF rats, hepatocyte proliferation was significantly impaired with elevation in serum IL-6, TGF-beta1, and HGF [Kamohara et al. Biochem Biophys Res Commun 2000;273(1):129-35]. Following either 70% partial hepatectomy (PH) or liver injury, quiescent mature hepatocytes are "primed" to re-enter the cell cycle. The process of "priming" appears to be triggered by extracellular cytokines (IL-6 and TNF-alpha) and is characterized by expression of immediate early genes. Under the stimulation of growth factors such as HGF, "primed" hepatocytes exit the G1 phase of the cell cycle. G1-associated cyclins and their inhibitors play a pivotal role in G1/S cell cycle transition. Here, we demonstrate that immediate early gene (i.e. c-myc, c-fos) expression and AP-1 activity are preserved in AHF rat livers despite absence of hepatocyte proliferation. In contrast, p21 mRNA and protein are both over-expressed in AHF livers compared to livers from rats undergoing PH; this elevation leads to inhibition in Cdk2 activity, resulting in G1 cell cycle arrest and inhibition of regeneration.
Collapse
Affiliation(s)
- Thomas T Hui
- Liver Support Research Laboratory, Department of Surgery, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | | | | | | | | | |
Collapse
|
42
|
Zahnow CA. CCAAT/enhancer binding proteins in normal mammary development and breast cancer. Breast Cancer Res 2002; 4:113-21. [PMID: 12052253 PMCID: PMC138725 DOI: 10.1186/bcr428] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2002] [Revised: 04/03/2002] [Accepted: 04/03/2002] [Indexed: 12/26/2022] Open
Abstract
CCAAT/enhancer binding proteins (C/EBPs) are a family of leucine zipper, transcription factors that bind to DNA as homodimers and heterodimers. They regulate cellular proliferation, differentiation and apoptosis in the mammary gland. Multiple protein isoforms, including truncated, dominant negatives, are generated by translation of the C/EBPbeta transcript or via proteolytic cleavage of the full-length C/EBPbeta protein. Gene deletion of individual C/EBP family members has demonstrated an essential role for C/EBPbeta in normal mammary development, while transgenic and overexpression studies provide evidence that the dominant-negative C/EBPbeta-liver-enriched inhibitory protein isoform induces proliferation in mammary epithelial cells. Mounting evidence suggests that alterations in the ratio of the C/EBPbeta-liver-enriched inhibitory protein isoform and the C/EBPbeta-liver-enriched activating protein isoform may play a role in the development of breast cancer. This review will consequently focus on C/EBP actions in normal mammary development and on the emerging data that supports a role in breast cancer.
Collapse
Affiliation(s)
- Cynthia A Zahnow
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA.
| |
Collapse
|
43
|
Hirai Y, Radisky D, Boudreau R, Simian M, Stevens ME, Oka Y, Takebe K, Niwa S, Bissell MJ. Epimorphin mediates mammary luminal morphogenesis through control of C/EBPbeta. J Cell Biol 2001; 153:785-94. [PMID: 11352939 PMCID: PMC2192384 DOI: 10.1083/jcb.153.4.785] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Accepted: 03/30/2001] [Indexed: 11/22/2022] Open
Abstract
We have shown previously that epimorphin (EPM), a protein expressed on the surface of myoepithelial and fibroblast cells of the mammary gland, acts as a multifunctional morphogen of mammary epithelial cells. Here, we present the molecular mechanism by which EPM mediates luminal morphogenesis. Treatment of cells with EPM to induce lumen formation greatly increases the overall expression of transcription factor CCAAT/enhancer binding protein (C/EBP)beta and alters the relative expression of its two principal isoforms, LIP and LAP. These alterations were shown to be essential for the morphogenetic activities, since constitutive expression of LIP was sufficient to produce lumen formation, whereas constitutive expression of LAP blocked EPM-mediated luminal morphogenesis. Furthermore, in a transgenic mouse model in which EPM expression was expressed in an apolar fashion on the surface of mammary epithelial cells, we found increased expression of C/EBPbeta, increased relative expression of LIP to LAP, and enlarged ductal lumina. Together, our studies demonstrate a role for EPM in luminal morphogenesis through control of C/EBPbeta expression.
Collapse
Affiliation(s)
- Yohei Hirai
- Life Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
- Osaka R&D Laboratory (Yokohama-lab), Sumitomo Electric Industries Ltd., Yokohama 244, Japan
| | - Derek Radisky
- Life Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Rosanne Boudreau
- Life Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Marina Simian
- Life Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Mary E. Stevens
- Life Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Yumiko Oka
- Osaka R&D Laboratory (Yokohama-lab), Sumitomo Electric Industries Ltd., Yokohama 244, Japan
| | - Kyoko Takebe
- Osaka R&D Laboratory (Yokohama-lab), Sumitomo Electric Industries Ltd., Yokohama 244, Japan
| | - Shinichiro Niwa
- Osaka R&D Laboratory (Yokohama-lab), Sumitomo Electric Industries Ltd., Yokohama 244, Japan
| | - Mina J. Bissell
- Life Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| |
Collapse
|
44
|
Abstract
Phenotypic resistance, acquired early in carcinogenesis, has an established role in the pathogenesis of cancer in well-characterised experimental systems, and possibly also has a role in the origin of human cancer. It has been suggested that sunlight, an established risk factor for human skin carcinogenesis, is able to induce rare altered cells resistant to toxicity and to favour their clonal expansion via toxic effects exerted on normal keratinocytes. Other major risk factors for human neoplasia, including smoking and ageing, may also act partly through imposition of a constrained growth environment in the target organ to favour the emergence of altered resistant cells. Strategies aimed at counteracting this constrained environment could be effective in attenuating the force that sustains clonal expansion of altered cells.
Collapse
Affiliation(s)
- E Laconi
- Department of Medical Sciences and Biotechnology, University of Cagliari, Italy.
| | | | | |
Collapse
|
45
|
Translational Induction of Liver-enriched Transcriptional Inhibitory Protein during Acute Phase Response Leads to Repression of CCAAT/Enhancer Binding Protein α mRNA. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61525-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Calkhoven CF, Müller C, Leutz A. Translational control of C/EBPalpha and C/EBPbeta isoform expression. Genes Dev 2000; 14:1920-32. [PMID: 10921906 PMCID: PMC316813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Transcription factors derived from CCAAT/enhancer binding protein (C/EBP)alpha and C/EBPbeta genes control differentiation and proliferation in a number of cell types. Various C/EBP isoforms arise from unique C/EBPbeta and C/EBPalpha mRNAs by differential initiation of translation. These isoforms retain different parts of the amino terminus and therefore display different functions in gene regulation and proliferation control. We show that PKR and mTOR signaling pathways control the ratio of C/EBP isoform expression through the eukaryotic translation initiation factors eIF-2alpha and eIF-4E, respectively. An evolutionary conserved upstream open reading frame in C/EBPalpha and C/EBPbeta mRNAs is a prerequisite for regulated initiation from the different translation initiation sites and integrates translation factor activity. Deregulated translational control leading to aberrant C/EBPalpha and C/EBPbeta isoform expression or ectopic expression of truncated isoforms disrupts terminal differentiation and induces a transformed phenotype in 3T3-L1 cells. Our results demonstrate that the translational controlled ratio of C/EBPalpha and C/EBPbeta isoform expression determines cell fate.
Collapse
Affiliation(s)
- C F Calkhoven
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany.
| | | | | |
Collapse
|
47
|
Slomiany BA, D'Arigo KL, Kelly MM, Kurtz DT. C/EBPalpha inhibits cell growth via direct repression of E2F-DP-mediated transcription. Mol Cell Biol 2000; 20:5986-97. [PMID: 10913181 PMCID: PMC86075 DOI: 10.1128/mcb.20.16.5986-5997.2000] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Using an inducible transcription system which allows the regulated expression of C/EBP isoforms in tissue culture cells, we have found that the ectopic expression of C/EBPalpha, at a level comparable to that found in normal liver tissue, has a pronounced antimitogenic effect in mouse L cells and NIH 3T3 cells. The inhibition of cell division by C/EBPalpha in mouse cells cannot be reversed by simian virus 40 T antigen, by oncogenic ras, or by adenovirus E1a protein. When expressed in thymidine kinase-deficient L cells or 3T3 cells, C/EBPalpha is detected in a protein complex which binds to the E2F binding sites found in the promoters of the genes for E2F-1 and dihydrofolate reductase (DHFR). Bacterially expressed C/EBPalpha has no affinity for these E2F sites, but when recombinant C/EBPalpha is added to nuclear extracts from mouse fibroblasts, a new E2F binding activity appears, which contains the C/EBPalpha protein. Using an E2F-DP1-responsive promoter linked to a reporter gene, it can be shown that C/EBPalpha directly inhibits the induction of this promoter by E2F-DP1 in transient-transfection assays. Furthermore, C/EBPalpha can be shown to inhibit the S-phase induction of the E2F and DHFR promoters in permanent cell lines. These findings delineate a straightforward mechanism for C/EBPalpha-mediated cell growth arrest through repression of E2F-DP-mediated S-phase transcription.
Collapse
Affiliation(s)
- B A Slomiany
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Transcription factors derived from CCAAT/enhancer binding protein (C/EBP)α and C/EBPβ genes control differentiation and proliferation in a number of cell types. Various C/EBP isoforms arise from unique C/EBPβ and C/EBPα mRNAs by differential initiation of translation. These isoforms retain different parts of the amino terminus and therefore display different functions in gene regulation and proliferation control. We show that PKR and mTOR signaling pathways control the ratio of C/EBP isoform expression through the eukaryotic translation initiation factors eIF-2α and eIF-4E, respectively. An evolutionary conserved upstream open reading frame in C/EBPα and C/EBPβ mRNAs is a prerequisite for regulated initiation from the different translation initiation sites and integrates translation factor activity. Deregulated translational control leading to aberrant C/EBPα and C/EBPβ isoform expression or ectopic expression of truncated isoforms disrupts terminal differentiation and induces a transformed phenotype in 3T3-L1 cells. Our results demonstrate that the translational controlled ratio of C/EBPα and C/EBPβ isoform expression determines cell fate.
Collapse
|
49
|
Hu HM, Tian Q, Baer M, Spooner CJ, Williams SC, Johnson PF, Schwartz RC. The C/EBP bZIP domain can mediate lipopolysaccharide induction of the proinflammatory cytokines interleukin-6 and monocyte chemoattractant protein-1. J Biol Chem 2000; 275:16373-81. [PMID: 10748205 DOI: 10.1074/jbc.m910269199] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
C/EBPalpha, beta, and delta are all expressed by bone marrow-derived macrophages. Ectopic expression of any of these transcription factors is sufficient to confer lipopolysaccharide (LPS)-inducible expression of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) to a B lymphoblast cell line, which normally lacks C/EBP factors and does not display LPS induction of proinflammatory cytokines. Thus, the activities of C/EBPalpha, beta, and delta are redundant in regard to expression of IL-6 and MCP-1. Surprisingly, the bZIP region of C/EBPbeta, which lacks any previously described activation domains, can also confer LPS-inducible expression of IL-6 and MCP-1 in stable transfectants. Transient transfections reveal that the bZIP regions of C/EBPbeta, C/EBPdelta, and, to a lesser extent, C/EBPalpha can activate the IL-6 promoter and augment its induction by LPS. Furthermore, the transdominant inhibitor, LIP, can activate expression from the IL-6 promoter. The ability of the C/EBPbeta bZIP region to activate the IL-6 promoter in transient transfections is completely dependent upon an intact NF-kappaB-binding site, supporting a model where the bZIP protein primarily functions to augment the activity of NF-kappaB. Replacement of the leucine zipper of C/EBPbeta with that of GCN4 yields a chimeric protein that can dimerize and specifically bind to a C/EBP consensus sequence, but shows a markedly reduced ability to activate IL-6 and MCP-1 expression. These results implicate the leucine zipper domain in some function other than dimerization with known C/EBP family members, and suggest that C/EBP redundancy in regulating cytokine expression may result from their highly related bZIP regions.
Collapse
Affiliation(s)
- H M Hu
- Department of Microbiology, Michigan State University, East Lansing, Michigan 48824-1101, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Hutter D, Yo Y, Chen W, Liu P, Holbrook NJ, Roth GS, Liu Y. Age-related decline in Ras/ERK mitogen-activated protein kinase cascade is linked to a reduced association between Shc and EGF receptor. J Gerontol A Biol Sci Med Sci 2000; 55:B125-34. [PMID: 10795716 DOI: 10.1093/gerona/55.3.b125] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Numerous studies have demonstrated that the proliferative capacity of cells declines with age. Using rat primary hepatocytes as a model system, we recently demonstrated that this age-related decline in the proliferative response to mitogenic stimulation is associated with decreased activities of both extracellular signal-regulated kinase (ERK) and p70 S6 kinase (p70(S6k)). To unravel the molecular basis for age-related defects in the ERK pathway, we have now characterized the upstream signaling events that occur after epidermal growth factor (EGF) stimulation in young and aged hepatocytes. As previously noted for ERK, the activities of both MEK (the kinase immediately upstream of ERK) and Ras following EGF stimulation were significantly lower in aged hepatocytes. An examination of the EGF receptor (EGFR) revealed a similar amount of EGFR in the two age groups. Likewise, EGFR and Shc, an adaptor protein that plays a crucial role in linking EGFR to Ras activation, underwent tyrosine phosphorylation to a similar degree in both young and aged hepatocytes. However, in aged cells Shc was unable to form stable complexes with EGFR after EGF stimulation. Our results suggest that a decrease in the association between Shc and EGFR in aged cells underlies the age-related declines in the ERK signaling cascade and in proliferative capacity.
Collapse
Affiliation(s)
- D Hutter
- Laboratory of Biological Chemistry, National Institute on Aging, Gerontology Research Center, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|