1
|
Teixeira LPR, Lopes FEDM, Antunes ASLM, Alves MS, Miranda AM, Gaudencio Neto S, Martins LT, Moreira ACDOM, Tavares KCS. Application of a cost-effective DNA extraction protocol for screening transgenic and CRISPR-edited primary goat cells. PLoS One 2020; 15:e0239435. [PMID: 32946490 PMCID: PMC7500585 DOI: 10.1371/journal.pone.0239435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/06/2020] [Indexed: 11/18/2022] Open
Abstract
The genotyping of genetically-modified cells is a crucial step in studies of transgenics and genomic editing with systems such as CRISPR/Cas. The detection of genome editing events can be directly related to the genotyping methodology used, which is influenced by its costs, since many experiments require the analysis of a large number of samples. The aim of this study was to compare the performance of direct lysis methods of genomic DNA (gDNA) extraction for the detection of knockins and knockouts in primary goat cells. Initially, three gDNA extraction protocols (protocol A, heat denaturation/freeze-thaw in water; protocol B, heat denaturation/proteinase K; and protocol C, CellsDirect Kit) were tested using different quantities (1,000, 5,000 and 10,000 cells) and types of goat primary cells (fibroblasts and goat mammary epithelial cells—GMECs) for subsequent validation by PCR amplification of small (GAPDH) and large amplicons (hLF transgene). All protocols were successful in the detection of the small amplicon; however, in GMECs, only protocol B resulted efficient amplification (protocol A—0%, protocol B—93%, protocol C—13.33%, P <0.05). In a proof-of-principle experiment, the TP53 gene was knocked out in GMECs by CRISPR/Cas9-mediated deletion while constructs containing the anti-VEGF monoclonal antibody (pBC-anti-VEGF) and bacterial L-Asparaginase (pBC-ASNase) transgenes were knocked-in separately in fibroblasts. Detection of successful editing was performed using protocol B and PCR. The integration rates of the pBC-ASNase and pBC-anti-VEGF transgenes were 93.6% and 72%, respectively, as per PCR. The efficiency of biallelic editing in GMECs using CRISPR/Cas9 for the TP53 deletion was 5.4%. Our results suggest that protocol B (heat denaturation/proteinase K) can be used as an inexpensive and quick methodology for detecting genetic modifications in different types of primary goat cells, with efficiency rates consistent with values previously described in the literature when using extraction kits or more complex proteinase K formulations.
Collapse
Affiliation(s)
| | | | | | - Matheus Soares Alves
- Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
| | - André Marrocos Miranda
- Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
| | - Saul Gaudencio Neto
- Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
| | | | | | - Kaio Cesar Simiano Tavares
- Experimental Biology Center (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
- * E-mail:
| |
Collapse
|
2
|
Abstract
This chapter provides a detailed protocol for construction of DNA barcode-tagged isogenic strains of Salmonella. The protocol is illustrated with S. Enteritidis in this chapter. However, this protocol should be widely applicable to other Salmonella serotypes. A series of the DNA barcode-tagged strains thus constructed can be used in combination with next generation sequencing or quantitative PCR to study the population dynamics of the bacterial pathogen during infection within the host or transmission within a population of the host in a quantitative manner.
Collapse
|
3
|
Xue R, Wu J, Zhu Z, Wang L, Wang X, Wang S, Blair MW. Differentially Expressed Genes in Resistant and Susceptible Common Bean (Phaseolus vulgaris L.) Genotypes in Response to Fusarium oxysporum f. sp. phaseoli. PLoS One 2015; 10:e0127698. [PMID: 26030070 PMCID: PMC4452237 DOI: 10.1371/journal.pone.0127698] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/17/2015] [Indexed: 01/12/2023] Open
Abstract
Fusarium wilt of common bean (Phaseolus vulgaris L.), caused by Fusarium oxysporum Schlechtend.:Fr. f.sp. phaseoli (Fop), is one of the most important diseases of common beans worldwide. Few natural sources of resistance to Fop exist and provide only moderate or partial levels of protection. Despite the economic importance of the disease across multiple crops, only a few of Fop induced genes have been analyzed in legumes. Therefore, our goal was to identify transcriptionally regulated genes during an incompatible interaction between common bean and the Fop pathogen using the cDNA amplified fragment length polymorphism (cDNA-AFLP) technique. We generated a total of 8,730 transcript-derived fragments (TDFs) with 768 primer pairs based on the comparison of a moderately resistant and a susceptible genotype. In total, 423 TDFs (4.9%) displayed altered expression patterns after inoculation with Fop inoculum. We obtained full amplicon sequences for 122 selected TDFs, of which 98 were identified as annotated known genes in different functional categories based on their putative functions, 10 were predicted but non-annotated genes and 14 were not homologous to any known genes. The 98 TDFs encoding genes of known putative function were classified as related to metabolism (22), signal transduction (21), protein synthesis and processing (20), development and cytoskeletal organization (12), transport of proteins (7), gene expression and RNA metabolism (4), redox reactions (4), defense and stress responses (3), energy metabolism (3), and hormone responses (2). Based on the analyses of homology, 19 TDFs from different functional categories were chosen for expression analysis using quantitative RT-PCR. The genes found to be important here were implicated at various steps of pathogen infection and will allow a better understanding of the mechanisms of defense and resistance to Fop and similar pathogens. The differential response genes discovered here could also be used as molecular markers in association mapping or QTL analysis.
Collapse
Affiliation(s)
- Renfeng Xue
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, People’s Republic of China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lanfen Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xiaoming Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Shumin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- * E-mail: (SW); (MWB)
| | - Matthew W. Blair
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee, United States of America
- * E-mail: (SW); (MWB)
| |
Collapse
|
4
|
Bandopadhyay L, Basu D, Sikdar SR. Identification of genes involved in wild crucifer Rorippa indica resistance response on mustard aphid Lipaphis erysimi challenge. PLoS One 2013; 8:e73632. [PMID: 24040008 PMCID: PMC3767759 DOI: 10.1371/journal.pone.0073632] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 07/30/2013] [Indexed: 01/05/2023] Open
Abstract
Mustard aphid, Lipaphis erysimi (L.) Kaltenbach is a perpetual annual threat in the cultivation of rapeseed- mustard (Brassica spp.) crop in tropical and sub-tropical climate. Cultivated Brassica germplasm has failed so far to provide any source of resistance. Wild germplasm is a potential source of resistance against many threatening herbivores. On wild germplasm screening, we noted that the wild crucifer Rorippa indica (L.) Hiern confers resistance against L. erysimi. In the present study L. erysimi challenged transcriptome of R. indica was compared to un-infested R. indica sample to get a molecular insight about the aphid resistance mechanism and identify the candidate defense response genes. Cloning, sequencing and in silico sequence analysis of complimentary DNA amplified fragment length polymorphism identified 116 differentially expressed transcript derived fragments revealed thirty candidates which are from different functional categories including redox regulation, signalling, photosynthesis, structure, metabolism, defense response as well as a few of unknown function. Twenty four identifications were then studied by quantitative real time RT PCR analysis at 6, 12, 24 and 48 hour time point post infestation to understand the early-to-late defense response through their relative gene expression profiles. Seventeen fragments showed significant up or down regulation at p<0.05 level. The response was influenced by different phytohormonal signalling pathways simultaneously. The candidate defense response expressed sequence tags specifically for the resistance genes identified in this study have implication in building desired mustard aphid resistance in susceptible rapeseed-mustard plants in future. This is the first molecular report on crucifer defense response against mustard aphid L. erysimi.
Collapse
Affiliation(s)
- Lekha Bandopadhyay
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, India
| | - Debabrata Basu
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, India
| | - Samir Ranjan Sikdar
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, India
- * E-mail:
| |
Collapse
|
5
|
Identification of differential expression genes in leaves of rice (Oryza sativa L.) in response to heat stress by cDNA-AFLP analysis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:576189. [PMID: 23509744 PMCID: PMC3590577 DOI: 10.1155/2013/576189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/14/2012] [Accepted: 01/07/2013] [Indexed: 11/17/2022]
Abstract
High temperature impedes the growth and productivity of various crop species. To date, rice (Oryza sativa L.) has not been exploited to understand the molecular basis of its abnormally high level of temperature tolerance. To identify transcripts induced by heat stress, twenty-day-old rice seedlings of different rice cultivars suffering from heat stress were treated at different times, and differential gene expression analyses in leaves were performed by cDNA-AFLP and further verified by real-time RT-PCR. In aggregate, more than three thousand different fragments were indentified, and 49 fragments were selected for the sequence and differential expressed genes were classified functionally into different groups. 6 of 49 fragments were measured by real-time RT-PCR. In addition, the variations of three different polyamine contents in response to heat stress through high-performance liquid chromatography (HPLC) analysis were also performed. The results and their direct and indirect relationships to heat stress tolerance mechanism were discussed.
Collapse
|
6
|
The sulfate-rich and extreme saline sediment of the ephemeral tirez lagoon: a biotope for acetoclastic sulfate-reducing bacteria and hydrogenotrophic methanogenic archaea. Int J Microbiol 2011; 2011:753758. [PMID: 21915180 PMCID: PMC3170894 DOI: 10.1155/2011/753758] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022] Open
Abstract
Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5′-phosphosulfate (APS) reductase α (aprA) and methyl coenzyme M reductase α (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA.
Collapse
|
7
|
Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. THE PLANT CELL 2011; 23:2196-208. [PMID: 21642546 PMCID: PMC3160027 DOI: 10.1105/tpc.111.086694] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/18/2011] [Accepted: 05/24/2011] [Indexed: 05/18/2023]
Abstract
After-ripening is the mechanism by which dormant seeds become nondormant during their dry storage after harvest. The absence of free water in mature seeds does not allow detectable metabolism; thus, the processes associated with dormancy release under these conditions are largely unknown. We show here that sunflower (Helianthus annuus) seed alleviation of dormancy during after-ripening is associated with mRNA oxidation and that this oxidation is prevented when seeds are maintained dormant. In vitro approaches demonstrate that mRNA oxidation results in artifacts in cDNA-amplified fragment length polymorphim analysis and alters protein translation. The oxidation of transcripts is not random but selective, and, using microarrays, we identified 24 stored mRNAs that became highly oxidized during after-ripening. Oxidized transcripts mainly correspond to genes involved in responses to stress and in cell signaling. Among them, protein phosphatase 2C PPH1, mitogen-activated protein kinase phosphatase 1, and phenyl ammonia lyase 1 were identified. We propose that targeted mRNA oxidation during dry after-ripening of dormant seeds could be a process that governs cell signaling toward germination in the early steps of seed imbibition.
Collapse
Affiliation(s)
- Jérémie Bazin
- UR5 EAC7180 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Paris 06, 75005 Paris, France
| | - Nicolas Langlade
- Laboratoire Interactions Plantes Microorganismes, Institut National de la Recherche Agronomique, 31326 Castanet Tolosan, France
| | - Patrick Vincourt
- Laboratoire Interactions Plantes Microorganismes, Institut National de la Recherche Agronomique, 31326 Castanet Tolosan, France
| | - Sandrine Arribat
- Equipe Génomique Fonctionnelle d’Arabidopsis, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique 1165, Université d’Evry Val d’Essonne, ERL Centre National de la Recherche Scientifique 8196, F-91057 Evry Cedex, France
| | - Sandrine Balzergue
- Equipe Génomique Fonctionnelle d’Arabidopsis, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique 1165, Université d’Evry Val d’Essonne, ERL Centre National de la Recherche Scientifique 8196, F-91057 Evry Cedex, France
| | - Hayat El-Maarouf-Bouteau
- UR5 EAC7180 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Paris 06, 75005 Paris, France
| | - Christophe Bailly
- UR5 EAC7180 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Paris 06, 75005 Paris, France
- Address correspondence to
| |
Collapse
|
8
|
Assessing the digestion of a genetically modified tomato (Solanum lycopersicum) R8 DNA in simulated gastric fluid using event-specific real-time PCR. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Ruytinx J, Craciun AR, Verstraelen K, Vangronsveld J, Colpaert JV, Verbruggen N. Transcriptome analysis by cDNA-AFLP of Suillus luteus Cd-tolerant and Cd-sensitive isolates. MYCORRHIZA 2011; 21:145-154. [PMID: 20512595 DOI: 10.1007/s00572-010-0318-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 05/10/2010] [Indexed: 05/29/2023]
Abstract
The ectomycorrhizal basidiomycete Suillus luteus (L.:Fr.), a typical pioneer species which associates with young pine trees colonizing disturbed sites, is a common root symbiont found at heavy metal contaminated sites. Three Cd-sensitive and three Cd-tolerant isolates of S. luteus, isolated respectively from non-polluted and a heavy metal-polluted site in Limburg (Belgium), were used for a transcriptomic analysis. We identified differentially expressed genes by cDNA-AFLP analysis. The possible roles of some of the encoded proteins in heavy metal (Cd) accumulation and tolerance are discussed. Despite the high conservation of coding sequences in S. luteus, a large intraspecific variation in the transcript profiles was observed. This variation was as large in Cd-tolerant as in sensitive isolates and may help this pioneer species to adapt to novel environments.
Collapse
Affiliation(s)
- Joske Ruytinx
- Centre for Environmental Sciences, Environmental Biology Group, Universiteit Hasselt, 3590 Diepenbeek, Belgium
| | | | | | | | | | | |
Collapse
|
10
|
Rocafull MA, Thomas LE, Barrera GJ, Castillo JRD. Differential expression of P-type ATPases in intestinal epithelial cells: Identification of putative new atp1a1 splice-variant. Biochem Biophys Res Commun 2010; 391:152-8. [PMID: 19900414 DOI: 10.1016/j.bbrc.2009.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/28/2022]
Affiliation(s)
- Miguel A Rocafull
- Lab. Fisiología Molecular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A, Venezuela.
| | | | | | | |
Collapse
|
11
|
Gupta S, Chakraborti D, Rangi RK, Basu D, Das S. A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (race 1) interaction through cDNA-AFLP analysis. PHYTOPATHOLOGY 2009; 99:1245-57. [PMID: 19821728 DOI: 10.1094/phyto-99-11-1245] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris is one of the most severe diseases of chickpea throughout the world. Variability of pathotypes of F. oxysporum f. sp. ciceris and breakdown of natural resistance are the main hindrances to developing resistant plants by applying resistant breeding strategies. Additionally, lack of information of potential resistant genes limits gene-transfer technology. A thorough understanding of Fusarium spp.-chickpea interaction at a cellular and molecular level is essential for isolation of potential genes involved in counteracting disease progression. Experiments were designed to trigger the pathogen-challenged disease responses in both susceptible and resistant plants and monitor the expression of stress induced genes or gene fragments at the transcript level. cDNA amplified fragment length polymorphism followed by homology search helped in differentiating and analyzing the up- and downregulated gene fragments. Several detected DNA fragments appeared to have relevance with pathogen-mediated defense. Some of the important transcript-derived fragments were homologous to genes for sucrose synthase, isoflavonoid biosynthesis, drought stress response, serine threonine kinases, cystatins, arginase, and so on. Reverse-transcriptase polymerase chain reaction performed with samples collected at 48 and 96 h postinfection confirmed a similar type of differential expression pattern. Based on these results, interacting pathways of cellular processes were generated. This study has an implication toward functional identification of genes involved in wilt resistance.
Collapse
Affiliation(s)
- Sumanti Gupta
- Bose Institute, Centenary Campus, Kankurgachi, Kolkata, India
| | | | | | | | | |
Collapse
|
12
|
Ghose K, Dey S, Barton H, Loake GJ, Basu D. Differential profiling of selected defence-related genes induced on challenge with Alternaria brassicicola in resistant white mustard and their comparative expression pattern in susceptible India mustard. MOLECULAR PLANT PATHOLOGY 2008; 9:763-75. [PMID: 19019005 PMCID: PMC6640447 DOI: 10.1111/j.1364-3703.2008.00497.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The lack of availability of sources of resistance against Alternaria brassicicola within the family Brassicaceae has made oilseed mustard plants a target for one of the most damaging and widespread fungal diseases, Alternaria black spot. Of the other non-host-resistant/tolerant plants, Sinapis alba, white mustard, is considered to be the most important apart from Arabidopsis. To understand the defence response of S. alba upon incompatible interaction with this pathogen, a functional genomic approach using cDNA amplified fragment length polymorphism was performed. The highly reproducible bands, found to be either more amplified or uniquely present in infected S. alba plants compared with non-infected plants, were further subjected to comparative reverse Northern analysis in the incompatible white mustard (S. alba) and compatible India mustard (Brassica juncea L.) plants. The suppression of 46% of the genes in the compatible background indicates the possibility of effective and specific recognition of Alternaria in S. alba. Analysis of the 118 genes up-regulated specifically in infected S. alba compared with B. juncea showed that 98 genes have similarity to proteins such as receptor-like protein kinase genes, genes involved with calcium-mediated signalling and salicylic acid-dependent genes as well as other genes of known function in Arabidopsis. The apparent expression profile data were further confirmed for selected genes by quantitative real-time polymerase chain reaction analysis. Classification of these genes on the basis of their induction pattern in Arabidopsis indicates that the expression profile of several of these genes was distinct in S. alba compared with B. juncea.
Collapse
Affiliation(s)
- Kaushik Ghose
- Department of Botany, Bose Institute, 93/1, A.P.C. Road, Kolkata-700009, West Bengal, India
| | | | | | | | | |
Collapse
|
13
|
Wong QWL, Mak WY, Chu KH. Differential gene expression in hepatopancreas of the shrimp Metapenaeus ensis during ovarian maturation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:91-98. [PMID: 17975702 DOI: 10.1007/s10126-007-9042-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/31/2007] [Accepted: 07/03/2007] [Indexed: 05/25/2023]
Abstract
Differentially expressed genes were identified in the hepatopancreas of Metapenaeus ensis during ovarian maturation via differential display reverse transcription-polymerase chain reaction (DDRT-PCR). They are G-protein signaling modulator 2 (GPSM2), glutamate carboxypeptide II (GCPII), ligatin, C-type lectin, O-linked N-acetylglucosamine transferase (O-GlcNAc transferase), 1-acylglycerol-3-phosphate O-acyltransferase 4 (AGPAT4), vitellogenin (Vg), and hemocyanin. The hepatopancreas Vg gene identified in this study shows 92% and 49% amino acid sequence homology, respectively, to MeVg1 and MeVg2 previously isolated from this species, suggesting the identification of a new Vg gene in M. ensis. Vg gene expression was highest when the ovary was actively developing. The two metabolic enzymes, O-GlcNAc transferase and AGPAT4, exhibited a similar trend of expression to Vg gene, suggesting their involvement in Vg synthesis. The signal transduction related genes (GPSM2, GCPII, ligatin, and C-type lectin) were highly expressed in the hepatopancreas in the initial phase of maturation. These genes may be important for the signaling in the hepatopancreas for synthesis and mobilization of vitellogenin and nutrients to the developing ovary. The present work provides candidate genes for further investigation on the role of hepatopancreas in shrimp reproduction.
Collapse
Affiliation(s)
- Queenie W L Wong
- Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
14
|
Muller LAH, Craciun AR, Ruytinx J, Lambaerts M, Verbruggen N, Vangronsveld J, Colpaert JV. Gene expression profiling of a Zn-tolerant and a Zn-sensitive Suillus luteus isolate exposed to increased external zinc concentrations. MYCORRHIZA 2007; 17:571-580. [PMID: 17530303 DOI: 10.1007/s00572-007-0134-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 04/27/2007] [Indexed: 05/15/2023]
Abstract
Complementary DNA (cDNA)-amplified fragment-length polymorphism (AFLP) was applied to analyze transcript profiles of a Zn-tolerant and a Zn-sensitive isolate of the ectomycorrhizal basidiomycete Suillus luteus, both cultured with and without increased external zinc concentrations. From the obtained transcript profiles that covered approximately 2% of the total expected complement of genes in S. luteus, 144 nonredundant, differentially expressed transcript-derived fragments (TDFs), falling in different classes of expression pattern, were isolated and sequenced. Thirty-six of the represented genes showed homology to function-known genes, whereas 6 matched unknown protein coding sequences, and 102 were possibly novel. Although relatively few TDFs were found to be responsive to the different zinc treatments, their modulated expression levels may suggest a different transcriptional response to zinc treatments in both isolates. Among the identified genes that could be related to heavy-metal detoxification or the tolerance trait were genes encoding for homologues of a heat-shock protein, a putative metal transporter, a hydrophobin, and several proteins involved in ubiquitin-dependent proteolysis.
Collapse
Affiliation(s)
- L A H Muller
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, DUMC Box 3020, Durham, NC, 27710, USA
| | - A R Craciun
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - J Ruytinx
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium
| | - M Lambaerts
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium
| | - N Verbruggen
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - J Vangronsveld
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium
| | - J V Colpaert
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
15
|
Chang KCN, Komm B, Arnold NB, Korc M. The application of differential display as a gene profiling tool. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2007; 383:31-40. [PMID: 18217677 DOI: 10.1007/978-1-59745-335-6_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Differential display is an effective expression profiling tool which was first introduced in 1992. The original technique is discussed along with modifications that have been described over the last several years. A highly reproducible, semihigh-throughput differential display protocol used in our laboratories is described along with an example of its successful application using pancreatic cancer cells. In addition to the work performed in our laboratories, several examples of successful applications of differential display under a number of scenarios are reviewed. Differential display is one of several expression profiling technologies available and is compared with some of them. The future of differential display remains bright and is as applicable today as it was in 1992.
Collapse
Affiliation(s)
- Ken Chien-Neng Chang
- Osteoporosis Research, Women's Health Research Institute, Wyeth Research, Collegeville, PA, USA
| | | | | | | |
Collapse
|
16
|
Kleinsteuber S, Riis V, Fetzer I, Harms H, Müller S. Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 2006; 72:3531-42. [PMID: 16672500 PMCID: PMC1472369 DOI: 10.1128/aem.72.5.3531-3542.2006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity and dynamics of a bacterial community extracted from an exploited oil field with high natural soil salinity near Comodoro Rivadavia in Patagonia (Argentina) were investigated. Community shifts during long-term incubation with diesel fuel at four salinities between 0 and 20% NaCl were monitored by single-strand conformation polymorphism community fingerprinting of the PCR-amplified V4-V5 region of the 16S rRNA genes. Information obtained by this qualitative approach was extended by flow cytometric analysis to follow quantitatively the dynamics of community structures at different salinities. Dominant and newly developing clusters of individuals visualized via their DNA patterns versus cell sizes were used to identify the subcommunities primarily involved in the degradation process. To determine the most active species, subcommunities were separated physically by high-resolution cell sorting and subsequent phylogenetic identification by 16S rRNA gene sequencing. Reduced salinity favored the dominance of Sphingomonas spp., whereas at elevated salinities, Ralstonia spp. and a number of halophilic genera, including Halomonas, Dietzia, and Alcanivorax, were identified. The combination of cytometric sorting with molecular characterization allowed us to monitor community adaptation and to identify active and proliferating subcommunities.
Collapse
Affiliation(s)
- Sabine Kleinsteuber
- UFZ Centre for Environmental Research Leipzig-Halle, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | | | | | | | | |
Collapse
|
17
|
Cato S, McMillan L, Donaldson L, Richardson T, Echt C, Gardner R. Wood formation from the base to the crown in Pinus radiata: gradients of tracheid wall thickness, wood density, radial growth rate and gene expression. PLANT MOLECULAR BIOLOGY 2006; 60:565-81. [PMID: 16525892 DOI: 10.1007/s11103-005-5022-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 11/10/2005] [Indexed: 05/07/2023]
Abstract
Wood formation was investigated at five heights along the bole for two unrelated trees of Pinus radiata. Both trees showed clear gradients in wood properties from the base to the crown. Cambial cells at the base of the tree were dividing 3.3-fold slower than those at the crown, while the average thickness of cell walls in wood was highest at the base. Cell wall thickness showed an overall correlation coefficient of >0.7 with wood density in both genotypes. Microscopic examination of developing tracheids showed that 33% of cells had formed secondary cell walls at the base of the tree, reducing to 3% at the crown. In total, 455 genes differentially expressed in developing xylem tissue from either the base or the crown were identified using modified differential display. RT-PCR analysis of 156 genes confirmed differential expression for 77%. Of the genes tested, 73% showed gradients in transcript abundance either up or down the bole of the tree, although the steepness of the gradients differed between genes. Genes involved in cell division and expansion tended to be more highly expressed in the crown of the tree, and two putative cell-cycle repressor genes were expressed 2-fold higher at the base. Conversely, transcripts of genes involved in secondary wall thickening were more abundant at the base of the tree. These results suggest that differences in the rate of cambial cell division, differences in the rate and duration of tracheid wall thickening, and differences in gene expression underpin the gradients of wood properties found in pines.
Collapse
Affiliation(s)
- Sheree Cato
- Scion (formerly Forest Research), Cellwall Biotechnology Centre, 49 Sala Street, Private Bag 3020, Rotorua, New Zealand.
| | | | | | | | | | | |
Collapse
|
18
|
Basak SC, Lee S, Barta JR, Fernando MA. Differential display analysis of gene expression in two immunologically distinct strains of Eimeria maxima. Parasitol Res 2006; 99:28-36. [PMID: 16470414 DOI: 10.1007/s00436-005-0087-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
Gene expression during sporulation and sporozoite excystation of two strains of Eimeria maxima was analyzed using the mRNA differential display technique. The two strains, the Guelph strain (GS) and a single sporocyst-derived strain (M6) from Florida, have been shown to be immunologically distinct. We isolated and cloned a 453-bp complimentary DNA (cDNA) fragment (GS-453) found only in GS sporozoites. In GS, this mRNA begins to be expressed during the earliest stages of oocyst sporulation and is continuously expressed up to and including in the excysted sporozoite. In all Northern blots, digoxigenin (DIG)-labeled GS-453 probe recognized an mRNA of approximately 1.6 kb from GS but not from RNA of M6. Southern blots using various endonucleases and probed with DIG-labeled GS-453 demonstrated that the genomes of both strains contained sufficiently similar sequences to permit hybridization with the probe, but the pattern of hybridization differed between the two strains. Extensive searches of the GenBank, European Molecular Biology Laboratory, and various apicomplexan expressed sequence tag databases using the DNA or inferred amino acid sequences of GS-453 cDNA clone did not identify similarity to any existing sequences.
Collapse
Affiliation(s)
- S C Basak
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, N1G 2W1, Ontario, Canada,
| | | | | | | |
Collapse
|
19
|
Gadkar V, Rillig MC. Suitability of genomic DNA synthesized by strand displacement amplification (SDA) for AFLP analysis: genotyping single spores of arbuscular mycorrhizal (AM) fungi. J Microbiol Methods 2005; 63:157-64. [PMID: 15936100 DOI: 10.1016/j.mimet.2005.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 11/30/2022]
Abstract
Limited biological samples of microbial origin often yield insufficient amounts of genomic DNA, making application of standard techniques of genetic analysis, like amplified fragment length polymorphism (AFLP), virtually impossible. The Phi29 DNA polymerase based whole genome amplification (WGA) method has the potential to alleviate this technical bottleneck. In the present work, we have sought to investigate the suitability of genomic DNA synthesized using Phi29 based WGA for AFLP analysis. We first used genomic DNA from Saccharomyces cerevisiae to optimize the protocol for the use of SDA-amplified DNA for AFLP analysis. Based on the optimized protocol we obtained AFLP fingerprints which were indistinguishable from the non-amplified genomic DNA. Finally, AFLP analysis was performed using SDA synthesized genomic DNA from single spores of various species of arbuscular mycorrhizal (AM) fungi. Unique and highly reproducible fingerprints for each species were obtained. The present study introduces the application of WGA-mediated AFLP to AM fungal biology; similarly, our protocol could be useful for other microbial genomes currently not amenable to genetic analysis owing to the paucity of starting template.
Collapse
Affiliation(s)
- Vijay Gadkar
- Microbial Ecology Program, Division of Biological Sciences, 32 Campus Drive #4824, University of Montana, Missoula, MT 59812-0003, USA.
| | | |
Collapse
|
20
|
Royaee AR, Jong L, Mendis C, Das R, Jett M, Yang DCH. Cholera toxin induced novel genes in human lymphocytes and monocytes. Mol Immunol 2005; 43:1267-74. [PMID: 16102829 DOI: 10.1016/j.molimm.2005.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
Cholera toxin (CT) is well known as an inducer of the accumulation of cellular cAMP through the ADP-ribosylation of the Gs protein by CT. CT is also one of the most powerful mucosal adjuvants. However, the molecular mechanisms of the CT adjuvanticity are not well understood. Here, the transcriptional responses of cultured human lymphocytes and monocytes in response to CT were analyzed using differential display-PCR. The full complement of cellular mRNA was examined by high resolution polyarylamide gel electrophoresis and sequence analyses of the PCR products of 240 primer sets. Over 100 genes with altered expression were initially identified. The expressions of 65 of these genes were further analyzed and confirmed using custom glass cDNA arrays, RT-PCR and real-time PCR. Immunomodulatory genes such as CD2, HIF1, CXCL2, L-plastin, LILR and IFI30 were affected by CT. In addition, 14 novel genes with previously unknown functions were found to be CT induced. These CT induced gene expression alterations provide more insight in the mechanisms of CT actions. The CT induced gene expressions alterations could contribute to the CT adjuvanticity.
Collapse
Affiliation(s)
- Atabak R Royaee
- Department of Chemistry, Georgetown University, 37th & 654 Reiss Science Bldg, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kwon YM, Cox MM. Improved efficacy of whole genome amplification from bacterial cells. Biotechniques 2005; 37:40, 42, 44. [PMID: 15283198 DOI: 10.2144/04371bm03] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Young M Kwon
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
22
|
Moore JB, Blanchard RK, Cousins RJ. Dietary zinc modulates gene expression in murine thymus: results from a comprehensive differential display screening. Proc Natl Acad Sci U S A 2003; 100:3883-8. [PMID: 12646709 PMCID: PMC153017 DOI: 10.1073/pnas.0330670100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differential mRNA display was used to comprehensively screen the murine thymic transcriptome for genes modulated in vivo by dietary zinc. A moderate feeding protocol rendered young adult, outbred mice zinc-deficient and zinc-supplemented without alterations in feeding behavior or growth. However, these levels of deficiency and supplementation altered specific mRNA abundances in a manner detectable by differential display. In total, 240 primer-pair combinations were used to generate >48,000 interpretable cDNA bands derived from thymic total RNA, of which only 265 or 0.55% were identified as zinc-modulated under these moderate dietary conditions. The most strongly zinc-modulated cDNAs identified by display were reamplified and sequenced. No cDNAs encoding zinc-metalloenzymes or zinc-finger transcription factors were identified as zinc-modulated in this global screening. Those zinc-regulated genes independently confirmed by quantitative PCR included: heat shock proteins 40 and 60; heat shock cognate 70; histocompatibility 2, class II antigen A, alpha; and the T cell cytokine receptor. In addition, a variety of transcription- and translation-related factors (such as ribosomal proteins L3, L5, and L28; nuclear matrix protein 84; matrin cyclophilin; the H3 histone family 3A protein; beta(2) microglobulin; and a cleavage and polyadenylation factor) were identified as zinc-modulated. These profiling data show that differential expression of genes in the thymus in response to the dietary zinc supply precedes many of the phenotypic effects on thymic function associated with severe zinc restriction or supplementation. Several genes involved in T cell development were identified as regulated by zinc and will be targets to evaluate the effects of zinc on immune function.
Collapse
Affiliation(s)
- J Bernadette Moore
- Nutritional Genomics Laboratory, Food Science and Human Nutrition Department and Center for Nutritional Sciences, University of Florida, Gainesville, FL 32611-0370, USA
| | | | | |
Collapse
|
23
|
Berka J, Ruiz-Martinez MC, Hammond R, Minarik M, Foret F, Sosic Z, Kleparnik K, Karger BL. Application of high-resolution capillary array electrophoresis with automated fraction collection for GeneCalling trade mark analysis of the yeast genomic DNA. Electrophoresis 2003; 24:639-47. [PMID: 12601732 DOI: 10.1002/elps.200390075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Capillary array instrument was applied to transcript profiling of the yeast genomic DNA using GeneCalling trade mark chemistry. The instrument integrated a 12-capillary array for DNA separation with a replaceable sieving matrix, laser-induced fluorescence detection and an automated microfraction collector. The DNA fractions, exiting the separation capillaries, were continuously deposited in a 1536-well collection plate made of agarose gel. DNA fragments recovered from selected fractions were cloned and then sequenced. Over 80% of theoretically predicted fragments could be recovered in the collected fractions, cloned and sequenced with an average redundancy of threefold. Excellent correlation of the experimentally obtained sequences with the theoretically predicted gene fragments demonstrated the suitability of capillary array electrophoresis for micropreparative recovery of DNA fragments. This approach, useful especially for rapid DNA expression profiling of unknown genes for nonsequenced organisms, demonstrates the practical capability of the prototype multicapillary fraction collector.
Collapse
|
24
|
Kwon YM, Kubena LF, Nisbet DJ, Ricke SC. Functional screening of bacterial genome for virulence genes by transposon footprinting. Methods Enzymol 2003; 358:141-52. [PMID: 12474384 DOI: 10.1016/s0076-6879(02)58086-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Young Min Kwon
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | |
Collapse
|
25
|
Morlais I, Severson DW. Identification of a polymorphic mucin-like gene expressed in the midgut of the mosquito, Aedes aegypti, using an integrated bulked segregant and differential display analysis. Genetics 2001; 158:1125-36. [PMID: 11454761 PMCID: PMC1461701 DOI: 10.1093/genetics/158.3.1125] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The identification of putative differentially expressed genes within genome regions containing QTL determining susceptibility of the mosquito, Aedes aegypti, to the malarial parasite, Plasmodium gallinaceum, was investigated using an integrated, targeted approach based on bulked segregant and differential display analysis. A mosquito F2 population was obtained from pairwise matings between the parasite-susceptible RED strain and the resistant MOYO-R substrain. DNA from female carcasses was used to genotype individuals at RFLP markers of known chromosomal position around the major QTL (pgs 1). Midguts, dissected 48 hr after an infected blood meal, were used to prepare two RNA bulks, each representing one of the parental genotypes at the QTL interval. The RNA bulks were compared by differential display PCR. A mucin-like protein gene (AeIMUC1) was isolated and characterized. The gene maps within the pgs 1 QTL interval and is expressed in the adult female midgut. AeIMUC1 RNA abundance decreased with time after blood meal ingestion. No differential expression was observed between the two mosquito strains but three different alleles with inter- and intrastrain allelic polymorphisms including indels and SNPs were characterized. The AeIMUC1 gene chromosome location and allelic polymorphisms raise the possibility that the protein might be involved in parasite-mosquito interactions.
Collapse
Affiliation(s)
- I Morlais
- Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
26
|
Benoit GR, Tong JH, Balajthy Z, Lanotte M. Exploring (novel) gene expression during retinoid-induced maturation and cell death of acute promyelocytic leukemia. Semin Hematol 2001; 38:71-85. [PMID: 11172541 DOI: 10.1016/s0037-1963(01)90007-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During recent years, reports have shown that biological responses of acute promyelocytic leukemia (APL) cells to retinoids are more complex than initially envisioned. PML-RARalpha chimeric protein disturbs various biological processes such as cell proliferation, differentiation, and apoptosis. The distinct biological programs that regulate these processes stem from specific transcriptional activation of distinct (but overlapping) sets of genes. These programs are sometimes mutually exclusive and depend on whether the signals are delivered by RAR or RXR agonists. Furthermore, evidence that retinoid nuclear signaling by retinoid, on its own, is not enough to trigger these cellular responses is rapidly accumulating. Indeed, work with NB4 cells show that the fate of APL cells treated by retinoid depends on complex signaling cross-talk. Elucidation of the sequence of events and cascades of transcriptional regulation necessary for APL cell maturation will be an additional tool with which to further improve therapy by retinoids. In this task, the classical techniques used to analyze gene expression have proved time consuming, and their yield has been limited. Global analyses of the APL cell transcriptome are needed. We review the technical approaches currently available (differential display, complementary DNA microarrays), to identify novel genes involved in the determination of cell fate.
Collapse
Affiliation(s)
- G R Benoit
- INSERM U-496, Institut Universitaire d'Hématologie, H pital Saint-Louis, Paris, France
| | | | | | | |
Collapse
|