1
|
Moyo B, Brown LBC, Khondaker II, Bao G. Engineering adeno-associated viral vectors for CRISPR/Cas based in vivo therapeutic genome editing. Biomaterials 2025; 321:123314. [PMID: 40203649 DOI: 10.1016/j.biomaterials.2025.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
The recent approval of the first gene editing therapy for sickle cell disease and transfusion-dependent beta-thalassemia by the U.S. Food and Drug Administration (FDA) demonstrates the immense potential of CRISPR (clustered regularly interspaced short palindromic repeats) technologies to treat patients with genetic disorders that were previously considered incurable. While significant advancements have been made with ex vivo gene editing approaches, the development of in vivo CRISPR/Cas gene editing therapies has not progressed as rapidly due to significant challenges in achieving highly efficient and specific in vivo delivery. Adeno-associated viral (AAV) vectors have shown great promise in clinical trials as vehicles for delivering therapeutic transgenes and other cargos but currently face multiple limitations for effective delivery of gene editing machineries. This review elucidates these challenges and highlights the latest engineering strategies aimed at improving the efficiency, specificity, and safety profiles of AAV-packaged CRISPR/Cas systems (AAV-CRISPR) to enhance their clinical utility.
Collapse
Affiliation(s)
- Buhle Moyo
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Lucas B C Brown
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA; Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, 77030, USA
| | - Ishika I Khondaker
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Li XH, Lu HZ, Yao JB, Zhang C, Shi TQ, Huang H. Recent advances in the application of CRISPR/Cas-based gene editing technology in Filamentous Fungi. Biotechnol Adv 2025; 81:108561. [PMID: 40086675 DOI: 10.1016/j.biotechadv.2025.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Filamentous fungi are essential industrial microorganisms that can serve as sources of enzymes, organic acids, terpenoids, and other bioactive compounds with significant applications in food, medicine, and agriculture. However, the underdevelopment of gene editing tools limits the full exploitation of filamentous fungi, which still present numerous untapped potential applications. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats) system, a versatile genome-editing tool, has advanced significantly and been widely applied in filamentous fungi, showcasing considerable research potential. This review examines the development and mechanisms of genome-editing tools in filamentous fungi, and contrasts the CRISPR/Cas9 and CRISPR/Cpf1 systems. The transformation and delivery strategies of the CRISPR/Cas system in filamentous fungi are also examined. Additionally, recent applications of CRISPR/Cas systems in filamentous fungi are summarized, such as gene disruption, base editing, and gene regulation. Strategies to enhance editing efficiency and reduce off-target effects are also highlighted, with the aim of providing insights for the future construction and optimization of CRISPR/Cas systems in filamentous fungi.
Collapse
Affiliation(s)
- Xu-Hong Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Hui-Zhi Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Ji-Bao Yao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Chi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| |
Collapse
|
3
|
Tei C, Hata S, Mabuchi A, Okuda S, Ito KK, Genova M, Fukuyama M, Yamamoto S, Chinen T, Toyoda A, Kitagawa D. Comparative analysis of multiple DNA double-strand break repair pathways in CRISPR-mediated endogenous tagging. Commun Biol 2025; 8:749. [PMID: 40360740 PMCID: PMC12075812 DOI: 10.1038/s42003-025-08187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
CRISPR-mediated endogenous tagging is a powerful tool in biological research. Inhibiting the non-homologous end joining (NHEJ) pathway has been shown to improve the low efficiency of accurate knock-in via homology-directed repair (HDR). However, the influence of alternative double-stranded break (DSB) repair pathways on knock-in remains to be fully explored. In this study, our long-read amplicon sequencing analysis reveals various patterns of imprecise repair in CRISPR-mediated knock-in, even with NHEJ inhibition. Further suppressing either microhomology-mediated end joining (MMEJ) or single-strand annealing (SSA) reduces nucleotide deletions around the cut site, thereby elevating knock-in accuracy. Additionally, imprecise donor integration is reduced by inhibiting SSA, but not MMEJ. Particularly, SSA suppression reduced asymmetric HDR, a specific imprecise integration pattern, which we further confirm using a novel reporter system. These findings demonstrate the complex interplay of multiple DSB repair pathways in CRISPR-mediated knock-in and offer novel strategies, including SSA pathway targeting, to improve precise gene editing efficiency.
Collapse
Affiliation(s)
- Chiharu Tei
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shoji Hata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Honcho Kawaguchi, Saitama, Japan.
| | - Akira Mabuchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shotaro Okuda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kei K Ito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Mariya Genova
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Masamitsu Fukuyama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shohei Yamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory and Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
4
|
Osborn MJ, Panda S, Reineke TM, Tolar J, Nyström A. Progress in skin gene therapy: From the inside and out. Mol Ther 2025; 33:2065-2081. [PMID: 40077969 DOI: 10.1016/j.ymthe.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
The skin is the largest organ of the body and forms and serves as the barrier for preventing external material from accessing and damaging internal organs. As the outward interface to the environment, it is accessible for the application of therapeutic agents and cellular and gene therapy represent attractive and promising options to treat severe genetic conditions for which palliation has long been the main stay. However, because of its barrier function, transit across and to the subdermal compartment can be challenging. This commentary examines the current approaches of cell and gene therapies for genetic skin disorders. We write this from a local and systemic "outside and inside." perspective. Delivery from the outside encompasses topical, intradermal, and transdermal strategies for cell and vector delivery and ex vivo cell expansion and grafting. The inside approach details systemic delivery via infusion of cells or agents toward providing benefit to the skin. We use recessive dystrophic epidermolysis bullosa (RDEB) as a representative and paradigmatic disease to showcase these approaches as a means to highlight potential broader applicability to other conditions.
Collapse
Affiliation(s)
- Mark J Osborn
- Medical School, Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular and Gene Therapy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sidharth Panda
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Medical School, Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular and Gene Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
5
|
Luo X, Weidinger E, Burghardt T, Höhn M, Wagner E. CRISPR/Cas9 Ribonucleoprotein Delivery Enhanced by Lipo-Xenopeptide Carriers and Homology-Directed Repair Modulators: Insights from Reporter Cell Lines. Int J Mol Sci 2025; 26:4361. [PMID: 40362595 PMCID: PMC12073011 DOI: 10.3390/ijms26094361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
CRISPR-Cas9 genome editing is a versatile platform for studying and treating various diseases. Homology-directed repair (HDR) with DNA donor templates serves as the primary pathway for gene correction in therapeutic applications, but its efficiency remains a significant challenge. This study investigates strategies to enhance gene correction efficiency using a T-shaped lipo-xenopeptide (XP)-based Cas9 RNP/ssDNA delivery system combined with various HDR enhancers. Nu7441, a known DNA-PKcs inhibitor, was found to be most effective in enhancing HDR-mediated gene correction. An over 10-fold increase in HDR efficiency was achieved by Nu7441 in HeLa-eGFPd2 cells, with a peak HDR efficiency of 53% at a 5 nM RNP concentration and up to 61% efficiency confirmed by Sanger sequencing. Surprisingly, the total gene editing efficiency including non-homologous end joining (NHEJ) was also improved. For example, Nu7441 boosted exon skipping via NHEJ-mediated splice site destruction by 30-fold in a DMD reporter cell model. Nu7441 modulated the cell cycle by reducing cells in the G1 phase and extending the S and G2/M phases without compromising cellular uptake or endosomal escape. The enhancement in genome editing by Nu7441 was widely applicable across several cell lines, several Cas9 RNP/ssDNA carriers (LAF-XPs), and also Cas9 mRNA/sgRNA/ssDNA polyplexes. These findings highlight a novel and counterintuitive role for Nu7441 as an enhancer of both HDR and total gene editing efficiency, presenting a promising strategy for Cas9 RNP-based gene therapy.
Collapse
Affiliation(s)
- Xianjin Luo
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; (X.L.); (E.W.); (T.B.); (M.H.)
| | - Eric Weidinger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; (X.L.); (E.W.); (T.B.); (M.H.)
| | - Tobias Burghardt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; (X.L.); (E.W.); (T.B.); (M.H.)
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; (X.L.); (E.W.); (T.B.); (M.H.)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; (X.L.); (E.W.); (T.B.); (M.H.)
- Center for Nanoscience (CeNS), LMU Munich, 80799 Munich, Germany
- CNATM—Cluster for Nucleic Acid Therapeutics Munich, 81377 Munich, Germany
| |
Collapse
|
6
|
Yang J, Song J, Feng Z, Ma Y. Application of CRISPR-Cas9 in microbial cell factories. Biotechnol Lett 2025; 47:46. [PMID: 40259107 DOI: 10.1007/s10529-025-03592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Accepted: 04/12/2025] [Indexed: 04/23/2025]
Abstract
Metabolically engineered bacterial strains are rapidly emerging as a pivotal focus in the biosynthesis of an array of bio-based ingredients. Presently, CRISPR (clustered regularly interspaced short palindromic repeats) and its associated RNA-guided endonuclease (Cas9) are regarded as the most promising tool, having ushered in a transformative advancement in genome editing. Because of CRISPR-Cas9's accuracy and adaptability, metabolic engineers are now able to create novel regulatory systems, optimize pathways more effectively, and make extensive genome-scale alterations. Nevertheless, there are still obstacles to overcome in the application of CRISPR-Cas9 in novel microorganisms, particularly those industrial microorganism hosts that are resistant to traditional genetic manipulation techniques. How to further extend CRISPR-Cas9 to these microorganisms is an urgent problem to be solved. This article first introduces the mechanism and application of CRISPR-Cas9, and then discusses how to optimize CRISPR-Cas9 as a genome editing tool, including how to reduce off-target effects and how to improve targeting efficiency by optimizing design. Through offering a comprehensive perspective on the revolutionary effects of CRISPR-Cas9 in microbial cell factories, we hope to stimulate additional research and development in this exciting area.
Collapse
Affiliation(s)
- Jinhui Yang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Junyan Song
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zeyu Feng
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yunqi Ma
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
7
|
Liang J, Liu W, Zhang T, Guo D, Gong J, Yang Z. Utilization of natural products in diverse pathogeneses of diseases associated with single or double DNA strand damage repair. Chin Med 2025; 20:46. [PMID: 40197523 PMCID: PMC11974029 DOI: 10.1186/s13020-025-01089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
The appearance of DNA damage often involves the participation of related enzymes, which can affect the onset and development of various diseases. Several natural active compounds have been found to efficiently adjust the activity of crucial enzymes associated with single or double-strand DNA damage, thus demonstrating their promise in treating diseases. This paper provides an in-depth examination and summary of these modulation mechanisms, leading to a thorough review of the subject. The connection between natural active compounds and disease development is explored through an analysis of the structural characteristics of these compounds. By reviewing how different scholarly sources describe identical structures using varied terminology, this study also delves into their effects on enzyme regulation. This review offers an in-depth examination of how natural active compounds can potentially be used therapeutically to influence key enzyme activities or expression levels, which in turn can affect the process of DNA damage repair (DDR). These natural compounds have been shown to not only reduce the occurrence of DNA damage but also boost the efficiency of repair processes, presenting new therapeutic opportunities for conditions such as cancer and other disease pathologies. Future research should focus on clarifying the exact mechanisms of these compounds to maximize their clinical utility and support the creation of novel approaches for disease prevention and treatment.
Collapse
Affiliation(s)
- Jiali Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dean Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jiyu Gong
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Laboratory Animal Service and Experiments, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| |
Collapse
|
8
|
Zhang K, Wang Y, Jiang S, Li Y, Xiang P, Zhang Y, Chen Y, Chen M, Su W, Liu L, Li S. dsDAP: An efficient method for high-abundance DNA-encoded library construction in mammalian cells. Int J Biol Macromol 2025; 298:140089. [PMID: 39842606 DOI: 10.1016/j.ijbiomac.2025.140089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
DNA-encoded libraries are invaluable tools for high-throughput screening and functional genomics studies. However, constructing high-abundance libraries in mammalian cells remains challenging. Here, we present dsDNA-assembly-PCR (dsDAP), a novel Gibson-assembly-PCR strategy for creating DNA-encoded libraries, offering improved flexibility and efficiency over previous methods. We demonstrated this approach by investigating the impact of translation initiation sequences (TIS) on protein expression in HEK293T cells. Both CRISPR-Cas9 and piggyBac systems were employed for genomic integration, allowing comparison of different integration methods. Our results confirmed the importance of specific nucleotides in the TIS region, particularly the preference for adenine at the -3 position in high-expression sequences. We also explored the effects of library dilution on genotype-phenotype correlations. This Gibson-assembly-PCR strategy overcomes limitations of existing methods, such as restriction enzyme dependencies, and provides a versatile tool for constructing high-abundance libraries in mammalian cells. Our approach has broad applications in functional genomics, drug discovery, and the study of gene regulation.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Wang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shuze Jiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pan Xiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuxuan Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yongzi Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Chen
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Liren Liu
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Shuai Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
9
|
Saxena S, Kabra M, Abdeen A, Sinha D, Zhu M, Xie R, Hanstad G, Zepeda MAF, Gamm DM, Pattnaik BR, Gong S, Saha K. Genome-Wide CRISPR Screening Identifies Cellular Factors Controlling Nonviral Genome Editing Efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642795. [PMID: 40161775 PMCID: PMC11952466 DOI: 10.1101/2025.03.12.642795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
After administering genome editors, their efficiency is limited by a multi-step process involving cellular uptake, trafficking, and nuclear import of the vector and its payload. These processes vary widely across cell types and differ depending on the nature and structure of the vector, whether it is a lipid nanoparticle or a different synthetic material. We developed a novel genome-wide CRISPR screening strategy to better understand these limitations within human cells to identify genes modulating cellular uptake, payload delivery, and gene editing efficiency. Our screen interrogates the cellular processes controlling genome editing by Cas-based nuclease and base editing strategies in human cells. We designed a genome-wide screen targeting 19,114 genes in HEK293 cells, and we identified six genes whose knockout increased nonviral editing efficiency in human cells by up to five-fold. Further validation through arrayed knockouts of the top hits from our screen boosted the editing efficiency from 5% to 50% when Cas9 was delivered via lipid-based nanoparticles. By designing the guides to target the screen library cassette, we could accurately track the library sgRNA identity and the editing outcome on the same amplicon via short-read sequencing, enabling the identification of rare outcomes via 'computationally' sorting edited from unedited cells within a heterogenous pool of >200M cells. In patient-derived human retinal pigment epithelium cells derived from pluripotent stem cells, BET1L, GJB2, and MS4A13 gene knockouts increased targeted genome editing by over five-fold. We anticipate that this high-throughput screening approach will facilitate the systematic engineering of novel nonviral genome editing delivery methods, where the identified novel gene hits can be further used to increase editing efficiency for other therapeutically relevant cell types.
Collapse
|
10
|
Tommasi A, Cappabianca D, Bugel M, Gimse K, Lund-Peterson K, Shrestha H, Arutyunov D, Williams JA, Police SR, Indurthi V, Davis SZ, Murtaza M, Capitini CM, Saha K. Efficient nonviral integration of large transgenes into human T cells using Cas9-CLIPT. Mol Ther Methods Clin Dev 2025; 33:101437. [PMID: 40123742 PMCID: PMC11930092 DOI: 10.1016/j.omtm.2025.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
CRISPR-Cas9 ribonucleoproteins (RNPs) combined with a nucleic acid template encoding a chimeric antigen receptor (CAR) transgene can edit human cells to produce CAR T cells with precise CAR insertion at a single locus. However, many human cells have adverse innate immune responses to foreign nucleic acids, particularly circular double-stranded DNA (dsDNA). Here, we introduce Cleaved, LInearized with Protein Template (Cas9-CLIPT), a circular plasmid containing a single target sequence for the Cas9 RNP, such that during manufacturing, Cas9-RNP binds and cleaves the plasmid to linearize the dsDNA in vitro. Cas9-RNP remains bound to the linearized template and is delivered to cells to promote precise knock-in via homology-directed repair with Cas9-CLIPT. Cas9-CLIPT Nanoplasmids generate up to 1.7-fold higher rates of precise knock-in relative to linearized dsDNA, reaching efficiencies up to 60% with non-homologous end joining inhibition. Cas9-CLIPT-manufactured GD2 TRAC-CAR T cells are potent against GD2+ neuroblastoma cells and exhibit an enriched stem cell memory phenotype. On several electroporation instruments and approaching clinically relevant yields, we successfully manufactured TRAC-CAR T cells using Cas9-CLIPT plasmids containing large (2-6 kb) transgenes. Cas9-CLIPT strategies have the potential to simplify donor template production and integrate large transgenes, allowing for more efficient nonviral manufacturing of multifunctional, genome-edited immune cell therapies.
Collapse
Affiliation(s)
- Anna Tommasi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Dan Cappabianca
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Madison Bugel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kirstan Gimse
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | | | | | | | | | - Sage Z. Davis
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Muhammed Murtaza
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christian M. Capitini
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
11
|
Siles L, Pomares E. Rescue of the disease-associated phenotype in CRISPR-corrected hiPSCs as a therapeutic approach for inherited retinal dystrophies. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102482. [PMID: 40083649 PMCID: PMC11903799 DOI: 10.1016/j.omtn.2025.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Inherited retinal dystrophies (IRDs), such as retinitis pigmentosa and Stargardt disease, are a group of rare diseases caused by mutations in more than 300 genes that currently have no treatment in most cases. They commonly trigger blindness and other ocular affectations due to retinal cell degeneration. Gene editing has emerged as a promising and powerful strategy for the development of IRD therapies, allowing the permanent correction of pathogenic variants. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 and transcription activator-like effector nucleases (TALEN) gene-editing tools, we precisely corrected seven hiPS cell lines derived from IRD patients carrying mutations in ABCA4, BEST1, PDE6A, PDE6C, RHO, or USH2A. Homozygous mutations and point insertions/deletions resulted in the highest homology-directed repair efficiencies, with at least half of the clones repaired properly without off-target effects. Strikingly, correction of a heterozygous pathogenic variant was achieved using the wild-type allele of the patient as the template for DNA repair. These results suggest the unexpected potential application of CRISPR as a donor template-free strategy for single-nucleotide modifications. Additionally, the corrected clones exhibited a reversion of the disease-associated phenotype in retinal cellular models. These data strengthen the study and application of gene editing-based approaches for IRD treatment.
Collapse
Affiliation(s)
- Laura Siles
- Departament de Genètica, Institut de Microcirurgia Ocular, IMO Grupo Miranza, 08035 Barcelona, Spain
| | - Esther Pomares
- Departament de Genètica, Institut de Microcirurgia Ocular, IMO Grupo Miranza, 08035 Barcelona, Spain
| |
Collapse
|
12
|
Hazel K, Singh D, He S, Guertin Z, Husser MC, Helfield B. Focused ultrasound and microbubble-mediated delivery of CRISPR-Cas9 ribonucleoprotein to human induced pluripotent stem cells. Mol Ther 2025; 33:986-996. [PMID: 39797397 PMCID: PMC11897754 DOI: 10.1016/j.ymthe.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity, and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses. This proof-of-concept study aimed to demonstrate that focused ultrasound (FUS) in combination with microbubbles can be used to deliver Cas9-sgRNA (single-guide RNA) RNPs and functionally edit human induced pluripotent stem cells (hiPSCs) in vitro, a model system that can be expanded to cardiovascular research via hiPSC-derived cardiomyocytes. Here, we first determine acoustic conditions suitable for the viable delivery of large proteins to hiPSCs with clinical Definity microbubble agents using our customized experimental platform. From here, we delivered Cas9-sgRNA RNP complexes targeting the EGFP (enhanced green fluorescent protein) gene to EGFP-expressing hiPSCs for EGFP knockout. Simultaneous acoustic cavitation detection during treatment confirmed a strong correlation between microbubble disruption and viable FUS-mediated protein delivery in hiPSCs. This study shows for the first time the potential for an FUS-mediated technique for targeted and precise CRISPR-Cas9 gene editing in human stem cells.
Collapse
Affiliation(s)
- Kyle Hazel
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada
| | - Davindra Singh
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada
| | - Stephanie He
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada
| | - Zakary Guertin
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada
| | - Mathieu C Husser
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada
| | - Brandon Helfield
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada; Department of Physics, Concordia University, 7141 Sherbrooke St. W, H4B 1R6 Montreal, QC, Canada.
| |
Collapse
|
13
|
Sajjad MW, Imran I, Muzamil F, Naqvi RZ, Amin I. AZD7648 (DNA-PKcs inhibitor): a two-edged sword for editing genomes. Funct Integr Genomics 2025; 25:49. [PMID: 40021494 DOI: 10.1007/s10142-025-01560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) has been the most practical technique in genome editing for the last decade. Its molecular mechanism includes steps that occur in a sequence, starting from a break in a double strand to repair. After a double-strand break in the DNA strand, the repairing of DNA done via Homology-Directed Repair (HDR) is considered important in different organisms as it is ideal for precise genome editing and the reduction of unintended mutations. Still, it is mostly dominated by the Non-Homologous End Joining (NHEJ) pathway. A recent study by Cullot et al. published in Nature Biotechnology showed interesting features of AZD7648 (a DNA-PKcs inhibitor) that increase the probability of HDR event while DNA repairing (Cullot et al. 2024).
Collapse
Affiliation(s)
- Muhammad Waseem Sajjad
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Ifrah Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Fatima Muzamil
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
14
|
Mentani A, Maresca M, Shiriaeva A. Prime Editing: Mechanistic Insights and DNA Repair Modulation. Cells 2025; 14:277. [PMID: 39996750 PMCID: PMC11853414 DOI: 10.3390/cells14040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Prime editing is a genome editing technique that allows precise modifications of cellular DNA without relying on donor DNA templates. Recently, several different prime editor proteins have been published in the literature, relying on single- or double-strand breaks. When prime editing occurs, the DNA undergoes one of several DNA repair pathways, and these processes can be modulated with the use of inhibitors. Firstly, this review provides an overview of several DNA repair mechanisms and their modulation by known inhibitors. In addition, we summarize different published prime editors and provide a comprehensive overview of associated DNA repair mechanisms. Finally, we discuss the delivery and safety aspects of prime editing.
Collapse
Affiliation(s)
- Astrid Mentani
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Anna Shiriaeva
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| |
Collapse
|
15
|
Yang S, Hu G, Wang J, Song J. CRISPR/Cas-Based Gene Editing Tools for Large DNA Fragment Integration. ACS Synth Biol 2025; 14:57-71. [PMID: 39680738 DOI: 10.1021/acssynbio.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In recent years, gene editing technologies have rapidly evolved to enable precise and efficient genomic modification. These strategies serve as a crucial instrument in advancing our comprehension of genetics and treating genetic disorders. Of particular interest is the manipulation of large DNA fragments, notably the insertion of large fragments, which has emerged as a focal point of research in recent years. Nevertheless, the techniques employed to integrate larger gene fragments are frequently confronted with inefficiencies, off-target effects, and elevated costs. It is therefore imperative to develop efficient tools capable of precisely inserting kilobase-sized DNA fragments into mammalian genomes to support genetic engineering, gene therapy, and synthetic biology applications. This review provides a comprehensive overview of methods developed in the past five years for integrating large DNA fragments with a particular focus on burgeoning CRISPR-related technologies. We discuss the opportunities associated with homology-directed repair (HDR) and emerging CRISPR-transposase and CRISPR-recombinase strategies, highlighting their potential to revolutionize gene therapies for complex diseases. Additionally, we explore the challenges confronting these methodologies and outline potential future directions for their improvement with the overarching goal of facilitating the utilization and advancement of tools for large fragment gene editing.
Collapse
Affiliation(s)
- Shuhan Yang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang Hu
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jianming Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
16
|
Zhao JJ, Tian SN, Li X, Peng ZY, Li GH, Zhang F, Zhao M, Zhang JP, Zhang XB. Enhancing hemophilia A gene therapy by strategic F8 deletions in AAV vectors. BLOOD SCIENCE 2025; 7:e00217. [PMID: 39949501 PMCID: PMC11822342 DOI: 10.1097/bs9.0000000000000217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/06/2024] [Indexed: 02/16/2025] Open
Abstract
Hemophilia A, caused by a deficiency in factor VIII (F8), is a promising target for gene therapy. This study aims to enhance the efficacy of adeno-associated virus serotype 8 (AAV8) vectors, specifically those encoding B-domain-deleted F8 (BDDF8), to treat the condition. We focused on improving therapeutic outcomes by strategically deleting amino acids at the furin cleavage site (RHQR), a modification that is crucial for increasing F8 expression and reducing capsid stress during vector packaging. Using computational modeling with AlphaFold2, combined with western blotting and in vivo clotting assays, we developed and tested several AAV8-BDDF8 variants in a hemophilia A mouse model. The AAV8-BDDF8-ΔRHQR10 variant, which includes a 10-amino acid deletion at the RHQR site, demonstrated a 2- to 3-fold increase in F8 activity, with sustained expression and no hepatotoxicity. This variant also showed reduced capsid stress and enhanced protein expression. However, the observed decline in long-term efficacy highlights the ongoing challenges in AAV-F8 gene therapy, emphasizing the need for continuous improvements. Our findings offer valuable insights for refining AAV-mediated gene therapy in hemophilia A, showing that targeted molecular modifications can significantly enhance therapeutic performance while ensuring safety.
Collapse
Affiliation(s)
- Juan-Juan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Sai-Ning Tian
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| | - Xiang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Zu-Yi Peng
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| | - Guo-Hua Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Singh K, Fronza R, Evens H, Chuah MK, VandenDriessche T. Comprehensive analysis of off-target and on-target effects resulting from liver-directed CRISPR-Cas9-mediated gene targeting with AAV vectors. Mol Ther Methods Clin Dev 2024; 32:101365. [PMID: 39655309 PMCID: PMC11626537 DOI: 10.1016/j.omtm.2024.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Comprehensive genome-wide studies are needed to assess the consequences of adeno-associated virus (AAV) vector-mediated gene editing. We evaluated CRISPR-Cas-mediated on-target and off-target effects and examined the integration of the AAV vectors employed to deliver the CRISPR-Cas components to neonatal mice livers. The guide RNA (gRNA) was specifically designed to target the factor IX gene (F9). On-target and off-target insertions/deletions were examined by whole-genome sequencing (WGS). Efficient F9-targeting (36.45% ± 18.29%) was apparent, whereas off-target events were rare or below the WGS detection limit since only one single putative insertion was detected out of 118 reads, based on >100 computationally predicted off-target sites. AAV integrations were identified by WGS and shearing extension primer tag selection ligation-mediated PCR (S-EPTS/LM-PCR) and occurred preferentially in CRISPR-Cas9-induced double-strand DNA breaks in the F9 locus. In contrast, AAV integrations outside F9 were not in proximity to any of ∼5,000 putative computationally predicted off-target sites (median distance of 70 kb). Moreover, without relying on such off-target prediction algorithms, analysis of DNA sequences close to AAV integrations outside the F9 locus revealed no homology to the F9-specific gRNA. This study supports the use of S-EPTS/LM-PCR for direct in vivo comprehensive, sensitive, and unbiased off-target analysis.
Collapse
Affiliation(s)
- Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Hanneke Evens
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
18
|
Cullot G, Aird EJ, Schlapansky MF, Yeh CD, van de Venn L, Vykhlyantseva I, Kreutzer S, Mailänder D, Lewków B, Klermund J, Montellese C, Biserni M, Aeschimann F, Vonarburg C, Gehart H, Cathomen T, Corn JE. Genome editing with the HDR-enhancing DNA-PKcs inhibitor AZD7648 causes large-scale genomic alterations. Nat Biotechnol 2024:10.1038/s41587-024-02488-6. [PMID: 39604565 DOI: 10.1038/s41587-024-02488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
The DNA-PKcs inhibitor AZD7648 enhances CRISPR-Cas9-directed homology-directed repair efficiencies, with potential for clinical utility, but its possible on-target consequences are unknown. We found that genome editing with AZD7648 causes frequent kilobase-scale and megabase-scale deletions, chromosome arm loss and translocations. These large-scale chromosomal alterations evade detection through typical genome editing assays, prompting caution in deploying AZD7648 and reinforcing the need to investigate multiple types of potential editing outcomes.
Collapse
Affiliation(s)
- Grégoire Cullot
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| | - Eric J Aird
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Moritz F Schlapansky
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Charles D Yeh
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Lilly van de Venn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Iryna Vykhlyantseva
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Susanne Kreutzer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Dominic Mailänder
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Bohdan Lewków
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Montellese
- CSL Behring Research, Bern, Switzerland
- Swiss Institute for Translational Medicine sitem-insel, Bern, Switzerland
| | - Martina Biserni
- CSL Behring Research, Bern, Switzerland
- Swiss Institute for Translational Medicine sitem-insel, Bern, Switzerland
| | - Florian Aeschimann
- CSL Behring Research, Bern, Switzerland
- Swiss Institute for Translational Medicine sitem-insel, Bern, Switzerland
| | - Cédric Vonarburg
- CSL Behring Research, Bern, Switzerland
- Swiss Institute for Translational Medicine sitem-insel, Bern, Switzerland
| | - Helmuth Gehart
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jacob E Corn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Wu L, Jiang S, Shi M, Yuan T, Li Y, Huang P, Li Y, Zuo E, Zhou C, Sun Y. Adenine base editors induce off-target structure variations in mouse embryos and primary human T cells. Genome Biol 2024; 25:291. [PMID: 39529170 PMCID: PMC11552398 DOI: 10.1186/s13059-024-03434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The safety of CRISPR-based gene editing methods is of the utmost priority in clinical applications. Previous studies have reported that Cas9 cleavage induced frequent aneuploidy in primary human T cells, but whether cleavage-mediated editing of base editors would generate off-target structure variations remains unknown. Here, we investigate the potential off-target structural variations associated with CRISPR/Cas9, ABE, and CBE editing in mouse embryos and primary human T cells by whole-genome sequencing and single-cell RNA-seq analyses. RESULTS The results show that both Cas9 and ABE generate off-target structural variations (SVs) in mouse embryos, while CBE induces rare SVs. In addition, off-target large deletions are detected in 32.74% of primary human T cells transfected with Cas9 and 9.17% of cells transfected with ABE. Moreover, Cas9-induced aneuploid cells activate the P53 and apoptosis pathways, whereas ABE-associated aneuploid cells significantly upregulate cell cycle-related genes and are arrested in the G0 phase. A percentage of 16.59% and 4.29% aneuploid cells are still observable at 3 weeks post transfection of Cas9 or ABE. These off-target phenomena in ABE are universal as observed in other cell types such as B cells and Huh7. Furthermore, the off-target SVs are significantly reduced in cells treated with high-fidelity ABE (ABE-V106W). CONCLUSIONS This study shows both CRISPR/Cas9 and ABE induce off-target SVs in mouse embryos and primary human T cells, raising an urgent need for the development of high-fidelity gene editing tools.
Collapse
Affiliation(s)
- Leilei Wu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Shutan Jiang
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Meisong Shi
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Tanglong Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Yaqin Li
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | | | - Yingqi Li
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Changyang Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
20
|
De La Cruz BM, Mitra S, He B, Çelik M, Kaminski D, Smedler E, Sterky FH. Efficient Gene-Editing in Human Pluripotent Stem Cells Through Simplified Assembly of Adeno-Associated Viral (AAV) Donor Templates. Bio Protoc 2024; 14:e5097. [PMID: 39525974 PMCID: PMC11543607 DOI: 10.21769/bioprotoc.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024] Open
Abstract
Gene-edited human pluripotent stem cells provide attractive model systems to functionally interrogate the role of specific genetic variants in relevant cell types. However, the need to isolate and screen edited clones often remains a bottleneck, in particular when recombination rates are sub-optimal. Here, we present a protocol for flexible gene editing combining Cas9 ribonucleoprotein with donor templates delivered by adeno-associated virus (AAV) vectors to yield high rates of homologous recombination. To streamline the workflow, we designed a modular system for one-step assembly of targeting vectors based on Golden Gate cloning and developed a rapid protocol for small-scale isolation of AAV virions of serotype DJ. High homology-directed repair (HDR) rates in human pluripotent stem cells (hPSCs), ~70% in ACTB and ~30% in LMNB1, were achieved using this approach, also with short (300 bp) homology arms. The modular design of donor templates is flexible and allows for the generation of conditional and/or complex alleles. This protocol thus provides a flexible and efficient strategy workflow to rapidly generate gene-edited hPSC lines. Key features • Versatile approach combining AAV-DJ donors and CRISPR ribonucleoproteins, providing an efficient method for long and short edits, insertions, and deletions in human pluripotent stem cells. • One-step cloning method for rapid generation of customized AAV donor plasmids. • Simplified AAV purification pipeline for ready-to-infect virion preparations.
Collapse
Affiliation(s)
- Berta Marcó De La Cruz
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sanhita Mitra
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Bingqing He
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Melis Çelik
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Debora Kaminski
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Erik Smedler
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik H. Sterky
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Sun YD, Li GH, Zhang F, Cheng T, Zhang JP, Zhang XB. A p21 reporter iPSC line for evaluating CRISPR-Cas9 and vector-induced stress responses. Stem Cells 2024; 42:992-1005. [PMID: 39283950 PMCID: PMC11541227 DOI: 10.1093/stmcls/sxae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/23/2024] [Indexed: 11/08/2024]
Abstract
CRISPR-Cas9 editing triggers activation of the TP53-p21 pathway, but the impacts of different editing components and delivery methods have not been fully explored. In this study, we introduce a p21-mNeonGreen reporter iPSC line to monitor TP53-p21 pathway activation. This reporter enables dynamic tracking of p21 expression via flow cytometry, revealing a strong correlation between p21 expression and indel frequencies, and highlighting its utility in guide RNA screening. Our findings show that p21 activation is significantly more pronounced with double-stranded oligodeoxynucleotides (ODNs) or adeno-associated viral vectors (AAVs) compared to their single-stranded counterparts. Lentiviral vectors (LVs) and integrase-defective lentiviral vectors induce notably lower p21 expression than AAVs, suggesting their suitability for gene therapy in sensitive cells such as hematopoietic stem cells or immune cells. Additionally, specific viral promoters like SFFV significantly amplify p21 activation, emphasizing the critical role of promoter selection in vector development. Thus, the p21-mNeonGreen reporter iPSC line is a valuable tool for assessing the potential adverse effects of gene editing methodologies and vectors. Highlights Established a p21-mNeonGreen reporter iPSC line to track activation of the TP53-p21 pathway. Found a direct correlation between p21-mNeonGreen expression and indel frequencies, aiding in gRNA screening. Showed that LVs are preferable over AAVs for certain cells due to lower p21 activation, with viral promoter choice impacting p21 response.
Collapse
Affiliation(s)
- Yi-Dan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin 301600, People’s Republic of China
| | - Guo-Hua Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin 301600, People’s Republic of China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin 301600, People’s Republic of China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin 301600, People’s Republic of China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin 301600, People’s Republic of China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin 301600, People’s Republic of China
| |
Collapse
|
22
|
Cotta GC, Teixeira dos Santos RC, Costa GMJ, Lacerda SMDSN. Reporter Alleles in hiPSCs: Visual Cues on Development and Disease. Int J Mol Sci 2024; 25:11009. [PMID: 39456792 PMCID: PMC11507014 DOI: 10.3390/ijms252011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Reporter alleles are essential for advancing research with human induced pluripotent stem cells (hiPSCs), notably in developmental biology and disease modeling. This study investigates the state-of-the-art gene-editing techniques tailored for generating reporter alleles in hiPSCs, emphasizing their effectiveness in investigating cellular dynamics and disease mechanisms. Various methodologies, including the application of CRISPR/Cas9 technology, are discussed for accurately integrating reporter genes into the specific genomic loci. The synthesis of findings from the studies utilizing these reporter alleles reveals insights into developmental processes, genetic disorder modeling, and therapeutic screening, consolidating the existing knowledge. These hiPSC-derived models demonstrate remarkable versatility in replicating human diseases and evaluating drug efficacy, thereby accelerating translational research. Furthermore, this review addresses challenges and future directions in refining the reporter allele design and application to bolster their reliability and relevance in biomedical research. Overall, this investigation offers a comprehensive perspective on the methodologies, applications, and implications of reporter alleles in hiPSC-based studies, underscoring their essential role in advancing both fundamental scientific understanding and clinical practice.
Collapse
Affiliation(s)
| | | | | | - Samyra Maria dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil; (G.C.C.); (R.C.T.d.S.); (G.M.J.C.)
| |
Collapse
|
23
|
Brennan PG, Mota L, Aridi T, Patel N, Liang P, Ferran C. Advancements in Omics and Breakthrough Gene Therapies: A Glimpse into the Future of Peripheral Artery Disease. Ann Vasc Surg 2024; 107:229-246. [PMID: 38582204 DOI: 10.1016/j.avsg.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 04/08/2024]
Abstract
Peripheral artery disease (PAD), a highly prevalent global disease, associates with significant morbidity and mortality in affected patients. Despite progress in endovascular and open revascularization techniques for advanced PAD, these interventions grapple with elevated rates of arterial restenosis and vein graft failure attributed to intimal hyperplasia (IH). Novel multiomics technologies, coupled with sophisticated analyses tools recently powered by advances in artificial intelligence, have enabled the study of atherosclerosis and IH with unprecedented single-cell and spatial precision. Numerous studies have pinpointed gene hubs regulating pivotal atherogenic and atheroprotective signaling pathways as potential therapeutic candidates. Leveraging advancements in viral and nonviral gene therapy (GT) platforms, gene editing technologies, and cutting-edge biomaterial reservoirs for delivery uniquely positions us to develop safe, efficient, and targeted GTs for PAD-related diseases. Gene therapies appear particularly fitting for ex vivo genetic engineering of IH-resistant vein grafts. This manuscript highlights currently available state-of-the-art multiomics approaches, explores promising GT-based candidates, and details GT delivery modalities employed by our laboratory and others to thwart mid-term vein graft failure caused by IH, as well as other PAD-related conditions. The potential clinical translation of these targeted GTs holds the promise to revolutionize PAD treatment, thereby enhancing patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Phillip G Brennan
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lucas Mota
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tarek Aridi
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nyah Patel
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Division of Nephrology and the Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
24
|
Ueda N, Cahen M, Leonard J, Deleurme L, Dreano S, Sirac C, Galy A, Moreaux J, Danger Y, Cogné M. Single-hit genome editing optimized for maturation in B cells redirects their specificity toward tumor antigens. Sci Rep 2024; 14:22432. [PMID: 39342013 PMCID: PMC11438885 DOI: 10.1038/s41598-024-74005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
T-cell-based adoptive immunotherapy is a new pillar of cancer care. Tumor-redirected B cells could also contribute to therapy if their manipulation to rewire immunoglobulin (Ig) genes is mastered. We designed a single-chain Ig-encoding cassette ("scFull-Ig") that redirects antigen specificity when inserted at a single position of the IgH locus. This design, which places combined IgH and IgL variable genes downstream of a pVH promoter, nevertheless preserves all Ig functional domains and the intrinsic mechanisms that regulate expression from the IgM B cell receptor (BCR) expression to Ig secretion, somatic hypermutation and class switching. This single-locus editing provides an efficient and safe strategy to both disrupt endogenous Ig expression and encode a new Ig paratope. As a proof of concept, the functionality of scFull BCR and/or secreted Ig was validated against two different classical human tumor antigens, HER2 and hCD20. Once validated in cell lines, the strategy was extended to primary B cells, confirming the successful engineering of BCR and Ig expression and the ability of scFull-Ig to undergo further class switching. These results further pave the way for future B cell-based adoptive immunotherapy and strategies to express a therapeutic mAb with a variety of switched H-chains that provide complementary functions.
Collapse
MESH Headings
- Humans
- B-Lymphocytes/immunology
- Gene Editing/methods
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/genetics
- Immunotherapy, Adoptive/methods
- Immunoglobulin Class Switching/genetics
Collapse
Affiliation(s)
- Natsuko Ueda
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
| | - Marine Cahen
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
- Control of the B-cell Response & Lymphoproliferation, INSERM U1262, CNRS UMR 7276, Limoges University, 87025, Limoges, France
| | - Jenny Leonard
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
| | - Laurent Deleurme
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
| | - Stéphane Dreano
- CNRS-UMR 6290, Institute of Genetics and Development, 35000, Rennes, France
| | - Christophe Sirac
- Control of the B-cell Response & Lymphoproliferation, INSERM U1262, CNRS UMR 7276, Limoges University, 87025, Limoges, France
| | - Anne Galy
- Integrare Research Unit UMR_S951, Inserm, Genethon, Université Paris-Saclay, University of Evry, 91000, Evry, France
| | - Jérôme Moreaux
- CNRS-UM UMR 9002, Institute of Human Genetics, 34090, Montpellier, France
| | - Yannic Danger
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
| | - Michel Cogné
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France.
| |
Collapse
|
25
|
Přibylová A, Fischer L. How to use CRISPR/Cas9 in plants: from target site selection to DNA repair. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5325-5343. [PMID: 38648173 PMCID: PMC11389839 DOI: 10.1093/jxb/erae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
A tool for precise, target-specific, efficient, and affordable genome editing is a dream for many researchers, from those who conduct basic research to those who use it for applied research. Since 2012, we have tool that almost fulfils such requirements; it is based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems. However, even CRISPR/Cas has limitations and obstacles that might surprise its users. In this review, we focus on the most frequently used variant, CRISPR/Cas9 from Streptococcus pyogenes, and highlight key factors affecting its mutagenesis outcomes: (i) factors affecting the CRISPR/Cas9 activity, such as the effect of the target sequence, chromatin state, or Cas9 variant, and how long it remains in place after cleavage; and (ii) factors affecting the follow-up DNA repair mechanisms including mostly the cell type and cell cycle phase, but also, for example, the type of DNA ends produced by Cas9 cleavage (blunt/staggered). Moreover, we note some differences between using CRISPR/Cas9 in plants, yeasts, and animals, as knowledge from individual kingdoms is not fully transferable. Awareness of these factors can increase the likelihood of achieving the expected results of plant genome editing, for which we provide detailed guidelines.
Collapse
Affiliation(s)
- Adéla Přibylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| |
Collapse
|
26
|
Kim M, Hwang Y, Lim S, Jang HK, Kim HO. Advances in Nanoparticles as Non-Viral Vectors for Efficient Delivery of CRISPR/Cas9. Pharmaceutics 2024; 16:1197. [PMID: 39339233 PMCID: PMC11434874 DOI: 10.3390/pharmaceutics16091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system is a gene-editing technology. Nanoparticle delivery systems have attracted attention because of the limitations of conventional viral vectors. In this review, we assess the efficiency of various nanoparticles, including lipid-based, polymer-based, inorganic, and extracellular vesicle-based systems, as non-viral vectors for CRISPR/Cas9 delivery. We discuss their advantages, limitations, and current challenges. By summarizing recent advancements and highlighting key strategies, this review aims to provide a comprehensive overview of the role of non-viral delivery systems in advancing CRISPR/Cas9 technology for clinical applications and gene therapy.
Collapse
Affiliation(s)
- Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Youngwoo Hwang
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seongyu Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
27
|
Park SJ, Park SJ, Kwon YW, Choi EH. Synergistic combination of RAD51-SCR7 improves CRISPR-Cas9 genome editing efficiency by preventing R-loop accumulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102274. [PMID: 39161621 PMCID: PMC11331969 DOI: 10.1016/j.omtn.2024.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/13/2024] [Indexed: 08/21/2024]
Abstract
CRISPR-Cas9 has emerged as a powerful tool for genome editing. However, Cas9 genome editing faces challenges, including low efficiency and off-target effects. Here, we report that combined treatment with RAD51, a key factor in homologous recombination, and SCR7, a DNA ligase IV small-molecule inhibitor, enhances CRISPR-Cas9-mediated genome-editing efficiency in human embryonic kidney 293T and human induced pluripotent stem cells, as confirmed by cyro- transmission electron microscopy and functional analyses. First, our findings reveal the crucial role of RAD51 in homologous recombination (HR)-mediated DNA repair process. Elevated levels of exogenous RAD51 promote a post-replication step via single-strand DNA gap repair process, ensuring the completion of DNA replication. Second, using the all-in-one CRISPR-Cas9-RAD51 system, highly expressed RAD51 improved the multiple endogenous gene knockin/knockout efficiency and insertion/deletion (InDel) mutation by activating the HR-based repair pathway in concert with SCR7. Sanger sequencing shows distinct outcomes for RAD51-SCR7 in the ratio of InDel mutations in multiple genome sites. Third, RAD51-SCR7 combination can induce efficient R-loop resolution and DNA repair by enhanced HR process, which leads to DNA replication stalling and thus is advantageous to CRISPR-Cas9-based stable genome editing. Our study suggests promising applications in genome editing by enhancing CRISPR-Cas9 efficiency through RAD51 and SCR7, offering potential advancements in biotechnology and therapeutics.
Collapse
Affiliation(s)
- Sun-Ji Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Deagu 41061, South Korea
| | - Seo Jung Park
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju 28160, South Korea
| | - Yang Woo Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Deagu 41061, South Korea
| | - Eui-Hwan Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Deagu 41061, South Korea
| |
Collapse
|
28
|
Siow KM, Güngör M, Wrona D, Raimondi F, Pastukhov O, Tsapogas P, Menzi T, Schmitz M, Kulcsár PI, Schwank G, Schulz A, Jinek M, Modlich U, Siler U, Reichenbach J. Targeted knock-in of NCF1 cDNA into the NCF2 locus leads to myeloid phenotypic correction of p47 phox -deficient chronic granulomatous disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102229. [PMID: 38952440 PMCID: PMC11215332 DOI: 10.1016/j.omtn.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 07/03/2024]
Abstract
p47 phox -deficient chronic granulomatous disease (p47-CGD) is a primary immunodeficiency caused by mutations in the neutrophil cytosolic factor 1 (NCF1) gene, resulting in defective NADPH oxidase function in phagocytes. Due to its complex genomic context, the NCF1 locus is not suited for safe gene editing with current genome editing technologies. Therefore, we developed a targeted NCF1 coding sequence knock-in by CRISPR-Cas9 ribonucleoprotein and viral vector template delivery, to restore p47 phox expression under the control of the endogenous NCF2 locus. NCF2 encodes for p67 phox , an NADPH oxidase subunit that closely interacts with p47 phox and is predominantly expressed in myeloid cells. This approach restored p47 phox expression and NADPH oxidase function in p47-CGD patient hematopoietic stem and progenitor cells (HSPCs) and in p47 phox -deficient mouse HSPCs, with the transgene expression following a myeloid differentiation pattern. Adeno-associated viral vectors performed favorably over integration-deficient lentiviral vectors for template delivery, with fewer off-target integrations and higher correction efficacy in HSPCs. Such myeloid-directed gene editing is promising for clinical CGD gene therapy, as it leads to the co-expression of p47 phox and p67 phox , ensuring spatiotemporal and near-physiological transgene expression in myeloid cells.
Collapse
Affiliation(s)
- Kah Mun Siow
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Merve Güngör
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Dominik Wrona
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Federica Raimondi
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Oleksandr Pastukhov
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Panagiotis Tsapogas
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Timon Menzi
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Michael Schmitz
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Péter István Kulcsár
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, 89075 Ulm, Germany
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Ute Modlich
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
| | - Ulrich Siler
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
- School of Life Sciences, Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Janine Reichenbach
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952 Zurich, Switzerland
- Department of Somatic Gene Therapy, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Zhao Y, Li L, Wei L, Wang Y, Han Z. Advancements and Future Prospects of CRISPR-Cas-Based Population Replacement Strategies in Insect Pest Management. INSECTS 2024; 15:653. [PMID: 39336621 PMCID: PMC11432399 DOI: 10.3390/insects15090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Population replacement refers to the process by which a wild-type population of insect pests is replaced by a population possessing modified traits or abilities. Effective population replacement necessitates a gene drive system capable of spreading desired genes within natural populations, operating under principles akin to super-Mendelian inheritance. Consequently, releasing a small number of genetically edited insects could potentially achieve population control objectives. Currently, several gene drive approaches are under exploration, including the newly adapted CRISPR-Cas genome editing system. Multiple studies are investigating methods to engineer pests that are incapable of causing crop damage or transmitting vector-borne diseases, with several notable successful examples documented. This review summarizes the recent advancements of the CRISPR-Cas system in the realm of population replacement and provides insights into research methodologies, testing protocols, and implementation strategies for gene drive techniques. The review also discusses emerging trends and prospects for establishing genetic tools in pest management.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Longfeng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Liangzi Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yifan Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhilin Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
30
|
Mathuria A, Vora C, Ali N, Mani I. Advances in CRISPR-Cas systems for human bacterial disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:19-41. [PMID: 39266183 DOI: 10.1016/bs.pmbts.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.
Collapse
Affiliation(s)
- Anshu Mathuria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Chaitali Vora
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Namra Ali
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
31
|
Jin YY, Zhang P, Liu LL, Zhao X, Hu XQ, Liu SZ, Li ZK, Liu Q, Wang JQ, Hao DL, Zhang ZQ, Chen HZ, Liu DP. Enhancing homology-directed repair efficiency with HDR-boosting modular ssDNA donor. Nat Commun 2024; 15:6843. [PMID: 39122671 PMCID: PMC11315919 DOI: 10.1038/s41467-024-50788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Despite the potential of small molecules and recombinant proteins to enhance the efficiency of homology-directed repair (HDR), single-stranded DNA (ssDNA) donors, as currently designed and chemically modified, remain suboptimal for precise gene editing. Here, we screen the biased ssDNA binding sequences of DNA repair-related proteins and engineer RAD51-preferred sequences into HDR-boosting modules for ssDNA donors. Donors with these modules exhibit an augmented affinity for RAD51, thereby enhancing HDR efficiency across various genomic loci and cell types when cooperated with Cas9, nCas9, and Cas12a. By combining with an inhibitor of non-homologous end joining (NHEJ) or the HDRobust strategy, these modular ssDNA donors achieve up to 90.03% (median 74.81%) HDR efficiency. The HDR-boosting modules targeting an endogenous protein enable a chemical modification-free strategy to improve the efficacy of ssDNA donors for precise gene editing.
Collapse
Affiliation(s)
- Ying-Ying Jin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Peng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Le-Le Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiang Zhao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiao-Qing Hu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Si-Zhe Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Ze-Kun Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Qian Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jian-Qiao Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - De-Long Hao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zhu-Qin Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Hou-Zao Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - De-Pei Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Haihe Laboratory of Cell Ecosystem, Tianjin, 300301, China.
| |
Collapse
|
32
|
Liang J, Wan Y, Gao J, Zheng L, Wang J, Wu P, Li Y, Wang B, Wang D, Ma Y, Shen B, Lv X, Wang D, An N, Ma X, Geng G, Tong J, Liu J, Chen G, Gao M, Kurita R, Nakamura Y, Zhu P, Yin H, Zhu X, Shi L. Erythroid-intrinsic activation of TLR8 impairs erythropoiesis in inherited anemia. Nat Commun 2024; 15:5678. [PMID: 38971858 PMCID: PMC11227506 DOI: 10.1038/s41467-024-50066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/28/2024] [Indexed: 07/08/2024] Open
Abstract
Inherited non-hemolytic anemia is a group of rare bone marrow disorders characterized by erythroid defects. Although concerted efforts have been made to explore the underlying pathogenetic mechanisms of these diseases, the understanding of the causative mutations are still incomplete. Here we identify in a diseased pedigree that a gain-of-function mutation in toll-like receptor 8 (TLR8) is implicated in inherited non-hemolytic anemia. TLR8 is expressed in erythroid lineage and erythropoiesis is impaired by TLR8 activation whereas enhanced by TLR8 inhibition from erythroid progenitor stage. Mechanistically, TLR8 activation blocks annexin A2 (ANXA2)-mediated plasma membrane localization of STAT5 and disrupts EPO signaling in HuDEP2 cells. TLR8 inhibition improves erythropoiesis in RPS19+/- HuDEP2 cells and CD34+ cells from healthy donors and inherited non-hemolytic anemic patients. Collectively, we identify a gene implicated in inherited anemia and a previously undescribed role for TLR8 in erythropoiesis, which could potentially be explored for therapeutic benefit in inherited anemia.
Collapse
Affiliation(s)
- Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Department of pediatric hematology and oncology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Bingrui Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yige Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Biao Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xue Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Na An
- State Key Laboratory of Medicinal Chemical Biology and Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoli Ma
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangfeng Geng
- State Key Laboratory of Medicinal Chemical Biology and Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology and Frontier of Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin, China
| | - Meng Gao
- Toll Biotech Co. Ltd., Beijing, 102200, China
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Department of pediatric hematology and oncology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
33
|
Liu Y, Kong J, Liu G, Li Z, Xiao Y. Precise Gene Knock-In Tools with Minimized Risk of DSBs: A Trend for Gene Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401797. [PMID: 38728624 PMCID: PMC11267366 DOI: 10.1002/advs.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Gene knock-in refers to the insertion of exogenous functional genes into a target genome to achieve continuous expression. Currently, most knock-in tools are based on site-directed nucleases, which can induce double-strand breaks (DSBs) at the target, following which the designed donors carrying functional genes can be inserted via the endogenous gene repair pathway. The size of donor genes is limited by the characteristics of gene repair, and the DSBs induce risks like genotoxicity. New generation tools, such as prime editing, transposase, and integrase, can insert larger gene fragments while minimizing or eliminating the risk of DSBs, opening new avenues in the development of animal models and gene therapy. However, the elimination of off-target events and the production of delivery carriers with precise requirements remain challenging, restricting the application of the current knock-in treatments to mainly in vitro settings. Here, a comprehensive review of the knock-in tools that do not/minimally rely on DSBs and use other mechanisms is provided. Moreover, the challenges and recent advances of in vivo knock-in treatments in terms of the therapeutic process is discussed. Collectively, the new generation of DSBs-minimizing and large-fragment knock-in tools has revolutionized the field of gene editing, from basic research to clinical treatment.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityNanjing210009China
| | - Jianping Kong
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Gongyu Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Zhaoxing Li
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yibei Xiao
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
34
|
Li G, Tian S, Sun X, Zhao M, Zhang F, Zhang JP, Cheng T, Zhang XB. Leveraging CRISPR-Cas9 for Accurate Detection of AAV-Neutralizing Antibodies: The AAV-HDR Method. Hum Gene Ther 2024; 35:490-505. [PMID: 38069573 DOI: 10.1089/hum.2023.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Affiliation(s)
- Guohua Li
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Saining Tian
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xinyu Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tao Cheng
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
35
|
Cappabianca D, Pham D, Forsberg MH, Bugel M, Tommasi A, Lauer A, Vidugiriene J, Hrdlicka B, McHale A, Sodji QH, Skala MC, Capitini CM, Saha K. Metabolic priming of GD2 TRAC-CAR T cells during manufacturing promotes memory phenotypes while enhancing persistence. Mol Ther Methods Clin Dev 2024; 32:101249. [PMID: 38699288 PMCID: PMC11063605 DOI: 10.1016/j.omtm.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Manufacturing chimeric antigen receptor (CAR) T cell therapies is complex, with limited understanding of how medium composition impacts T cell phenotypes. CRISPR-Cas9 ribonucleoproteins can precisely insert a CAR sequence while disrupting the endogenous T cell receptor alpha constant (TRAC) gene resulting in TRAC-CAR T cells with an enriched stem cell memory T cell population, a process that could be further optimized through modifications to the medium composition. In this study we generated anti-GD2 TRAC-CAR T cells using "metabolic priming" (MP), where the cells were activated in glucose/glutamine-low medium and then expanded in glucose/glutamine-high medium. T cell products were evaluated using spectral flow cytometry, metabolic assays, cytokine production, cytotoxicity assays in vitro, and potency against human GD2+ xenograft neuroblastoma models in vivo. Compared with standard TRAC-CAR T cells, MP TRAC-CAR T cells showed less glycolysis, higher CCR7/CD62L expression, more bound NAD(P)H activity, and reduced IFN-γ, IL-2, IP-10, IL-1β, IL-17, and TGF-β production at the end of manufacturing ex vivo, with increased central memory CAR T cells and better persistence observed in vivo. MP with medium during CAR T cell biomanufacturing can minimize glycolysis and enrich memory phenotypes ex vivo, which could lead to better responses against solid tumors in vivo.
Collapse
Affiliation(s)
- Dan Cappabianca
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Dan Pham
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Matthew H. Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Madison Bugel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Anna Tommasi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | - Brookelyn Hrdlicka
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Alexandria McHale
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Quaovi H. Sodji
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
36
|
Yang ZX, Deng DH, Gao ZY, Zhang ZK, Fu YW, Wen W, Zhang F, Li X, Li HY, Zhang JP, Zhang XB. OliTag-seq enhances in cellulo detection of CRISPR-Cas9 off-targets. Commun Biol 2024; 7:696. [PMID: 38844522 PMCID: PMC11156888 DOI: 10.1038/s42003-024-06360-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
The potential for off-target mutations is a critical concern for the therapeutic application of CRISPR-Cas9 gene editing. Current detection methodologies, such as GUIDE-seq, exhibit limitations in oligonucleotide integration efficiency and sensitivity, which could hinder their utility in clinical settings. To address these issues, we introduce OliTag-seq, an in-cellulo assay specifically engineered to enhance the detection of off-target events. OliTag-seq employs a stable oligonucleotide for precise break tagging and an innovative triple-priming amplification strategy, significantly improving the scope and accuracy of off-target site identification. This method surpasses traditional assays by providing comprehensive coverage across various sgRNAs and genomic targets. Our research particularly highlights the superior sensitivity of induced pluripotent stem cells (iPSCs) in detecting off-target mutations, advocating for using patient-derived iPSCs for refined off-target analysis in therapeutic gene editing. Furthermore, we provide evidence that prolonged Cas9 expression and transient HDAC inhibitor treatments enhance the assay's ability to uncover off-target events. OliTag-seq merges the high sensitivity typical of in vitro assays with the practical application of cellular contexts. This approach significantly improves the safety and efficacy profiles of CRISPR-Cas9 interventions in research and clinical environments, positioning it as an essential tool for the precise assessment and refinement of genome editing applications.
Collapse
Grants
- the National Key Research and Development Program of China (Grant Nos. 2019YFA0110803, 2019YFA0110204, and 2021YFA1100900), the National Natural Science Foundation of China (Grant Nos. 82070115 and 81890990), the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CIFMS) (Grant Nos. 2022-I2M-2-003, 2022-I2M-2-001, 2021-I2M-1-041, 2021-I2M-1-040, and 2021-I2M-1-001), the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences (Grant No. 2020-PT310-011), the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (Grant No. TSBICIP-KJGG-017), the CAMS Fundamental Research Funds for Central Research Institutes (Grant No. 3332021093), the Haihe Laboratory of Cell Ecosystem Innovation Fund (Grant No. HH23KYZX0005 and HH22KYZX0022), the State Key Laboratory of Experimental Hematology Research Grant (Grant No. Z23-05), and the Postdoctoral Fellowship Program of CPSF (Grant No. GZB20230081)
Collapse
Affiliation(s)
- Zhi-Xue Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Dong-Hao Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Zhu-Ying Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Zhi-Kang Zhang
- College of Computer Science and Technology, China University of Petroleum (East China), 266000, Qingdao, China
| | - Ya-Wen Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Xiang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Hua-Yu Li
- College of Computer Science and Technology, China University of Petroleum (East China), 266000, Qingdao, China.
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China.
- Tianjin Institutes of Health Science, 301600, Tianjin, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China.
- Tianjin Institutes of Health Science, 301600, Tianjin, China.
| |
Collapse
|
37
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
38
|
Selvaraj S, Feist WN, Viel S, Vaidyanathan S, Dudek AM, Gastou M, Rockwood SJ, Ekman FK, Oseghale AR, Xu L, Pavel-Dinu M, Luna SE, Cromer MK, Sayana R, Gomez-Ospina N, Porteus MH. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. Nat Biotechnol 2024; 42:731-744. [PMID: 37537500 DOI: 10.1038/s41587-023-01888-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Therapeutic applications of nuclease-based genome editing would benefit from improved methods for transgene integration via homology-directed repair (HDR). To improve HDR efficiency, we screened six small-molecule inhibitors of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key protein in the alternative repair pathway of non-homologous end joining (NHEJ), which generates genomic insertions/deletions (INDELs). From this screen, we identified AZD7648 as the most potent compound. The use of AZD7648 significantly increased HDR (up to 50-fold) and concomitantly decreased INDELs across different genomic loci in various therapeutically relevant primary human cell types. In all cases, the ratio of HDR to INDELs markedly increased, and, in certain situations, INDEL-free high-frequency (>50%) targeted integration was achieved. This approach has the potential to improve the therapeutic efficacy of cell-based therapies and broaden the use of targeted integration as a research tool.
Collapse
Affiliation(s)
- Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - William N Feist
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sebastien Viel
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Immunology Department, Lyon Sud University Hospital, Pierre-Bénite, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Sriram Vaidyanathan
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Amanda M Dudek
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Marc Gastou
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sarah J Rockwood
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Freja K Ekman
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Aluya R Oseghale
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Liwen Xu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sofia E Luna
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
39
|
Zhang Z, Zhang S, Wong HT, Li D, Feng B. Targeted Gene Insertion: The Cutting Edge of CRISPR Drug Development with Hemophilia as a Highlight. BioDrugs 2024; 38:369-385. [PMID: 38489061 PMCID: PMC11055778 DOI: 10.1007/s40259-024-00654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
The remarkable advance in gene editing technology presents unparalleled opportunities for transforming medicine and finding cures for hereditary diseases. Human trials of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9)-based therapeutics have demonstrated promising results in disrupting or deleting target sequences to treat specific diseases. However, the potential of targeted gene insertion approaches, which offer distinct advantages over disruption/deletion methods, remains largely unexplored in human trials due to intricate technical obstacles and safety concerns. This paper reviews the recent advances in preclinical studies demonstrating in vivo targeted gene insertion for therapeutic benefits, targeting somatic solid tissues through systemic delivery. With a specific emphasis on hemophilia as a prominent disease model, we highlight advancements in insertion strategies, including considerations of DNA repair pathways, targeting site selection, and donor design. Furthermore, we discuss the complex challenges and recent breakthroughs that offer valuable insights for progressing towards clinical trials.
Collapse
Affiliation(s)
- Zhenjie Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Siqi Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Hoi Ting Wong
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
40
|
Plessy C, Mansfield MJ, Bliznina A, Masunaga A, West C, Tan Y, Liu AW, Grašič J, Del Río Pisula MS, Sánchez-Serna G, Fabrega-Torrus M, Ferrández-Roldán A, Roncalli V, Navratilova P, Thompson EM, Onuma T, Nishida H, Cañestro C, Luscombe NM. Extreme genome scrambling in marine planktonic Oikopleura dioica cryptic species. Genome Res 2024; 34:426-440. [PMID: 38621828 PMCID: PMC11067885 DOI: 10.1101/gr.278295.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate Oikopleura dioica around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, Drosophila, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in O. dioica suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures.
Collapse
Affiliation(s)
- Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan;
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Aleksandra Bliznina
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Charlotte West
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Andrew W Liu
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Jan Grašič
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - María Sara Del Río Pisula
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Gaspar Sánchez-Serna
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Marc Fabrega-Torrus
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Vittoria Roncalli
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Pavla Navratilova
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, 779 00 Olomouc, Czech Republic
- Sars International Centre, University of Bergen, Bergen N-5008, Norway
| | - Eric M Thompson
- Sars International Centre, University of Bergen, Bergen N-5008, Norway
- Department of Biological Sciences, University of Bergen, Bergen N-5020, Norway
| | - Takeshi Onuma
- Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
41
|
Lee BC, Gin A, Wu C, Singh K, Grice M, Mortlock R, Abraham D, Fan X, Zhou Y, AlJanahi A, Choi U, DeRavin SS, Shin T, Hong S, Dunbar CE. Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. Cell Stem Cell 2024; 31:455-466.e4. [PMID: 38508195 PMCID: PMC10997443 DOI: 10.1016/j.stem.2024.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) is required. The impact of HDR on true LT-HSC clonal dynamics in a relevant large animal model has not been studied. To track the output and clonality of HDR-edited cells and to provide a comparison to lentivirally transduced HSCs in vivo, we developed a competitive rhesus macaque (RM) autologous transplantation model, co-infusing HSCs transduced with a barcoded GFP-expressing lentiviral vector (LV) and HDR edited at the CD33 locus. CRISPR/HDR-edited cells showed a two-log decrease by 2 months following transplantation, with little improvement via p53 inhibition, in comparison to minimal loss of LV-transduced cells long term. HDR long-term clonality was oligoclonal in contrast to highly polyclonal LV-transduced HSCs. These results suggest marked clinically relevant differences in the impact of current genetic modification approaches on HSCs.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea; Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea.
| | - Ashley Gin
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Max Grice
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryland Mortlock
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diana Abraham
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Aisha AlJanahi
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Suk See DeRavin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Taehoon Shin
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Sogun Hong
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
42
|
Perez-Bermejo JA, Efagene O, Matern WM, Holden JK, Kabir S, Chew GM, Andreoletti G, Catton E, Ennis CL, Garcia A, Gerstenberg TL, Hill KA, Jain A, Krassovsky K, Lalisan CD, Lord D, Quejarro BJ, Sales-Lee J, Shah M, Silva BJ, Skowronski J, Strukov YG, Thomas J, Veraz M, Vijay T, Wallace KA, Yuan Y, Grogan JL, Wienert B, Lahiri P, Treusch S, Dever DP, Soros VB, Partridge JR, Seim KL. Functional screening in human HSPCs identifies optimized protein-based enhancers of Homology Directed Repair. Nat Commun 2024; 15:2625. [PMID: 38521763 PMCID: PMC10960832 DOI: 10.1038/s41467-024-46816-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Homology Directed Repair (HDR) enables precise genome editing, but the implementation of HDR-based therapies is hindered by limited efficiency in comparison to methods that exploit alternative DNA repair routes, such as Non-Homologous End Joining (NHEJ). In this study, we develop a functional, pooled screening platform to identify protein-based reagents that improve HDR in human hematopoietic stem and progenitor cells (HSPCs). We leverage this screening platform to explore sequence diversity at the binding interface of the NHEJ inhibitor i53 and its target, 53BP1, identifying optimized variants that enable new intermolecular bonds and robustly increase HDR. We show that these variants specifically reduce insertion-deletion outcomes without increasing off-target editing, synergize with a DNAPK inhibitor molecule, and can be applied at manufacturing scale to increase the fraction of cells bearing repaired alleles. This screening platform can enable the discovery of future gene editing reagents that improve HDR outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meet Shah
- Graphite Bio, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Yue Yuan
- Graphite Bio, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cappabianca D, Pham D, Forsberg MH, Bugel M, Tommasi A, Lauer A, Vidugiriene J, Hrdlicka B, McHale A, Sodji Q, Skala MC, Capitini CM, Saha K. Metabolic priming of GD2 TRAC -CAR T cells during manufacturing promotes memory phenotypes while enhancing persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.575774. [PMID: 38562720 PMCID: PMC10983869 DOI: 10.1101/2024.01.31.575774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Manufacturing Chimeric Antigen Receptor (CAR) T cell therapies is complex, with limited understanding of how media composition impact T-cell phenotypes. CRISPR/Cas9 ribonucleoproteins can precisely insert a CAR sequence while disrupting the endogenous T cell receptor alpha constant ( TRAC ) gene resulting in TRAC -CAR T cells with an enriched stem cell memory T-cell population, a process that could be further optimized through modifications to the media composition. In this study we generated anti-GD2 TRAC -CAR T cells using "metabolic priming" (MP), where the cells were activated in glucose/glutamine low media and then expanded in glucose/glutamine high media. T cell products were evaluated using spectral flow cytometry, metabolic assays, cytokine production, cytotoxicity assays in vitro and potency against human GD2+ xenograft neuroblastoma models in vivo . Compared to standard TRAC -CAR T cells, MP TRAC -CAR T cells showed less glycolysis, higher CCR7/CD62L expression, more bound NAD(P)H activity and reduced IFN-γ, IL-2, IP-10, IL-1β, IL-17, and TGFβ production at the end of manufacturing ex vivo , with increased central memory CAR T cells and better persistence observed in vivo . Metabolic priming with media during CAR T cell biomanufacturing can minimize glycolysis and enrich memory phenotypes ex vivo , which could lead to better responses against solid tumors in vivo .
Collapse
|
44
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
45
|
Zhao Y, Li X, Liu C, Jiang C, Guo X, Xu Q, Yin Z, Liu Z, Mu Y. Improving the Efficiency of CRISPR Ribonucleoprotein-Mediated Precise Gene Editing by Small Molecules in Porcine Fibroblasts. Animals (Basel) 2024; 14:719. [PMID: 38473105 DOI: 10.3390/ani14050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to verify whether small molecules can improve the efficiency of precision gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) ribonucleoprotein (RNP) in porcine cells. CRISPR associated 9 (Cas9) protein, small guide RNA (sgRNA), phosphorothioate-modified single-stranded oligonucleotides (ssODN), and different small molecules were used to generate precise nucleotide substitutions at the insulin (INS) gene by homology-directed repair (HDR) in porcine fetal fibroblasts (PFFs). These components were introduced into PFFs via electroporation, followed by polymerase chain reaction (PCR) for the target site. All samples were sequenced and analyzed, and the efficiencies of different small molecules at the target site were compared. The results showed that the optimal concentrations of the small molecules, including L-189, NU7441, SCR7, L755507, RS-1, and Brefeldin A, for in vitro-cultured PFFs' viability were determined. Compared with the control group, the single small molecules including L-189, NU7441, SCR7, L755507, RS-1, and Brefeldin A increased the efficiency of HDR-mediated precise gene editing from 1.71-fold to 2.28-fold, respectively. There are no benefits in using the combination of two small molecules, since none of the combinations improved the precise gene editing efficiency compared to single small molecules. In conclusion, these results suggested that a single small molecule can increase the efficiency of CRISPR RNP-mediated precise gene editing in porcine cells.
Collapse
Affiliation(s)
- Yunjing Zhao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chang Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaochen Guo
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianqian Xu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhi Yin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
46
|
Leal AF, Herreno-Pachón AM, Benincore-Flórez E, Karunathilaka A, Tomatsu S. Current Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches. Int J Mol Sci 2024; 25:2456. [PMID: 38473704 PMCID: PMC10931195 DOI: 10.3390/ijms25052456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Since its discovery in 2012, the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) system has supposed a promising panorama for developing novel and highly precise genome editing-based gene therapy (GT) alternatives, leading to overcoming the challenges associated with classical GT. Classical GT aims to deliver transgenes to the cells via their random integration in the genome or episomal persistence into the nucleus through lentivirus (LV) or adeno-associated virus (AAV), respectively. Although high transgene expression efficiency is achieved by using either LV or AAV, their nature can result in severe side effects in humans. For instance, an LV (NCT03852498)- and AAV9 (NCT05514249)-based GT clinical trials for treating X-linked adrenoleukodystrophy and Duchenne Muscular Dystrophy showed the development of myelodysplastic syndrome and patient's death, respectively. In contrast with classical GT, the CRISPR/Cas9-based genome editing requires the homologous direct repair (HDR) machinery of the cells for inserting the transgene in specific regions of the genome. This sophisticated and well-regulated process is limited in the cell cycle of mammalian cells, and in turn, the nonhomologous end-joining (NHEJ) predominates. Consequently, seeking approaches to increase HDR efficiency over NHEJ is crucial. This manuscript comprehensively reviews the current alternatives for improving the HDR for CRISPR/Cas9-based GTs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Angelica María Herreno-Pachón
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Eliana Benincore-Flórez
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
| | - Amali Karunathilaka
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
47
|
Guo X, Liu C, Zhao Y, Jiang C, Jin J, Liu Z, Mu Y. CRISPR Ribonucleoprotein-Mediated Precise Editing of Multiple Genes in Porcine Fibroblasts. Animals (Basel) 2024; 14:650. [PMID: 38396618 PMCID: PMC10886166 DOI: 10.3390/ani14040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The multi-gene editing porcine cell model can analyze the genetic mechanisms of multiple genes, which is beneficial for accelerating genetic breeding. However, there has been a lack of an effective strategy to simultaneously perform precise multi-gene editing in porcine cells. In this study, we aimed to improve the efficiency of CRISPR RNP-mediated precise gene editing in porcine cells. CRISPR RNP, including Cas9 protein, sgRNA, and ssODN, was used to generate precise nucleotide substitutions by homology-directed repair (HDR) in porcine fetal fibroblasts (PFFs). These components were introduced into PFFs via electroporation, followed by PCR for each target site. To enhance HDR efficacy, small-molecule M3814 and phosphorothioate-modified ssODN were employed. All target DNA samples were sequenced and analyzed, and the efficiencies of different combinations of the CRISPR RNP system in target sites were compared. The results showed that when 2 μM M3814, a small molecule which inhibits NHEJ-mediated repair by blocking DNA-PKs activity, was used, there was no toxicity to PFFs. The CRISPR RNP-mediated HDR efficiency increased 3.62-fold. The combination of CRISPR RNP with 2 μM M3814 and PS-ssODNs achieved an HDR-mediated precision gene modification efficiency of approximately 42.81% in mutated cells, a 6.38-fold increase compared to the control group. Then, we used the optimized CRISPR RNP system to perform simultaneous editing of two and three loci at the INS and RLN3 genes. The results showed that the CRISPR RNP system could simultaneously edit two and three loci. The efficiency of simultaneous editing of two loci was not significantly different from that of single-gene editing compared to the efficiency of single-locus editing. The efficiency of simultaneous precise editing of INS, RLN3 exon 1, and RLN3 exon 2 was 0.29%, 0.24%, and 1.05%, respectively. This study demonstrated that a 2 μM M3814 combination with PS-ssODNs improves the efficacy of CRISPR RNP-mediated precise gene editing and allows for precise editing of up to three genes simultaneously in porcine cells.
Collapse
Affiliation(s)
- Xiaochen Guo
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chang Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunjing Zhao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
| | - Junxue Jin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (X.G.); (C.L.); (Y.Z.); (C.J.); (J.J.)
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
48
|
Kruglova N, Shepelev M. Increasing Gene Editing Efficiency via CRISPR/Cas9- or Cas12a-Mediated Knock-In in Primary Human T Cells. Biomedicines 2024; 12:119. [PMID: 38255224 PMCID: PMC10813735 DOI: 10.3390/biomedicines12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
T lymphocytes represent a promising target for genome editing. They are primarily modified to recognize and kill tumor cells or to withstand HIV infection. In most studies, T cell genome editing is performed using the CRISPR/Cas technology. Although this technology is easily programmable and widely accessible, its efficiency of T cell genome editing was initially low. Several crucial improvements were made in the components of the CRISPR/Cas technology and their delivery methods, as well as in the culturing conditions of T cells, before a reasonable editing level suitable for clinical applications was achieved. In this review, we summarize and describe the aforementioned parameters that affect human T cell editing efficiency using the CRISPR/Cas technology, with a special focus on gene knock-in.
Collapse
Affiliation(s)
- Natalia Kruglova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, 119334 Moscow, Russia;
| | | |
Collapse
|
49
|
Li DY, Li YM, Lv DY, Deng T, Zeng X, You L, Pang QY, Li Y, Zhu BM. Enhanced interaction between genome-edited mesenchymal stem cells and platelets improves wound healing in mice. J Tissue Eng 2024; 15:20417314241268917. [PMID: 39329066 PMCID: PMC11425747 DOI: 10.1177/20417314241268917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired wound healing poses a significant burden on the healthcare system and patients. Stem cell therapy has demonstrated promising potential in the treatment of wounds. However, its clinical application is hindered by the low efficiency of cell homing. In this study, we successfully integrated P-selectin glycoprotein ligand-1 (PSGL-1) into the genome of human adipose-derived mesenchymal stem cells (ADSCs) using a Cas9-AAV6-based genome editing tool platform. Our findings revealed that PSGL-1 knock-in enhanced the binding of ADSCs to platelets and their adhesion to the injured site. Moreover, the intravenous infusion of PSGL-1 -engineered ADSCs (KI-ADSCs) significantly improved the homing efficiency and residence rate at the site of skin lesions in mice. Mechanistically, PSGL-1 knock-in promotes the release of some therapeutic cytokines by activating the canonical WNT/β-catenin signaling pathway and accelerates the healing of wounds by promoting angiogenesis, re-epithelialization, and granulation tissue formation at the wound site. This study provides a novel strategy to simultaneously address the problem of poor migration and adhesion of mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
- De-Yong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan-Yi Lv
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
50
|
Shaheer K, Prabhu BS, Ali HS, Lakshmanan-M D. Breast cancer cells are sensitized by piperine to radiotherapy through estrogen receptor-α mediated modulation of a key NHEJ repair protein- DNA-PK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155126. [PMID: 37913642 DOI: 10.1016/j.phymed.2023.155126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Non-homologous end joining, an important DNA-double-stranded break repair pathway, plays a prominent role in conferring resistance to radiotherapeutic agents, resulting in cancer progression and relapse. PURPOSE The molecular players involved in the radio-sensitizing effects of piperine and many other phytocompounds remain evasive to a great extent. The study is designed to assess if piperine, a plant alkaloid can alter the radioresistance by modulating the expression of non-homologous end-joining machinery. METHODS AND MATERIALS Estrogen receptor-positive/negative, breast cancer cells were cultured to understand the synergetic effects of piperine with radiotherapy. Cisplatin and Bazedoxifene were used as positive controls. Cells were exposed to γ- radiation using Low Dose gamma Irradiator-2000. The piperine effect on Estrogen receptor modulation, DNA-Damage, DNA-Damage-Response, and apoptosis was done by western blotting, immunofluorescence, yeast-based-estrogen-receptor-LacZ-reporter assay, and nuclear translocation analysis. Micronuclei assay was done for DNA damage and genotoxicity, and DSBs were quantified by γH2AX-foci-staining using confocal microscopy. Flow cytometry analysis was done to determine the cell cycle, mitochondrial membrane depolarization, and Reactive oxygen species generation. Pharmacophore analysis and protein-ligand interaction studies were done using Schrodinger software. Synergy was computed by compusyn-statistical analysis. Standard errors/deviation/significance were computed with GraphPad prism. RESULTS Using piperine, we propose a new strategy for overcoming acquired radioresistance through estrogen receptor-mediated modulation of the NHEJ pathway. This is the first comprehensive study elucidating the mechanism of radio sensitizing potential of piperine. Piperine enhanced the radiation-induced cell death and enhanced the expression and activation of Estrogen receptor β, while Estrogen receptor α expression and activation were reduced. In addition, piperine shares common pharmacophore features with most of the known estrogen agonists and antagonists. It altered the estrogen receptor α/β ratio and the expression of estrogen-responsive proteins of DDR and NHEJ pathway. Enhanced expression of DDR proteins, ATM, p53, and P-p53 with low DNA-PK repair complex (comprising of DNA-PKcs/Ku70/Ku80), resulted in the accumulation of radiation-induced DNA double-stranded breaks (as evidenced by MNi and γH2AX-foci) culminating in cell cycle arrest and mitochondrial-pathway of apoptosis. CONCLUSION In conclusion, our study for the first time reported that piperine sensitizes breast cancer cells to radiation by accumulating DNA breaks, through altering the expression of DNA-PK Complex, and DDR proteins, via selective estrogen receptor modulation, offering a novel strategy for combating radioresistance.
Collapse
Affiliation(s)
- Koniyan Shaheer
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Br Swathi Prabhu
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - H Shabeer Ali
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India
| | - Divya Lakshmanan-M
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| |
Collapse
|