1
|
Sani A, Tian Y, Shah S, Khan MI, Abdurrahman HR, Zha G, Zhang Q, Liu W, Abdullahi IL, Wang Y, Cao C. Deep learning ResNet34 model-assisted diagnosis of sickle cell disease via microcolumn isoelectric focusing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6517-6528. [PMID: 39248285 DOI: 10.1039/d4ay01005a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Traditional methods for sickle cell disease (SCD) screening can be inaccurate and misleading, and the early and accurate diagnosis of SCD is crucial for effective management and treatment. Although microcolumn isoelectric focusing (mIEF) is effective, the hemoglobinopathies must be accurately identified, wherein skilled personnel are required to analyse the bands in mIEF. Further automating and standardizing the diagnostic methods via AI to identify abnormal Hbs would be a useful endeavor. In this study, we propose a novel approach for SCD diagnosis by integrating the high throughput capability of ResNet34 in image analysis, as a deep learning convolutional neural network, for the precise separation of Hb variants using mIEF. Initially, SCD blood samples were subjected to mIEF and the resulting patterns were then captured as digital images. The sensitivity and specificity of the mIEF analysis were 100% and 97.8%, respectively, with a 99.39% accuracy. Comparison with HPLC showed a strong linear correlation (R2 = 0.9934), good agreement with the Bland-Altman plot (average difference ± 1.96 SD, bias = 9.89%) and a 100% match with the DNA analysis. Subsequently, the mIEF images were then input into the ResNet34 model, pre-trained on a large dataset, for feature extraction and classification. The integration of ResNet34 with mIEF demonstrated promising results in terms of precision (90.1%) and accuracy in distinguishing between the various SCD conditions. Overall, the proposed method offers a more effective, automated, and reduced cost approach for SCD diagnosis, which could potentially streamline diagnostic workflows and mitigate the subjectivity and variability inherent in manual assessments.
Collapse
Affiliation(s)
- Ali Sani
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Saud Shah
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Muhammad Idrees Khan
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | | - Genhan Zha
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ibrahim Lawal Abdullahi
- Department of Biological Sciences, Faculty of Life Sciences, Bayero University, Kano, 3011, Nigeria
| | - Yuxin Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Sani A, Idrees Khan M, Shah S, Tian Y, Zha G, Fan L, Zhang Q, Cao C. Diagnosis and screening of abnormal hemoglobins. Clin Chim Acta 2024; 552:117685. [PMID: 38030031 DOI: 10.1016/j.cca.2023.117685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Hemoglobin (Hb) abnormalities, such as thalassemia and structural Hb variants, are among the most prevalent inherited diseases and are associated with significant mortality and morbidity worldwide. However, there were not comprehensive reviews focusing on different clinical analytical techniques, research methods and artificial intelligence (AI) used in clinical screening and research on hemoglobinopathies. Hence the review offers a comprehensive summary of recent advancements and breakthroughs in the detection of aberrant Hbs, research methods and AI uses as well as the present restrictions anddifficulties in hemoglobinopathies. Recent advances in cation exchange high performance liquid chromatography (HPLC), capillary zone electrophoresis (CZE), isoelectric focusing (IEF), flow cytometry, mass spectrometry (MS) and polymerase chain reaction (PCR) etc have allowed for the definitive detection by using advanced AIand portable point of care tests (POCT) integrating with smartphone microscopic classification, machine learning (ML) model, complete blood counts (CBC), imaging-based method, speedy immunoassay, and electrochemical-, microfluidic- and sensing-related platforms. In addition, to confirm and validate unidentified and novel Hbs, highly specialized genetic based techniques like PCR, reverse transcribed (RT)-PCR, DNA microarray, sequencing of genomic DNA, and sequencing of RT-PCR amplified globin cDNA of the gene of interest have been used. Hence, adequate utilization and improvement of available diagnostic and screening technologies are important for the control and management of hemoglobinopathies.
Collapse
Affiliation(s)
- Ali Sani
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Idrees Khan
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saud Shah
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Genhan Zha
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Onyamboko MA, Olupot-Olupot P, Were W, Namayanja C, Onyas P, Titin H, Baseke J, Muhindo R, Kayembe DK, Ndjowo PO, Basara BB, Okalebo CB, Williams TN, Uyoga S, Taya C, Bamisaiye A, Fanello C, Maitland K, Day NPJ, Taylor WRJ, Mukaka M. Factors affecting haemoglobin dynamics in African children with acute uncomplicated Plasmodium falciparum malaria treated with single low-dose primaquine or placebo. BMC Med 2023; 21:397. [PMID: 37858129 PMCID: PMC10588240 DOI: 10.1186/s12916-023-03105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Single low-dose primaquine (SLDPQ) effectively blocks the transmission of Plasmodium falciparum malaria, but anxiety remains regarding its haemolytic potential in patients with glucose-6-phopshate dehydrogenase (G6PD) deficiency. We, therefore, examined the independent effects of several factors on haemoglobin (Hb) dynamics in falciparum-infected children with a particular interest in SLDPQ and G6PD status. METHODS This randomised, double-blind, placebo-controlled, safety trial was conducted in Congolese and Ugandan children aged 6 months-11 years with acute uncomplicated P. falciparum and day (D) 0 Hbs ≥ 6 g/dL who were treated with age-dosed SLDPQ/placebo and weight-dosed artemether lumefantrine (AL) or dihydroartemisinin piperaquine (DHAPP). Genotyping defined G6PD (G6PD c.202T allele), haemoglobin S (HbS), and α-thalassaemia status. Multivariable linear and logistic regression assessed factor independence for continuous Hb parameters and Hb recovery (D42 Hb > D0 Hb), respectively. RESULTS One thousand one hundred thirty-seven children, whose median age was 5 years, were randomised to receive: AL + SLDPQ (n = 286), AL + placebo (286), DHAPP + SLDPQ (283), and DHAPP + placebo (282). By G6PD status, 284 were G6PD deficient (239 hemizygous males, 45 homozygous females), 119 were heterozygous females, 418 and 299 were normal males and females, respectively, and 17 were of unknown status. The mean D0 Hb was 10.6 (SD 1.6) g/dL and was lower in younger children with longer illnesses, lower mid-upper arm circumferences, splenomegaly, and α-thalassaemia trait, who were either G6PDd or heterozygous females. The initial fractional fall in Hb was greater in younger children with higher D0 Hbs and D0 parasitaemias and longer illnesses but less in sickle cell trait. Older G6PDd children with lower starting Hbs and greater factional falls were more likely to achieve Hb recovery, whilst lower D42 Hb concentrations were associated with younger G6PD normal children with lower fractional falls, sickle cell disease, α-thalassaemia silent carrier and trait, and late treatment failures. Ten blood transfusions were given in the first week (5 SLDPQ, 5 placebo). CONCLUSIONS In these falciparum-infected African children, posttreatment Hb changes were unaffected by SLDPQ, and G6PDd patients had favourable posttreatment Hb changes and a higher probability of Hb recovery. These reassuring findings support SLDPQ deployment without G6PD screening in Africa. TRIAL REGISTRATION The trial is registered at ISRCTN 11594437.
Collapse
Affiliation(s)
- Marie A Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Kinshasa, Democratic Republic of Congo
| | - Peter Olupot-Olupot
- Busitema University, P.O. Box 1460, Mbale, Uganda
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Winifred Were
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Cate Namayanja
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Peter Onyas
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Harriet Titin
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Joy Baseke
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Rita Muhindo
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Daddy K Kayembe
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Kinshasa, Democratic Republic of Congo
| | - Pauline O Ndjowo
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Kinshasa, Democratic Republic of Congo
| | - Benjamin B Basara
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Kinshasa, Democratic Republic of Congo
| | | | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, London, SW7 2AS, UK
| | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Chiraporn Taya
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Adeola Bamisaiye
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Caterina Fanello
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, London, SW7 2AS, UK
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Walter R J Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Opi DH, Ndila CM, Uyoga S, Macharia AW, Fennell C, Ochola LB, Nyutu G, Siddondo BR, Ojal J, Shebe M, Awuondo KO, Mturi N, Peshu N, Tsofa B, Band G, Maitland K, Kwiatkowski DP, Rockett KA, Williams TN, Rowe JA. Non-O ABO blood group genotypes differ in their associations with Plasmodium falciparum rosetting and severe malaria. PLoS Genet 2023; 19:e1010910. [PMID: 37708213 PMCID: PMC10522014 DOI: 10.1371/journal.pgen.1010910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/26/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that "double dose" non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than "single dose" heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity.
Collapse
Affiliation(s)
- D. Herbert Opi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolyne M. Ndila
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sophie Uyoga
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Alex W. Macharia
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Clare Fennell
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy B. Ochola
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gideon Nyutu
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Bethseba R. Siddondo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - John Ojal
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mohammed Shebe
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy O. Awuondo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Neema Mturi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Norbert Peshu
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Benjamin Tsofa
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gavin Band
- Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Kathryn Maitland
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Global Health Innovation, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | | | | | - Thomas N. Williams
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Global Health Innovation, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Kabir T, Anwar S, Mourosi JT, Akter S, Hosen MJ. α- and β-Globin Gene Mutations in Individuals with Hemoglobinopathies in the Chattogram and Sylhet Regions of Bangladesh. Hemoglobin 2023; 47:3-10. [PMID: 36890736 DOI: 10.1080/03630269.2023.2166526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Hemoglobinopathies, including α- and β-thalassemias and sickle cell disease, are among the most widely disseminated hereditary blood disorders worldwide. Bangladesh is considered a hotspot for hemoglobinopathies, and these diseases cause a significant health concern in the country. However, the country has a dearth of knowledge on the molecular etiology and carrier frequency of thalassemias, primarily due to a lack of diagnostic facilities, limited access to information, and the absence of efficient screening programs. This study sought to investigate the spectrum of mutations underlying hemoglobinopathies in Bangladesh. We developed a set of polymerase chain reaction (PCR)-based techniques to detect mutations in α- and β-globin genes. We recruited 63 index subjects with previously diagnosed thalassemia. Along with age- and sex-matched control subjects, we assessed several hematological and serum indices and genotyped them using our PCR-based methods. We identified that parental consanguinity was associated with the occurrence of these hemoglobinopathies. Our PCR-based genotyping assays identified 23 HBB genotypes, with the codons 41/42 (-TTCT) (HBB: c.126_129delCTTT) mutation leading the spectrum. We also observed the presence of cooccurring HBA conditions, of which the participants were not aware. All index participants in this study were on iron chelation therapies, yet we found they had very high serum ferritin (SF) levels, indicating inefficient management of the individuals undergoing such treatments. Overall, this study provides essential information on the hemoglobinopathy mutation spectrum in Bangladesh and highlights the need for nationwide screening programs and an integrated policy for diagnosing and managing individuals with hemoglobinopathies.
Collapse
Affiliation(s)
- Tamanna Kabir
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Saeed Anwar
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jarin Taslem Mourosi
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shanjida Akter
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
6
|
Lautenbach MJ, Yman V, Silva CS, Kadri N, Broumou I, Chan S, Angenendt S, Sondén K, Plaza DF, Färnert A, Sundling C. Systems analysis shows a role of cytophilic antibodies in shaping innate tolerance to malaria. Cell Rep 2022; 39:110709. [PMID: 35443186 DOI: 10.1016/j.celrep.2022.110709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Natural immunity to malaria develops over time with repeated malaria episodes, but protection against severe malaria and immune regulation limiting immunopathology, called tolerance, develops more rapidly. Here, we comprehensively profile the blood immune system in patients, with or without prior malaria exposure, over 1 year after acute symptomatic Plasmodium falciparum malaria. Using a data-driven analysis approach to describe the immune landscape over time, we show that a dampened inflammatory response is associated with reduced γδ T cell expansion, early expansion of CD16+ monocytes, and parasite-specific antibodies of IgG1 and IgG3 isotypes. This also coincided with reduced parasitemia and duration of hospitalization. Our data indicate that antibody-mediated phagocytosis during the blood stage infection leads to lower parasitemia and less inflammatory response with reduced γδ T cell expansion. This enhanced control and reduced inflammation points to a potential mechanism on how tolerance is established following repeated malaria exposure.
Collapse
Affiliation(s)
- Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, South Stockholm Hospital, Stockholm, Sweden
| | - Carolina Sousa Silva
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Nadir Kadri
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ioanna Broumou
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Sherwin Chan
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| | - Sina Angenendt
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - David Fernando Plaza
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
Morais I, Medeiros MM, Carvalho M, Morello J, Teixeira SM, Maciel S, Nhantumbo J, Balau A, Rosa MTG, Nogueira F, Rodrigues JA, Carvalho FA, Antunes AMM, Arez AP. Synthetic Red Blood Cell-Specific Glycolytic Intermediate 2,3-Diphosphoglycerate (2,3-DPG) Inhibits Plasmodium falciparum Development In Vitro. Front Cell Infect Microbiol 2022; 12:840968. [PMID: 35372095 PMCID: PMC8967366 DOI: 10.3389/fcimb.2022.840968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Mechanisms of malaria parasite interaction with its host red blood cell may provide potential targets for new antimalarial approaches. Pyruvate kinase deficiency has been associated with resistance to malaria in both experimental models and population studies. Two of the major pyruvate kinase deficient-cell disorders are the decrease in ATP and the increase in 2,3-biphosphoglycerate (2,3-BPG) concentration. High levels of this metabolite, only present in mammalian red blood cell, has an inhibitory effect on glycolysis and we hypothesized that its accumulation may also be harmful to the parasite and be involved in the mechanism of protection provided by that enzymopathy. We examined the effect of a synthetic form, 2,3-DPG, on the Plasmodium falciparum intraerythrocytic developmental cycle in vitro. Results showed an impairment of parasite growth with a direct effect on parasite maturation as significant lower progeny emerged from parasites that were submitted to 2,3-DPG. Further, adding the compound to the culture medium did not result in any effect on the host cell, but instead the metabolic profile of an infected cell became closer to that of a non-infected cell.
Collapse
Affiliation(s)
- Inês Morais
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Márcia M. Medeiros
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Maria Carvalho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sara M. Teixeira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Suelma Maciel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Janice Nhantumbo
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Ana Balau
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Margarida T. G. Rosa
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | - Fátima Nogueira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
| | | | - Filomena A. Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Paula Arez
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
- *Correspondence: Ana Paula Arez,
| |
Collapse
|
8
|
Miah MF, Chowdhury SF, Laura FK, Anwar S, Reshad RAI, Mahmud MGR, Faruque CMO. Inheritance of β Hemoglobin Gene Mutation: Potential Method of Newborn Screening of Sickle Cell Anemia in Bangladesh. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2022. [DOI: 10.29333/jcei/11706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Su Q, Zhou X, Wu T, Li K, Xu W, Lin Z, Shen P, Liu B. Rapid visual genotyping method for germline mutants with small genomic fragment deletion by allele-specific PCR and lateral flow nucleic acid biosensor. Mol Biol Rep 2021; 48:7325-7332. [PMID: 34698991 DOI: 10.1007/s11033-021-06734-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Genome-editing techniques incorporating artificial nucleases develop rapidly and enable efficient and precise modification of genomic DNA of numerous organisms. The present research aimed to establish a rapid, sensitive and visual method for genotyping of germline genome-edited mutants with small genomic fragment deletion. METHODS AND RESULTS The genome-edited pigs with 2-bp deletion and 11-bp deletion of Myostatin (MSTN) gene generated by TALENs system were used as test materials to check the proposed allele-specific PCR (AS-PCR) and lateral flow nucleic acid biosensor (LFNAB) cascade method. AS-PCR can produce products with different tags to distinguish genome-edited alleles and wild-type alleles. A LFNAB was applied to do visual detection of AS-PCR products without using additional instruments. Furthermore, we demonstrated that AS-PCR and LFNAB cascade could accurately and visually distinguish genome-edited pigs with small genomic fragment deletion of Myostatin (MSTN) gene and wild-type pigs with limit of detection (LOD) of 0.1 ng. CONCLUSION The proposed AS-PCR and LFNAB cascade can do rapid and visual genotyping of genome-edited mutants with small genomic fragment deletion, serving as a platform for genome-edited animal genotyping.
Collapse
Affiliation(s)
- Qiuju Su
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Tianwen Wu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Zhenyu Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, 350002, Fujian, China
| | - Ping Shen
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, 100045, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
10
|
Donkor WES, Adu-Afarwuah S, Wegmüller R, Bentil H, Petry N, Rohner F, Wirth JP. Complementary Feeding Indicators in Relation to Micronutrient Status of Ghanaian Children Aged 6-23 Months: Results from a National Survey. Life (Basel) 2021; 11:969. [PMID: 34575118 PMCID: PMC8468967 DOI: 10.3390/life11090969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Optimal complementary feeding is critical for adequate growth and development in infants and young children. The associations between complementary feeding and growth have been studied well, but less is known about the relationship between complementary feeding and micronutrient status. METHODS Using data from a national cross-sectional survey conducted in Ghana in 2017, we examined how multiple WHO-recommended complementary feeding indicators relate to anemia and the micronutrient status of children aged 6-23 months. RESULTS In total, 42%, 38%, and 14% of the children met the criteria for minimum dietary diversity (MDD), minimum meal frequency (MMF), and minimum acceptable diet (MAD), respectively. In addition, 71% and 52% of the children consumed iron-rich foods and vitamin A-rich foods, respectively. The prevalence of anemia, iron deficiency (ID), iron deficiency anemia (IDA) and vitamin A deficiency (VAD) was 46%, 45%, 27%, and 10%, respectively. Inverse associations between MMF and socio-economic status were found, and MMF was associated with an increased risk of ID (55%; p < 0.013) and IDA (38%; p < 0.002). CONCLUSION The pathways connecting complementary feeding and micronutrient status are complex. Findings related to MMF should be further investigated to ensure that complementary feeding programs account for the potential practice of frequent feeding with nutrient-poor foods.
Collapse
Affiliation(s)
| | - Seth Adu-Afarwuah
- Department of Nutrition and Food Science, University of Ghana, Legon P.O. Box LG 25, Ghana; (S.A.-A.); (H.B.)
| | - Rita Wegmüller
- GroundWork, 7306 Fläsch, Switzerland; (R.W.); (N.P.); (F.R.); (J.P.W.)
| | - Helena Bentil
- Department of Nutrition and Food Science, University of Ghana, Legon P.O. Box LG 25, Ghana; (S.A.-A.); (H.B.)
| | - Nicolai Petry
- GroundWork, 7306 Fläsch, Switzerland; (R.W.); (N.P.); (F.R.); (J.P.W.)
| | - Fabian Rohner
- GroundWork, 7306 Fläsch, Switzerland; (R.W.); (N.P.); (F.R.); (J.P.W.)
| | - James P. Wirth
- GroundWork, 7306 Fläsch, Switzerland; (R.W.); (N.P.); (F.R.); (J.P.W.)
| |
Collapse
|
11
|
Wirth JP, Sesay F, Mbai J, Ali SI, Donkor WES, Woodruff BA, Pilane Z, Mohamud KM, Muse A, Yussuf HO, Mohamed WS, Veraguth R, Rezzi S, Williams TN, Mohamoud AM, Mohamud FM, Galvin M, Rohner F, Katambo Y, Petry N. Risk factors of anaemia and iron deficiency in Somali children and women: Findings from the 2019 Somalia Micronutrient Survey. MATERNAL AND CHILD NUTRITION 2021; 18:e13254. [PMID: 34405549 PMCID: PMC8710091 DOI: 10.1111/mcn.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
There are limited data on the prevalence of anaemia and iron deficiency (ID) in Somalia. To address this data gap, Somalia's 2019 micronutrient survey assessed the prevalence of anaemia and ID in children (6–59 months) and non‐pregnant women of reproductive age (15–49 years). The survey also collected data on vitamin A deficiency, inflammation, malaria and other potential risk factors for anaemia and ID. Multivariable Poisson regressions models were used to identify the risk factors for anaemia and ID in children and women. Among children, the prevalence of anaemia and ID were 43.4% and 47.2%, respectively. Approximately 36% and 6% of anaemia were attributable to iron and vitamin A deficiencies, respectively, whereas household possession of soap was associated with approximately 11% fewer cases of anaemia. ID in children was associated with vitamin A deficiency and stunting, whereas inflammation was associated with iron sufficiency. Among women, 40.3% were anaemic, and 49.7% were iron deficient. In women, ID and number of births were significantly associated with anaemia in multivariate models, and approximately 42% of anaemia in women was attributable to ID. Increased parity was associated with ID, and incubation and early convalescent inflammation was associated with ID, whereas late convalescent inflammation was associated with iron sufficiency. ID is the main risk factor of anaemia in both women and children and contributed to a substantial portion of the anaemia cases. To tackle both anaemia and ID in Somalia, food assistance and micronutrient‐specific programmes (e.g. micronutrient powders and iron supplements) should be enhanced.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ahmed Muse
- Ministry of Health, Somaliland, Hargeisa, Somalia
| | | | - Warsame Said Mohamed
- Ministry of Health, Somaliland, Hargeisa, Somalia.,Ministry of Health, Puntland, Garowe, Somalia
| | | | - Serge Rezzi
- Swiss Vitamin Institute, Epalinges, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Evang EC, Habte TY, Owino WO, Krawinkel MB. Can the supplementary consumption of baobab (Adansonia digitata L.) fruit pulp improve the hemoglobin levels and iron status of schoolchildren in Kenya? Findings of a randomized controlled intervention trial. Eur J Nutr 2021; 60:2617-2629. [PMID: 33355689 PMCID: PMC8275536 DOI: 10.1007/s00394-020-02447-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE In the rural Kenyan diet, the bioavailability of iron is low and predisposes the population to iron deficiency. Fruit pulp of the indigenous baobab tree contains significant amounts of vitamin C, which enhances non-heme iron bioavailability. We studied the impact of baobab fruit pulp (BFP) consumption on the hemoglobin (Hb) and iron status of Kenyan schoolchildren. METHODS The single-blind randomized controlled intervention trial was implemented daily among apparently healthy schoolchildren aged 6-12 years with hemoglobin level < 12.2 g/dl. For 12 weeks, children in the intervention group (n = 29) received a drink with BFP, while the control group (n = 29) received an isoenergy drink without BFP. At baseline and endline, blood samples were taken. RESULTS The development of hemoglobin, ferritin (FER) and soluble transferrin receptor (sTfR) did not differ significantly between the intervention and control groups. However, in the intervention group, Hb levels improved slightly (2.2%), while they decreased slightly (1.2%) in the control group. Levels of geometric means of sTfR remained almost unchanged (0.7%) in the intervention group and slightly worsened (2.7%) in the control group. In both the groups, geometric mean of FER levels decreased, yet to a smaller extent in the intervention (17.3%) than in the control (26.0%) group. CONCLUSION Even though no significant effects of BFP could be detected in this study, the identification of products such as BFP remains pertinent to help improve non-heme iron absorption in the most vulnerable populations.
Collapse
Affiliation(s)
- Esther Charlotte Evang
- Institute of Nutritional Sciences, Justus Liebig University Giessen, Wilhelmstr. 20, 35392 Giessen, Germany
| | - Tsige-Yohannes Habte
- Institute of Nutritional Sciences, Justus Liebig University Giessen, Wilhelmstr. 20, 35392 Giessen, Germany
| | - Willis Omondi Owino
- School of Food and Nutritional Sciences, Jomo Kenyatta University of Agriculture and Technology, Juja, 62000-00200 Nairobi Kenya
| | | |
Collapse
|
13
|
Botwe AK, Oppong FB, Gyaase S, Owusu-Agyei S, Asghar M, Asante KP, Färnert A, Osier F. Determinants of the varied profiles of Plasmodium falciparum infections among infants living in Kintampo, Ghana. Malar J 2021; 20:240. [PMID: 34051822 PMCID: PMC8164218 DOI: 10.1186/s12936-021-03752-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/07/2021] [Indexed: 11/22/2022] Open
Abstract
Background Understanding why some infants tolerate infections, remaining asymptomatic while others succumb to repeated symptomatic malaria is beneficial for studies of naturally acquired immunity and can guide control interventions. This study compared demographic, host and maternal factors associated with being either parasite negative or having asymptomatic infections versus developing symptomatic malaria in the first year of life. Methods A birth cohort (n = 1264) was monitored longitudinally over two years for malaria infections in Kintampo, Ghana. Symptomatic and asymptomatic infections were detected actively through monthly home visits, complemented by passive case detection. Light microscopy was used to detect parasitaemia. Based on data from a minimum of eight monthly visits within the first year of life, infants were classified into one of four groups: “parasite negative”, “only-asymptomatic”, “only-symptomatic” or “alternating” i.e., sometimes symptomatic and other times asymptomatic. The host and maternal characteristics and demographic factors in relation to these four groups were compared. Results The parasite negative group formed 36% of the cohort, whilst the only-symptomatic were 35%. The alternating group were 22% and the only-asymptomatic were 7% of the cohort. There were significant associations between residence, socio-economic status (SES), parity, IPTp doses, delivery place of infant and having or not having malaria parasites. Maternal factors such as early commencement and frequency of ante-natal care (ANC) were significantly higher in the parasite negative group compared to all others. ITN use in pregnancy increased the odds of infant having only asymptomatic infections (“protected against disease”). Placental malaria was more common in the groups of infants with symptomatic malaria. Urban residence was significantly higher in the parasite negative group, while birth in the malaria transmission season were significantly more common in the alternating and parasite negative groups. Risk factors for infants with symptomatic malaria included low SES, birth in private maternity homes, sickle cell normal variant, lower MUAC, reported intake of anti-malarials and increased morbidity before the first microscopic infection was detected. Conclusion Strengthening ANC by encouraging early and regular attendance, the use of IPTp, maternal bed nets and improving the nourishment of infants help reduce the frequency of symptomatic malaria over the first year of life. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03752-9.
Collapse
Affiliation(s)
- Akua Kyerewaa Botwe
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana. .,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden. .,Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.
| | | | - Stephaney Gyaase
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
| | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana.,Institute of Health Research, University of Health and Allied Sciences, Ho, Ghana
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
| | - Anna Färnert
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Faith Osier
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
14
|
Techniques for the Detection of Sickle Cell Disease: A Review. MICROMACHINES 2021; 12:mi12050519. [PMID: 34063111 PMCID: PMC8148117 DOI: 10.3390/mi12050519] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022]
Abstract
Sickle cell disease (SCD) is a widespread disease caused by a mutation in the beta-globin gene that leads to the production of abnormal hemoglobin called hemoglobin S. The inheritance of the mutation could be homozygous or heterozygous combined with another hemoglobin mutation. SCD can be characterized by the presence of dense, sickled cells that causes hemolysis of blood cells, anemia, painful episodes, organ damage, and in some cases death. Early detection of SCD can help to reduce the mortality and manage the disease effectively. Therefore, different techniques have been developed to detect the sickle cell disease and the carrier states with high sensitivity and specificity. These techniques can be screening tests such as complete blood count, peripheral blood smears, and sickling test; confirmatory tests such as hemoglobin separation techniques; and genetic tests, which are more expensive and need to be done in centralized labs by highly skilled personnel. However, advanced portable point of care techniques have been developed to provide a low-cost, simple, and user-friendly device for detecting SCD, for instance coupling solubility tests with portable devices, using smartphone microscopic classifications, image processing techniques, rapid immunoassays, and sensor-based platforms. This review provides an overview of the current and emerging techniques for sickle cell disease detection and highlights the different potential methods that could be applied to help the early diagnosis of SCD.
Collapse
|
15
|
Petry N, Wirth JP, Adu‐Afarwuah S, Wegmuller R, Woodruff BA, Tanumihardjo SA, Bentil H, Donkor WE, Williams TN, Shahab‐Ferdows S, Selenje L, Mahama A, Steiner‐Asiedu M, Rohner F. Risk factors for anaemia among Ghanaian women and children vary by population group and climate zone. MATERNAL & CHILD NUTRITION 2021; 17:e13076. [PMID: 32945623 PMCID: PMC7988882 DOI: 10.1111/mcn.13076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
Anaemia has serious effects on human health and has multifactorial aetiologies. This study aimed to determine putative risk factors for anaemia in children 6-59 months and 15- to 49-year-old non-pregnant women living in Ghana. Data from a nationally representative cross-sectional survey were analysed for associations between anaemia and various anaemia risk factors. National and stratum-specific multivariable regressions were constructed separately for children and women to calculate the adjusted prevalence ratio (aPR) for anaemia of variables found to be statistically significantly associated with anaemia in bivariate analysis. Nationally, the aPR for anaemia was greater in children with iron deficiency (ID; aPR 2.20; 95% confidence interval [CI]: 1.88, 2.59), malaria parasitaemia (aPR 1.96; 95% CI: 1.65, 2.32), inflammation (aPR 1.26; 95% CI: 1.08, 1.46), vitamin A deficiency (VAD; aPR 1.38; 95% CI: 1.19, 1.60) and stunting (aPR 1.26; 95% CI: 1.09, 1.46). In women, ID (aPR 4.33; 95% CI: 3.42, 5.49), VAD (aPR 1.61; 95% CI: 1.24, 2.09) and inflammation (aPR 1.59; 95% CI: 1.20, 2.11) were associated with anaemia, whereas overweight and obese women had lower prevalence of anaemia (aPR 0.74; 95% CI: 0.56, 0.97). ID was associated with child anaemia in the Northern and Middle belts, but not in the Southern Belt; conversely, inflammation was associated with anaemia in both children and women in the Southern and Middle belts, but not in the Northern Belt. Anaemia control programmes should be region specific and aim at the prevention of ID, malaria and other drivers of inflammation as they are the main predictors of anaemia in Ghanaian children and women.
Collapse
Affiliation(s)
| | | | - Seth Adu‐Afarwuah
- Department of Nutrition and Food ScienceUniversity of GhanaLegonGhana
| | | | | | | | - Helena Bentil
- Department of Nutrition and Food ScienceUniversity of GhanaLegonGhana
| | - William E.S. Donkor
- GroundWorkFläschSwitzerland
- Department of Nutrition and Food ScienceUniversity of GhanaLegonGhana
| | | | - Setareh Shahab‐Ferdows
- USDA Agricultural Research Service Western Human Nutrition Research CenterDavisCaliforniaUSA
| | | | | | | | | |
Collapse
|
16
|
Muriuki JM, Mentzer AJ, Mitchell R, Webb EL, Etyang AO, Kyobutungi C, Morovat A, Kimita W, Ndungu FM, Macharia AW, Ngetsa CJ, Makale J, Lule SA, Musani SK, Raffield LM, Cutland CL, Sirima SB, Diarra A, Tiono AB, Fried M, Gwamaka M, Adu-Afarwuah S, Wirth JP, Wegmüller R, Madhi SA, Snow RW, Hill AVS, Rockett KA, Sandhu MS, Kwiatkowski DP, Prentice AM, Byrd KA, Ndjebayi A, Stewart CP, Engle-Stone R, Green TJ, Karakochuk CD, Suchdev PS, Bejon P, Duffy PE, Davey Smith G, Elliott AM, Williams TN, Atkinson SH. Malaria is a cause of iron deficiency in African children. Nat Med 2021; 27:653-658. [PMID: 33619371 PMCID: PMC7610676 DOI: 10.1038/s41591-021-01238-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Malaria and iron deficiency (ID) are common and interrelated public health problems in African children. Observational data suggest that interrupting malaria transmission reduces the prevalence of ID1. To test the hypothesis that malaria might cause ID, we used sickle cell trait (HbAS, rs334 ), a genetic variant that confers specific protection against malaria2, as an instrumental variable in Mendelian randomization analyses. HbAS was associated with a 30% reduction in ID among children living in malaria-endemic countries in Africa (n = 7,453), but not among individuals living in malaria-free areas (n = 3,818). Genetically predicted malaria risk was associated with an odds ratio of 2.65 for ID per unit increase in the log incidence rate of malaria. This suggests that an intervention that halves the risk of malaria episodes would reduce the prevalence of ID in African children by 49%.
Collapse
Affiliation(s)
- John Muthii Muriuki
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Open University, KEMRI-Wellcome Trust Research Programme, Accredited Research Centre, Kilifi, Kenya.
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Ruth Mitchell
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emily L Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Anthony O Etyang
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Alireza Morovat
- Department of Clinical Biochemistry, Oxford University Hospitals, Oxford, UK
| | - Wandia Kimita
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Francis M Ndungu
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Alex W Macharia
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Caroline J Ngetsa
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Johnstone Makale
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Swaib A Lule
- MRC/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Clare L Cutland
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sodiomon B Sirima
- Groupe de Recherche Action en Sante (GRAS), 06 BP 10248, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Sante (GRAS), 06 BP 10248, Ouagadougou, Burkina Faso
| | - Alfred B Tiono
- Groupe de Recherche Action en Sante (GRAS), 06 BP 10248, Ouagadougou, Burkina Faso
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Moses Gwamaka
- Mother Offspring Malaria Studies (MOMS) Project, Seattle Biomedical Research Institute, Seattle, WA, USA
- Muheza Designated District Hospital, Muheza, Tanzania
- University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| | - Seth Adu-Afarwuah
- Department of Nutrition and Food Science, University of Ghana, Legon, Ghana
| | | | | | - Shabir A Madhi
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Robert W Snow
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adrian V S Hill
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Clinical Vaccinology and Tropical Medicine and the Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Kirk A Rockett
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, UK
| | | | - Dominic P Kwiatkowski
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | | | | | - Reina Engle-Stone
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Tim J Green
- SAHMRi Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Crystal D Karakochuk
- Food, Nutrition, and Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Parminder S Suchdev
- Department of Pediatrics, Emory University and Emory Global Health Institute, Atlanta, GA, USA
| | - Philip Bejon
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alison M Elliott
- MRC/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas N Williams
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Institute of Global Health Innovation, Imperial College, London, UK
| | - Sarah H Atkinson
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Fançony C, Soares Â, Lavinha J, Barros H, Brito M. Iron deficiency anaemia among 6-to-36-month children from northern Angola. BMC Pediatr 2020; 20:298. [PMID: 32552666 PMCID: PMC7298958 DOI: 10.1186/s12887-020-02185-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Angola is one of the southern African countries with the highest prevalence of anaemia. Identifying anaemia determinants is an important step for the design of evidence-based control strategies. In this study, we aim at documenting the factors associated with Iron Deficiency Anaemia (IDA) in 948 children recruited at the Health Research Center of Angola study area during 2015. METHODS Data on demographic, socio-economic and parental practices regarding water, sanitation, hygiene, malaria infection and infant and young child feeding were collected, as well as parasitological, biochemical and molecular data. Total and age-stratified multivariate multinomial regression models were fitted to estimate the magnitude of associations between anaemia and its determinants. RESULTS Anaemia was found in 44.4% of children, of which 46.0% had IDA. Overall, regression models associated IDA with age, gender and inflammation and non-IDA with age, zinc deficiency and overload, P. falciparum infection, sickle cell trait/anaemia. Among 6-to-23-month-old children IDA was associated with continued breastfeeding and among 24-to-36-month-old children IDA was associated with stunting. Furthermore, zinc deficiency was associated with non-IDA among both age groups children. Inflammation was associated with IDA and non-IDA in either 6-to-23 and 24-to-36 months old children. CONCLUSION The main variables associated with IDA and non-IDA within this geographic setting were commonly reported in Africa, but not specifically associated with anaemia. Additionally, the associations of anaemia with inflammation, zinc deficiency and infections could be suggesting the occurrence of nutritional immunity and should be further investigated. In age groups, zinc overload was observed to protect under 6 months children from Non-IDA, while continued breastfeeding was associated with increased IDA prevalence in 6-to-23 months children, and stunting was suggested to increase the odds of IDA in 24-to-36 month children. This site-specific aetiology profile provides an essential first set of evidences able to inform the planification of preventive and corrective actions/programs. Nevertheless, regional and country representative data is needed.
Collapse
Affiliation(s)
- Cláudia Fançony
- Health Research Center of Angola (CISA, translated), Caxito, Angola
- Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Ânia Soares
- Health Research Center of Angola (CISA, translated), Caxito, Angola
| | - João Lavinha
- Departamento de Genetica Humana, Instituto nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioISI, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Henrique Barros
- Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Miguel Brito
- Health Research Center of Angola (CISA, translated), Caxito, Angola
- Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
Anemia, micronutrient deficiencies, malaria, hemoglobinopathies and malnutrition in young children and non-pregnant women in Ghana: Findings from a national survey. PLoS One 2020; 15:e0228258. [PMID: 31999737 PMCID: PMC6991996 DOI: 10.1371/journal.pone.0228258] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
Nationally representative data on the micronutrient status of Ghanaian women and children are very scarce. We aimed to document the current national prevalence of micronutrient deficiencies, anemia, malaria, inflammation, α-thalassemia, sickle cell disease and trait, and under- and over-nutrition in Ghana. In 2017, a two-stage cross-sectional design was applied to enroll pre-school children (6–59 months) and non-pregnant women (15–49 years) from three strata in Ghana: Northern, Middle and Southern Belt. Household and individual questionnaire data were collected along with blood samples. In total, 2123 households completed the household interviews, 1165 children and 973 women provided blood samples. Nationally, 35.6% (95%CI: 31.7,39.6) of children had anemia, 21.5% (18.4,25.0) had iron deficiency, 12.2% (10.1,14.7) had iron deficiency anemia, and 20.8% (18.1,23.9) had vitamin A deficiency; 20.3%(15.2,26.6) tested positive for malaria, 13.9% (11.1,17.3) for sickle trait plus disease, and 30.7% (27.5,34.2) for α-thalassemia. Anemia and micronutrient deficiencies were more prevalent in rural areas, poor households and in the Northern Belt. Stunting and wasting affected 21.4% (18.0,25.2) and 7.0% (5.1,9.5) of children, respectively. Stunting was more common in rural areas and in poor households. Among non-pregnant women, 21.7% (18.7,25.1) were anemic, 13.7% (11.2,16.6) iron deficient, 8.9% (6.7,11.7) had iron deficiency anemia, and 1.5% (0.8,2.9) were vitamin A deficient, 53.8% (47.6,60.0) were folate deficient, and 6.9% (4.8,9.8) were vitamin B12 deficient. Malaria parasitemia in women [8.4% (5.7,12.2)] was lower than in children, but the prevalence of sickle cell disease or trait and α-thalassemia were similar. Overweight [24.7% (21.0,28.8)] and obesity [14.3% (11.5,17.7)] were more common in wealthier, older, and urban women. Our findings demonstrate that anemia and several micronutrient deficiencies are highly present in Ghana calling for the strengthening of Ghana’s food fortification program while overweight and obesity in women are constantly increasing and need to be addressed urgently through governmental policies and programs.
Collapse
|
19
|
The Nutritional and Micronutrient Status of Urban Schoolchildren with Moderate Anemia is Better than in a Rural Area in Kenya. Nutrients 2020; 12:nu12010207. [PMID: 31941120 PMCID: PMC7019372 DOI: 10.3390/nu12010207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/22/2022] Open
Abstract
Low diet quality is a driver of general and micronutrient malnutrition in urban and rural areas. The objective was to compare malnutrition and micronutrient deficiencies linked to dietary intake among urban and rural schoolchildren from food insecure settings in Kenya. The cross-sectional study was conducted among urban and rural schoolchildren aged 7–9 years. Height and weight were measured, venous blood samples were assessed and data on dietary intake was collected. After screening out children with hemoglobin >12.2 g/dL and moderate or severe undernutrition, a total of 36 urban and 35 rural children participated. The prevalence of moderate underweight, wasting, and stunting were lower in urban than in rural children, with significant differences in median z-scores for underweight (p < 0.001) and wasting (p < 0.001). Significantly higher values for serum ferritin (p = 0.012) and zinc (p < 0.001) were found in urban children. Yet, the median adequacy ratios were higher for vitamin C (p = 0.045), iron (p = 0.003), and zinc (p = 0.003) in rural than in urban children. General nutritional, iron, and zinc status were significantly better in slightly anemic urban children than in rural ones. Improving the nutrition of schoolchildren in urban and rural settings requires different dietary approaches.
Collapse
|
20
|
Muthui MK, Mogeni P, Mwai K, Nyundo C, Macharia A, Williams TN, Nyangweso G, Wambua J, Mwanga D, Marsh K, Bejon P, Kapulu MC. Gametocyte carriage in an era of changing malaria epidemiology: A 19-year analysis of a malaria longitudinal cohort. Wellcome Open Res 2019; 4:66. [PMID: 31223663 PMCID: PMC6557001 DOI: 10.12688/wellcomeopenres.15186.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Interventions to block malaria transmission from humans to mosquitoes are currently in development. To be successfully implemented, key populations need to be identified where the use of these transmission-blocking and/or reducing strategies will have greatest impact. Methods: We used data from a longitudinally monitored cohort of children from Kilifi county located along the Kenyan coast collected between 1998-2016 to describe the distribution and prevalence of gametocytaemia in relation to transmission intensity, time and age. Data from 2,223 children accounting for 9,134 person-years of follow-up assessed during cross-sectional surveys for asexual parasites and gametocytes were used in logistic regression models to identify factors predictive of gametocyte carriage in this cohort. Results: Our analysis showed that children 1-5 years of age were more likely to carry microscopically detectable gametocytes than their older counterparts. Carrying asexual parasites and recent episodes of clinical malaria were also strong predictors of gametocyte carriage. The prevalence of asexual parasites and of gametocyte carriage declined over time, and after 2006, when artemisinin combination therapy (ACT) was introduced, recent episodes of clinical malaria ceased to be a predictor of gametocyte carriage. Conclusions: Gametocyte carriage in children in Kilifi has fallen over time. Previous episodes of clinical malaria may contribute to the development of carriage, but this appears to be mitigated by the use of ACTs highlighting the impact that gametocidal antimalarials can have in reducing the overall prevalence of gametocytaemia when targeted on acute febrile illness.
Collapse
Affiliation(s)
- Michelle K Muthui
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Polycarp Mogeni
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,African Health Research Institute, Durban, Congella, 4013, Private bag X7, South Africa
| | - Kennedy Mwai
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, Parktown, 2193, 27 St Andrews Road, South Africa
| | - Christopher Nyundo
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Alex Macharia
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Thomas N Williams
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Department of Medicine, Imperial College London, St Mary's Campus, London, W21NY, UK
| | - George Nyangweso
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Juliana Wambua
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Daniel Mwanga
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Kevin Marsh
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Philip Bejon
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Melissa C Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
21
|
Muthui MK, Mogeni P, Mwai K, Nyundo C, Macharia A, Williams TN, Nyangweso G, Wambua J, Mwanga D, Marsh K, Bejon P, Kapulu MC. Gametocyte carriage in an era of changing malaria epidemiology: A 19-year analysis of a malaria longitudinal cohort. Wellcome Open Res 2019; 4:66. [PMID: 31223663 PMCID: PMC6557001 DOI: 10.12688/wellcomeopenres.15186.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 10/25/2023] Open
Abstract
Background: Interventions to block malaria transmission from humans to mosquitoes are currently in development. To be successfully implemented, key populations need to be identified where the use of these transmission-blocking and/or reducing strategies will have greatest impact. Methods: We used data from a longitudinally monitored cohort of children from Kilifi county located along the Kenyan coast collected between 1998-2016 to describe the distribution and prevalence of gametocytaemia in relation to transmission intensity, time and age. Data from 2,223 children accounting for 9,134 person-years of follow-up assessed during cross-sectional surveys for asexual parasites and gametocytes were used in logistic regression models to identify factors predictive of gametocyte carriage in this cohort. Results: Our analysis showed that children 1-5 years of age were more likely to carry microscopically detectable gametocytes than their older counterparts. Carrying asexual parasites and recent episodes of clinical malaria were also strong predictors of gametocyte carriage. The prevalence of asexual parasites and of gametocyte carriage declined over time, and after 2006, when artemisinin combination therapy (ACT) was introduced, recent episodes of clinical malaria ceased to be a predictor of gametocyte carriage. Conclusions: Gametocyte carriage in children in Kilifi has fallen over time. Previous episodes of clinical malaria may contribute to the development of carriage, but this appears to be mitigated by the use of ACTs highlighting the impact that gametocidal antimalarials can have in reducing the overall prevalence of gametocytaemia when targeted on acute febrile illness.
Collapse
Affiliation(s)
- Michelle K. Muthui
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Polycarp Mogeni
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- African Health Research Institute, Durban, Congella, 4013, Private bag X7, South Africa
| | - Kennedy Mwai
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, Parktown, 2193, 27 St Andrews Road, South Africa
| | - Christopher Nyundo
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Alex Macharia
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Thomas N. Williams
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Department of Medicine, Imperial College London, St Mary's Campus, London, W21NY, UK
| | - George Nyangweso
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Juliana Wambua
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Daniel Mwanga
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Kevin Marsh
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Philip Bejon
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Melissa C. Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
22
|
Muriuki JM, Mentzer AJ, Kimita W, Ndungu FM, Macharia AW, Webb EL, Lule SA, Morovat A, Hill AVS, Bejon P, Elliott AM, Williams TN, Atkinson SH. Iron Status and Associated Malaria Risk Among African Children. Clin Infect Dis 2019; 68:1807-1814. [PMID: 30219845 PMCID: PMC6522755 DOI: 10.1093/cid/ciy791] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND It remains unclear whether improving iron status increases malaria risk, and few studies have looked at the effect of host iron status on subsequent malaria infection. We therefore aimed to determine whether a child's iron status influences their subsequent risk of malaria infection in sub-Saharan Africa. METHODS We assayed iron and inflammatory biomarkers from community-based cohorts of 1309 Kenyan and 1374 Ugandan children aged 0-7 years and conducted prospective surveillance for episodes of malaria. Poisson regression models were fitted to determine the effect of iron status on the incidence rate ratio (IRR) of malaria using longitudinal data covering a period of 6 months. Models were adjusted for age, sex, parasitemia, inflammation, and study site. RESULTS At baseline, the prevalence of iron deficiency (ID) was 36.9% and 34.6% in Kenyan and Ugandan children, respectively. ID anemia (IDA) affected 23.6% of Kenyan and 17.6% of Ugandan children. Malaria risk was lower in children with ID (IRR, 0.7; 95% confidence interval [CI], 0.6, 0.8; P < .001) and IDA (IRR, 0.7; 95% CI, 0.6, 0.9; P = .006). Low transferrin saturation (<10%) was similarly associated with lower malaria risk (IRR, 0.8; 95% CI, 0.6, 0.9; P = .016). However, variation in hepcidin, soluble transferrin receptors (sTfR), and hemoglobin/anemia was not associated with altered malaria risk. CONCLUSIONS ID appears to protect against malaria infection in African children when defined using ferritin and transferrin saturation, but not when defined by hepcidin, sTfR, or hemoglobin. Additional research is required to determine causality. CLINICAL TRIALS REGISTRATION ISRCTN32849447.
Collapse
Affiliation(s)
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford
| | - Wandia Kimita
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - Emily L Webb
- London School of Hygiene and Tropical Medicine, United Kingdom
| | - Swaib A Lule
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Alireza Morovat
- Department of Clinical Biochemistry, Oxford University Hospitals
| | - Adrian V S Hill
- Centre for Clinical Vaccinology and Tropical Medicine and the Jenner Institute Laboratories, University of Oxford
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford
| | - Alison M Elliott
- London School of Hygiene and Tropical Medicine, United Kingdom
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Medicine, Imperial College, London
| | - Sarah H Atkinson
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford
- Department of Paediatrics, University of Oxford, United Kingdom
| |
Collapse
|
23
|
Uyoga S, Macharia AW, Ndila CM, Nyutu G, Shebe M, Awuondo KO, Mturi N, Peshu N, Tsofa B, Scott JAG, Maitland K, Williams TN. The indirect health effects of malaria estimated from health advantages of the sickle cell trait. Nat Commun 2019; 10:856. [PMID: 30787300 PMCID: PMC6382840 DOI: 10.1038/s41467-019-08775-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/29/2019] [Indexed: 12/01/2022] Open
Abstract
Most estimates of the burden of malaria are based on its direct impacts; however, its true burden is likely to be greater because of its wider effects on overall health. Here we estimate the indirect impact of malaria on children's health in a case-control study, using the sickle cell trait (HbAS), a condition associated with a high degree of specific malaria resistance, as a proxy indicator for an effective intervention. We estimate the odds ratios for HbAS among cases (all children admitted to Kilifi County Hospital during 2000-2004) versus community controls. As expected, HbAS protects strongly against malaria admissions (aOR 0.26; 95%CI 0.22-0.31), but it also protects against other syndromes, including neonatal conditions (aOR 0.79; 0.67-0.93), bacteraemia (aOR 0.69; 0.54-0.88) and severe malnutrition (aOR 0.67; 0.55-0.83). The wider health impacts of malaria should be considered when estimating the potential added benefits of effective malaria interventions.
Collapse
Affiliation(s)
- Sophie Uyoga
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, PO Box 230, Kilifi, 80108, Kenya
| | - Alex W Macharia
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, PO Box 230, Kilifi, 80108, Kenya
| | - Carolyne M Ndila
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, PO Box 230, Kilifi, 80108, Kenya
| | - Gideon Nyutu
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, PO Box 230, Kilifi, 80108, Kenya
| | - Mohammed Shebe
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, PO Box 230, Kilifi, 80108, Kenya
| | - Kennedy O Awuondo
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, PO Box 230, Kilifi, 80108, Kenya
| | - Neema Mturi
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, PO Box 230, Kilifi, 80108, Kenya
| | - Norbert Peshu
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, PO Box 230, Kilifi, 80108, Kenya
| | - Benjamin Tsofa
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, PO Box 230, Kilifi, 80108, Kenya
| | - J Anthony G Scott
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, PO Box 230, Kilifi, 80108, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Kathryn Maitland
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, PO Box 230, Kilifi, 80108, Kenya
- Department of Medicine, Imperial College, St Mary's Hospital, London, W21NY, UK
| | - Thomas N Williams
- Department of Epidemiology and Demography, KEMRI/Wellcome Trust Research Programme, PO Box 230, Kilifi, 80108, Kenya.
- Department of Medicine, Imperial College, St Mary's Hospital, London, W21NY, UK.
| |
Collapse
|
24
|
Efficacy of Nutrition and WASH/Malaria Educational Community-Based Interventions in Reducing Anemia in Preschool Children from Bengo, Angola: Study Protocol of a Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030466. [PMID: 30764549 PMCID: PMC6388146 DOI: 10.3390/ijerph16030466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/26/2019] [Accepted: 02/02/2019] [Indexed: 01/26/2023]
Abstract
Angola reports one of the highest infant mortality rates in the world, and anemia represents one of its important causes. Recent studies, in under-five children from the Bengo province of Angola, described high prevalence’s, suggesting malaria, undernutrition and urogenital schistosomiasis as important contributors for the occurrence and spatial variations of anemia. Educational community-based interventions, either in Nutrition and Water, Sanitation, Hygiene and Malaria are recommended to correct anemia. Herein, we designed a cluster-randomized controlled trial to study the efficacy of two educational-plus-therapeutic interventions in the reduction of anemia: one in nutrition and the other in WASH/Malaria. Socioeconomic, nutritional, anthropometric, parasitological and biochemical data will be collected from all willing-to-participate children, aging under four and resident in the Health Research Center of Angola study area. Considering the multifactorial causes of this condition, determining the efficacy of both interventions might help documenting weaknesses and opportunities for planning integrated strategies to reduce anemia.
Collapse
|
25
|
Stewart CP, Dewey KG, Lin A, Pickering AJ, Byrd KA, Jannat K, Ali S, Rao G, Dentz HN, Kiprotich M, Arnold CD, Arnold BF, Allen LH, Shahab-Ferdows S, Ercumen A, Grembi JA, Naser AM, Rahman M, Unicomb L, Colford JM, Luby SP, Null C. Effects of lipid-based nutrient supplements and infant and young child feeding counseling with or without improved water, sanitation, and hygiene (WASH) on anemia and micronutrient status: results from 2 cluster-randomized trials in Kenya and Bangladesh. Am J Clin Nutr 2019; 109:148-164. [PMID: 30624600 PMCID: PMC6358037 DOI: 10.1093/ajcn/nqy239] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/14/2018] [Indexed: 12/24/2022] Open
Abstract
Background Anemia in young children is a global health problem. Risk factors include poor nutrient intake and poor water quality, sanitation, or hygiene. Objective We evaluated the effects of water quality, sanitation, handwashing, and nutrition interventions on micronutrient status and anemia among children in rural Kenya and Bangladesh. Design We nested substudies within 2 cluster-randomized controlled trials enrolling pregnant women and following their children for 2 y. These substudies included 4 groups: water, sanitation, and handwashing (WSH); nutrition (N), including lipid-based nutrient supplements (LNSs; ages 6-24 mo) and infant and young child feeding (IYCF) counseling; WSH+N; and control. Hemoglobin and micronutrient biomarkers were measured after 2 y of intervention and compared between groups using generalized linear models with robust SEs. Results In Kenya, 699 children were assessed at a mean ± SD age of 22.1 ± 1.8 mo, and in Bangladesh 1470 participants were measured at a mean ± SD age of 28.0 ± 1.9 mo. The control group anemia prevalences were 48.8% in Kenya and 17.4% in Bangladesh. There was a lower prevalence of anemia in the 2 N intervention groups in both Kenya [N: 36.2%; prevalence ratio (PR): 0.74; 95% CI: 0.58, 0.94; WSH+N: 27.3%; PR: 0.56; 95% CI: 0.42, 0.75] and Bangladesh (N: 8.7%; PR: 0.50; 95% CI: 0.32, 0.78; WSH+N: 7.9%, PR: 0.46; 95% CI: 0.29, 0.73). In both trials, the 2 N groups also had significantly lower prevalences of iron deficiency, iron deficiency anemia, and low vitamin B-12 and, in Kenya, a lower prevalence of folate and vitamin A deficiencies. In Bangladesh, the WSH group had a lower prevalence of anemia (12.8%; PR: 0.74; 95% CI: 0.54, 1.00) than the control group, whereas in Kenya, the WSH+N group had a lower prevalence of anemia than did the N group (PR: 0.75; 95% CI: 0.53, 1.07), but this was not significant (P = 0.102). Conclusions IYCF counseling with LNSs reduced the risks of anemia, iron deficiency, and low vitamin B-12. Effects on folate and vitamin A varied between studies. Improvements in WSH also reduced the risk of anemia in Bangladesh but did not provide added benefit over the nutrition-specific intervention. These trials were registered at clinicaltrials.gov as NCT01590095 (Bangladesh) and NCT01704105 (Kenya).
Collapse
Affiliation(s)
- Christine P Stewart
- Department of Nutrition, University of California, Davis, Davis, CA,Address correspondence to CPS (e-mail: )
| | - Kathryn G Dewey
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Audrie Lin
- Division of Epidemiology and Biostatistics, University of California, Berkeley, Berkeley, CA
| | - Amy J Pickering
- Department of Civil and Environmental Engineering,Present address for AJP: Department of Civil and Environmental Engineering, Tufts University, 200 College Avenue, Medford, MA 02155
| | - Kendra A Byrd
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Kaniz Jannat
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Shahjahan Ali
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Gouthami Rao
- Innovations for Poverty Action, Nairobi, Kenya,Present address for GR: Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, CDC, 1600 Clifton Road, Atlanta, GA 30329
| | - Holly N Dentz
- Department of Nutrition, University of California, Davis, Davis, CA,Innovations for Poverty Action, Nairobi, Kenya
| | - Marion Kiprotich
- Innovations for Poverty Action, Nairobi, Kenya,Present address for MK: One Acre Fund, Nairobi, Kenya
| | - Charles D Arnold
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Benjamin F Arnold
- Division of Epidemiology and Biostatistics, University of California, Berkeley, Berkeley, CA
| | - Lindsay H Allen
- USDA, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA
| | | | - Ayse Ercumen
- Division of Epidemiology and Biostatistics, University of California, Berkeley, Berkeley, CA
| | | | - Abu Mohd Naser
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mahbubur Rahman
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Leanne Unicomb
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - John M Colford
- Division of Epidemiology and Biostatistics, University of California, Berkeley, Berkeley, CA
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA
| | - Clair Null
- Innovations for Poverty Action, Nairobi, Kenya,Present address for CN: Mathmatica Policy Research, 1100 First Street, NE, 12th Floor, Washington, DC 20002
| |
Collapse
|
26
|
Toye ET, Van Marle G, Hutchins W, Abgabiaje O, Okpuzor JO. Single tube allele specific PCR: a low cost technique for molecular screening of sickle cell anaemia in Nigeria. Afr Health Sci 2018; 18:995-1002. [PMID: 30766565 PMCID: PMC6354853 DOI: 10.4314/ahs.v18i4.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Sickle cell anaemia (SCA) is a hereditary blood disorder caused by a single mutation in the haemoglobin gene. The disease burden of SCA is highest in Nigeria. The allele specific polymerase chain reaction (ASPCR) method is applicable for the direct detection of known single nucleotide polymorphisms (SNPs). Objective To investigate the use of the single tube ASPCR as an accurate and affordable method for SCA screening in Nigeria. Methods DNA was extracted from study subjects with normal haemoglobin, HbAA (20), sickle cell anaemia, HbSS (20) and carriers, HbAS (1). Haemoglobin was genotyped by ASPCR using two primer sets that amplifies the wildtype and mutant haemoglobins in each sample. Amplicon sizes were analyzed by gel electrophoresis. Results Amplicons were visible after electrophoresis at regions 517 base pair (bp) for HbA and 267 bp for HbS. ASPCR correctly and unambiguously detected the presence or absence of haemoglobins A and S from all samples collected, demonstrating its accuracy and precision for the screening of SCA. Conclusion This study validates ASPCR as an effective, low cost approach for the clinical screening of SCA in Nigeria. ASPCR is also applicable for other genetic diseases, paternity testing, and forensics where more expensive fluorescence-based approaches are not obtainable.
Collapse
|
27
|
Byrd KA, Williams TN, Lin A, Pickering AJ, Arnold BF, Arnold CD, Kiprotich M, Dentz HN, Njenga SM, Rao G, Colford JM, Null C, Stewart CP. Sickle Cell and α+-Thalassemia Traits Influence the Association between Ferritin and Hepcidin in Rural Kenyan Children Aged 14-26 Months. J Nutr 2018; 148:1903-1910. [PMID: 30517728 PMCID: PMC6669948 DOI: 10.1093/jn/nxy229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/23/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
Background The relation between subclinical hemoglobinopathies and concentrations of the iron-regulatory hormone hepcidin is not well characterized. Objective We investigated the relation of hepcidin concentration with hemoglobinopathies among young children in Kenya. Methods We quantified serum hepcidin and ferritin in 435 Kenyan children aged 14-20 mo in a subsample of the Water, Sanitation, and Handwashing (WASH) Benefits Trial. Blood samples were genotyped for α+-thalassemia and for sickle cell disorder. Hepcidin was compared across sickle cell and α+-thalassemia genotypes separately by using generalized linear models, and children who were normozygous for both conditions were also compared with those who had either of these conditions. In the association between hepcidin and ferritin, we assessed effect modification by genotype. Results In this population, we found that 16.2% had sickle cell trait and 0.2% had sickle cell disorder, whereas 40.0% were heterozygous for α+-thalassemia and 8.2% were homozygous. Hepcidin concentration did not differ by genotype, but effect modification was found by genotype in the association between hepcidin and ferritin (P < 0.1). Among normozygous sickle cell children (HbAA), there was an association between hepcidin and ferritin (β = 0.92; 95% CI: 0.72, 1.10). However, among those with sickle cell trait (HbAS), the association was no longer significant (β = 0.31; 95% CI: -0.04, 0.66). Similarly, among children who were normozygous (αα/αα) or heterozygous (-α/αα) for α+-thalassemia, hepcidin and ferritin were significantly associated [β = 0.94 (95% CI: 0.68, 1.20) and β = 0.77 (95% CI: 0.51, 1.03), respectively]; however, in children who were homozygous for α+-thalassemia (-α/-α), there was no longer a significant association (β = 0.45; 95% CI: -0.10, 1.00). Conclusion Hepcidin was not associated with hemoglobin genotype, but there may be a difference in the way hepcidin responds to iron status among those with either sickle cell trait or homozygous α+-thalassemia in young Kenyan children. This trial was registered at clinicaltrials.gov as NCT01704105.
Collapse
Affiliation(s)
- Kendra A Byrd
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Thomas N Williams
- Imperial College, St. Mary's Hospital, London, United Kingdom
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Program, Kilifi, Kenya
| | - Audrie Lin
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA
| | - Benjamin F Arnold
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Charles D Arnold
- Department of Nutrition, University of California, Davis, Davis, CA
| | | | - Holly N Dentz
- Department of Nutrition, University of California, Davis, Davis, CA
- Innovations for Poverty Action, Nairobi, Kenya
| | | | | | - John M Colford
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Clair Null
- Mathematica Policy Research, Washington, DC
| | | |
Collapse
|
28
|
Nasr A, Saleh AM, Eltoum M, Abushouk A, Hamza A, Aljada A, El-Toum ME, Abu-Zeid YA, Allam G, ElGhazali G. Antibody responses to P. falciparum Apical Membrane Antigen 1(AMA-1) in relation to haemoglobin S (HbS), HbC, G6PD and ABO blood groups among Fulani and Masaleit living in Western Sudan. Acta Trop 2018; 182:115-123. [PMID: 29486174 DOI: 10.1016/j.actatropica.2018.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 01/02/2023]
Abstract
Fulani and Masaleit are two sympatric ethnic groups in western Sudan who are characterised by marked differences in susceptibility to Plasmodium falciparum malaria. It has been demonstrated that Glucose-6-phosphate dehydrogenase (G6PD) deficiency and Sickle cell trait HbAS carriers are protected from the most severe forms of malaria. This study aimed to investigate a set of specific IgG subclasses against P. falciparum Apical Membrane Antigen 1 (AMA-1 3D7), haemoglobin variants and (G6PD) in association with malaria susceptibility among Fulani ethnic group compared to sympatric ethnic group living in Western Sudan. A total of 124 children aged 5-9 years from each tribe living in an area of hyper-endemic P. falciparum unstable malaria transmission were recruited and genotyped for the haemoglobin (Hb) genes, (G6PD) and (ABO) blood groups. Furthermore, the level of plasma IgG antibody subclasses against P. falciparum antigen (AMA-1) were measured using enzyme linked immunosorbent assays (ELISA). Higher levels of anti-malarial IgG1, IgG2 and IgG3 but not IgG4 antibody were found in Fulani when compared to Masaleit. Individuals carrying the HbCC phenotype were significantly associated with higher levels of IgG1 and IgG2. Furthermore, individuals having the HbAS phenotype were associated with higher levels of specific IgG2 and IgG4 antibodies. In addition, patients with G6PD A/A genotype were associated with higher levels of specific IgG2 antibody compared with those carrying the A/G and G/G genotypes. The results indicate that the Fulani ethnic group show lower frequency of HbAS, HbSS and HbAC compared to the Masaleit ethnic group. The inter-ethnic analysis shows no statistically significant difference in G6PD genotypes (P value = 0.791). However, the intra-ethnic analysis indicates that both ethnic groups have less A/A genotypes and (A) allele frequency of G6PD compared to G/G genotypes, while the HbSA genotype was associated with higher levels of IgG2 (AMA-1) and IgG4 antibodies. In addition, patients carrying the G6PD A/A genotype were associated with higher levels of specific IgG2 antibody compared with those carrying the A/G and G/G genotypes. The present results revealed that the Fulani ethnic group has statistically significantly lower frequency of abnormal haemoglobin resistant to malaria infection compared to the Masaleit ethnic group.
Collapse
|
29
|
Opi DH, Swann O, Macharia A, Uyoga S, Band G, Ndila CM, Harrison EM, Thera MA, Kone AK, Diallo DA, Doumbo OK, Lyke KE, Plowe CV, Moulds JM, Shebbe M, Mturi N, Peshu N, Maitland K, Raza A, Kwiatkowski DP, Rockett KA, Williams TN, Rowe JA. Two complement receptor one alleles have opposing associations with cerebral malaria and interact with α +thalassaemia. eLife 2018; 7:e31579. [PMID: 29690995 PMCID: PMC5953541 DOI: 10.7554/elife.31579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 04/01/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria has been a major driving force in the evolution of the human genome. In sub-Saharan African populations, two neighbouring polymorphisms in the Complement Receptor One (CR1) gene, named Sl2 and McCb, occur at high frequencies, consistent with selection by malaria. Previous studies have been inconclusive. Using a large case-control study of severe malaria in Kenyan children and statistical models adjusted for confounders, we estimate the relationship between Sl2 and McCb and malaria phenotypes, and find they have opposing associations. The Sl2 polymorphism is associated with markedly reduced odds of cerebral malaria and death, while the McCb polymorphism is associated with increased odds of cerebral malaria. We also identify an apparent interaction between Sl2 and α+thalassaemia, with the protective association of Sl2 greatest in children with normal α-globin. The complex relationship between these three mutations may explain previous conflicting findings, highlighting the importance of considering genetic interactions in disease-association studies.
Collapse
Affiliation(s)
- D Herbert Opi
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Olivia Swann
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Alexander Macharia
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Sophie Uyoga
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Gavin Band
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Carolyne M Ndila
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Ewen M Harrison
- Centre for Medical InfomaticsUsher Insitute of Population Health Sciences and Informatics, University of EdinburghEdinburghUnited Kingdom
| | - Mahamadou A Thera
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Abdoulaye K Kone
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Dapa A Diallo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy, and DentistryUniversity of BamakoBamakoMali
| | - Kirsten E Lyke
- Division of Malaria Research, Institute for Global HealthUniversity of Maryland School of MedicineBaltimoreUnited States
| | - Christopher V Plowe
- Division of Malaria Research, Institute for Global HealthUniversity of Maryland School of MedicineBaltimoreUnited States
| | | | - Mohammed Shebbe
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Neema Mturi
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Norbert Peshu
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
| | - Kathryn Maitland
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Department of MedicineImperial CollegeLondonUnited Kingdom
| | - Ahmed Raza
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Dominic P Kwiatkowski
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Kirk A Rockett
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Thomas N Williams
- Kenya Medical Research Institute-Wellcome Trust Research ProgrammeKilifiKenya
- Department of MedicineImperial CollegeLondonUnited Kingdom
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
30
|
Macharia AW, Mochamah G, Uyoga S, Ndila CM, Nyutu G, Makale J, Tendwa M, Nyatichi E, Ojal J, Shebe M, Awuondo KO, Mturi N, Peshu N, Tsofa B, Scott JAG, Maitland K, Williams TN. The clinical epidemiology of sickle cell anemia In Africa. Am J Hematol 2018; 93:363-370. [PMID: 29168218 PMCID: PMC6175377 DOI: 10.1002/ajh.24986] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
Sickle cell anemia (SCA) is the commonest severe monogenic disorders of humans. The disease has been highly characterized in high‐income countries but not in sub‐Saharan Africa where SCA is most prevalent. We conducted a retrospective cohort study of all children 0–13 years admitted from within a defined study area to Kilifi County Hospital in Kenya over a five‐year period. Children were genotyped for SCA retrospectively and incidence rates calculated with reference to population data. Overall, 576 of 18,873 (3.1%) admissions had SCA of whom the majority (399; 69.3%) were previously undiagnosed. The incidence of all‐cause hospital admission was 57.2/100 person years of observation (PYO; 95%CI 52.6–62.1) in children with SCA and 3.7/100 PYO (95%CI 3.7–3.8) in those without SCA (IRR 15.3; 95%CI 14.1–16.6). Rates were higher for the majority of syndromic diagnoses at all ages beyond the neonatal period, being especially high for severe anemia (hemoglobin <50 g/L; IRR 58.8; 95%CI 50.3–68.7), stroke (IRR 486; 95%CI 68.4–3,450), bacteremia (IRR 23.4; 95%CI 17.4–31.4), and for bone (IRR 607; 95%CI 284–1,300), and joint (IRR 80.9; 95%CI 18.1–362) infections. The use of an algorithm based on just five clinical features would have identified approximately half of all SCA cases among hospital‐admitted children with a number needed to test to identify each affected patient of only fourteen. Our study illustrates the clinical epidemiology of SCA in a malaria‐endemic environment without specific interventions. The targeted testing of hospital‐admitted children using the Kilifi Algorithm provides a pragmatic approach to early diagnosis in high‐prevalence countries where newborn screening is unavailable.
Collapse
Affiliation(s)
| | | | - Sophie Uyoga
- KEMRI/Wellcome Trust Research Programme, Kilifi; Kenya
| | | | - Gideon Nyutu
- KEMRI/Wellcome Trust Research Programme, Kilifi; Kenya
| | | | | | | | - John Ojal
- KEMRI/Wellcome Trust Research Programme, Kilifi; Kenya
| | | | | | - Neema Mturi
- KEMRI/Wellcome Trust Research Programme, Kilifi; Kenya
| | - Norbert Peshu
- KEMRI/Wellcome Trust Research Programme, Kilifi; Kenya
| | | | - J. Anthony G. Scott
- KEMRI/Wellcome Trust Research Programme, Kilifi; Kenya
- London School of Hygiene and Tropical Medicine; London WC1E 7HT United Kingdom
- INDEPTH Network; Accra Ghana
| | - Kathryn Maitland
- KEMRI/Wellcome Trust Research Programme, Kilifi; Kenya
- Faculty of Medicine; Imperial College, St Mary's Hospital; London W21NY United Kingdom
| | - Thomas N. Williams
- KEMRI/Wellcome Trust Research Programme, Kilifi; Kenya
- INDEPTH Network; Accra Ghana
- Faculty of Medicine; Imperial College, St Mary's Hospital; London W21NY United Kingdom
| |
Collapse
|
31
|
Swann OV, Harrison EM, Opi DH, Nyatichi E, Macharia A, Uyoga S, Williams TN, Rowe JA. No Evidence that Knops Blood Group Polymorphisms Affect Complement Receptor 1 Clustering on Erythrocytes. Sci Rep 2017; 7:17825. [PMID: 29259218 PMCID: PMC5736761 DOI: 10.1038/s41598-017-17664-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023] Open
Abstract
Clustering of Complement Receptor 1 (CR1) in the erythrocyte membrane is important for immune-complex transfer and clearance. CR1 contains the Knops blood group antigens, including the antithetical pairs Swain-Langley 1 and 2 (Sl1 and Sl2) and McCoy a and b (McCa and McCb), whose functional effects are unknown. We tested the hypothesis that the Sl and McC polymorphisms might influence CR1 clustering on erythrocyte membranes. Blood samples from 125 healthy Kenyan children were analysed by immunofluorescence and confocal microscopy to determine CR1 cluster number and volume. In agreement with previous reports, CR1 cluster number and volume were positively associated with CR1 copy number (mean number of CR1 molecules per erythrocyte). Individuals with the McCb/McCb genotype had more clusters per cell than McCa/McCa individuals. However, this association was lost when the strong effect of CR1 copy number was included in the model. No association was observed between Sl genotype, sickle cell genotype, α+thalassaemia genotype, gender or age and CR1 cluster number or volume. Therefore, after correction for CR1 copy number, the Sl and McCoy polymorphisms did not influence erythrocyte CR1 clustering, and the effects of the Knops polymorphisms on CR1 function remains unknown.
Collapse
Affiliation(s)
- O V Swann
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - E M Harrison
- Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - D H Opi
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya.,Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
| | - E Nyatichi
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - A Macharia
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - S Uyoga
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - T N Williams
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research, Kilifi, Kenya.,Department of Medicine, Imperial College, London, UK
| | - J A Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
32
|
Lee D, Shin Y, Chung S, Hwang KS, Yoon DS, Lee JH. Simple and Highly Sensitive Molecular Diagnosis of Zika Virus by Lateral Flow Assays. Anal Chem 2016; 88:12272-12278. [PMID: 28193014 DOI: 10.1021/acs.analchem.6b03460] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have developed a simple, user-friendly, and highly sensitive Zika virus (ZIKV) detection method by incorporating optimized reverse transcription loop-mediated isothermal amplification (RT-LAMP) and a lateral flow assay (LFA). The optimized RT-LAMP reaction was carried out using Bst 3.0 polymerase, which has robust and fast isothermal amplification performance even in the presence of high concentrations of inhibitors; this permitted the amplification of ZIKV RNA in pure water and human whole blood. In addition, the strong reverse transcription activity of Bst 3.0 polymerase enabled specific ZIKV RNA amplification without extra addition of reverse transcriptase. The RT-LAMP condition was optimized by adjusting the Mg2+ and dNTP mix concentration to extirpate nontarget amplification, which is caused by nonspecific primer dimers amplification. After 30 min of RT-LAMP reaction, the resultant amplicons were simply and rapidly analyzed by the LFA test in less than 5 min. The optimized RT-LAMP combined with the LFA allowed specific ZIKV RNA detection down to the single copy level within 35 min.
Collapse
Affiliation(s)
- Dohwan Lee
- Department of Electrical Engineering, Kwangwoon University , 447-1 Wolgye, Nowon, Seoul 01897, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine , Ulsan, Republic of Korea.,Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center , 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | | | - Kyo Seon Hwang
- Center for BioMicrosystem, Korea Institute of Science and Technology (KIST) , Seoul 136-791, Korea
| | | | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University , 447-1 Wolgye, Nowon, Seoul 01897, Republic of Korea
| |
Collapse
|
33
|
Cimőes R, Cavalcanti de Siqueira RRA, Crovella S, Eleutério de Souza PR, Donos N. A Fast Method for DEFB1 - 44C/G SNP Genotyping in Brazilian Patients with Periodontitis. Acta Stomatol Croat 2016; 48:208-15. [PMID: 27688368 DOI: 10.15644/asc48/3/5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
AIM Defensins are cationic antimicrobial peptides expressed in epithelial cells. Such peptides exhibit antibacterial, antifungal and antiviral properties, and are a component of the innate immune response. It has been suggested that they have a protective role in the oral cavity. This study evaluated the DEFB1 polymorphism in diabetic patients with or without periodontitis in comparison to healthy controls. MATERIAL AND METHODS We used Hairpin-Shaped Primer (HP) assay to study the distribution of the -44 C/G SNP (rs1800972) in 119 human DNAs obtained from diabetic patients and healthy control patients. RESULTS The results indicate that there are no differences in distribution between groups and that in diabetic periodontitis patients the homozygous mutant could be found more frequently. CONCLUSION Further studies are necessary in order to investigate the role of DEFB1 polymorphisms in diabetic periodontitis patients and the influence of the peptide in periodontal pathogens.
Collapse
Affiliation(s)
- Renata Cimőes
- PhD, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | - Nikos Donos
- PhD, Eastman Dental Institute, Unit Periodontology, London, United Kingdom
| |
Collapse
|
34
|
Abstract
Analysis of human genetic data promises to uncover important disease targets. Genes known to cause or increase susceptibility for various diseases are being identified through analysis of genetic data, expression and metabolites. Future benefits to individuals are far-reaching, including improved gene therapy strategies, better drug development for disease treatment, pre-symptomatic disease intervention and risk susceptibility information. The rapid expansion of genetic databases has resulted in the emerging areas of genomics, transcriptomics, proteomics and metabolomics. The article presents a comprehensive overview of Internet databases, their trends over time and what 'omics' type they embody. With the completion of the human genome we are entering the postgenomic era. The use of microarrays and database software for genomic, transcriptomic, proteomic and metabolomic data for clinical assays and new diagnostic therapeutics will result in large, interlinked databases that will present unique issues of data management, standardization and information sharing.
Collapse
Affiliation(s)
- Michael G. Tyshenko
- McLaughlin Centre for Population Health Risk Assessment, Institute of
Population Health, University of Ottawa, 1 Stewart St, Ottawa, ON, Canada
K1N 6N5,
| | - William Leiss
- School of Policy Studies, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
35
|
Fuchs T, Kelly JA, Simon E, Sivils KL, Hermel E. The anti-inflammatory CASPASE-12 gene does not influence SLE phenotype in African-Americans. Immunol Lett 2016; 173:21-5. [DOI: 10.1016/j.imlet.2016.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 01/27/2023]
|
36
|
Lee HB, Schwab TL, Koleilat A, Ata H, Daby CL, Cervera RL, McNulty MS, Bostwick HS, Clark KJ. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping. Hum Gene Ther 2016; 27:425-35. [PMID: 26986823 PMCID: PMC4931339 DOI: 10.1089/hum.2016.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98-100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score genotypes. ASQ is cost-effective because universal fluorescent probes negate the necessity of designing expensive probes for each locus.
Collapse
Affiliation(s)
- Han B Lee
- 1 Neurobiology of Disease Graduate Program, Mayo Graduate School , Rochester, Minnesota
| | - Tanya L Schwab
- 2 Department of Biochemistry and Molecular Biology, Mayo Clinic , Rochester, Minnesota
| | - Alaa Koleilat
- 3 Clinical and Translational Science Graduate Program, Mayo Graduate School , Rochester, Minnesota
| | - Hirotaka Ata
- 3 Clinical and Translational Science Graduate Program, Mayo Graduate School , Rochester, Minnesota.,4 Medical Scientist Training Program, Mayo Graduate School , Rochester, Minnesota
| | - Camden L Daby
- 2 Department of Biochemistry and Molecular Biology, Mayo Clinic , Rochester, Minnesota
| | - Roberto Lopez Cervera
- 2 Department of Biochemistry and Molecular Biology, Mayo Clinic , Rochester, Minnesota
| | - Melissa S McNulty
- 2 Department of Biochemistry and Molecular Biology, Mayo Clinic , Rochester, Minnesota
| | - Hannah S Bostwick
- 2 Department of Biochemistry and Molecular Biology, Mayo Clinic , Rochester, Minnesota
| | - Karl J Clark
- 1 Neurobiology of Disease Graduate Program, Mayo Graduate School , Rochester, Minnesota.,2 Department of Biochemistry and Molecular Biology, Mayo Clinic , Rochester, Minnesota.,3 Clinical and Translational Science Graduate Program, Mayo Graduate School , Rochester, Minnesota
| |
Collapse
|
37
|
Red blood cell complement receptor one level varies with Knops blood group, α(+)thalassaemia and age among Kenyan children. Genes Immun 2016; 17:171-8. [PMID: 26844958 PMCID: PMC4842007 DOI: 10.1038/gene.2016.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022]
Abstract
Both the invasion of red blood cells (RBCs) by Plasmodium falciparum parasites and the sequestration of parasite-infected RBCs in the microvasculature are mediated in part by complement receptor one (CR1). RBC surface CR1 level can vary between individuals by more than 20-fold and may be associated with the risk of severe malaria. The factors that influence RBC CR1 level variation are poorly understood, particularly in African populations. We studied 3535 child residents of a malaria-endemic region of coastal Kenya and report, for the first time, that the CR1 Knops blood group alleles Sl2 and McC(b), and homozygous HbSS are positively associated with RBC CR1 level. Sickle cell trait and ABO blood group did not influence RBC CR1 level. We also confirm the previous observation that α(+)thalassaemia is associated with reduced RBC CR1 level, possibly due to small RBC volume, and that age-related changes in RBC CR1 expression occur throughout childhood. RBC CR1 level in malaria-endemic African populations is a complex phenotype influenced by multiple factors that should be taken into account in the design and interpretation of future studies on CR1 and malaria susceptibility.
Collapse
|
38
|
Opi DH, Ochola LB, Tendwa M, Siddondo BR, Ocholla H, Fanjo H, Ghumra A, Ferguson DJP, Rowe JA, Williams TN. Mechanistic Studies of the Negative Epistatic Malaria-protective Interaction Between Sickle Cell Trait and α +thalassemia. EBioMedicine 2014; 1:29-36. [PMID: 25893206 PMCID: PMC4397954 DOI: 10.1016/j.ebiom.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Individually, the red blood cell (RBC) polymorphisms sickle cell trait (HbAS) and α+thalassemia protect against severe Plasmodium falciparum malaria. It has been shown through epidemiological studies that the co-inheritance of both conditions results in a loss of the protection afforded by each, but the biological mechanisms remain unknown. Methods We used RBCs from > 300 donors of various HbAS and α+thalassemia genotype combinations to study the individual and combinatorial effects of these polymorphisms on a range of putative P. falciparum virulence phenotypes in-vitro, using four well-characterized P. falciparum laboratory strains. We studied cytoadhesion of parasitized RBCs (pRBCs) to the endothelial receptors CD36 and ICAM1, rosetting of pRBCs with uninfected RBCs, and pRBC surface expression of the parasite-derived adhesion molecule P. falciparum erythrocyte membrane protein-1 (PfEMP1). Findings We confirmed previous reports that HbAS pRBCs show reduced cytoadhesion, rosetting and PfEMP1 expression levels compared to normal pRBC controls. Furthermore, we found that co-inheritance of HbAS with α+thalassemia consistently reversed these effects, such that pRBCs of mixed genotype showed levels of cytoadhesion, rosetting and PfEMP1 expression that were indistinguishable from those seen in normal pRBCs. However, pRBCs with α+thalassemia alone showed parasite strain-specific effects on adhesion, and no consistent reduction in PfEMP1 expression. Interpretation Our data support the hypothesis that the negative epistasis between HbAS and α+thalassemia observed in epidemiological studies might be explained by host genotype-specific changes in the pRBC-adhesion properties that contribute to parasite sequestration and disease pathogenesis in vivo. The mechanism by which α+thalassemia on its own protects against severe malaria remains unresolved.
Collapse
Affiliation(s)
- D Herbert Opi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya ; Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom
| | - Lucy B Ochola
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya
| | - Metrine Tendwa
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya
| | - Bethsheba R Siddondo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya
| | - Harold Ocholla
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya
| | - Harry Fanjo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya
| | - Ashfaq Ghumra
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, OX3 9DU, Oxford, United Kingdom
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom
| | - Thomas N Williams
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya ; Department of Medicine, Imperial College, St Mary's Hospital, Praed Street, London W21NY, United Kingdom
| |
Collapse
|
39
|
Papadakis G, Tsortos A, Kordas A, Tiniakou I, Morou E, Vontas J, Kardassis D, Gizeli E. Acoustic detection of DNA conformation in genetic assays combined with PCR. Sci Rep 2014; 3:2033. [PMID: 23778520 PMCID: PMC3686166 DOI: 10.1038/srep02033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/03/2013] [Indexed: 11/09/2022] Open
Abstract
Application of PCR to multiplexing assays is not trivial; it requires multiple fluorescent labels for amplicon detection and sophisticated software for data interpretation. Alternative PCR-free methods exploiting new concepts in nanotechnology exhibit high sensitivities but require multiple labeling and/or amplification steps. Here, we propose to simplify the problem of simultaneous analysis of multiple targets in genetic assays by detecting directly the conformation, rather than mass, of target amplicons produced in the same PCR reaction. The new methodology exploits acoustic wave devices which are shown to be able to characterize in a fully quantitative manner multiple double stranded DNAs of various lengths. The generic nature of the combined acoustic/PCR platform is shown using real samples and, specifically, during the detection of SNP genotyping in Anopheles gambiae and gene expression quantification in treated mice. The method possesses significant advantages to TaqMan assay and real-time PCR regarding multiplexing capability, speed, simplicity and cost.
Collapse
Affiliation(s)
- G Papadakis
- Institute of Molecular Biology & Biotechnology, FORTH, Vassilika Vouton, 70013 Heraklion, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Carter TE, von Fricken M, Romain JR, Memnon G, St Victor Y, Schick L, Okech BA, Mulligan CJ. Detection of sickle cell hemoglobin in Haiti by genotyping and hemoglobin solubility tests. Am J Trop Med Hyg 2014; 91:406-11. [PMID: 24957539 DOI: 10.4269/ajtmh.13-0572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Sickle cell disease is a growing global health concern because infants born with the disorder in developing countries are now surviving longer with little access to diagnostic and management options. In Haiti, the current state of sickle cell disease/trait in the population is unclear. To inform future screening efforts in Haiti, we assayed sickle hemoglobin mutations using traditional hemoglobin solubility tests (HST) and add-on techniques, which incorporated spectrophotometry and insoluble hemoglobin separation. We also generated genotype data as a metric for HST performance. We found 19 of 202 individuals screened with HST were positive for sickle hemoglobin, five of whom did not carry the HbS allele. We show that spectrophotometry and insoluble hemoglobin separation add-on techniques could resolve false positives associated with the traditional HST approach, with some limitations. We also discuss the incorporation of insoluble hemoglobin separation observation with HST in suboptimal screening settings like Haiti.
Collapse
Affiliation(s)
- Tamar E Carter
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Community Coalition for Haiti, Jacmel, Haiti
| | - Michael von Fricken
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Community Coalition for Haiti, Jacmel, Haiti
| | - Jean R Romain
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Community Coalition for Haiti, Jacmel, Haiti
| | - Gladys Memnon
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Community Coalition for Haiti, Jacmel, Haiti
| | - Yves St Victor
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Community Coalition for Haiti, Jacmel, Haiti
| | - Laura Schick
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Community Coalition for Haiti, Jacmel, Haiti
| | - Bernard A Okech
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Community Coalition for Haiti, Jacmel, Haiti
| | - Connie J Mulligan
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti; Community Coalition for Haiti, Jacmel, Haiti
| |
Collapse
|
41
|
Tsang BL, Sullivan KM, Ruth LJ, Williams TN, Suchdev PS. Nutritional status of young children with inherited blood disorders in western Kenya. Am J Trop Med Hyg 2014; 90:955-962. [PMID: 24639300 PMCID: PMC4015592 DOI: 10.4269/ajtmh.13-0496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To determine the association between a range of inherited blood disorders and indicators of poor nutrition, we analyzed data from a population-based, cross-sectional survey of 882 children 6–35 months of age in western Kenya. Of children with valid measurements, 71.7% were anemic (hemoglobin < 11 g/dL), 19.1% had ferritin levels < 12 μg/L, and 30.9% had retinol binding protein (RBP) levels < 0.7 μmol/L. Unadjusted analyses showed that compared with normal children, homozygous α+-thalassemia individuals had a higher prevalence of anemia (82.3% versus 66.8%, P = 0.001), but a lower prevalence of low RBP (20.5% versus 31.4%, P = 0.024). In multivariable analysis, homozygous α+-thalassemia remained associated with anemia (adjusted odds ratio [aOR] = 1.8, P = 0.004) but not with low RBP (aOR = 0.6, P = 0.065). Among young Kenyan children, α+-thalassemia is associated with anemia, whereas G6PD deficiency, haptoglobin 2-2, and HbS are not; none of these blood disorders are associated with iron deficiency, vitamin A deficiency, or poor growth.
Collapse
Affiliation(s)
| | | | | | | | - Parminder S. Suchdev
- *Address correspondence to Parminder S. Suchdev, Nutrition Branch, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, MS-F77, Atlanta, GA 30341. E-mail:
| |
Collapse
|
42
|
CASPASE-12 and rheumatoid arthritis in African-Americans. Immunogenetics 2014; 66:281-5. [PMID: 24515649 DOI: 10.1007/s00251-014-0762-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/27/2014] [Indexed: 01/30/2023]
Abstract
CASPASE-12 (CASP12) has a downregulatory function during infection and thus may protect against inflammatory disease. We investigated the distribution of CASP12 alleles (#rs497116) in African-Americans (AA) with rheumatoid arthritis (RA). CASP12 alleles were genotyped in 953 RA patients and 342 controls. Statistical analyses comparing genotype groups were performed using Kruskal-Wallis non-parametric ANOVA with Mann-Whitney U tests and chi-square tests. There was no significant difference in the overall distribution of CASP12 genotypes within AA with RA, but CASP12 homozygous patients had lower baseline joint-narrowing scores. CASP12 homozygosity appears to be a subtle protective factor for some aspects of RA in AA patients.
Collapse
|
43
|
Denden S, Lakhdar R, Keskes NB, Hamdaoui MH, Chibani JB, Khelil AH. PCR-based screening for the most prevalent alpha 1 antitrypsin deficiency mutations (PI S, Z, and Mmalton) in COPD patients from Eastern Tunisia. Biochem Genet 2013; 51:677-85. [PMID: 23666394 DOI: 10.1007/s10528-013-9597-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/21/2012] [Indexed: 10/26/2022]
Abstract
It is generally agreed that the protease inhibitor (PI) alleles PI*S (Val264Glu) and PI*Z (Lys342Glu) are the most common alpha 1 antitrypsin deficiency variants worldwide, but the PI*Mmalton allele (ΔPhe52) prevails over these variants in some Mediterranean regions. In eastern Tunisia (Mahdia), we screened 100 subjects with chronic obstructive pulmonary disease for these variants. The PI*S and PI*Z alleles were genotyped by the previously described SexAI/Hpγ99I RFLP-PCR. We provide here a new method for PI*Mmalton genotyping using mismatched RFLP-PCR. These methods are suitable for routine clinical application and can easily be reproduced by several laboratories, since they do not require extensive optimization, unlike the previously described bidirectional allele-specific amplification PCR for PI*Mmalton genotyping. Our results were in agreement with previous reports from central Tunisia (Kairouan), suggesting that the PI*Mmalton mutation is the most frequent alpha 1 antitrypsin deficiency-related mutation in Tunisia.
Collapse
Affiliation(s)
- Sabri Denden
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, Monastir, Tunisia,
| | | | | | | | | | | |
Collapse
|
44
|
Foote EM, Sullivan KM, Ruth LJ, Oremo J, Sadumah I, Williams TN, Suchdev PS. Determinants of anemia among preschool children in rural, western Kenya. Am J Trop Med Hyg 2013; 88:757-64. [PMID: 23382166 PMCID: PMC3617865 DOI: 10.4269/ajtmh.12-0560] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/07/2012] [Indexed: 01/30/2023] Open
Abstract
Although anemia in preschool children is most often attributed to iron deficiency, other nutritional, infectious, and genetic contributors are rarely concurrently measured. In a population-based, cross-sectional survey of 858 children 6-35 months of age in western Kenya, we measured hemoglobin, malaria, inflammation, sickle cell, α-thalassemia, iron deficiency, vitamin A deficiency, anthropometry, and socio-demographic characteristics. Anemia (Hb < 11 g/dL) and severe anemia (Hb < 7 g/dL) prevalence ratios (PRs) for each exposure were determined using multivariable modeling. Anemia (71.8%) and severe anemia (8.4%) were common. Characteristics most strongly associated with anemia were malaria (PR: 1.7; 95% confidence interval [CI] = 1.5-1.9), iron deficiency (1.3; 1.2-1.4), and homozygous α-thalassemia (1.3; 1.1-1.4). Characteristics associated with severe anemia were malaria (10.2; 3.5-29.3), inflammation (6.7; 2.3-19.4), and stunting (1.6; 1.0-2.4). Overall 16.8% of anemia cases were associated with malaria, 8.3% with iron deficiency, and 6.1% with inflammation. Interventions should address malaria, iron deficiency, and non-malarial infections to decrease the burden of anemia in this population.
Collapse
Affiliation(s)
- Eric M Foote
- Emory University School of Medicine, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Costa C, Pissard S, Girodon E, Huot D, Goossens M. A One-Step Real-Time PCR Assay for Rapid Prenatal Diagnosis of Sickle Cell Disease and Detection of Maternal Contamination. ACTA ACUST UNITED AC 2012; 7:45-8. [PMID: 14529320 DOI: 10.1007/bf03260020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Mutations at the codon 6 of the beta-globin gene (hemoglobin [Hb] S and HbC) can be routinely identified by various methods and prenatal diagnosis has been available to affected families for several years. However, the presence of maternal cells in fetal samples constitutes a serious potential source of prenatal misdiagnosis and most methods currently used to detect maternal contamination are based on the analysis of highly polymorphic loci. In addition, these methods are labor intensive and time consuming and risk carry-over contamination. METHOD We describe here a one-step method for mutation detection that uses fluorescent hybridization probes with melting curve analysis for both simultaneously prenatal diagnosis of sickle cell disease and potential maternal contamination. RESULTS Retrospective and prospective prenatal diagnosis studies (conducted in 20 and 50 cases, respectively), using both the regular procedure and real-time PCR assay show perfect concordant results. We show in addition, that as little as 5% maternal contamination can be detected and that genotype determinations are unambiguous.
Collapse
Affiliation(s)
- Catherine Costa
- Laboratoire de Génétique Moléculaire, CHU Henri Mondor AP-HP, Créteil, France.
| | | | | | | | | |
Collapse
|
46
|
Suchdev PS, Ruth LJ, Earley M, Macharia A, Williams TN. The burden and consequences of inherited blood disorders among young children in western Kenya. MATERNAL AND CHILD NUTRITION 2012; 10:135-44. [PMID: 22973867 PMCID: PMC3963444 DOI: 10.1111/j.1740-8709.2012.00454.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although inherited blood disorders are common among children in many parts of Africa, limited data are available about their prevalence or contribution to childhood anaemia. We conducted a cross‐sectional survey of 858 children aged 6–35 months who were randomly selected from 60 villages in western Kenya. Haemoglobin (Hb), ferritin, malaria, C‐reactive protein (CRP) and retinol binding protein (RBP) were measured from capillary blood. Using polymerase chain reaction (PCR), Hb type, −3.7 kb alpha‐globin chain deletion, glucose‐6‐phosphate dehydrogenase (G6PD) genotype and haptoglobin (Hp) genotype were determined. More than 2 out of 3 children had at least one measured blood disorder. Sickle cell trait (HbAS) and disease (HbSS) were found in 17.1% and 1.6% of children, respectively; 38.5% were heterozygotes and 9.6% were homozygotes for α+‐thalassaemia. The Hp 2‐2 genotype was found in 20.4% of children, whereas 8.2% of males and 6.8% of children overall had G6PD deficiency. There were no significant differences in the distribution of malaria by the measured blood disorders, except among males with G6PD deficiency who had a lower prevalence of clinical malaria than males of normal G6PD genotype (P = 0.005). After excluding children with malaria parasitaemia, inflammation (CRP > 5 mg L−1), iron deficiency (ferritin < 12 μg L−1) or vitamin A deficiency (RBP < 0.7 μg L−1), the prevalence of anaemia among those without α+‐thalassaemia (43.0%) remained significantly lower than that among children who were either heterozygotes (53.5%) or homozygotes (67.7%, P = 0.03). Inherited blood disorders are common among pre‐school children in western Kenya and are important contributors to anaemia.
Collapse
Affiliation(s)
- Parminder S Suchdev
- Nutrition Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA; Department of Pediatrics and Global Health, Emory University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
47
|
Pandey S, Mishra RM, Suhail A, Rahul S, Ravi K, Pandey S, Seth T, Saxena R. Association of Low Serum Iron with Alpha Globin Gene Deletions and High Level of HbF with Xmn-1 Polymorphism in Sickle Cell Traits. Indian J Clin Biochem 2012; 27:270-3. [PMID: 26405386 PMCID: PMC4577506 DOI: 10.1007/s12291-011-0170-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 09/24/2011] [Indexed: 11/30/2022]
Abstract
Usually sickle cell traits are asymptomatic but co-existence of various factrors may alter the clinical as well as biochemical levels. In India sickle cell traits are neglected condition. Here we are presenting the alpha deletion in association with low serum iron and increased HbF level with Xmn-1 carriers in sickle cell traits. Sickle traits with alpha deletions had significantly low level of serum iron (P-value <0.05) with low level of reticulocytes and red cell indices while Xmn-1 polymorphism associated with increased HbF level. Study concludes low serum iron associated with alpha deletions and high level of HbF associated with Xmn-1 polymorphism in sickle cell traits.
Collapse
Affiliation(s)
- S. Pandey
- />Department of Hematology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029 India
| | - R. M. Mishra
- />Department of Environmental Biology, APS University Rewa, Rewa, India
| | - A. Suhail
- />Department of Hematology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029 India
| | - S. Rahul
- />Department of Hematology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029 India
| | - K. Ravi
- />Department of Hematology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029 India
| | - Sw. Pandey
- />Department of Hematology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029 India
| | - T. Seth
- />Department of Hematology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029 India
| | - R. Saxena
- />Department of Hematology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029 India
| |
Collapse
|
48
|
Ochola LB, Siddondo BR, Ocholla H, Nkya S, Kimani EN, Williams TN, Makale JO, Liljander A, Urban BC, Bull PC, Szestak T, Marsh K, Craig AG. Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome. PLoS One 2011; 6:e14741. [PMID: 21390226 PMCID: PMC3048392 DOI: 10.1371/journal.pone.0014741] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 01/07/2011] [Indexed: 12/22/2022] Open
Abstract
Our understanding of the basis of severe disease in malaria is incomplete. It is clear that pathology is in part related to the pro-inflammatory nature of the host response but a number of other factors are also thought to be involved, including the interaction between infected erythrocytes and endothelium. This is a complex system involving several host receptors and a major parasite-derived variant antigen (PfEMP1) expressed on the surface of the infected erythrocyte membrane. Previous studies have suggested a role for ICAM-1 in the pathology of cerebral malaria, although these have been inconclusive. In this study we have examined the cytoadherence patterns of 101 patient isolates from varying clinical syndromes to CD36 and ICAM-1, and have used variant ICAM-1 proteins to further characterise this adhesive phenotype. Our results show that increased binding to CD36 is associated with uncomplicated malaria while ICAM-1 adhesion is raised in parasites from cerebral malaria cases.
Collapse
Affiliation(s)
- Lucy B Ochola
- KEMRI/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jian JW, Huang CC. Colorimetric detection of DNA by modulation of thrombin activity on gold nanoparticles. Chemistry 2011; 17:2374-80. [PMID: 21287648 DOI: 10.1002/chem.201002825] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Indexed: 12/31/2022]
Abstract
A colorimetric, non-cross-linking aggregation-based gold-nanoparticle (AuNP) probe has been developed for the detection of DNA and the analysis of single-nucleotide polymorphism (SNP). The probe acts by modulating the enzyme activity of thrombin relative to fibrinogen. A thrombin-binding aptamer with a 29-base-long oligonucleotide (TBA(29)) assembled on the nanoparticles (TBA(29)-AuNPs) through sandwich DNA hybridization was found to possess ultra-high anticoagulant potency. The enzyme inhibition of thrombin was determined by thrombin-induced aggregation of fibrinogen-functionalized 56 nm AuNPs (Fib-AuNPs). The potency of the inhibition of TBA(29)-AuNPs relative to thrombin--and thus the degree of aggregation of the Fib-AuNPs--is highly dependent on the concentration of perfectly matched DNA (DNA(pm)). Under optimal conditions [Tris-HCl (20 mM, pH 7.4), KCl (5 mM), MgCl(2) (1 mM), CaCl(2) (1 mM), NaCl (150 mM), thrombin (10 pM), and TBA(29)-AuNPs (20 pM)], the new TBA(29)-AuNP/Fib-AuNP probe shows linear sensitivity to DNA(pm) in the concentration range 20-500 pM with a correlation coefficient of 0.96. The limit of detection for DNA(pm) was experimentally determined to be 12 pM, based on a signal-to-noise ratio (S/N) of 3. The new probe was successfully applied to the analysis of an SNP that is responsible for sickle cell anemia. Relative to conventional molecular-beacon-based probes, the new probe offers the advantages of higher sensitivity and selectivity towards DNA and lower cost, showing its great potential for practical studies of SNPs.
Collapse
Affiliation(s)
- Jyun-Wei Jian
- Institute of Bioscience and Biotechnology and Center for Marine, Bioenvironment and Biotechnology, National Taiwan Ocean University, 2, Beining Road, Keelung, 20224, Taiwan
| | | |
Collapse
|
50
|
Wang K, Zhang JT, Yun YX, Wu XB, Chen AQ, Wang P, Wang KJ, Zhang JY, Dai LP. [Improvement on PCR-CTPP: a SNP genotyping approach based on mismatch technique]. YI CHUAN = HEREDITAS 2011; 33:182-188. [PMID: 21377976 DOI: 10.3724/sp.j.1005.2011.00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To explore the technique principle of PCR with confronting two-pair primers (PCR-CTPP) and improve the accuracy of SNP genotyping by taking the 1298 locus of human gene MTHFR as an example, the reliability between conventional PCR-CTPP and improved PCR-CTPP was compared using reconstructed PCR-CTPP detecting system in terms of designing appropriate primers and optimizing annealing temperature and the final concentration of primers. The improved PCR-CTPP detection system proved to be more accurate, which supported the viewpoint on the theoretical defects of conventional PCR-CTPP. The large-scale study verified the reliability of the improved method. It is expected that this improved technique would be widely used in the field of medicine and molecular biology.
Collapse
Affiliation(s)
- Ke Wang
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou 450052, China.
| | | | | | | | | | | | | | | | | |
Collapse
|