1
|
Adkins M, Moisa S, Beever J, Lear A. Targeted Transcriptome Analysis of Beef Cattle Persistently Infected with Bovine Viral Diarrhea Virus. Genes (Basel) 2024; 15:1500. [PMID: 39766767 PMCID: PMC11675442 DOI: 10.3390/genes15121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Bovine viral diarrhea virus (BVDV) is an endemic virus of North American cattle populations with significant economic and animal health impacts. While BVDV infection has a myriad of clinical manifestations, a unique and problematic outcome is the establishment of a persistently infected (PI) animal following in utero viral infection. While it is well established that PI animals serve as a constant reservoir of BVDV, the mechanism for the maintained infection remains unknown despite multiple theories. OBJECTIVE The purpose of this study was to use transcriptome analysis to investigate the long-term immune status of adult PI cattle and offer insight into the potential mechanistic establishment of persistent BVDV infection. METHODS Peripheral blood mononuclear cells were collected from PI beef cattle (N = 6) and controls (N = 6) for targeted RNAseq analysis using 54 immune-related genes followed by pathway enrichment analysis. RESULTS Analysis revealed 29 differentially expressed genes (FDR < 0.05, fold change ≥ 2), representing 14 significant KEGG pathways between groups (FDR < 0.05). Transcriptome changes indicated chronic upregulation of interferon-gamma (IFNG) with an unexpected expression of related genes. CONCLUSIONS These results provide novel insight into understanding the adult PI immune system and indicate maintained stimulation resulting from virus-mediated dysregulation.
Collapse
Affiliation(s)
- Morgan Adkins
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37919, USA;
| | - Sonia Moisa
- Animal Science, University of Tennessee, Knoxville, TN 37919, USA; (S.M.); (J.B.)
| | - Jon Beever
- Animal Science, University of Tennessee, Knoxville, TN 37919, USA; (S.M.); (J.B.)
| | - Andrea Lear
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37919, USA;
| |
Collapse
|
2
|
Jung-Rodriguez E, Barbault F, Bignon E, Monari A. Molecular Bases and Specificity behind the Activation of the Immune System OAS/RNAse L Pathway by Viral RNA. Viruses 2024; 16:1246. [PMID: 39205220 PMCID: PMC11359028 DOI: 10.3390/v16081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The first line of defense against invading pathogens usually relies on innate immune systems. In this context, the recognition of exogenous RNA structures is primordial to fight, notably, against RNA viruses. One of the most efficient immune response pathways is based on the sensing of RNA double helical motifs by the oligoadenylate synthase (OAS) proteins, which in turn triggers the activity of RNase L and, thus, cleaves cellular and viral RNA. In this contribution, by using long-range molecular dynamics simulations, complemented with enhanced sampling techniques, we elucidate the structural features leading to the activation of OAS by interaction with a model double-strand RNA oligomer mimicking a viral RNA. We characterize the allosteric regulation induced by the nucleic acid leading to the population of the active form of the protein. Furthermore, we also identify the free energy profile connected to the active vs. inactive conformational transitions in the presence and absence of RNA. Finally, the role of two RNA mutations, identified as able to downregulate OAS activation, in shaping the protein/nucleic acid interface and the conformational landscape of OAS is also analyzed.
Collapse
Affiliation(s)
- Emma Jung-Rodriguez
- Université Paris Cité and CNR, ITODYS, F-75006 Paris, France; (E.J.-R.); (F.B.)
| | - Florent Barbault
- Université Paris Cité and CNR, ITODYS, F-75006 Paris, France; (E.J.-R.); (F.B.)
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France;
| | - Antonio Monari
- Université Paris Cité and CNR, ITODYS, F-75006 Paris, France; (E.J.-R.); (F.B.)
| |
Collapse
|
3
|
Krüger L, Gaskell-Mew L, Graham S, Shirran S, Hertel R, White MF. Reversible conjugation of a CBASS nucleotide cyclase regulates bacterial immune response to phage infection. Nat Microbiol 2024; 9:1579-1592. [PMID: 38589469 PMCID: PMC11153139 DOI: 10.1038/s41564-024-01670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Prokaryotic antiviral defence systems are frequently toxic for host cells and stringent regulation is required to ensure survival and fitness. These systems must be readily available in case of infection but tightly controlled to prevent activation of an unnecessary cellular response. Here we investigate how the bacterial cyclic oligonucleotide-based antiphage signalling system (CBASS) uses its intrinsic protein modification system to regulate the nucleotide cyclase. By integrating a type II CBASS system from Bacillus cereus into the model organism Bacillus subtilis, we show that the protein-conjugating Cap2 (CBASS associated protein 2) enzyme links the cyclase exclusively to the conserved phage shock protein A (PspA) in the absence of phage. The cyclase-PspA conjugation is reversed by the deconjugating isopeptidase Cap3 (CBASS associated protein 3). We propose a model in which the cyclase is held in an inactive state by conjugation to PspA in the absence of phage, with conjugation released upon infection, priming the cyclase for activation.
Collapse
Affiliation(s)
- Larissa Krüger
- School of Biology, University of St Andrews, St Andrews, UK.
| | | | - Shirley Graham
- School of Biology, University of St Andrews, St Andrews, UK
| | - Sally Shirran
- School of Biology, University of St Andrews, St Andrews, UK
| | - Robert Hertel
- Genomic and Applied Microbiology, Göttingen Centre for Molecular Biosciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews, UK.
| |
Collapse
|
4
|
Wang Y, Zhang J, Li M, Jia M, Yang L, Wang T, Wang Y, Kang L, Li M, Kong L. Transcriptome and proteomic analysis of mpox virus F3L-expressing cells. Front Cell Infect Microbiol 2024; 14:1354410. [PMID: 38415010 PMCID: PMC10896956 DOI: 10.3389/fcimb.2024.1354410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Background Monkeypox or mpox virus (mpox) is a double-stranded DNA virus that poses a significant threat to global public health security. The F3 protein, encoded by mpox, is an apoenzyme believed to possess a double-stranded RNA-binding domain (dsRBD). However, limited research has been conducted on its function. In this study, we present data on the transcriptomics and proteomics of F3L-transfected HEK293T cells, aiming to enhance our comprehension of F3L. Methods The gene expression profiles of pCAGGS-HA-F3L transfected HEK293T cells were analyzed using RNA-seq. Proteomics was used to identify and study proteins that interact with F3L. Real-time PCR was used to detect mRNA levels of several differentially expressed genes (DEGs) in HEK293T cells (or Vero cells) after the expression of F3 protein. Results A total of 14,822 genes were obtained in cells by RNA-Seq and 1,672 DEGs were identified, including 1,156 up-regulated genes and 516 down-regulated genes. A total of 27 cellular proteins interacting with F3 proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and 19 cellular proteins with large differences in abundance ratios were considered to be candidate cellular proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the DEGs were significantly enriched in immune-related pathways, including type I interferon signaling pathway, response to virus, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, etc. Moreover, some selected DEGs were further confirmed by real-time PCR and the results were consistent with the transcriptome data. Proteomics data show that cellular proteins interacting with F3 proteins are mainly related to RNA splicing and protein translation. Conclusions Our analysis of transcriptomic and proteomic data showed that (1) F3L up-regulates the transcript levels of key genes in the innate immune signaling pathway, such as RIGI, MDA5, IRF5, IRF7, IRF9, ISG15, IFNA14, and elicits a broad spectrum of antiviral immune responses in the host. F3L also increases the expression of the FOS and JNK genes while decreasing the expression of TNFR2, these factors may ultimately induce apoptosis. (2) F3 protein interacts with host proteins involved in RNA splicing and protein translation, such as SNRNP70, POLR2H, HNRNPA1, DDX17, etc. The findings of this study shed light on the function of the F3 protein.
Collapse
Affiliation(s)
- Yihao Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Junzhe Zhang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mingzhi Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mengle Jia
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingdi Yang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lumei Kang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Meifeng Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Olkova MV, Koshel SM, Petrushenko VS, Alimov AA. Features of Distribution of the Allelic Variant of the OAS1 Gene Associated with Severe Form of the Coronavirus Infection in the Russian and Global Populations. Bull Exp Biol Med 2023; 176:194-201. [PMID: 38191878 DOI: 10.1007/s10517-024-05994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Indexed: 01/10/2024]
Abstract
The study of the geographic distribution of the allelic variant of the OAS1 gene associated with severe form of the infections caused by RNA viruses was carried out using the rs10774671 polymorphic locus. The mutant allele encoding the p42 protein isoform was most prevalent in the Russian populations. A comparative analysis of the prevalence of the mutant allele in world populations showed that its frequency is 0.9 among the inhabitants of Northern Eurasia, while the allele encoding the p46 protein isoform is widespread among the population of West Central Africa. A cartographic analysis of the relationship between the population-frequency characteristics of the marker alleles and the geographical remoteness of the populations showed that the mutant allele is most often observed in the indigenous populations of the Far East, which suggests its East Asian origin.
Collapse
Affiliation(s)
- M V Olkova
- Research Centre for Medical Genetics, Moscow, Russia.
| | - S M Koshel
- Research Centre for Medical Genetics, Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | | | - A A Alimov
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
6
|
Banh DV, Roberts CG, Morales-Amador A, Berryhill BA, Chaudhry W, Levin BR, Brady SF, Marraffini LA. Bacterial cGAS senses a viral RNA to initiate immunity. Nature 2023; 623:1001-1008. [PMID: 37968393 PMCID: PMC10686824 DOI: 10.1038/s41586-023-06743-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Cyclic oligonucleotide-based antiphage signalling systems (CBASS) protect prokaryotes from viral (phage) attack through the production of cyclic oligonucleotides, which activate effector proteins that trigger the death of the infected host1,2. How bacterial cyclases recognize phage infection is not known. Here we show that staphylococcal phages produce a structured RNA transcribed from the terminase subunit genes, termed CBASS-activating bacteriophage RNA (cabRNA), which binds to a positively charged surface of the CdnE03 cyclase and promotes the synthesis of the cyclic dinucleotide cGAMP to activate the CBASS immune response. Phages that escape the CBASS defence harbour mutations that lead to the generation of a longer form of the cabRNA that cannot activate CdnE03. As the mammalian cyclase OAS1 also binds viral double-stranded RNA during the interferon response, our results reveal a conserved mechanism for the activation of innate antiviral defence pathways.
Collapse
Affiliation(s)
- Dalton V Banh
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Cameron G Roberts
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA
| | - Adrian Morales-Amador
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | | | - Waqas Chaudhry
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Jiang S, Deng X, Luo M, Zhou L, Chai J, Tian C, Yan Y, Luo Z. Pan-cancer analysis identified OAS1 as a potential prognostic biomarker for multiple tumor types. Front Oncol 2023; 13:1207081. [PMID: 37746262 PMCID: PMC10511872 DOI: 10.3389/fonc.2023.1207081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background 2',5'-oligoadenylate synthetase 1 (OAS1), has been reported as a tumor driver gene in breast carcinoma and pancreatic carcinoma. However, the role of OAS1 in most tumors has not been reported. Methods The original data of 35 tumor types were down load from the TCGA (The Cancer Genome Atlas) database and Human Protein Atlas (HPA) database. TIMER2, Kmplot, UALCAN, and TISIDB tools were used to investigate the expression and function of OAS1, and the role of OAS1 in prognosis, diagnostic value, and immune characteristics of pan-cancer. LUAD and PRAD cell lines, A549, H1975, PC-3 and C4-2 were utilized to perform cell function tests. Results OAS1 expression was up-regulated in 12 tumor types and down-regulated in 2 tumor types. High OAS1 expression was correlated with poor prognosis in 6 tumor types, while high OAS1 expression was correlated with good prognosis in 2 tumor types. OAS1 was correlated with molecular subtypes in 8 tumor types and immune subtypes in 12 tumor types. OAS1 was positively associated with the expression of numerous immune checkpoint genes and tumor mutational burden (TMB). OAS1 had potential diagnostic value in 15 tumor types. Silence of OAS1 significantly inhibited the cell proliferation ability, and promoted G2/M cell cycle arrest of LUAD and PRAD cells. Meanwhile, silence of OAS1 enhanced cisplatin-induced apoptosis of LUAD and PRAD cells, but weakened cell migration. Conclusion This pan-cancer study suggests that OAS1can be used as a molecular biomarker for prognosis in pan-cancer and may play an important role in tumor immune response.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xinzhou Deng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ming Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Le Zhou
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jingjing Chai
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chao Tian
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yutao Yan
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
8
|
Novosad VO, Maltseva DV. The RNA-Binding Proteins OAS1, ZFP36L2, and DHX58 Are Involved in the Regulation of CD44 mRNA Splicing in Colorectal Cancer Cells. Bull Exp Biol Med 2023:10.1007/s10517-023-05826-x. [PMID: 37336810 DOI: 10.1007/s10517-023-05826-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 06/21/2023]
Abstract
Regulation of alternative splicing is carried out by RNA-binding proteins. Each alternative splicing event is controlled by several RNA-binding proteins, which in combination create the distribution of alternative splicing products in a given cell type. Transmembrane protein CD44 plays an important role at various stages of the metastatic cascade and is considered as a promising molecule for the therapy of tumor diseases and the construction of prognostic classifiers. However, the functions of specific isoforms of this protein may differ significantly. In this work, we performed a bioinformatic search of RNA-binding proteins that can determine the expression of clinically significant isoforms 3 and 4 of CD44 protein. The analysis revealed five RNA-binding proteins, three of which (OAS1, ZFP36L2, and DHX58) are shown for the first time as potential regulators of the studied process.
Collapse
Affiliation(s)
- V O Novosad
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics (HSE University), Moscow, Russia
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - D V Maltseva
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics (HSE University), Moscow, Russia.
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
9
|
Straub S, Sampaio NG. Activation of cytosolic RNA sensors by endogenous ligands: roles in disease pathogenesis. Front Immunol 2023; 14:1092790. [PMID: 37292201 PMCID: PMC10244536 DOI: 10.3389/fimmu.2023.1092790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Early detection of infection is a central and critical component of our innate immune system. Mammalian cells have developed specialized receptors that detect RNA with unusual structures or of foreign origin - a hallmark of many virus infections. Activation of these receptors induces inflammatory responses and an antiviral state. However, it is increasingly appreciated that these RNA sensors can also be activated in the absence of infection, and that this 'self-activation' can be pathogenic and promote disease. Here, we review recent discoveries in sterile activation of the cytosolic innate immune receptors that bind RNA. We focus on new aspects of endogenous ligand recognition uncovered in these studies, and their roles in disease pathogenesis.
Collapse
Affiliation(s)
- Sarah Straub
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Natalia G. Sampaio
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Lu Z, Fu Y, Zhou X, Du H, Chen Q. Cyclic dinucleotides mediate bacterial immunity by dinucleotide cyclase in Vibrio. Front Microbiol 2022; 13:1065945. [PMID: 36619988 PMCID: PMC9813507 DOI: 10.3389/fmicb.2022.1065945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The cyclic GMP-AMP (cGAMP) synthase (cGAS) recognizes cytosolic DNA and synthesizes the second messenger, cGAMP, thus activating the adaptor protein stimulator of interferon genes (STING) and initiating the innate immune responses against microbial infections. cGAS-STING pathway has been crucially implicated in autoimmune diseases, cellular senescence, and cancer immunotherapy, while the cGAS-like receptors in bacteria can protect it against viral infections. Dinucleotide cyclase in Vibrio (DncV) is a dinucleotide cyclase originally identified in Vibrio cholerae. The synthesis of cyclic nucleotides by DncV, including c-di-GMP, c-di-AMP, and cGAMP mediates bacterial colonization, cell membrane formation, and virulence. DncV is a structural and functional homolog of the mammalian cytoplasmic DNA sensor, cGAS, implicating cGAS-STING signaling cascades may have originated in the bacterial immune system. Herein, we summarize the roles of DncV in bacterial immunity, which are expected to provide insights into the evolution of cGAS-STING signaling.
Collapse
|
11
|
Toro A, Lage-Vickers S, Bizzotto J, Vilicich F, Sabater A, Pascual G, Ledesma-Bazan S, Sanchis P, Ruiz MS, Arevalo AP, Porfido JL, Abbate M, Seniuk R, Labanca E, Anselmino N, Navone NM, Alonso DF, Vazquez E, Crispo M, Cotignola J, Gueron G. Pin-Pointing the Key Hubs in the IFN-γ Pathway Responding to SARS-CoV-2 Infection. Viruses 2022; 14:2180. [PMID: 36298734 PMCID: PMC9610092 DOI: 10.3390/v14102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Interferon gamma (IFN-γ) may be potential adjuvant immunotherapy for COVID-19 patients. In this work, we assessed gene expression profiles associated with the IFN-γ pathway in response to SARS-CoV-2 infection. Employing a case-control study from SARS-CoV-2-positive and -negative patients, we identified IFN-γ-associated pathways to be enriched in positive patients. Bioinformatics analyses showed upregulation of MAP2K6, CBL, RUNX3, STAT1, and JAK2 in COVID-19-positive vs. -negative patients. A positive correlation was observed between STAT1/JAK2, which varied alongside the patient's viral load. Expression of MX1, MX2, ISG15, and OAS1 (four well-known IFN-stimulated genes (ISGs)) displayed upregulation in COVID-19-positive vs. -negative patients. Integrative analyses showcased higher levels of ISGs, which were associated with increased viral load and STAT1/JAK2 expression. Confirmation of ISGs up-regulation was performed in vitro using the A549 lung cell line treated with Poly (I:C), a synthetic analog of viral double-stranded RNA; and in different pulmonary human cell lines and ferret tracheal biopsies infected with SARS-CoV-2. A pre-clinical murine model of Coronavirus infection confirmed findings displaying increased ISGs in the liver and lungs from infected mice. Altogether, these results demonstrate the role of IFN-γ and ISGs in response to SARS-CoV-2 infection, highlighting alternative druggable targets that can boost the host response.
Collapse
Affiliation(s)
- Ayelen Toro
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Sofia Lage-Vickers
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Juan Bizzotto
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073AAO, Argentina
| | - Felipe Vilicich
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Agustina Sabater
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073AAO, Argentina
| | - Gaston Pascual
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Sabrina Ledesma-Bazan
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Pablo Sanchis
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Maria Sol Ruiz
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Ana Paula Arevalo
- Laboratory Animals Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Jorge L. Porfido
- Laboratory Animals Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Mercedes Abbate
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Rocio Seniuk
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology and The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel F. Alonso
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876BXD, Argentina
| | - Elba Vazquez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Martina Crispo
- Laboratory Animals Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Javier Cotignola
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
12
|
Bignon E, Marazzi M, Miclot T, Barone G, Monari A. Specific Recognition of the 5'-Untranslated Region of West Nile Virus Genome by Human Innate Immune System. Viruses 2022; 14:v14061282. [PMID: 35746753 PMCID: PMC9227302 DOI: 10.3390/v14061282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 01/24/2023] Open
Abstract
In the last few years, the sudden outbreak of COVID-19 caused by SARS-CoV-2 proved the crucial importance of understanding how emerging viruses work and proliferate, in order to avoid the repetition of such a dramatic sanitary situation with unprecedented social and economic costs. West Nile Virus is a mosquito-borne pathogen that can spread to humans and induce severe neurological problems. This RNA virus caused recent remarkable outbreaks, notably in Europe, highlighting the need to investigate the molecular mechanisms of its infection process in order to design and propose efficient antivirals. Here, we resort to all-atom Molecular Dynamics simulations to characterize the structure of the 5′-untranslated region of the West Nile Virus genome and its specific recognition by the human innate immune system via oligoadenylate synthetase. Our simulations allowed us to map the interaction network between the viral RNA and the host protein, which drives its specific recognition and triggers the host immune response. These results may provide fundamental knowledge that can assist further antivirals’ design, including therapeutic RNA strategies.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (E.B.); (A.M.)
| | - Marco Marazzi
- Grupo de Reactividad y Estructura Molecular (RESMOL), Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| | - Tom Miclot
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Department of Biological, Chemical and Pharmaceutical Sciences, Università degli Studi di Palermo, viale delle Scienze, 90128 Palermo, Italy;
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences, Università degli Studi di Palermo, viale delle Scienze, 90128 Palermo, Italy;
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- ITODYS, Université Paris Cité, CNRS, F-75006 Paris, France
- Correspondence: (E.B.); (A.M.)
| |
Collapse
|
13
|
Schwartz SL, Dey D, Tanquary J, Bair CR, Lowen AC, Conn GL. Role of helical structure and dynamics in oligoadenylate synthetase 1 (OAS1) mismatch tolerance and activation by short dsRNAs. Proc Natl Acad Sci U S A 2022; 119:e2107111119. [PMID: 35017296 PMCID: PMC8784149 DOI: 10.1073/pnas.2107111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
The 2'-5'-oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection. How these proteins are able to avoid aberrant activation by cellular RNAs is not fully understood, but adenosine-to-inosine (A-to-I) editing has been proposed to limit accumulation of endogenous RNAs that might otherwise cause stimulation of the OAS/RNase L pathway. Here, we aim to uncover whether and how such sequence modifications can restrict the ability of short, defined dsRNAs to activate the single-domain form of OAS, OAS1. Unexpectedly, we find that all tested inosine-containing dsRNAs have an increased capacity to activate OAS1, whether in a destabilizing (I•U) or standard Watson-Crick-like base pairing (I-C) context. Additional variants with strongly destabilizing A•C mismatches or stabilizing G-C pairs also exhibit increased capacity to activate OAS1, eliminating helical stability as a factor in the relative ability of the dsRNAs to activate OAS1. Using thermal difference spectra and molecular dynamics simulations, we identify both increased helical dynamics and specific local changes in helical structure as important factors in the capacity of short dsRNAs to activate OAS1. These helical features may facilitate more ready adoption of the distorted OAS1-bound conformation or stabilize important structures to predispose the dsRNA for optimal binding and activation of OAS1. These studies thus reveal the molecular basis for the greater capacity of some short dsRNAs to activate OAS1 in a sequence-independent manner.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Julia Tanquary
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Camden R Bair
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| |
Collapse
|
14
|
Magusali N, Graham AC, Piers TM, Panichnantakul P, Yaman U, Shoai M, Reynolds RH, Botia JA, Brookes KJ, Guetta-Baranes T, Bellou E, Bayram S, Sokolova D, Ryten M, Sala Frigerio C, Escott-Price V, Morgan K, Pocock JM, Hardy J, Salih DA. A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the OAS1 gene. Brain 2021; 144:3727-3741. [PMID: 34619763 PMCID: PMC8500089 DOI: 10.1093/brain/awab337] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 01/12/2023] Open
Abstract
Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer's disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer's disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer's disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer's disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer's disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-α with IFN-γ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer's disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer's disease and COVID-19, and development of biomarkers to track disease progression.
Collapse
Affiliation(s)
- Naciye Magusali
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| | - Andrew C Graham
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| | - Thomas M Piers
- Department of Neuroinflammation, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
| | | | - Umran Yaman
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| | - Maryam Shoai
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - Regina H Reynolds
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London WC1N 1EH, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, UCL, London WC1N 1EH, UK
| | - Juan A Botia
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
- Department of Information and Communications Engineering, Universidad de Murcia, 30100 Murcia, Spain
| | - Keeley J Brookes
- Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG8 11NS, UK
| | - Tamar Guetta-Baranes
- Genetics, School of Life Sciences, Life Sciences Building, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Eftychia Bellou
- Dementia Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Sevinc Bayram
- Hitachi Rail Europe Ltd, New Ludgate, London EC4M 7HX, UK
| | - Dimitra Sokolova
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| | - Mina Ryten
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London WC1N 1EH, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, UCL, London WC1N 1EH, UK
| | | | - Valentina Escott-Price
- Dementia Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Kevin Morgan
- Genetics, School of Life Sciences, Life Sciences Building, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - John Hardy
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - Dervis A Salih
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
15
|
Bakre AA, Jones LP, Murray J, Reneer ZB, Meliopoulos VA, Cherry S, Schultz-Cherry S, Tripp RA. Innate Antiviral Cytokine Response to Swine Influenza Virus by Swine Respiratory Epithelial Cells. J Virol 2021; 95:e0069221. [PMID: 33980596 PMCID: PMC8274599 DOI: 10.1128/jvi.00692-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/20/2022] Open
Abstract
Swine influenza virus (SIV) can cause respiratory illness in swine. Swine contribute to influenza virus reassortment, as avian, human, and/or swine influenza viruses can infect swine and reassort, and new viruses can emerge. Thus, it is important to determine the host antiviral responses that affect SIV replication. In this study, we examined the innate antiviral cytokine response to SIV by swine respiratory epithelial cells, focusing on the expression of interferon (IFN) and interferon-stimulated genes (ISGs). Both primary and transformed swine nasal and tracheal respiratory epithelial cells were examined following infection with field isolates. The results show that IFN and ISG expression is maximal at 12 h postinfection (hpi) and is dependent on cell type and virus genotype. IMPORTANCE Swine are considered intermediate hosts that have facilitated influenza virus reassortment events that have given rise pandemics or genetically related viruses have become established in swine. In this study, we examine the innate antiviral response to swine influenza virus in primary and immortalized swine nasal and tracheal epithelial cells, and show virus strain- and host cell type-dependent differential expression of key interferons and interferon-stimulated genes.
Collapse
Affiliation(s)
- Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Les P Jones
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Z Beau Reneer
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
16
|
Identification of a novel immune microenvironment signature predicting survival and therapeutic options for bladder cancer. Aging (Albany NY) 2020; 13:2780-2802. [PMID: 33408272 PMCID: PMC7880321 DOI: 10.18632/aging.202327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022]
Abstract
Few studies have investigated the potential of tumor immune microenvironment genes as indicators of urinary bladder cancer. Here, we sought to establish an immune-related gene signature for determining prognosis and treatment options. We developed a ten-gene tumor immune microenvironment signature and evaluated its prognostic capacity on internal and external cohorts. Multivariate Cox regression and nomogram analyses revealed the prognostic risk model as an independent and effective indicator of prognosis. We observed lower proportions of CD8+ T cells, dendritic cells, regulatory T cells, higher proportions of macrophages and neutrophils in high UBC risk group. UBC tissues with high-risk score tend to exhibit high TP53 and RB1 mutation rates, high PD1/PD-L1 expression and poor-survival basal squamous subtypes, while those with low-risk score tend to have high FGFR3 mutation rates and luminal papillary subtypes. Unexpectedly, we found a highly significant positive correlation between glycolytic genes and risk score, highlighting metabolic competition in tumor ecosystem and potential therapeutic avenues. Our study thus revealed a tumor immune microenvironment signature for predicting prognostic and response to immune checkpoint inhibitors against bladder cancer. Prospective studies are required to further test the predictive capacity of this model.
Collapse
|