1
|
Wright JL, Jiang Y, Nayar SG, Li H, Richardson WD. The INO80 Chromatin Remodeling Complex Regulates Histone H2A.Z Mobility and the G1-S Transition in Oligodendrocyte Precursors. Glia 2025; 73:1307-1323. [PMID: 40017313 PMCID: PMC12012327 DOI: 10.1002/glia.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Chromatin remodeling complexes (CRCs) participate in oligodendrocyte (OL) differentiation, survival, and maintenance. We asked whether CRCs also control the proliferation of OL precursors (OPs)-focusing on the INO80 complex, which is known to regulate the proliferation of a variety of other cell types during development and disease. CRISPR/Cas9-mediated inactivation of Ino80 in vitro, or Cre-mediated deletion in vivo, slowed the OP cell cycle substantially by prolonging G1. RNAseq analysis revealed that E2F target genes were dysregulated in OPs from INO80-deficient mice, but correlated RNAseq and ATAC-seq uncovered no general correlation between gene expression and altered nucleosome positioning at transcription start sites. Fluorescence photobleaching experiments in cultured OPs demonstrated that histone H2A.Z mobility increased following the loss of INO80, suggesting that INO80 regulates the cell cycle machinery in OPs through H2A.Z/H2A exchange. We also present evidence that INO80 associates with OLIG2, a master regulator of OL development.
Collapse
Affiliation(s)
- Jordan L. Wright
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Yi Jiang
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Stuart G. Nayar
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Huiliang Li
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | | |
Collapse
|
2
|
Xie H, Wang H, Li RH, Zhang YW, Fan XR, He XX, Guan AR. DNMT1 promotes the proliferation and migration of gastric cancer cells by inducing microRNA-125a-5p methylation to promote SERPINE1 protein. World J Gastrointest Oncol 2025; 17:98703. [PMID: 40092920 PMCID: PMC11866249 DOI: 10.4251/wjgo.v17.i3.98703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumor originating from gastric mucosal epithelial cells that has high morbidity and mortality. microRNAs (miR) are important diagnostic markers and therapeutic targets in this disease. AIM To explore the mechanism of miR-125a-5p in the pathogenesis of GC. METHODS The expression levels of miR-125a-5p, SERPINE1 and DNMT1 in GC cells and tissues were detected by real-time polymerase chain reaction (PCR) and Western blotting. Methylation-specific PCR was used to detect the level of miR-125a-5p methylation. A cell counting kit 8 assay, scratch test, and a Transwell assay were performed to detect the proliferation, migration, and invasiveness of HGC27 cells, respectively. The expression of the epithelial mesenchymal transition (EMT)-related proteins E-cadherin, N-cadherin and vimentin in HGC27 cells was detected by Western blotting, while the expression of vimentin was detected by immunofluorescence. RESULTS This study revealed that miR-125a-5p was expressed at low levels in GC clinical samples and cells and that miR-125a-5p overexpression inhibited the proliferation, migration, invasiveness and EMT of GC cells. Mechanistically, miR-125a-5p can reduce GC cell proliferation, promote E-cadherin expression, inhibit N-cadherin and vimentin expression, and reduce the EMT of GC cells, thus constraining GC cells to a certain extent. Moreover, DNMT1 inhibited miR-125a-5p expression by increasing the methylation of the miR-125a-5p promoter, thereby promoting the expression of SERPINE1, which acts together with miR-125a-5p to exert antagonistic effects on GC. CONCLUSION Our study revealed that DNMT1 promoted SERPINE1 protein expression by inducing miR-125a-5p methylation, which led to the proliferation, migration and occurrence of EMT in GC cells.
Collapse
Affiliation(s)
- Hui Xie
- Department of General Surgery, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| | - Hui Wang
- Department of Digestive Internal Medicine, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| | - Ru-Hong Li
- Department of General Surgery, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| | - Yue-Wen Zhang
- Department of General Surgery, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| | - Xi-Rui Fan
- Department of Digestive Internal Medicine, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| | - Xiao-Xue He
- Department of Digestive Internal Medicine, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| | - Ao-Ran Guan
- Department of General Surgery, Yan’an Hospital of Kunming City, Kunming 650051, Yunnan Province, China
| |
Collapse
|
3
|
Kumar V, Dhanjal JK, Sari AN, Khurana M, Kaul SC, Wadhwa R, Sundar D. Effect of Withaferin-A, Withanone, and Caffeic Acid Phenethyl Ester on DNA Methyltransferases: Potential in Epigenetic Cancer Therapy. Curr Top Med Chem 2024; 24:379-391. [PMID: 37496252 DOI: 10.2174/1568026623666230726105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND DNA methyltransferases (DNMTs) have been reported to be potential drug targets in various cancers. The major hurdle in inhibiting DNMTs is the lack of knowledge about different DNMTs and their role in the hypermethylation of gene promoters in cancer cells. Lack of information on specificity, stability, and higher toxicity of previously reported DNMT inhibitors is the major reason for inadequate epigenetic cancer therapy. DNMT1 and DNMT3A are the two DNMTs that are majorly overexpressed in cancers. OBJECTIVE In this study, we have presented computational and experimental analyses of the potential of some natural compounds, withaferin A (Wi-A), withanone (Wi-N), and caffeic acid phenethyl ester (CAPE), as DNMT inhibitors, in comparison to sinefungin (SFG), a known dual inhibitor of DNMT1 and DNMT3A. METHODS We used classical simulation methods, such as molecular docking and molecular dynamics simulations, to investigate the binding potential and properties of the test compounds with DNMT1 and DNMT3A. Cell culture-based assays were used to investigate the inactivation of DNMTs and the resulting hypomethylation of the p16INK4A promoter, a key tumour suppressor that is inactivated by hypermethylation in cancer cells, resulting in upregulation of its expression. RESULTS Among the three test compounds (Wi-A, Wi-N, and CAPE), Wi-A showed the highest binding affinity to both DNMT1 and DNMT3A; CAPE showed the highest affinity to DNMT3A, and Wi-N showed a moderate affinity interaction with both. The binding energies of Wi-A and CAPE were further compared with SFG. Expression analysis of DNMTs showed no difference between control and treated cells. Cell viability and p16INK4A expression analysis showed a dose-dependent decrease in viability, an increase in p16INK4A, and a stronger effect of Wi-A compared to Wi-N and CAPE. CONCLUSION The study demonstrated the differential binding ability of Wi-A, Wi-N, and CAPE to DNMT1 and DNMT3A, which was associated with their inactivation, leading to hypomethylation and desilencing of the p16INK4A tumour suppressor in cancer cells. The test compounds, particularly Wi-A, have the potential for cancer therapy.
Collapse
Affiliation(s)
- Vipul Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, Okhla Industrial Estate, Phase III, New Delhi, 110020, India
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Anissa Nofita Sari
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Mallika Khurana
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Sunil C Kaul
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Renu Wadhwa
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
4
|
Kerdivel G, Amrouche F, Calmejane MA, Carallis F, Hamroune J, Hantel C, Bertherat J, Assié G, Boeva V. DNA hypermethylation driven by DNMT1 and DNMT3A favors tumor immune escape contributing to the aggressiveness of adrenocortical carcinoma. Clin Epigenetics 2023; 15:121. [PMID: 37528470 PMCID: PMC10394822 DOI: 10.1186/s13148-023-01534-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/16/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Adrenocortical carcinoma is rare and aggressive endocrine cancer of the adrenal gland. Within adrenocortical carcinoma, a recently described subtype characterized by a CpG island methylator phenotype (CIMP) has been associated with an especially poor prognosis. However, the drivers of CIMP remain unknown. Furthermore, the functional relation between CIMP and poor clinical outcomes of patients with adrenocortical carcinoma stays elusive. RESULTS Here, we show that CIMP in adrenocortical carcinoma is linked to the increased expression of DNA methyltransferases DNMT1 and DNMT3A driven by a gain of gene copy number and cell hyperproliferation. Importantly, we demonstrate that CIMP contributes to tumor aggressiveness by favoring tumor immune escape. This effect could be at least partially reversed by treatment with the demethylating agent 5-azacytidine. CONCLUSIONS In sum, our findings suggest that co-treatment with demethylating agents might enhance the efficacy of immunotherapy and could represent a novel therapeutic approach for patients with high CIMP adrenocortical carcinoma.
Collapse
Affiliation(s)
- Gwenneg Kerdivel
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Floriane Amrouche
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Marie-Ange Calmejane
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | | | - Juliette Hamroune
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Jérôme Bertherat
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Guillaume Assié
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Valentina Boeva
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France.
- Department of Computer Science, Institute for Machine Learning, ETH Zurich, Universitätstrasse 6, 8092, Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland.
| |
Collapse
|
5
|
Endicott JL, Nolte PA, Shen H, Laird PW. Cell division drives DNA methylation loss in late-replicating domains in primary human cells. Nat Commun 2022; 13:6659. [PMID: 36347867 PMCID: PMC9643452 DOI: 10.1038/s41467-022-34268-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
DNA methylation undergoes dramatic age-related changes, first described more than four decades ago. Loss of DNA methylation within partially methylated domains (PMDs), late-replicating regions of the genome attached to the nuclear lamina, advances with age in normal tissues, and is further exacerbated in cancer. We present here experimental evidence that this DNA hypomethylation is directly driven by proliferation-associated DNA replication. Within PMDs, loss of DNA methylation at low-density CpGs in A:T-rich immediate context (PMD solo-WCGWs) tracks cumulative population doublings in primary cell culture. Cell cycle deceleration results in a proportional decrease in the rate of DNA hypomethylation. Blocking DNA replication via Mitomycin C treatment halts methylation loss. Loss of methylation continues unabated after TERT immortalization until finally reaching a severely hypomethylated equilibrium. Ambient oxygen culture conditions increases the rate of methylation loss compared to low-oxygen conditions, suggesting that some methylation loss may occur during unscheduled, oxidative damage repair-associated DNA synthesis. Finally, we present and validate a model to estimate the relative cumulative replicative histories of human cells, which we call "RepliTali" (Replication Times Accumulated in Lifetime).
Collapse
Affiliation(s)
- Jamie L Endicott
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Paula A Nolte
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Peter W Laird
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
6
|
Thaler R, Khani F, Sturmlechner I, Dehghani SS, Denbeigh JM, Zhou X, Pichurin O, Dudakovic A, Jerez SS, Zhong J, Lee JH, Natarajan R, Kalajzic I, Jiang YH, Deyle DR, Paschalis EP, Misof BM, Ordog T, van Wijnen AJ. Vitamin C epigenetically controls osteogenesis and bone mineralization. Nat Commun 2022; 13:5883. [PMID: 36202795 PMCID: PMC9537512 DOI: 10.1038/s41467-022-32915-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Vitamin C deficiency disrupts the integrity of connective tissues including bone. For decades this function has been primarily attributed to Vitamin C as a cofactor for collagen maturation. Here, we demonstrate that Vitamin C epigenetically orchestrates osteogenic differentiation and function by modulating chromatin accessibility and priming transcriptional activity. Vitamin C regulates histone demethylation (H3K9me3 and H3K27me3) and promotes TET-mediated 5hmC DNA hydroxymethylation at promoters, enhancers and super-enhancers near bone-specific genes. This epigenetic circuit licenses osteoblastogenesis by permitting the expression of all major pro-osteogenic genes. Osteogenic cell differentiation is strictly and continuously dependent on Vitamin C, whereas Vitamin C is dispensable for adipogenesis. Importantly, deletion of 5hmC-writers, Tet1 and Tet2, in Vitamin C-sufficient murine bone causes severe skeletal defects which mimic bone phenotypes of Vitamin C-insufficient Gulo knockout mice, a model of Vitamin C deficiency and scurvy. Thus, Vitamin C's epigenetic functions are central to osteoblastogenesis and bone formation and may be leveraged to prevent common bone-degenerating conditions.
Collapse
Affiliation(s)
- Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Farzaneh Khani
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ines Sturmlechner
- Departments of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Xianhu Zhou
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sofia S Jerez
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jian Zhong
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeong-Heon Lee
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ramesh Natarajan
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, USA
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - David R Deyle
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Tamas Ordog
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
7
|
Hu T, Chen F, Chen D, Liang H. DNMT3a negatively regulates PTEN to activate the PI3K/AKT pathway to aggravate renal fibrosis. Cell Signal 2022; 96:110352. [PMID: 35523401 DOI: 10.1016/j.cellsig.2022.110352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Renal fibrosis has become one of the major diseases threatening global public health and harming human life and health. PTEN methylation plays an important role in fibrotic diseases of many organs. However, the relationship between PTEN methylation and renal fibrosis is still elusive. METHODS In the present study, we established a unilateral ureteral obstruction (UUO) mouse model in vivo and a transforming growth factor β1 (TGF-β1)-stimulated renal tubular epithelial cell (HK-2) model in vitro. The degree of renal interstitial fibrosis was detected by haematoxylin-eosin (HE) staining and Masson's trichrome staining. Western blot (WB), qRT-PCR, immunohistochemistry (IHC) and methylation-specific PCR (MSP) analyses were used to determine the mechanism by which PTEN methylation regulates renal fibrosis. The α-SMA fibrosis marker was detected by immunofluorescence (IF). Additionally, the relationship of PTEN and DNMT3a in UUO was determined by ChIP-qRT-PCR. RESULTS Our results showed that the promoter region of PTEN was methylated in UUO. Compared to the sham group, the expression of PTEN was significantly reduced in the UUO group. However, the demethylation reagent significantly inhibited epithelial-mesenchymal transition (EMT), which showed increased expression of E-cadherin and decreased expression of α-SMA and fibronectin. Moreover, treatment of HK-2 cells with 5-aza-dc reversed the activation of the TGF-β1-induced PI3K/AKT signalling pathway, which inhibited renal fibrosis. WB analysis demonstrated that TGF-β1 inhibited the PTEN protein expression level and DNMT3a knockdown reversed the inhibitory effect of TGF-β1 on PTEN expression. Furthermore, ChIP-qRT-PCR showed that DNMT3a interacted with PTEN. Finally, we found that DNMT3a negatively regulated PTEN to activate the PI3K/AKT signalling pathway and aggravate renal fibrosis in vitro and in vivo. CONCLUSION In summary, these results indicated that renal fibrosis is related to the downregulation of PTEN. Additionally, DNMT3a negatively regulates PTEN to activate the PI3K/AKT signalling pathway and induce EMT in renal tubular epithelial cells, thereby aggravating renal fibrosis.
Collapse
Affiliation(s)
- Taotao Hu
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430022, China
| | - Fang Chen
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430022, China
| | - Dan Chen
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430022, China
| | - Hongqing Liang
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, 430022, China..
| |
Collapse
|
8
|
Pradeepa, Suresh V, Singh VK, Nayak KB, Senapati S, Chakraborty S. EVI1 promotes metastasis by downregulating TIMP2 in metastatic colon and breast cancer cells. Int J Biochem Cell Biol 2022; 142:106118. [PMID: 34800694 DOI: 10.1016/j.biocel.2021.106118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Ecotropic viral integration site-1 (EVI1) is an oncogenic zinc finger transcription factor whose expression is frequently upregulated in a variety of cancers, including both myeloid malignancies and solid tumors. Previously, our group has shown that EVI1 knockdown minimizes the metastatic potential of colon cancer cells compared to that of control cells. In this study, to identify the potential targets that regulate cancer metastasis, control and EVI1 knockdown colon cancer cells were subjected to microarray. Differential gene expression analysis revealed significant downregulation of tissue inhibitor of matrix metalloproteinase-2 (TIMP2) in EVI1 expressing cells. EVI1 knockdown increased TIMP2 protein expression levels and reduced wound healing and migration capacity in metastatic cells. Mechanistically, the TIMP2 promoter harbors potential binding sites for EVI1; EVI1 binds to TIMP2 promoter and represses its expression, as observed using ChIP and luciferase assay, respectively. TIMP2 is an important metastasis suppressor gene; however, its function is suppressed in many cancers through hypermethylation. Thus, demethylation could prove to be a potential alternative to reactivate TIMP2 functional activity. Immunoprecipitation analysis showed that DNA-methyltransferase 1 (DNMT1), which plays a vital role in maintaining the genome methylation pattern during DNA replication and repair, interacts with EVI1 to promote TIMP2 silencing. Treating cancer cells in vitro with a known demethylation agent, 5-aza-2'-deoxycytidine (Aza-D), restored the optimal TIMP2 expression without altering EVI1 binding efficiency and reduced relative wound healing potential of cancer cells. Animal studies showed that Aza-D treated cells injected through the intravenous route exhibited reduced liver and skin metastasis when compared to non-treated cells. Furthermore, Aza-D treatment in mice delayed the metastasis progression compared to the vehicle treated group. Thus, the present study provides an insight into the therapeutic applications of demethylating agents to reduce cancer metastasis in models with EVI1 overexpressing tumors.
Collapse
Affiliation(s)
- Pradeepa
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Voddu Suresh
- Tumor Microenvironment and Animal Models Group, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | - Vivek Kumar Singh
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Kasturi Bala Nayak
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Group, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | - Soumen Chakraborty
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India.
| |
Collapse
|
9
|
Bao Y, Gabrielpillai J, Dietrich J, Zarbl R, Strieth S, Schröck F, Dietrich D. Fibroblast growth factor (FGF), FGF receptor (FGFR), and cyclin D1 (CCND1) DNA methylation in head and neck squamous cell carcinomas is associated with transcriptional activity, gene amplification, human papillomavirus (HPV) status, and sensitivity to tyrosine kinase inhibitors. Clin Epigenetics 2021; 13:228. [PMID: 34933671 PMCID: PMC8693503 DOI: 10.1186/s13148-021-01212-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background Dysregulation of fibroblast growth factor receptor (FGFR) signaling pathway has been observed in head and neck squamous cell carcinoma (HNSCC) and is a promising therapeutic target for selective tyrosine kinase inhibitors (TKIs). Potential predictive biomarkers for response to FGFR-targeted therapies are urgently needed. Understanding the epigenetic regulation of FGF pathway related genes, i.e. FGFRs, FGFs, and CCND1, could enlighten the way towards biomarker-selected FGFR-targeted therapies. Methods We performed DNA methylation analysis of the encoding genes FGFR1, FGFR2, FGFR3, FGFR4, FGF1-14, FGF16-23, and CCND1 at single CpG site resolution (840 CpG sites) employing The Cancer Genome Research Atlas (TCGA) HNSCC cohort comprising N = 530 tumor tissue and N = 50 normal adjacent tissue samples. We correlated DNA methylation to mRNA expression with regard to human papilloma virus (HPV) and gene amplification status. Moreover, we investigated the correlation of methylation with sensitivity to the selective FGFR inhibitors PD 173074 and AZD4547 in N = 40 HPV(−) HNSCC cell lines. Results We found sequence-contextually nuanced CpG methylation patterns in concordance with epigenetically regulated genes. High methylation levels were predominantly found in the promoter flank and gene body region, while low methylation levels were present in the central promoter region for most of the analyzed CpG sites. FGFRs, FGFs, and CCND1 methylation differed significantly between tumor and normal adjacent tissue and was associated with HPV and gene amplification status. CCND1 promoter methylation correlated with CCND1 amplification. For most of the analyzed CpG sites, methylation levels correlated to mRNA expression in tumor tissue. Furthermore, we found significant correlations of DNA methylation of specific CpG sites with response to the FGFR1/3–selective inhibitors PD 173074 and AZD4547, predominantly within the transcription start site of CCND1. Conclusions Our results suggest an epigenetic regulation of CCND1, FGFRs, and FGFs via DNA methylation in HNSCC and warrants further investigation of DNA methylation as a potential predictive biomarker for response to selective FGFR inhibitors in clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01212-4.
Collapse
Affiliation(s)
- Yilin Bao
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany.,Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jennis Gabrielpillai
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Romina Zarbl
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Friederike Schröck
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Bonn (UKB), Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| |
Collapse
|
10
|
Weston WC, Hales KH, Hales DB. Flaxseed Increases Animal Lifespan and Reduces Ovarian Cancer Severity by Toxically Augmenting One-Carbon Metabolism. Molecules 2021; 26:5674. [PMID: 34577143 PMCID: PMC8471351 DOI: 10.3390/molecules26185674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 01/06/2023] Open
Abstract
We used an LC-MS/MS metabolomics approach to investigate one-carbon metabolism in the plasma of flaxseed-fed White Leghorn laying hens (aged 3.5 years). In our study, dietary flaxseed (via the activity of a vitamin B6 antagonist known as "1-amino d-proline") induced at least 15-fold elevated plasma cystathionine. Surprisingly, plasma homocysteine (Hcy) was stable in flaxseed-fed hens despite such highly elevated cystathionine. To explain stable Hcy, our data suggest accelerated Hcy remethylation via BHMT and MS-B12. Also supporting accelerated Hcy remethylation, we observed elevated S-adenosylmethionine (SAM), an elevated SAM:SAH ratio, and elevated methylthioadenosine (MTA), in flaxseed-fed hens. These results suggest that flaxseed increases SAM biosynthesis and possibly increases polyamine biosynthesis. The following endpoint phenotypes were observed in hens consuming flaxseed: decreased physiological aging, increased empirical lifespan, 9-14% reduced body mass, and improved liver function. Overall, we suggest that flaxseed can protect women from ovarian tumor metastasis by decreasing omental adiposity. We also propose that flaxseed protects cancer patients from cancer-associated cachexia by enhancing liver function.
Collapse
Affiliation(s)
- William C. Weston
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Karen H. Hales
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dale B. Hales
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| |
Collapse
|
11
|
Redl E, Sheibani-Tezerji R, Cardona CDJ, Hamminger P, Timelthaler G, Hassler MR, Zrimšek M, Lagger S, Dillinger T, Hofbauer L, Draganić K, Tiefenbacher A, Kothmayer M, Dietz CH, Ramsahoye BH, Kenner L, Bock C, Seiser C, Ellmeier W, Schweikert G, Egger G. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK-driven lymphomagenesis. Life Sci Alliance 2021; 4:e202000794. [PMID: 33310759 PMCID: PMC7768196 DOI: 10.26508/lsa.202000794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Elisa Redl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Melanie Rosalia Hassler
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Maša Zrimšek
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Dillinger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Lorena Hofbauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Tiefenbacher
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Michael Kothmayer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Charles H Dietz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernard H Ramsahoye
- Centre for Genetic and Experimental Medicine, Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), CoreLab 2, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| |
Collapse
|
12
|
Masalmeh RHA, Taglini F, Rubio-Ramon C, Musialik KI, Higham J, Davidson-Smith H, Kafetzopoulos I, Pawlicka KP, Finan HM, Clark R, Wills J, Finch AJ, Murphy L, Sproul D. De novo DNA methyltransferase activity in colorectal cancer is directed towards H3K36me3 marked CpG islands. Nat Commun 2021; 12:694. [PMID: 33514701 PMCID: PMC7846778 DOI: 10.1038/s41467-020-20716-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The aberrant gain of DNA methylation at CpG islands is frequently observed in colorectal tumours and may silence the expression of tumour suppressors such as MLH1. Current models propose that these CpG islands are targeted by de novo DNA methyltransferases in a sequence-specific manner, but this has not been tested. Using ectopically integrated CpG islands, here we find that aberrantly methylated CpG islands are subject to low levels of de novo DNA methylation activity in colorectal cancer cells. By delineating DNA methyltransferase targets, we find that instead de novo DNA methylation activity is targeted primarily to CpG islands marked by the histone modification H3K36me3, a mark associated with transcriptional elongation. These H3K36me3 marked CpG islands are heavily methylated in colorectal tumours and the normal colon suggesting that de novo DNA methyltransferase activity at CpG islands in colorectal cancer is focused on similar targets to normal tissues and not greatly remodelled by tumourigenesis.
Collapse
Affiliation(s)
| | - Francesca Taglini
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Cristina Rubio-Ramon
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Kamila I Musialik
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Jonathan Higham
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | | | - Ioannis Kafetzopoulos
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Kamila P Pawlicka
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Hannah M Finan
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Richard Clark
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Jimi Wills
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Andrew J Finch
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK.
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
The Role of H3K4 Trimethylation in CpG Islands Hypermethylation in Cancer. Biomolecules 2021; 11:biom11020143. [PMID: 33499170 PMCID: PMC7912453 DOI: 10.3390/biom11020143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 01/01/2023] Open
Abstract
CpG methylation in transposons, exons, introns and intergenic regions is important for long-term silencing, silencing of parasitic sequences and alternative promoters, regulating imprinted gene expression and determining X chromosome inactivation. Promoter CpG islands, although rich in CpG dinucleotides, are unmethylated and remain so during all phases of mammalian embryogenesis and development, except in specific cases. The biological mechanisms that contribute to the maintenance of the unmethylated state of CpG islands remain elusive, but the modification of established DNA methylation patterns is a common feature in all types of tumors and is considered as an event that intrinsically, or in association with genetic lesions, feeds carcinogenesis. In this review, we focus on the latest results describing the role that the levels of H3K4 trimethylation may have in determining the aberrant hypermethylation of CpG islands in tumors.
Collapse
|
14
|
Chen X, Xing M. Effects of 5-Aza-2'-deoxycytidine on hormone secretion and epigenetic regulation in sika deer ovarian granulosa cells. Reprod Domest Anim 2020; 56:360-369. [PMID: 33254280 DOI: 10.1111/rda.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/14/2020] [Accepted: 11/28/2020] [Indexed: 11/29/2022]
Abstract
5-Aza-2'-deoxycytidine (5-Aza-dC), an inhibitor of DNA methyltransferases, is an effective treatment for various cancers and has improved the development rate of cloned embryos. Previous studies have reported the effect of 5-Aza-dC on fibroblasts; however, the mechanism whereby 5-Aza-dC affects sika deer granulosa cells and hormone secretion is presently unknown. Here, we showed that the cell cycle after treatment with different doses of 5-Aza-dC was significantly altered. The number of cells in the S phase was significantly increased in response to a concentration of 0.1 μM 5-Aza-dC. The rate of apoptosis was increased when cells were treated with 0.1 μM and 5 μM 5-Aza-dC. We showed that the protein level of H3K9me2 was significantly decreased in response to 5-Aza-dC. The activity levels of DNA methyltransferase were reduced by a moderate dose of 5-Aza-dC. Furthermore, the secretion of E2 and P4 was influenced by different doses of 5-Aza-dC. Our study suggested that 5-Aza-dC affected hormone secretion in sika deer granulosa cells through cell development and epigenetic regulation. The findings of this study lay the foundation for further epigenetic studies in sika deer.
Collapse
Affiliation(s)
- Xiumin Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingjie Xing
- State Key laboratory of Special Economic Animal Molecular Biology, Changchun, China
| |
Collapse
|
15
|
Loaeza-Loaeza J, Beltran AS, Hernández-Sotelo D. DNMTs and Impact of CpG Content, Transcription Factors, Consensus Motifs, lncRNAs, and Histone Marks on DNA Methylation. Genes (Basel) 2020; 11:genes11111336. [PMID: 33198240 PMCID: PMC7696963 DOI: 10.3390/genes11111336] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
DNA methyltransferases (DNMTs) play an essential role in DNA methylation and transcriptional regulation in the genome. DNMTs, along with other poorly studied elements, modulate the dynamic DNA methylation patterns of embryonic and adult cells. We summarize the current knowledge on the molecular mechanism of DNMTs’ functional targeting to maintain genome-wide DNA methylation patterns. We focus on DNMTs’ intrinsic characteristics, transcriptional regulation, and post-transcriptional modifications. Furthermore, we focus special attention on the DNMTs’ specificity for target sites, including key cis-regulatory factors such as CpG content, common motifs, transcription factors (TF) binding sites, lncRNAs, and histone marks to regulate DNA methylation. We also review how complexes of DNMTs/TFs or DNMTs/lncRNAs are involved in DNA methylation in specific genome regions. Understanding these processes is essential because the spatiotemporal regulation of DNA methylation modulates gene expression in health and disease.
Collapse
Affiliation(s)
- Jaqueline Loaeza-Loaeza
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, NC 39087 Chilpancingo, Mexico;
| | - Adriana S. Beltran
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Daniel Hernández-Sotelo
- Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, NC 39087 Chilpancingo, Mexico;
- Correspondence:
| |
Collapse
|
16
|
Saravanaraman P, Selvam M, Ashok C, Srijyothi L, Baluchamy S. De novo methyltransferases: Potential players in diseases and new directions for targeted therapy. Biochimie 2020; 176:85-102. [PMID: 32659446 DOI: 10.1016/j.biochi.2020.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Epigenetic modifications govern gene expression by guiding the human genome on 'what to express and what not to'. DNA methyltransferases (DNMTs) establish methylation patterns on DNA, particularly in CpG islands, and such patterns play a major role in gene silencing. DNMTs are a family of proteins/enzymes (DNMT1, 2, 3A, 3B, and 3L), among which, DNMT1 (maintenance methyltransferase) and DNMT3 (de novo methyltransferases) that direct mammalian development and genome imprinting are highly investigated. In recent decades, many studies revealed a strong association of DNA methylation patterns with gene expression in various clinical conditions. Differential expression of DNMT3 family proteins and their splice variants result in changes in methylation patterns and such alterations have been associated with the initiation and progression of various diseases, especially cancer. This review will discuss the aberrant modifications generated by DNMT3 proteins under various clinical conditions, suggesting a potential signature for de novo methyltransferases in targeted disease therapy. Further, this review discusses the possibility of using 'CpG island methylation signatures' as promising biomarkers and emphasizes 'targeted hypomethylation' by disrupting the interaction of specific DNMT-protein complexes as the future of cancer therapeutics.
Collapse
Affiliation(s)
- Ponne Saravanaraman
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Murugan Selvam
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Cheemala Ashok
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Loudu Srijyothi
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Sudhakar Baluchamy
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India.
| |
Collapse
|
17
|
Zhang W, Klinkebiel D, Barger CJ, Pandey S, Guda C, Miller A, Akers SN, Odunsi K, Karpf AR. Global DNA Hypomethylation in Epithelial Ovarian Cancer: Passive Demethylation and Association with Genomic Instability. Cancers (Basel) 2020; 12:cancers12030764. [PMID: 32213861 PMCID: PMC7140107 DOI: 10.3390/cancers12030764] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
A hallmark of human cancer is global DNA hypomethylation (GDHO), but the mechanisms accounting for this defect and its pathological consequences have not been investigated in human epithelial ovarian cancer (EOC). In EOC, GDHO was associated with advanced disease and reduced overall and disease-free survival. GDHO (+) EOC tumors displayed a proliferative gene expression signature, including FOXM1 and CCNE1 overexpression. Furthermore, DNA hypomethylation in these tumors was enriched within genomic blocks (hypomethylated blocks) that overlapped late-replicating regions, lamina-associated domains, PRC2 binding sites, and the H3K27me3 histone mark. Increased proliferation coupled with hypomethylated blocks at late-replicating regions suggests a passive hypomethylation mechanism. This hypothesis was further supported by our observation that cytosine DNA methyltransferases (DNMTs) and UHRF1 showed significantly reduced expression in GDHO (+) EOC after normalization to canonical proliferation markers, including MKI67. Finally, GDHO (+) EOC tumors had elevated chromosomal instability (CIN), and copy number alterations (CNA) were enriched at the DNA hypomethylated blocks. Together, these findings implicate a passive DNA demethylation mechanism in ovarian cancer that is associated with genomic instability and poor prognosis.
Collapse
Affiliation(s)
- Wa Zhang
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.Z.); (C.J.B.)
| | - David Klinkebiel
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.K.); (C.G.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carter J. Barger
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.Z.); (C.J.B.)
| | - Sanjit Pandey
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Chittibabu Guda
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.K.); (C.G.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Austin Miller
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Stacey N. Akers
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.A.); (K.O.)
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.A.); (K.O.)
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Adam R. Karpf
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.Z.); (C.J.B.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.K.); (C.G.)
- Correspondence: ; Tel.: +1-402-559-6115; Fax: +1-402-599-4651
| |
Collapse
|
18
|
Chromatin dynamics during liver regeneration. Semin Cell Dev Biol 2020; 97:38-46. [DOI: 10.1016/j.semcdb.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022]
|
19
|
Li X. Epigenetics and cell cycle regulation in cystogenesis. Cell Signal 2019; 68:109509. [PMID: 31874209 DOI: 10.1016/j.cellsig.2019.109509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022]
Abstract
The role of genetic mutations in the development of polycystic kidney disease (PKD), such as alterations in PKD1 and PKD2 genes in autosomal dominant PKD (ADPKD), is well understood. However, the significance of epigenetic mechanisms in the progression of PKD remains unclear and is increasingly being investigated. The term of epigenetics describes a range of mechanisms in genome function that do not solely result from the DNA sequence itself. Epigenetic information can be inherited during mammalian cell division to sustain phenotype specifically and physiologically responsive gene expression in the progeny cells. A multitude of functional studies of epigenetic modifiers and systematic genome-wide mapping of epigenetic marks reveal the importance of epigenomic mechanisms, including DNA methylation, histone/chromatin modifications and non-coding RNAs, in PKD pathologies. Deregulated proliferation is a characteristic feature of cystic renal epithelial cells. Moreover, defects in many of the molecules that regulate the cell cycle have been implicated in cyst formation and progression. Recent evidence suggests that alterations of DNA methylation and histone modifications on specific genes and the whole genome involved in cell cycle regulation and contribute to the pathogenesis of PKD. This review summarizes the recent advances of epigenetic mechanisms in PKD, which helps us to define the term of "PKD epigenetics" and group PKD epigenetic changes in three categories. In particularly, this review focuses on the interplay of epigenetic mechanisms with cell cycle regulation during normal cell cycle progression and cystic cell proliferation, and discusses the potential to detect and quantify DNA methylation from body fluids as diagnostic/prognostic biomarkers. Collectively, this review provides concepts and examples of epigenetics in cell cycle regulation to reveal a broad view of different aspects of epigenetics in biology and PKD, which may facilitate to identify possible novel therapeutic intervention points and to explore epigenetic biomarkers in PKD.
Collapse
Affiliation(s)
- Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, United States of America.
| |
Collapse
|
20
|
Park JW, Turcan Ş. Epigenetic Reprogramming for Targeting IDH-Mutant Malignant Gliomas. Cancers (Basel) 2019; 11:cancers11101616. [PMID: 31652645 PMCID: PMC6826741 DOI: 10.3390/cancers11101616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/24/2022] Open
Abstract
Targeting the epigenome has been considered a compelling treatment modality for several cancers, including gliomas. Nearly 80% of the lower-grade gliomas and secondary glioblastomas harbor recurrent mutations in isocitrate dehydrogenase (IDH). Mutant IDH generates high levels of 2-hydroxyglutarate (2-HG) that inhibit various components of the epigenetic machinery, including histone and DNA demethylases. The encouraging results from current epigenetic therapies in hematological malignancies have reinvigorated the interest in solid tumors and gliomas, both preclinically and clinically. Here, we summarize the recent advancements in epigenetic therapy for lower-grade gliomas and discuss the challenges associated with current treatment options. A particular focus is placed on therapeutic mechanisms underlying favorable outcome with epigenetic-based drugs in basic and translational research of gliomas. This review also highlights emerging bridges to combination treatment with respect to epigenetic drugs. Given that epigenetic therapies, particularly DNA methylation inhibitors, increase tumor immunogenicity and antitumor immune responses, appropriate drug combinations with immune checkpoint inhibitors may lead to improvement of treatment effectiveness of immunotherapy, ultimately leading to tumor cell eradication.
Collapse
Affiliation(s)
- Jong-Whi Park
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Välimäki N, Schalin-Jäntti C, Karppinen A, Paetau A, Kivipelto L, Aaltonen LA, Karhu A. Genetic and Epigenetic Characterization of Growth Hormone-Secreting Pituitary Tumors. Mol Cancer Res 2019; 17:2432-2443. [PMID: 31578227 DOI: 10.1158/1541-7786.mcr-19-0434] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/25/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022]
Abstract
Somatic driver mechanisms of pituitary adenoma pathogenesis have remained incompletely characterized; apart from mutations in the stimulatory Gα protein (Gαs encoded by GNAS) causing activated cAMP synthesis, pathogenic variants are rarely found in growth hormone-secreting pituitary tumors (somatotropinomas). The purpose of the current work was to clarify how genetic and epigenetic alterations contribute to the development of somatotropinomas by conducting an integrated copy number alteration, whole-genome and bisulfite sequencing, and transcriptome analysis of 21 tumors. Somatic mutation burden was low, but somatotropinomas formed two subtypes associated with distinct aneuploidy rates and unique transcription profiles. Tumors with recurrent chromosome aneuploidy (CA) were GNAS mutation negative (Gsp- ). The chromosome stable (CS) -group contained Gsp+ somatotropinomas and two totally aneuploidy-free Gsp- tumors. Genes related to the mitotic G1-S-checkpoint transition were differentially expressed in CA- and CS-tumors, indicating difference in mitotic progression. Also, pituitary tumor transforming gene 1 (PTTG1), a regulator of sister chromatid segregation, showed abundant expression in CA-tumors. Moreover, somatotropinomas displayed distinct Gsp genotype-specific methylation profiles and expression quantitative methylation (eQTM) analysis revealed that inhibitory Gα (Gαi) signaling is activated in Gsp+ tumors. These findings suggest that aneuploidy through modulated driver pathways may be a causative mechanism for tumorigenesis in Gsp- somatotropinomas, whereas Gsp+ tumors with constitutively activated cAMP synthesis seem to be characterized by DNA methylation activated Gαi signaling. IMPLICATIONS: These findings provide valuable new information about subtype-specific pituitary tumorigenesis and may help to elucidate the mechanisms of aneuploidy also in other tumor types.
Collapse
Affiliation(s)
- Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics, Research Programs Unit, FI-00014 University of Helsinki, Finland
| | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Atte Karppinen
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, HUSLAB, University of Helsinki, Helsinki, Finland
| | - Leena Kivipelto
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics, Research Programs Unit, FI-00014 University of Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,Applied Tumor Genomics, Research Programs Unit, FI-00014 University of Helsinki, Finland
| |
Collapse
|
22
|
Sun Z, Yu S, Chen S, Liu H, Chen Z. SP1 regulates KLF4 via SP1 binding motif governed by DNA methylation during odontoblastic differentiation of human dental pulp cells. J Cell Biochem 2019; 120:14688-14699. [PMID: 31009133 PMCID: PMC8895433 DOI: 10.1002/jcb.28730] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE DNA methylation is a critical epigenetic modulation in regulating gene expression in cell differentiation process, however, its detailed molecular mechanism during odontoblastic differentiation remains elusive. We aimed to study the global effect of DNA methylation on odontoblastic differentiation and how DNA methylation affects the transactivation of transcription factor (TF) on its target gene. METHODS DNA methyltransferase (DNMTs) inhibition assay and following odontoblastic differentiation assay were performed to evaluate the effect of DNA methylation inhibition on odontoblastic differentiation. Promoter DNA methylation microarray and motif enrichment assay were performed to predict the most DNA-methylation-affected TF motifs during odontoblastic differentiation. The enriched target sites and motifs were further analyzed by methylation-specific polymerase chain reaction (MS-PCR) and sequencing. The functional target sites were validated in vitro with Luciferase assay. The regulatory effect of DNA methylation on the enriched target sites in primary human dental pulp cells and motifs were confirmed by in vitro methylation assay. RESULTS Inhibition of DNMTs in preodontoblast cells increased the expression level of Klf4 as well as marker genes of odontoblastic differentiation including Dmp1 and Dspp, and enhanced the efficiency of odontoblastic differentiation. SP1/KLF4 binding motifs were found to be highly enriched in the promoter regions and showed demethylation during odontoblastic differentiation. Mutation of SP1 binding site at -75 within KLF4's promoter region significantly decreased the luciferase activity. The in vitro methylation of KLF4's promoter decreased the transactivation of SP1 on KLF4. CONCLUSION We confirmed that SP1 regulates KLF4 through binding site lying in a CpG island in KLF4's promoter region which demethylated during odontoblastic differentiation thus enhancing the efficiency of SP1's binding and transcriptional regulation on KLF4.
Collapse
Affiliation(s)
- Zheyi Sun
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuaitong Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, Texas
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Abstract
Increasing numbers of studies implicate abnormal DNA methylation in cancer and many non-malignant diseases. This is consistent with numerous findings about differentiation-associated changes in DNA methylation at promoters, enhancers, gene bodies, and sites that control higher-order chromatin structure. Abnormal increases or decreases in DNA methylation contribute to or are markers for cancer formation and tumour progression. Aberrant DNA methylation is also associated with neurological diseases, immunological diseases, atherosclerosis, and osteoporosis. In this review, I discuss DNA hypermethylation in disease and its interrelationships with normal development as well as proposed mechanisms for the origin of and pathogenic consequences of disease-associated hypermethylation. Disease-linked DNA hypermethylation can help drive oncogenesis partly by its effects on cancer stem cells and by the CpG island methylator phenotype (CIMP); atherosclerosis by disease-related cell transdifferentiation; autoimmune and neurological diseases through abnormal perturbations of cell memory; and diverse age-associated diseases by age-related accumulation of epigenetic alterations.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Tulane Cancer Center and Tulane Center for Bioinformatics and Genomics, Tulane University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
24
|
Cui X, Guo Y, Wang Q, Li X. MiR‐199‐3p–Dnmt3a–STAT3 signalling pathway in ovalbumin‐induced allergic rhinitis. Exp Physiol 2019; 104:1286-1295. [PMID: 31124216 DOI: 10.1113/ep087751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Xinhua Cui
- Department of Otolaryngology–Head and Neck SurgeryQianfoshan Hospital Affiliated to Shandong University 16766 Jingshi Road Jinan 250014 Shandong China
- Department of Otolaryngology–Head and Neck SurgeryQilu Hospital of Shandong University, NHC key laboratory of Otolaryngology 107 West Wenhua Road Jinan 250012 Shandong China
| | - Ying Guo
- Department of Otolaryngology–Head and Neck SurgeryQianfoshan Hospital Affiliated to Shandong University 16766 Jingshi Road Jinan 250014 Shandong China
| | - Qirong Wang
- Department of Otolaryngology–Head and Neck SurgeryQianfoshan Hospital Affiliated to Shandong University 16766 Jingshi Road Jinan 250014 Shandong China
| | - Xuezhong Li
- Department of Otolaryngology–Head and Neck SurgeryQilu Hospital of Shandong University, NHC key laboratory of Otolaryngology 107 West Wenhua Road Jinan 250012 Shandong China
| |
Collapse
|
25
|
The Roles of Human DNA Methyltransferases and Their Isoforms in Shaping the Epigenome. Genes (Basel) 2019; 10:genes10020172. [PMID: 30813436 PMCID: PMC6409524 DOI: 10.3390/genes10020172] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
A DNA sequence is the hard copy of the human genome and it is a driving force in determining the physiological processes in an organism. Concurrently, the chemical modification of the genome and its related histone proteins is dynamically involved in regulating physiological processes and diseases, which overall constitutes the epigenome network. Among the various forms of epigenetic modifications, DNA methylation at the C-5 position of cytosine in the cytosine–guanine (CpG) dinucleotide is one of the most well studied epigenetic modifications. DNA methyltransferases (DNMTs) are a family of enzymes involved in generating and maintaining CpG methylation across the genome. In mammalian systems, DNA methylation is performed by DNMT1 and DNMT3s (DNMT3A and 3B). DNMT1 is predominantly involved in the maintenance of DNA methylation during cell division, while DNMT3s are involved in establishing de novo cytosine methylation and maintenance in both embryonic and somatic cells. In general, all DNMTs require accessory proteins, such as ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domain 1 (UHRF1) or DNMT3-like (DNMT3L), for their biological function. This review mainly focuses on the role of DNMT3B and its isoforms in de novo methylation and maintenance of DNA methylation, especially with respect to their role as an accessory protein.
Collapse
|
26
|
Xu X, Lou Y, Tang J, Teng Y, Zhang Z, Yin Y, Zhuo H, Tan Z. The long non-coding RNA Linc-GALH promotes hepatocellular carcinoma metastasis via epigenetically regulating Gankyrin. Cell Death Dis 2019; 10:86. [PMID: 30692513 PMCID: PMC6349924 DOI: 10.1038/s41419-019-1348-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent subtype of liver cancer, and it is characterized by high rate of metastasis and recurrence. Recent studies have boosted our understanding that Gankyrin contributes to both of these pathological properties, but the mechanisms underlying its aberrant regulation are poorly understood. Recently, many long noncoding RNAs (lncRNAs) have been reported to be involved in regulating the expression of oncogenes and anti-oncogenes through various mechanisms. Here, using transcriptome microarray analysis, we identified a long intergenic noncoding RNA termed Linc-GALH that was highly expressed and concordance with Gankyrin expression in HCC. In addition, we revealed that Linc-GALH was an independent unfavorable prognostic indicator for HCC, followed functional experiments showed that Linc-GALH promoted HCC cells migration and invasion in vitro, and enhanced lung metastasis ability of HCC cells in vivo. Mechanistically, we found that Linc-GALH could regulate the expression of Gankyrin through controlling the methylation status of Gankyrin by adjusting the ubiquitination status of DNMT1 in HCC. Collectively, our results demonstrated the role and functional mechanism of Linc-GALH in HCC, and indicated that Linc-GALH may act as a prognostic biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiaoliang Xu
- Medical School of Southeast University, Nanjing, Jiangsu, P.R. China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, Jiangsu Province, P.R. China
| | - Yun Lou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, Jiangsu Province, P.R. China.,Key Laboratory of Living Donor Liver Transplantation, Department of Liver Surgery, National Health and Family Planning Commission, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Junwei Tang
- Key Laboratory of Living Donor Liver Transplantation, Department of Liver Surgery, National Health and Family Planning Commission, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yue Teng
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, Jiangsu, P.R. China
| | - Zechuan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, Jiangsu Province, P.R. China.,Key Laboratory of Living Donor Liver Transplantation, Department of Liver Surgery, National Health and Family Planning Commission, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yin Yin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, Jiangsu Province, P.R. China
| | - Han Zhuo
- Key Laboratory of Living Donor Liver Transplantation, Department of Liver Surgery, National Health and Family Planning Commission, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Zhongming Tan
- Key Laboratory of Living Donor Liver Transplantation, Department of Liver Surgery, National Health and Family Planning Commission, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
27
|
Honeywell RJ, Sarkisjan D, Kristensen MH, de Klerk DJ, Peters GJ. DNA methyltransferases expression in normal tissues and various human cancer cell lines, xenografts and tumors. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2019; 37:696-708. [PMID: 30663502 DOI: 10.1080/15257770.2018.1498516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/08/2018] [Accepted: 07/01/2018] [Indexed: 12/13/2022]
Abstract
DNA methylation plays an important role in carcinogenesis and aberrant methylation patterns have been found in many tumors. Methylation is regulated by DNA methyltransferases (DNMT), catalyzing DNA methylation. Therefore inhibition of DNMT is an interesting target for anticancer treatment. RX-3117 (fluorocyclopentenylcytosine) is a novel demethylating antimetabolite that is currently being studied in clinical trials in metastatic bladder and pancreatic cancers. The active nucleotide of RX-3117 is incorporated into DNA leading to downregulation of DNMT1, the maintenance DNA methylation enzyme. Since DNMT1 is a major target for the activity of RX-3117, DNMT1 may be a potential predictive biomarker. Therefore, DNMT1 protein and mRNA expression was investigated in 19 cancer cell lines, 26 human xenografts (hematological, lung, pancreatic, colon, bladder cancer) and 10 colorectal cancer patients. The DNMT1 mRNA expression showed large variation between cell lines (100-fold) and the 26 xenografts (1100-fold) investigated. The DNMT1 protein was overexpressed in colon tumours from patients compared to non-malignant mucosa from the same patients (P = 0.02). The DNA methylation in these patients was significantly higher in tumour tissues compared to normal mucosa (P = 0.001). DNMT1 expression in normal white blood cells also showed a large variation. In conclusion, the large variation in DNMT1 expression may serve as a potential biomarker for demethylating therapy such as with RX-3117.
Collapse
Affiliation(s)
- Richard J Honeywell
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Dzjemma Sarkisjan
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Michael H Kristensen
- b Department of Clinical Pathology , South Naestved Hospital , Denmark, The Netherlands
| | - Daniel J de Klerk
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Godefridus J Peters
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| |
Collapse
|
28
|
Li W, Tang R, Ma F, Ouyang S, Liu Z, Wu J. Folic acid supplementation alters the DNA methylation profile and improves insulin resistance in high-fat-diet-fed mice. J Nutr Biochem 2018; 59:76-83. [PMID: 29986310 DOI: 10.1016/j.jnutbio.2018.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/20/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Folic acid (FA) supplementation may protect from obesity and insulin resistance, the effects and mechanism of FA on chronic high-fat-diet-induced obesity-related metabolic disorders are not well elucidated. We adopted a genome-wide approach to directly examine whether FA supplementation affects the DNA methylation profile of mouse adipose tissue and identify the functional consequences of these changes. Mice were fed a high-fat diet (HFD), normal diet (ND) or an HFD supplemented with folic acid (20 μg/ml in drinking water) for 10 weeks, epididymal fat was harvested, and genome-wide DNA methylation analyses were performed using methylated DNA immunoprecipitation sequencing (MeDIP-seq). Mice exposed to the HFD expanded their adipose mass, which was accompanied by a significant increase in circulating glucose and insulin levels. FA supplementation reduced the fat mass and serum glucose levels and improved insulin resistance in HFD-fed mice. MeDIP-seq revealed distribution of differentially methylated regions (DMRs) throughout the adipocyte genome, with more hypermethylated regions in HFD mice. Methylome profiling identified DMRs associated with 3787 annotated genes from HFD mice in response to FA supplementation. Pathway analyses showed novel DNA methylation changes in adipose genes associated with insulin secretion, pancreatic secretion and type 2 diabetes. The differential DNA methylation corresponded to changes in the adipose tissue gene expression of Adcy3 and Rapgef4 in mice exposed to a diet containing FA. FA supplementation improved insulin resistance, decreased the fat mass, and induced DNA methylation and gene expression changes in genes associated with obesity and insulin secretion in obese mice fed a HFD.
Collapse
Affiliation(s)
- Wei Li
- Graduate School of Peking Union Medical College, No. 9, Dongdansantiao, Dongcheng District, Beijing 100730, China; Department of Biochemistry & Immunology, Capital Institute of Pediatrics, No. 2, Yabao Road, Chaoyang District, Beijing 100020, China
| | - Renqiao Tang
- Graduate School of Peking Union Medical College, No. 9, Dongdansantiao, Dongcheng District, Beijing 100730, China; Department of Biochemistry & Immunology, Capital Institute of Pediatrics, No. 2, Yabao Road, Chaoyang District, Beijing 100020, China
| | - Feifei Ma
- Graduate School of Peking Union Medical College, No. 9, Dongdansantiao, Dongcheng District, Beijing 100730, China
| | - Shengrong Ouyang
- Graduate School of Peking Union Medical College, No. 9, Dongdansantiao, Dongcheng District, Beijing 100730, China
| | - Zhuo Liu
- Graduate School of Peking Union Medical College, No. 9, Dongdansantiao, Dongcheng District, Beijing 100730, China
| | - Jianxin Wu
- Graduate School of Peking Union Medical College, No. 9, Dongdansantiao, Dongcheng District, Beijing 100730, China; Department of Biochemistry & Immunology, Capital Institute of Pediatrics, No. 2, Yabao Road, Chaoyang District, Beijing 100020, China.
| |
Collapse
|
29
|
Li B, Zhao J, Ma JX, Li GM, Zhang Y, Xing GS, Liu J, Ma XL. Overexpression of DNMT1 leads to hypermethylation of H19 promoter and inhibition of Erk signaling pathway in disuse osteoporosis. Bone 2018; 111:82-91. [PMID: 29555308 DOI: 10.1016/j.bone.2018.03.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022]
Abstract
Disuse osteoporosis (DOP) is a common complication of the lack of mechanical loading. The precise mechanism underlying DOP remains unknown, although epigenetic modifications may be a major cause. Recently, cumulative research has revealed that DNA methyltransferase (DNMT) proteins can catalyze the conversion of cytosine to 5-methylcytosine (5mC), altering the epigenetic state of DNA. Here, we report that DNMT1 expression and lncRNA-H19 methylation are upregulated in the femoral tissues of DOP rats, accompanied with inhibited Erk signaling pathway. Overexpression of DNMT1 in UMR-106 cells mimics 5mC enrichment in the H19 promoter, inhibition of Erk signaling and impairment of osteogenesis, which can be rescued by 5'-aza-deoxycytidine (5'-Aza) treatment. Moreover, local intramedullary injection of Dnmt1 siRNA (siDNMT1) in Sprague-Dawley (SD) rats abrogated disuse lncRNA-H19 (H19) downregulation, Erk signaling inhibition, histopathological changes, and bone microstructure declines in the distal femur in vivo. Therefore, our data identify for the first time a new signaling cascade in DOP: mechanical unloading causes upregulation of DNMT1 and hypermethylation of H19 promoter, which subsequently leads to downregulation of lncRNA-H19 and inhibition of the ERK signaling, suggesting a new potential therapeutic target.
Collapse
Affiliation(s)
- Bing Li
- Joint Department, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Jie Zhao
- Orthopedic Department, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Jian-Xiong Ma
- Orthopedic Research Institute, Tianjin Hospital, Tianjin 300050, People's Republic of China
| | - Guo-Min Li
- Graduate School, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yang Zhang
- Orthopedic Research Institute, Tianjin Hospital, Tianjin 300050, People's Republic of China
| | - Guo-Sheng Xing
- Orthopedic Research Institute, Tianjin Hospital, Tianjin 300050, People's Republic of China
| | - Jun Liu
- Joint Department, Tianjin Hospital, Tianjin 300211, People's Republic of China.
| | - Xin-Long Ma
- Joint Department, Tianjin Hospital, Tianjin 300211, People's Republic of China; Orthopedic Research Institute, Tianjin Hospital, Tianjin 300050, People's Republic of China.
| |
Collapse
|
30
|
Chen Y, Millstein J, Liu Y, Chen GY, Chen X, Stucky A, Qu C, Fan JB, Chang X, Soleimany A, Wang K, Zhong J, Liu J, Gilliland FD, Li Z, Zhang X, Zhong JF. Single-Cell Digital Lysates Generated by Phase-Switch Microfluidic Device Reveal Transcriptome Perturbation of Cell Cycle. ACS NANO 2018; 12:4687-4694. [PMID: 29589910 PMCID: PMC5997256 DOI: 10.1021/acsnano.8b01272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
With conventional gene expression profiling, information concerning cellular heterogeneity is often lost in the physical mixing and averaging of millions of cells. Single-cell transcriptome analysis has the potential to address these issues. However, there is a need to determine how many cells are needed to draw meaningful conclusions in each single-cell study. Here, we introduce the concept of "digital lysate" for assessing cellular heterogeneity with a phase-switch microfluidic platform and apply it to construct a molecular map of transcriptome perturbation during the cell cycle. Using a phase-switch droplet microfluidic platform and next-generation sequencing, we obtained transcriptomes of single cells by random sampling. Digital lysates were generated by permutating and averaging multiple single-cell transcriptomes. In our studied cell populations, digital lysates converged to physical lysates ( r = 0.93), and the sample-to-sample repeatability was comparable to that of conventional analysis of a physical lysate ( r = 0.98). After determining the number of cells needed, single-cell transcriptomes were used to organize cells into a map by molecular similarity, and the map was validated by cell cycle-specific markers ( p = 0.003). Cell cycle regulatory genes were inferred using this molecular map and verified with siRNA assays. The study described here provides an effective approach, the generation and analysis of digital lysates, to investigate cellular heterogeneity.
Collapse
Affiliation(s)
- Yan Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089, United States
| | - Joshua Millstein
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Yao Liu
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089, United States
| | - Gina Y. Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089, United States
| | - Xuelian Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089, United States
| | - Andres Stucky
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089, United States
| | - Cunye Qu
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jian-Bing Fan
- Illumina Inc., San Diego, California 92122, United States
| | - Xiao Chang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Ava Soleimany
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Jiangjian Zhong
- Z-genetic Medicine Inc., Temple City, California 91780, United States
| | - Jie Liu
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Frank D. Gilliland
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Zhongjun Li
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089, United States
| | - Xi Zhang
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jiang F. Zhong
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
31
|
Shi H, Chen X, Jiang H, Wang X, Yu H, Sun P, Sui X. miR-148a suppresses cell invasion and migration in gastric cancer by targeting DNA methyltransferase 1. Oncol Lett 2018. [PMID: 29541249 PMCID: PMC5835867 DOI: 10.3892/ol.2018.7907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant tumor globally. The highest incidence of GC is found in Eastern Asia, particularly in China. It is therefore imperative to further elucidate the molecular pathogenesis of GC in order to identify new biomarkers and targets for effective therapy. In the present study, we determined whether miR-148a was aberrantly downregulated in gastric cancer tissues and significantly correlated with aggressive clinicopathological characteristics in the MGC-803, HGC-27 and GES-1 cell lines using reverse transcription-quantitative PCR and western blot analysis. The cell lines were obtained from 60 patients who presented at our hospital between September 2010 and July 2015. The results showed that, miR-148a was aberrantly downregulated in GC tissues and its expression was relatively lower in the MGC-803 and HGC-27 GC cell lines than in the normal gastric epithelial cell line, GES-1. The clinicopathological analysis revealed that a decrease of miR-148a was significantly correlated with lymph-node metastasis (P<0.01) and tumor node metastasis (TNM) stage (P<0.05). The transwell assay showed that the re-expression of miR-148a significantly reduced cell migratory and invasive abilities in vitro (P<0.01). The luciferase assay confirmed that, DNA methyltransferase 1 (DNMT1) was a direct and functional target of miR-148a. The miR-148a inhibitor increased the expression of DNMT1 in HGC-27 cells and the re-expression of miR-148a reduced the expression of DNMT1 in MGC-803 cells as confirmed by western blot analysis. Furthermore, we found that the re-expression of DNMT1 reversed the inhibition of cell migration and invasion induced by miR-148a. Taken together, we demonstrated that miR-148a suppresses cell invasion and migration in gastric cancer by regulating DNMT1 expression. The miR-148a/DNMT1 axis may therefore be a new potential target for GC therapy.
Collapse
Affiliation(s)
- Huaijie Shi
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Xiaojing Chen
- First Department of Radiotherapy, Qingdao Center Hospital, Qingdao, Shandong 266000, P.R. China
| | - Hao Jiang
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Xujie Wang
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Hao Yu
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Pijiang Sun
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| | - Xin Sui
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
32
|
Lee E, Wang J, Yumoto K, Jung Y, Cackowski FC, Decker AM, Li Y, Franceschi RT, Pienta KJ, Taichman RS. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia 2017; 18:553-66. [PMID: 27659015 PMCID: PMC5031902 DOI: 10.1016/j.neo.2016.07.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Cancer metastasis is a multistep process associated with the induction of an epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs). Although significant progress has been made in understanding the molecular mechanisms regulating EMT and the CSC phenotype, little is known of how these processes are regulated by epigenetics. Here we demonstrate that reduced expression of DNA methyltransferase 1 (DNMT1) plays an important role in the induction of EMT and the CSC phenotype by prostate cancer (PCa) cells, with enhanced tumorigenesis and metastasis. First, we observed that reduction of DNMT1 by 5-azacitidine (5-Aza) promotes EMT induction as well as CSCs and sphere formation in vitro. Reduced expression of DNMT1 significantly increased PCa migratory potential. We showed that the increase of EMT and CSC activities by reduction of DNMT1 is associated with the increase of protein kinase C. Furthermore, we confirmed that silencing DNMT1 is correlated with enhancement of the induction of EMT and the CSC phenotype in PCa cells. Additionally, chromatin immunoprecipitation assay reveals that reduction of DNMT1 promotes the suppression of H3K9me3 and H3K27me3 on the Zeb2 and KLF4 promoter region in PCa cells. Critically, we found in an animal model that significant tumor growth and more disseminated tumor cells in most osseous tissues were observed following injection of 5-Aza pretreated-PCa cells compared with vehicle-pretreated PCa cells. Our results suggest that epigenetic alteration of histone demethylation regulated by reduction of DNMT1 may control induction of EMT and the CSC phenotype, which facilitates tumorigenesis in PCa cells and has important therapeutic implications in targeting epigenetic regulation.
Collapse
Affiliation(s)
- Eunsohl Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Jingcheng Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Kenji Yumoto
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Yan Li
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Renny T Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Kenneth J Pienta
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Mandal RK, Haque S, Wahid M, Jawed A, Akhter N, Khan MEA, Panda AK, Areeshi MY, Dar SA. Meta-analysis Reveals No Association of DNMT3B -149 C>T Gene Polymorphism With Overall Cancer Risk. Curr Genomics 2017; 17:528-537. [PMID: 28217009 PMCID: PMC5282604 DOI: 10.2174/1389202917666160530150036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 11/28/2022] Open
Abstract
Background: DNA methyltransferase-3B (DNMT3B) plays a key role in establishment and maintenance of genomic methylation patterns. Polymorphism in promoter region -149 C>T (C46359T) of DNMT3B gene may alter DNMT3B activity which leads to increased susceptibility to cancer. Inconsistent results regarding this have been reported in a number of studies. Objective: To carry out a meta-analysis of the studies reported to assess the precise relationship between the DNMT3B -149 C>T polymorphism and the overall cancer risk. Method: PubMed (MEDLINE) web database was searched for the studies concerning DNMT3B -149 C>T polymorphism and its association with cancer risk. The pooled odds ratios (ORs) along with 95% confidence intervals (95% CIs) were calculated for all the genetic models, from the selected case-control studies, by meta-analysis. Results: Overall eighteen studies containing 5583 cancer cases and 7618 controls were analyzed. No significant risk was observed overall for T allele carrier (T vs. C: p=0.303; OR=1.032, 95% CI=0.972-1.097), homozygous (TT vs. CC: p=0.336; OR=1.063, 95% CI=0.939–1.204), heterozygous (CT vs. CC: p=0.802; OR=1.022, 95% CI=0.860-1.216), dominant (TT vs. CC+CT: p=0.298; OR=1.101, 95% CI=0.919-1.319) and recessive (TT+CT vs. CC: p=0.656; OR=1.021, 95% CI=0.931-1.121) genetic models. Subgroup analysis of Asian and Caucasian populations also did not demonstrate any cancer risk in all the genetic models studied. Conclusion: Our meta-analysis proposes that the DNMT3B -149 C>T polymorphism may not be an independent predisposing factor for the risk of cancer. However, larger sample size and expression studies are required to confirm the observation.
Collapse
Affiliation(s)
- Raju Kumar Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Kingdom of Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Kingdom of Saudi Arabia;; Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Kingdom of Saudi Arabia;; Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Kingdom of Saudi Arabia
| | - Naseem Akhter
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi-110025, India;; Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Md Ekhlaque Ahmed Khan
- Centre for Life Science, School of Natural Sciences, Central University of Jharkhand, Ranchi-835205, Jharkhand, India
| | - Aditya Kumar Panda
- Centre for Life Science, School of Natural Sciences, Central University of Jharkhand, Ranchi-835205, Jharkhand, India
| | - Mohammed Yahya Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Kingdom of Saudi Arabia
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Placental expression of DNA methyltransferase 1 (DNMT1): Gender-specific relation with human placental growth. Placenta 2016; 48:119-125. [DOI: 10.1016/j.placenta.2016.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 01/31/2023]
|
35
|
Scholpa NE, Kolli RT, Moore M, Arnold RD, Glenn TC, Cummings BS. Nephrotoxicity of epigenetic inhibitors used for the treatment of cancer. Chem Biol Interact 2016; 258:21-9. [PMID: 27543423 PMCID: PMC5045804 DOI: 10.1016/j.cbi.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/21/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022]
Abstract
This study determined the anti-neoplastic activity and nephrotoxicity of epigenetic inhibitors in vitro. The therapeutic efficacy of epigenetic inhibitors was determined in human prostate cancer cells (PC-3 and LNCaP) using the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-Aza) and the histone deacetylase inhibitor trichostatin A (TSA). Cells were also treated with carbamazepine (CBZ), an anti-convulsant with histone deacetylase inhibitor-like properties. 5-Aza, TSA or CBZ alone did not decrease MTT staining in PC-3 or LNCaP cells after 48 h. In contrast, docetaxel, a frontline chemotherapeutic induced concentration-dependent decreases in MTT staining. Pretreatment with 5-Aza or TSA increased docetaxel-induced cytotoxicity in LNCaP cells, but not PC-3 cells. TSA pretreatment also increased cisplatin-induced toxicity in LNCaP cells. Carfilzomib (CFZ), a protease inhibitor approved for the treatment of multiple myeloma had minimal effect on LNCaP cell viability, but reduced MTT staining 50% in PC-3 cells compared to control, and pretreatment with 5-Aza further enhanced toxicity. Treatment of normal rat kidney (NRK) and human embryonic kidney 293 (HEK293) cells with the same concentrations of epigenetic inhibitors used in prostate cancer cells significantly decreased MTT staining in all cell lines after 48 h. Interestingly, we found that the toxicity of epigenetic inhibitors to kidney cells was dependent on both the compound and the stage of cell growth. The effect of 5-Aza and TSA on DNA methyltransferase and histone deacetylase activity, respectively, was confirmed by assessing the methylation and acetylation of the CDK inhibitor p21. Collectively, these data show that combinatorial treatment with epigenetic inhibitors alters the efficacy of chemotherapeutics in cancer cells in a compound- and cell-specific manner; however, this treatment also has the potential to induce nephrotoxic cell injury.
Collapse
Affiliation(s)
- N E Scholpa
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - R T Kolli
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - M Moore
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - R D Arnold
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - T C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - B S Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
36
|
Yang Q, Pröll MJ, Salilew-Wondim D, Zhang R, Tesfaye D, Fan H, Cinar MU, Große-Brinkhaus C, Tholen E, Islam MA, Hölker M, Schellander K, Uddin MJ, Neuhoff C. LPS-induced expression of CD14 in the TRIF pathway is epigenetically regulated by sulforaphane in porcine pulmonary alveolar macrophages. Innate Immun 2016; 22:682-695. [PMID: 27688705 DOI: 10.1177/1753425916669418] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary alveolar macrophages (AMs) are important in defense against bacterial lung inflammation. Cluster of differentiation 14 (CD14) is involved in recognizing bacterial lipopolysaccharide (LPS) through MyD88-dependent and TRIF pathways of innate immunity. Sulforaphane (SFN) shows anti-inflammatory activity and suppresses DNA methylation. To identify CD14 epigenetic changes by SFN in the LPS-induced TRIF pathway, an AMs model was investigated in vitro. CD14 gene expression was induced by 5 µg/ml LPS at the time point of 12 h and suppressed by 5 µM SFN. After 12 h of LPS stimulation, gene expression was significantly up-regulated, including TRIF, TRAF6, NF-κB, TRAF3, IRF7, TNF-α, IL-1β, IL-6, and IFN-β. LPS-induced TRAM, TRIF, RIPK1, TRAF3, TNF-α, IL-1β and IFN-β were suppressed by 5 µM SFN. Similarly, DNMT3a expression was increased by LPS but significantly down-regulated by 5 µM SFN. It showed positive correlation of CD14 gene body methylation with in LPS-stimulated AMs, and this methylation status was inhibited by SFN. This study suggests that SFN suppresses CD14 activation in bacterial inflammation through epigenetic regulation of CD14 gene body methylation associated with DNMT3a. The results provide insights into SFN-mediated epigenetic down-regulation of CD14 in LPS-induced TRIF pathway inflammation and may lead to new methods for controlling LPS-induced inflammation in pigs.
Collapse
Affiliation(s)
- Qin Yang
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Maren J Pröll
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Dessie Salilew-Wondim
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Rui Zhang
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Dawit Tesfaye
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Huitao Fan
- 2 Department of Basic Medical Sciences, and Purdue Center for Cancer Research, Purdue University, USA
| | - Mehmet U Cinar
- 3 Department of Animal Science, Faculty of Agriculture, Erciyes University, Turkey
| | - Christine Große-Brinkhaus
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Ernst Tholen
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Mohammad A Islam
- 4 Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Michael Hölker
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Karl Schellander
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Muhammad J Uddin
- 4 Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Christiane Neuhoff
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| |
Collapse
|
37
|
Longacre M, Snyder NA, Housman G, Leary M, Lapinska K, Heerboth S, Willbanks A, Sarkar S. A Comparative Analysis of Genetic and Epigenetic Events of Breast and Ovarian Cancer Related to Tumorigenesis. Int J Mol Sci 2016; 17:E759. [PMID: 27213343 PMCID: PMC4881580 DOI: 10.3390/ijms17050759] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 01/02/2023] Open
Abstract
Breast cancer persists as the most common cause of cancer death in women worldwide. Ovarian cancer is also a significant source of morbidity and mortality, as the fifth leading cause of cancer death among women. This reflects the continued need for further understanding and innovation in cancer treatment. Though breast and ovarian cancer usually present as distinct clinical entities, the recent explosion of large-scale -omics research has uncovered many overlaps, particularly with respect to genetic and epigenetic alterations. We compared genetic, microenvironmental, stromal, and epigenetic changes common between breast and ovarian cancer cells, as well as the clinical relevance of these changes. Some of the most striking commonalities include genetic alterations of BRCA1 and 2, TP53, RB1, NF1, FAT3, MYC, PTEN, and PIK3CA; down regulation of miRNAs 9, 100, 125a, 125b, and 214; and epigenetic alterations such as H3K27me3, H3K9me2, H3K9me3, H4K20me3, and H3K4me. These parallels suggest shared features of pathogenesis. Furthermore, preliminary evidence suggests a shared epigenetic mechanism of oncogenesis. These similarities, warrant further investigation in order to ultimately inform development of more effective chemotherapeutics, as well as strategies to circumvent drug resistance.
Collapse
Affiliation(s)
| | - Nicole A Snyder
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Genevieve Housman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA.
| | - Meghan Leary
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Karolina Lapinska
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sarah Heerboth
- School of Medicine, Vanderbilt University, Nashville, TN 37240, USA.
| | - Amber Willbanks
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sibaji Sarkar
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
- Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
38
|
Hoxa5 undergoes dynamic DNA methylation and transcriptional repression in the adipose tissue of mice exposed to high-fat diet. Int J Obes (Lond) 2016; 40:929-37. [PMID: 26980478 DOI: 10.1038/ijo.2016.36] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/28/2015] [Accepted: 01/24/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND/OBJECTIVES The genomic bases of the adipose tissue abnormalities induced by chronic positive calorie excess have been only partially elucidated. We adopted a genome-wide approach to directly test whether long-term high-fat diet (HFD) exposure affects the DNA methylation profile of the mouse adipose tissue and to identify the functional consequences of these changes. SUBJECTS/METHODS We have used epididymal fat of mice fed either high-fat (HFD) or regular chow (STD) diet for 5 months and performed genome-wide DNA methylation analyses by methylated DNA immunoprecipitation sequencing (MeDIP-seq). Mouse Homeobox (Hox) Gene DNA Methylation PCR, RT-qPCR and bisulphite sequencing analyses were then performed. RESULTS Mice fed the HFD progressively expanded their adipose mass accompanied by a significant decrease in glucose tolerance (P<0.001) and insulin sensitivity (P<0.05). MeDIP-seq data analysis revealed a uniform distribution of differentially methylated regions (DMR) through the entire adipocyte genome, with a higher number of hypermethylated regions in HFD mice (P<0.005). This different methylation profile was accompanied by increased expression of the Dnmt3a DNA methyltransferase (Dnmt; P<0.05) and the methyl-CpG-binding domain protein Mbd3 (P<0.05) genes in HFD mice. Gene ontology analysis revealed that, in the HFD-treated mice, the Hox family of development genes was highly enriched in differentially methylated genes (P=0.008). To validate this finding, Hoxa5, which is implicated in fat tissue differentiation and remodeling, has been selected and analyzed by bisulphite sequencing, confirming hypermethylation in the adipose tissue from the HFD mice. Hoxa5 hypermethylation was associated with downregulation of Hoxa5 mRNA and protein expression. Feeding animals previously exposed to the HFD with a standard chow diet for two further months improved the metabolic phenotype of the animals, accompanied by return of Hoxa5 methylation and expression levels (P<0.05) to values similar to those of the control mice maintained under standard chow. CONCLUSIONS HFD induces adipose tissue abnormalities accompanied by epigenetic changes at the Hoxa5 adipose tissue remodeling gene.
Collapse
|
39
|
Sharma V, Verma V, Lal N, Yadav SK, Sarkar S, Mandalapu D, Porwal K, Rawat T, Maikhuri JP, Rajender S, Sharma VL, Gupta G. Disulfiram and its novel derivative sensitize prostate cancer cells to the growth regulatory mechanisms of the cell by re-expressing the epigenetically repressed tumor suppressor-estrogen receptor β. Mol Carcinog 2015; 55:1843-1857. [PMID: 26599461 DOI: 10.1002/mc.22433] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022]
Abstract
Estrogen Receptor-β (ER-β), a tumor-suppressor in prostate cancer, is epigenetically repressed by hypermethylation of its promoter. DNA-methyltransferases (DNMTs), which catalyze the transfer of methyl-groups to CpG islands of gene promoters, are overactive in cancers and can be inhibited by DNMT-inhibitors to re-express the tumor suppressors. The FDA-approved nucleoside DNMT-inhibitors like 5-Azacytidine and 5-Aza-deoxycytidine carry notable concerns due to their off-target toxicity, therefore non-nucleoside DNMT inhibitors are desirable for prolonged epigenetic therapy. Disulfiram (DSF), an antabuse drug, inhibits DNMT and prevents proliferation of cells in prostate and other cancers, plausibly through the re-expression of tumor suppressors like ER-β. To increase the DNMT-inhibitory activity of DSF, its chemical scaffold was optimized and compound-339 was discovered as a doubly potent DSF-derivative with similar off-target toxicity. It potently and selectively inhibited cell proliferation of prostate cancer (PC3/DU145) cells in comparison to normal (non-cancer) cells by promoting cell-cycle arrest and apoptosis, accompanied with inhibition of total DNMT activity, and re-expression of ER-β (mRNA/protein). Bisulfite-sequencing of ER-β promoter revealed that compound-339 demethylated CpG sites more efficaciously than DSF, restoring near-normal methylation status of ER-β promoter. Compound-339 docked on to the MTase domain of DNMT1 with half the energy of DSF. In xenograft mice-model, the tumor volume regressed by 24% and 50% after treatment with DSF and compound-339, respectively, with increase in ER-β expression. Apparently both compounds inhibit prostate cancer cell proliferation by re-expressing the epigenetically repressed tumor-suppressor ER-β through inhibition of DNMT activity. Compound-339 presents a new lead for further study as an anti-prostate cancer agent. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vikas Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vikas Verma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Nand Lal
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Santosh K Yadav
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saumya Sarkar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Dhanaraju Mandalapu
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Tara Rawat
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - J P Maikhuri
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Singh Rajender
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - V L Sharma
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Gopal Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
40
|
Chromatin Modifications and Mast Cell Migration in UV-Induced Immunosuppression, an Epigenetic Piece of The Puzzle. J Invest Dermatol 2015; 135:2911-2913. [PMID: 26569583 DOI: 10.1038/jid.2015.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The migration of dermal mast cells to skin-draining lymph nodes is a key step in UV-induced immunosuppression. Examining the effects of platelet-activating factor (PAF), a phospholipid mediator secreted by keratinocytes following UV exposure, on mast cells, Damiani et al. demonstrate that increased expression of CXCR4 is associated with increased histone acetylation at the promoter of this chemokine receptor gene.
Collapse
|
41
|
Zhang Y, Xu H, Shen Y, Gong Z, Xiao T. Association of DNMT3B -283 T > C and -579 G > T polymorphisms with decreased cancer risk: evidence from a meta-analysis. Int J Clin Exp Med 2015; 8:13028-13038. [PMID: 26550225 PMCID: PMC4612910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
Numerous studies have explored the association of polymorphisms in the DNA methyltransferase 3b (DNMT3B) gene with the risk of different types of cancer, but yielded controversial results. Therefore, we performed a meta-analysis to derive a more precise estimation of the association between three widely-studied DNMT3B polymorphisms and overall cancer susceptibility. Totally, 4 studies with 1234 cases and 1337 controls were eligible for DNMT3B -283 T > C (rs6087990), 19 studies with 5332 cases and 7407 controls for DNMT3B -149 C > T (rs2424913), and 14 studies with 3933 cases and 4436 controls for DNMT3B -579 G > T (rs1569686). Overall, DNMT3B -283 T > C was associated with a significantly reduced risk of overall cancer (T vs. C: OR = 0.84, 95% CI = 0.71-0.99, P = 0.039). Likewise, the association of DNMT3B -579 G > T with a decreased overall cancer risk was also observed (heterozygous: OR = 0.77, 95% CI = 0.65-0.91, P = 0.003 and dominant: OR = 0.80, 95% CI = 0.66-0.98, P = 0.029); in the subgroup analysis, the protective association was found for lung and colorectal cancer, but not for head and neck cancer. Finally, the pooled analysis showed no significant association between DNMT3B -149 C > T and overall cancer susceptibility, but stratification analysis indicated that this polymorphism decreased the risk of developing head and neck cancer (heterozygous: OR = 0.73, 95% CI = 0.59-0.90, P = 0.003 and dominant: OR = 0.76, 95% CI = 0.61-0.93, P = 0.009). In conclusion, our results suggested that DNMT3B -283 T > C and DNMT3B -579 G > T but DNMT3B -149 C > T might confer protection against overall cancer risk. In the future, large and well-designed case-control studies are needed to validate our findings.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Oncology, Xiangyang Central Hospital, Medical College, Hubei University of Arts and Science Xiangyang, Hubei 441000, P.R. China
| | - Haisheng Xu
- Department of Oncology, Xiangyang Central Hospital, Medical College, Hubei University of Arts and Science Xiangyang, Hubei 441000, P.R. China
| | - Yi Shen
- Department of Oncology, Xiangyang Central Hospital, Medical College, Hubei University of Arts and Science Xiangyang, Hubei 441000, P.R. China
| | - Zhimin Gong
- Department of Oncology, Xiangyang Central Hospital, Medical College, Hubei University of Arts and Science Xiangyang, Hubei 441000, P.R. China
| | - Tianlin Xiao
- Department of Oncology, Xiangyang Central Hospital, Medical College, Hubei University of Arts and Science Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
42
|
Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, Wu AR, Churchman LS, Singh A, Raj A. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol Cell 2015; 58:339-52. [PMID: 25866248 DOI: 10.1016/j.molcel.2015.03.005] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/16/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Individual mammalian cells exhibit large variability in cellular volume, even with the same absolute DNA content, and so must compensate for differences in DNA concentration in order to maintain constant concentration of gene expression products. Using single-molecule counting and computational image analysis, we show that transcript abundance correlates with cellular volume at the single-cell level due to increased global transcription in larger cells. Cell fusion experiments establish that increased cellular content itself can directly increase transcription. Quantitative analysis shows that this mechanism measures the ratio of cellular volume to DNA content, most likely through sequestration of a transcriptional factor to DNA. Analysis of transcriptional bursts reveals a separate mechanism for gene dosage compensation after DNA replication that enables proper transcriptional output during early and late S phase. Our results provide a framework for quantitatively understanding the relationships among DNA content, cell size, and gene expression variability in single cells.
Collapse
Affiliation(s)
- Olivia Padovan-Merhar
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gautham P Nair
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew G Biaesch
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andreas Mayer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Scarfone
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shawn W Foley
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela R Wu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Cui Y, Irudayaraj J. Dissecting the behavior and function of MBD3 in DNA methylation homeostasis by single-molecule spectroscopy and microscopy. Nucleic Acids Res 2015; 43:3046-55. [PMID: 25753672 PMCID: PMC4381056 DOI: 10.1093/nar/gkv098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 01/29/2015] [Indexed: 12/14/2022] Open
Abstract
The detailed mechanism for DNA methylation homeostasis relies on an intricate regulatory network with a possible contribution from methyl-CpG-binding domain protein 3 (MBD3). In this study we examine the single-molecule behavior of MBD3 and its functional implication in balancing the activity of DNA methyltransferases (DNMTs). Besides a localization tendency to DNA demethylating sites, MBD3 experiences a concurrent transcription with DNMTs in cell cycle. Fluorescence lifetime correlation spectroscopy (FLCS) and photon counting histogram (PCH) were applied to characterize the chromatin binding kinetics and stoichiometry of MBD3 in different cell phases. In the G1-phase, MBD3, in the context of the Mi-2/NuRD (nucleosome remodeling deacetylase) complex, could adopt a salt-dependent homodimeric association with its target epigenomic loci. Along with cell cycle progression, utilizing fluorescence lifetime imaging microscopy-based Förster resonance energy transfer (FLIM-FRET) we revealed that a proportion of MBD3 and MBD2 would co-localize with DNMT1 during DNA maintenance methylation, providing a proofreading and protective mechanism against a possible excessive methylation by DNMT1. In accordance with our hypothesis, insufficient MBD3 induced by small interfering RNA (siRNA) was found to result in a global DNA hypermethylation as well as increased methylation in the promoter CpG islands (CGIs) of a number of cell cycle related genes.
Collapse
Affiliation(s)
- Yi Cui
- Department of Agricultural and Biological Engineering, 225 S. University Street, Purdue University, West Lafayette, IN 47907, USA Bindley Bioscience Center, 1203 W. State Street, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, 225 S. University Street, Purdue University, West Lafayette, IN 47907, USA Bindley Bioscience Center, 1203 W. State Street, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
44
|
Zhu J, Du S, Zhang J, Wang Y, Wu Q, Ni J. Polymorphism of DNA methyltransferase 3B -149C/T and cancer risk: a meta-analysis. Med Oncol 2015; 32:399. [PMID: 25433949 PMCID: PMC4247848 DOI: 10.1007/s12032-014-0399-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 12/15/2022]
Abstract
Published data on the association between DNA methyltransferase (DNMT) 3B -149C/T polymorphism and cancer risk remain inconclusive. To derive a more precise estimation for this association, we performed a meta-analysis of 5,903 cancer cases and 8,132 controls from 22 published case-control studies. We used odds ratios (ORs) with 95 % confidence intervals (CIs) to assess the strength of the association. Our meta-analysis suggested that DNMT3B -149C/T polymorphism was associated with the risk of head and neck cancer under heterozygote comparison (OR 0.73, 95 % CI 0.59-0.90) and dominant model (OR 1.75, 95 % CI 0.62-0.92), although no evidence of association between DNMT3B -149C/T polymorphism and cancer risk was observed as we compared in the pooled analyses (homozygote comparison: OR 0.96, 95 % CI 0.86-1.09; heterozygote comparison: OR 1.07, 95 % CI 0.86-0.32; dominant model: OR 1.03, 95 % CI 0.85-1.25; recessive model: OR 0.93, 95 % CI 0.8-1.08). More studies are needed to detect DNMT3B -149C/T polymorphism and its association with cancer in different ethnic populations incorporated with environment exposures in the susceptibility of different kinds of cancer.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Yichang, 2# Jiefang Road, Yichang, 443000 Hubei Province China
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Three Gorges University, Yichang, 443000 China
| | - Songtao Du
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Yichang, 2# Jiefang Road, Yichang, 443000 Hubei Province China
| | - Jiaqi Zhang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Yichang, 2# Jiefang Road, Yichang, 443000 Hubei Province China
| | - Yingnan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Yichang, 2# Jiefang Road, Yichang, 443000 Hubei Province China
| | - Qiaoling Wu
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Yichang, 2# Jiefang Road, Yichang, 443000 Hubei Province China
| | - Jixiang Ni
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Yichang, 2# Jiefang Road, Yichang, 443000 Hubei Province China
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Three Gorges University, Yichang, 443000 China
| |
Collapse
|
45
|
Devanand P, Kim SI, Choi YW, Sheen SS, Yim H, Ryu MS, Kim SJ, Kim WJ, Lim IK. Inhibition of bladder cancer invasion by Sp1-mediated BTG2 expression via inhibition of DNA methyltransferase 1. FEBS J 2014; 281:5581-601. [PMID: 25284287 DOI: 10.1111/febs.13099] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 11/26/2022]
Abstract
Significantly lower endogenous expression of B-cell translocation gene 2 (BTG2) was observed in human muscle-invasive bladder cancers (MIBC) than matched normal tissues and non-muscle invasive bladder cancers (NMIBC). BTG2 expression was inversely correlated with increased expression of the DNA methyltransferases DNMT1 and DNMT3a in MIBC, but not NMIBC, suggesting a potential role for BTG2 expression in muscle invasion of bladder cancer. Over 90% of tumor tissues revealed strong methylation at CpG islands of the BTG2 gene, compared with no methylation in the normal tissues, implying epigenetic regulation of BTG2 expression in bladder carcinogenesis. By using EJ bladder cancer cells and the demethylating agent decitabine, transcription of BTG2 was shown to be up-regulated by inhibiting DNMT1 expression via modification at CpG islands. DNMT1 binding to the BTG2 gene further regulated BTG2 expression by chromatin remodeling, such as H3K9 dimethylation and H3K4 trimethylation, and Sp1 activation. Induced BTG2 expression significantly reduced EJ cell tumorigenesis and invasiveness together with induction of G2 /M arrest. These results demonstrate an important role for the BTG2(/TIS21/PC3) gene in the progression of bladder cancers, and suggest that BTG2(/TIS21/PC3) is a promising epigenetic target for prevention of muscle invasion in human bladder cancers.
Collapse
Affiliation(s)
- Preethi Devanand
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li X, Pei D, Zheng H. Transitions between epithelial and mesenchymal states during cell fate conversions. Protein Cell 2014; 5:580-91. [PMID: 24805308 PMCID: PMC4130923 DOI: 10.1007/s13238-014-0064-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/23/2014] [Indexed: 12/15/2022] Open
Abstract
Cell fate conversion is considered as the changing of one type of cells to another type including somatic cell reprogramming (de-differentiation), differentiation, and trans-differentiation. Epithelial and mesenchymal cells are two major types of cells and the transitions between these two cell states as epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) have been observed during multiple cell fate conversions including embryonic development, tumor progression and somatic cell reprogramming. In addition, MET and sequential EMT-MET during the generation of induced pluripotent stem cells (iPSC) from fibroblasts have been reported recently. Such observation is consistent with multiple rounds of sequential EMT-MET during embryonic development which could be considered as a reversed process of reprogramming at least partially. Therefore in current review, we briefly discussed the potential roles played by EMT, MET, or even sequential EMT-MET during different kinds of cell fate conversions. We also provided some preliminary hypotheses on the mechanisms that connect cell state transitions and cell fate conversions based on results collected from cell cycle, epigenetic regulation, and stemness acquisition.
Collapse
Affiliation(s)
- Xiang Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | | |
Collapse
|
47
|
Sinha KM, Yasuda H, Zhou X, deCrombrugghe B. Osterix and NO66 histone demethylase control the chromatin of Osterix target genes during osteoblast differentiation. J Bone Miner Res 2014; 29:855-65. [PMID: 24115157 PMCID: PMC3961497 DOI: 10.1002/jbmr.2103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 08/07/2013] [Accepted: 08/22/2013] [Indexed: 11/10/2022]
Abstract
Commitment of Runx2-expressing precursor osteoblasts to functional osteoblasts and then to osteocytes is triggered by Osterix (Osx), which activates its target genes in those cells during bone formation. It is not yet known whether Osx has a role in remodeling the chromatin architecture of its target genes during the transition from preosteoblast to osteoblast. In testing the hypothesis that Osx is indispensable for active chromatin architecture, we first showed that in Osx-null calvarial cells occupancy of the transcriptional activators, including lysine 4 methyl transferase (Wdr5), c-Myc, and H2A.Z, at the Osx target gene Bsp was very markedly decreased. The levels of methylation of lysines 4 and 36 and acetylation of histone H3, markers for active chromatin, were also reduced at the Bsp gene in these cells. In contrast, occupancy of the transcriptional repressors HP1 and the nucleolar protein 66 (NO66), a histone demethylase previously identified as an Osx-interacting protein, was increased at the Bsp gene in Osx-null calvarial cells. Furthermore, the Bsp promoter was hypermethylated in embryonic stem (ES) cells and in embryonic day 9.5 (E9.5) embryos but was markedly hypomethylated in the calvaria of E18.5 embryos, coinciding with robust Bsp expression. In contrast, CpG methylation in the Bsp promoter remained high in Osx-null calvaria compared to Osx-wild-type calvaria. Our data also revealed that NO66 interacted with DNA Methyltransferase 1A (DNMT1A), histone deacetylase 1A (HDAC1A), and HP1, which are known to control histone and DNA methylation. In addition, HP1 stimulated the demethylase activity of NO66 for its substrates "trimethylation of histone H3 at lysine 4" (H3K4me3) and "trimethylation of histone H3 at lysine 36" (H3K36me3). Our findings strongly suggest that in the absence of Osx, the chromatin of Osx target genes is transcriptionally inactive. We propose that Osx is a molecular switch for the formation of an active chromatin state during osteoblast differentiation, whereas NO66 helps gene repression through histone demethylation and/or formation of a repressor complex, resulting in multilayered control of the chromatin architecture of specific osteoblast genes.
Collapse
Affiliation(s)
- Krishna M. Sinha
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030; USA. 1515 Holcomb Blvd., Unit 1463, Houston, TX77030, USA, Tel.: +1 713 563 9117, Fax: +1 713 792 9833
| | - Hideyo Yasuda
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030; USA. 1515 Holcomb Blvd., Unit 1463, Houston, TX77030, USA, Tel.: +1 713 563 9117, Fax: +1 713 792 9833
| | - Xin Zhou
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030; USA. 1515 Holcomb Blvd., Unit 1463, Houston, TX77030, USA, Tel.: +1 713 563 9117, Fax: +1 713 792 9833
| | - Benoit deCrombrugghe
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX77030; USA. 1515 Holcomb Blvd., Unit 1463, Houston, TX77030, USA, Tel.: +1 713 563 9117, Fax: +1 713 792 9833
| |
Collapse
|
48
|
Ma X, Zhang B, Zheng W. Genetic variants associated with colorectal cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Gut 2014; 63:326-36. [PMID: 23946381 PMCID: PMC4020522 DOI: 10.1136/gutjnl-2012-304121] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In the past two decades, approximately 1000 reports have been published regarding associations between genetic variants in candidate genes and risk of colorectal cancer (CRC). Study results are inconsistent. We aim to provide a synopsis of the current understanding of genetic factors for CRC risk through systematically evaluating results from previous studies. DESIGN We searched PubMed and Google Scholar to identify papers that investigated associations between genetic variants and CRC risk and published through 25 December 2012. With data from 950 papers, we conducted 910 meta-analyses for 267 genetic variants in 150 candidate genes with at least three data sources. We used Venice criteria and false-positive report probability tests to grade levels of cumulative epidemiological evidence of significant associations with CRC risk. RESULTS Sixty-two variants in 50 candidate genes showed a nominally significant association with CRC risk (p<0.05). Cumulative epidemiological evidence for a significant association with CRC risk was graded strong for eight variants in five genes (adenomatous polyposis coli (APC), CHEK2, DNMT3B, MLH1 and MUTYH), moderate for two variants in two genes (GSTM1 and TERT), and weak for 52 variants in 45 genes. Additionally, 40 variants in 33 genes showed convincing evidence of no association with CRC risk in meta-analyses including at least 5000 cases and 5000 controls. CONCLUSIONS Approximately 4% of genetic variants evaluated to date in candidate-gene association studies showed moderate to strong cumulative epidemiological evidence of an association with CRC risk. These genetic variants, if confirmed, may explain approximately 5% of familial CRC risk.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ben Zhang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
49
|
Pellacani D, Kestoras D, Droop AP, Frame FM, Berry PA, Lawrence MG, Stower MJ, Simms MS, Mann VM, Collins AT, Risbridger GP, Maitland NJ. DNA hypermethylation in prostate cancer is a consequence of aberrant epithelial differentiation and hyperproliferation. Cell Death Differ 2014; 21:761-73. [PMID: 24464224 DOI: 10.1038/cdd.2013.202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (CaP) is mostly composed of luminal-like differentiated cells, but contains a small subpopulation of basal cells (including stem-like cells), which can proliferate and differentiate into luminal-like cells. In cancers, CpG island hypermethylation has been associated with gene downregulation, but the causal relationship between the two phenomena is still debated. Here we clarify the origin and function of CpG island hypermethylation in CaP, in the context of a cancer cell hierarchy and epithelial differentiation, by analysis of separated basal and luminal cells from cancers. For a set of genes (including GSTP1) that are hypermethylated in CaP, gene downregulation is the result of cell differentiation and is not cancer specific. Hypermethylation is however seen in more differentiated cancer cells and is promoted by hyperproliferation. These genes are maintained as actively expressed and methylation-free in undifferentiated CaP cells, and their hypermethylation is not essential for either tumour development or expansion. We present evidence for the causes and the dynamics of CpG island hypermethylation in CaP, showing that, for a specific set of genes, promoter methylation is downstream of gene downregulation and is not a driver of gene repression, while gene repression is a result of tissue-specific differentiation.
Collapse
Affiliation(s)
- D Pellacani
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - D Kestoras
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - A P Droop
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - F M Frame
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - P A Berry
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - M G Lawrence
- Prostate Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - M J Stower
- York District Hospital, Wigginton Road, City Centre, York, UK
| | - M S Simms
- 1] Castle Hill Hospital, Castle Rd, Cottingham, East Yorkshire, UK [2] Hull York Medical School, University of Hull, Hull, UK
| | - V M Mann
- 1] Castle Hill Hospital, Castle Rd, Cottingham, East Yorkshire, UK [2] Hull York Medical School, University of Hull, Hull, UK
| | - A T Collins
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| | - G P Risbridger
- Prostate Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - N J Maitland
- YCR Cancer Research Unit, Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
50
|
Hara ES, Ono M, Eguchi T, Kubota S, Pham HT, Sonoyama W, Tajima S, Takigawa M, Calderwood SK, Kuboki T. miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells. PLoS One 2013; 8:e83545. [PMID: 24386225 PMCID: PMC3875457 DOI: 10.1371/journal.pone.0083545] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/05/2013] [Indexed: 01/09/2023] Open
Abstract
Dental pulp cells (DPCs) are known to be enriched in stem/progenitor cells but not well characterized yet. Small non-coding microRNAs (miRNAs) have been identified to control protein translation, mRNA stability and transcription, and have been reported to play important roles in stem cell biology, related to cell reprogramming, maintenance of stemness and regulation of cell differentiation. In order to characterize dental pulp stem/progenitor cells and its mechanism of differentiation, we herein sorted stem-cell-enriched side population (SP) cells from human DPCs and periodontal ligament cells (PDLCs), and performed a locked nucleic acid (LNA)-based miRNA array. As a result, miR-720 was highly expressed in the differentiated main population (MP) cells compared to that in SP cells. In silico analysis and a reporter assay showed that miR-720 targets the stem cell marker NANOG, indicating that miR-720 could promote differentiation of dental pulp stem/progenitor cells by repressing NANOG. Indeed, gain-and loss-of-function analyses showed that miR-720 controls NANOG transcript and protein levels. Moreover, transfection of miR-720 significantly decreased the number of cells positive for the early stem cell marker SSEA-4. Concomitantly, mRNA levels of DNA methyltransferases (DNMTs), which are known to play crucial factors during stem cell differentiation, were also increased by miR-720 through unknown mechanism. Finally, miR-720 decreased DPC proliferation as determined by immunocytochemical analysis against ki-67, and promoted odontogenic differentiation as demonstrated by alizarin red staining, as well as alkaline phosphatase and osteopontin mRNA levels. Our findings identify miR-720 as a novel miRNA regulating the differentiation of DPCs.
Collapse
Affiliation(s)
- Emilio Satoshi Hara
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| | - Mitsuaki Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| | - Takanori Eguchi
- Department of Radiation Oncology, Division of Molecular and Cellular Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| | - Hai Thanh Pham
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| | - Wataru Sonoyama
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Masaharu Takigawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Division of Molecular and Cellular Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama-ken, Japan
| |
Collapse
|