1
|
Ding HY, Zhou H, Jiang Y, Chen SS, Wu XX, Li Y, Luo J, Zhang PF, Ding YN. Lipid Nanovesicles in Cancer Treatment: Improving Targeting and Stability of Antisense Oligonucleotides. Drug Des Devel Ther 2025; 19:1001-1023. [PMID: 39967902 PMCID: PMC11834698 DOI: 10.2147/dddt.s507402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Cancer remains a leading cause of mortality worldwide, accounting for approximately 10 million deaths annually. Standard treatments, including surgery, radiotherapy, and chemotherapy, often result in damage to healthy cells and severe toxic side effects. In recent years, antisense technology therapeutics, which interfere with RNA translation through complementary base pairing, have emerged as promising approaches for cancer treatment. Despite the availability of various antisense oligonucleotide (ASO) drugs on the market, challenges such as poor active targeting and susceptibility to clearance by circulating enzymes remain. Compared with other delivery systems, lipid nanovesicle (LNV) delivery systems offer a potential solution that uniquely enhances ASO targeting and stability. Studies have shown that LNVs can increase the accumulation of ASOs in tumor sites several-fold, significantly reducing systemic toxic reactions and demonstrating increased therapeutic efficiency in preclinical models. Additionally, LNVs can protect ASOs from enzymatic degradation within the body, extending their half-life and thus enhancing their therapeutic effects. This paper provides a comprehensive review of recent examples and applications of LNV delivery of ASOs in cancer treatment, highlighting their unique functions and outcomes. Furthermore, this paper discusses the key challenges and potential impacts of this innovative approach to cancer therapy.
Collapse
Affiliation(s)
- Hui-yan Ding
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, People’s Republic of China
- Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People’s Republic of China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, People’s Republic of China
| | - Han Zhou
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Yi Jiang
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, People’s Republic of China
- Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People’s Republic of China
| | - Si-si Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People’s Republic of China
| | - Xiao-xia Wu
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, People’s Republic of China
- Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People’s Republic of China
| | - Yang Li
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, People’s Republic of China
- Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People’s Republic of China
| | - Jun Luo
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, People’s Republic of China
- Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People’s Republic of China
| | - Peng-fei Zhang
- Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, People’s Republic of China
| | - Yi-nan Ding
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang Key Laboratory of Imaging and Interventional Medicine, Hangzhou, Zhejiang, 310022, People’s Republic of China
- Zhejiang Provincial Research Center for Innovative Technology and Equipment in Interventional Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, People’s Republic of China
| |
Collapse
|
2
|
Joby P, Ramasamy R, Solomon RV, Wilson P. Molecular engineering of BODIPY-bridged fluorescent probes for lysosome imaging - a computational study. Phys Chem Chem Phys 2024; 26:22912-22930. [PMID: 39171363 DOI: 10.1039/d4cp02570a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Lysosome imaging plays an important role in diagnosing many diseases and understanding various intracellular processes. Recently, B0 was reported as a fluorescent probe capable of detecting lysosomal viscosity changes. BODIPY is fused into the molecule as a bridge between the acceptor and donor components of B0, yielding nine new B molecules. Computational design and analysis of their optoelectronic properties were conducted to evaluate their effectiveness as fluorescent probes for lysosome imaging, with a specific target of HSA inside lysosomes. Optimized geometries reveal excellent π electron delocalization, resulting in nearly planar molecular structures. Frontier molecular orbital analysis suggests intramolecular charge transfer, along with π-π* transitions, from donor to bridge. TD-DFT calculations were performed to study absorption properties in the solvent phase, with B3PW91 showing good agreement with experiments. Molecular docking studies indicate that B derivatives can bind with HSA, and molecular dynamics simulations confirm their HSA targeting ability. This investigation highlights the introduction of BODIPY as a bridge for developing new probes capable of producing NIR fluorescence for bio-imaging, aiding in disease diagnosis.
Collapse
Affiliation(s)
- Prince Joby
- Department of Chemistry, Madras Christian College (Autonomous) (Affiliated to the University of Madras), Chennai, Tamil Nadu 600 059, India.
| | - Rohith Ramasamy
- Department of Chemistry, Madras Christian College (Autonomous) (Affiliated to the University of Madras), Chennai, Tamil Nadu 600 059, India.
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous) (Affiliated to the University of Madras), Chennai, Tamil Nadu 600 059, India.
| | - Paul Wilson
- Department of Chemistry, Madras Christian College (Autonomous) (Affiliated to the University of Madras), Chennai, Tamil Nadu 600 059, India.
| |
Collapse
|
3
|
Iqbal S, Luo B, Melamed JR, Day ES. Critical Evaluation of Different Lysosomal Labeling Methods Used to Analyze RNA Nanocarrier Trafficking in Cells. Bioconjug Chem 2021; 32:2245-2256. [PMID: 34543006 PMCID: PMC9014481 DOI: 10.1021/acs.bioconjchem.1c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of nucleic acids to regulate gene expression is a rapidly developing field with immense clinical potential. Nanomaterials are frequently used to deliver nucleic acids into cells as they can overcome the poor cellular uptake and endo/lysosomal degradation of bare nucleic acids. For these nanocarriers to be effective, they must escape endo/lysosomal compartments to deliver their nucleic acid cargo into the cytosol (for ribonucleic acid (RNA)) or nucleus (for deoxyribonucleic acid (DNA)). This process is poorly understood and remains an area of active research toward the goal of developing effective delivery strategies. Fluorescent endo/lysosomal markers are among the most widely employed tools used to evaluate the endosomal escape of nucleic acid nanocarriers. However, the endo/lysosomal labeling method may alter the extent of and route of nanocarrier uptake by cells. The impact of these markers on cellular function and cell-nanocarrier interactions has not been probed in a systematic manner. To investigate this, we compared the effects of several common lysosomal labeling methods, namely, LysoTracker Red (LT Red), transient lysosomal-associated membrane protein 1-mutant green fluorescent protein (LAMP1-mGFP) transfection (Transient GFP), and stable lentiviral LAMP1-mGFP transfection (Stable GFP), on cellular metabolic activity, nanocarrier uptake, nanocarrier/lysosomal label colocalization, and gene silencing potency in U87 glioblastoma and MDA-MB-231 breast cancer cells using polyethyleneimine (PEI)/ribonucleic acid (RNA) polyplexes as a model nanocarrier. In both U87s and MDA-MB-231s, Transient GFP and LT Red labeling reduced metabolic activity relative to untransfected (Parental) cells, while Stable GFP labeling increased metabolic activity. Congruently, flow cytometry indicates Stable GFP cells have greater polyplex uptake than LT Red-labeled cells in both cell lines. Despite these similar trends in uptake, polyplex intracellular trafficking differs in the two cell lines, as confocal imaging revealed greater polyplex/lysosome colocalization in Stable GFP U87 cells than LT Red-labeled U87 cells, while the trend was reversed in MBA-MB-231s. The level of RNA-mediated gene silencing achieved in Parental versus Stable GFP U87 and MDA-MB-231 cells agreed with the observed levels of polyplex/lysosome colocalization, supporting the established concept that endosomal escape is the rate-limiting step for RNA interference. These findings indicate that lysosomal labels can profoundly alter cellular function and cell-nanocarrier interactions, presenting critical new considerations for researchers investigating nanoparticle trafficking.
Collapse
Affiliation(s)
- Shoaib Iqbal
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Benjamin Luo
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Jilian R Melamed
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, Delaware 19716, United States
- Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
- Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown Stanton Road, Newark, Delaware 19713, United States
| |
Collapse
|
4
|
Novel lysosome-targeted anticancer fluorescent agents used in zebrafish and nude mouse tumour imaging. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol 2021; 9:705886. [PMID: 34568298 PMCID: PMC8459376 DOI: 10.3389/fbioe.2021.705886] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability of liposomes necessitating explanation for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.
Collapse
Affiliation(s)
- Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| |
Collapse
|
6
|
Simion V, Henriet E, Juric V, Aquino R, Loussouarn C, Laurent Y, Martin F, Midoux P, Garcion E, Pichon C, Baril P. Intracellular trafficking and functional monitoring of miRNA delivery in glioblastoma using lipopolyplexes and the miRNA-ON RILES reporter system. J Control Release 2020; 327:429-443. [PMID: 32853728 DOI: 10.1016/j.jconrel.2020.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/11/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
MicroRNA (miRNA) oligonucleotides therapeutics are potent and attractive drugs for cancer treatment, but the kinetics of their intracellular trafficking, RISC processing and interaction with their mRNA targets in the cells are still not well understood. Moreover, the absence of efficient carriers impairs their translation into the clinic. Here, we compare the kinetics of miRNA-133a activity after transfection of U87MG glioblastoma cells with either a home-made lipopolyplexes (LPRi) or with the RNAiMax transfection reagent. For this purpose, we combined miRNA intracellular trafficking studies by confocal microscopy with our previously described RILES miRNA-ON reporter system subcloned here in a lentivirus expression vector (LentiRILES) for longitudinal analysis of miRNA activity in transfected cells. Using the LentiRILES system, we report significant differences in terms of miRNA delivery kinetics performed by these two transfection regents. We decipher the mechanisms of miRNA delivery by LPRi and investigate the main steps of miRNA internalization and cytosolic processing. We demonstrate that LPRi preferentially uses caveolae-mediated endocytosis as the main internalization pathway, releases miRNA into the cytosol after the first 3 h of incubation, and addresses the cytosolic miRNAs to P-bodies, while a fraction of miRNAs are exported to the extracellular space through exosomes which were found fully capable to re-transfect the cells. We implanted the LentiRILES cells in the brain of mice and infused the tumours with LPRi.miRNA using the convection-enhanced delivery method. Bioluminescence imaging of the live mice revealed efficient delivery of miRNAs in glioblastoma tumours, attesting successful miRNA uptake, internalization and RISC activation in vivo. Overall, our study provides a comprehensive overview of miRNA intracellular trafficking and processing in a glioblastoma context and highlights the potential use of LPRi for miRNA-based therapy.
Collapse
Affiliation(s)
- Viorel Simion
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, France.
| | - Elodie Henriet
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, France
| | - Viktorija Juric
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, France
| | - Ruth Aquino
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, France
| | - Claire Loussouarn
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Yoan Laurent
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, France
| | - Francisco Martin
- GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, France
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, France
| | - Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, France.
| |
Collapse
|
7
|
Zhu W, Zheng X, Huang Y, Lu Z, Ai H. Super-resolution imaging and real-time tracking lysosome in living cells by a fluorescent probe. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9194-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Ouyang J, Zang Q, Chen W, Wang L, Li S, Liu RY, Deng Y, Liu ZQ, Li J, Deng L, Liu YN. Bright and photostable fluorescent probe with aggregation-induced emission characteristics for specific lysosome imaging and tracking. Talanta 2016; 159:255-261. [PMID: 27474306 DOI: 10.1016/j.talanta.2016.06.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/11/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022]
Abstract
We develop a new lysosome-targeting AIE fluorescent probe tetraphenylethene-morpholine (TPE-MPL), by incorporating a typical lysosome-targeting moiety of morpholine into a stable tetraphenylethene skeleton. Due to both the AIE and antenna effects, TPE-MPL possesses superior photostability, appreciable tolerance to microenvironment change and high lysosome targeting ability. Our findings confirm that TPE-MPL is a well-suited imaging agent for targeting lysosome and tracking dynamic movement of lysosome. Moreover, due to its synthetic accessibility, TPE-MPL could be further modified as a dual-functional probe for lysosome, thereby gain further insight into the role of lysosome in biomedical applications.
Collapse
Affiliation(s)
- Jiang Ouyang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Qiguang Zang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China; Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, PR China
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Liqiang Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Ren-Yu Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Yuanyuan Deng
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Zhao-Qian Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Juan Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Liu Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China.
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China.
| |
Collapse
|
9
|
Qiu K, Huang H, Liu B, Liu Y, Huang Z, Chen Y, Ji L, Chao H. Long-Term Lysosomes Tracking with a Water-Soluble Two-Photon Phosphorescent Iridium(III) Complex. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12702-12710. [PMID: 27152695 DOI: 10.1021/acsami.6b03422] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lysosomes are the stomachs of the cells that degrade endocytosis and intracellular biomacromolecules and participate in various other cellular processes, such as apoptosis and cell migration. The ability of long-term tracking of lysosomes is very important to understand the details of lysosomal functions and to evaluate drug and gene delivery systems. For studying lysosomes, we designed and synthesized a water-soluble triscyclometalated iridium(III) complex (Ir-lyso) attaching morpholine moieties. The phosphorescent intensity of Ir-lyso is responsive to pH and decreases with an increase in the pH but not quenching in high pH. With excellent two-photon properties, Ir-lyso was used to light up the lysosomes in living cells and 3D tumor spheroids. Moreover, Ir-lyso could label lysosomes more than 4 days, so we developed this complex to act as a long-term probe for tracking lysosomes during cell migration and apoptosis. To the best of our knowledge, this is the first paradigm of metal complexes as the two-photon phosphorescent probe for long-term lysosomes tracking.
Collapse
Affiliation(s)
- Kangqiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Huaiyi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Bingyang Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Yukang Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Ziyi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| |
Collapse
|
10
|
Niemietz C, Chandhok G, Schmidt H. Therapeutic Oligonucleotides Targeting Liver Disease: TTR Amyloidosis. Molecules 2015; 20:17944-75. [PMID: 26437390 PMCID: PMC6332041 DOI: 10.3390/molecules201017944] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 12/13/2022] Open
Abstract
The liver has become an increasingly interesting target for oligonucleotide therapy. Mutations of the gene encoding transthyretin (TTR), expressed in vast amounts by the liver, result in a complex degenerative disease, termed familial amyloid polyneuropathy (FAP). Misfolded variants of TTR are linked to the establishment of extracellular protein deposition in various tissues, including the heart and the peripheral nervous system. Recent progress in the chemistry and formulation of antisense (ASO) and small interfering RNA (siRNA) designed for a knockdown of TTR mRNA in the liver has allowed to address the issue of gene-specific molecular therapy in a clinical setting of FAP. The two therapeutic oligonucleotides bind to RNA in a sequence specific manner but exploit different mechanisms. Here we describe major developments that have led to the advent of therapeutic oligonucleotides for treatment of TTR-related disease.
Collapse
MESH Headings
- Amyloid Neuropathies, Familial/genetics
- Amyloid Neuropathies, Familial/therapy
- Animals
- Clinical Studies as Topic
- Drug Evaluation, Preclinical
- Gene Silencing
- Genetic Therapy
- Humans
- Liver Diseases/genetics
- Liver Diseases/therapy
- Mutation
- Oligonucleotides/administration & dosage
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Oligonucleotides/therapeutic use
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/therapeutic use
- Prealbumin/genetics
- RNA Interference
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Christoph Niemietz
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| | - Gursimran Chandhok
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| | - Hartmut Schmidt
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| |
Collapse
|
11
|
Fan J, Dong H, Hu M, Wang J, Zhang H, Zhu H, Sun W, Peng X. Fluorescence imaging lysosomal changes during cell division and apoptosis observed using Nile Blue based near-infrared emission. Chem Commun (Camb) 2014; 50:882-4. [DOI: 10.1039/c3cc48043g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
|
13
|
Saffari M, Tamaddon AM, Shirazi FH, Oghabian MA, Moghimi HR. Improving cellular uptake and in vivo tumor suppression efficacy of liposomal oligonucleotides by urea as a chemical penetration enhancer. J Gene Med 2013; 15:12-9. [PMID: 23281182 DOI: 10.1002/jgm.2688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/11/2012] [Accepted: 11/26/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Liposomes are among the most widely used carriers for the delivery of antisense oligonucleotides (AsODNs) to intracellular targets. Although different strategies have been employed, the question of how to improve liposomal uptake and enhance the release of AsODN into cytoplasm still remains to be answered with respect to the use of a safe, easy and economic method. In the present study, the possibility of enhancing such processes at cellular and animal levels using urea as a penetration enhancer was investigated. METHODS To perform this investigation, a cationic liposome containing an AsODN against protein kinase (PKC)-α was prepared, and the effect of urea on its cellular internalization and the related sequence-specific inhibition of gene expression in human lung adenocarcinoma A549 cells were investigated by flow cytometry and the reverse transcriptase-polymerase chain reaction, respectively. In in vivo studies, a xenograft lung tumor was established in nude mice by A549 cells and the enhancement effect of urea toward the effects of liposomal AsODN on tumor growth was investigated. RESULTS Cellular studies revealed that urea treatment increases liposomal uptake and the release of AsODN into the cytoplasm by approximately 40%. Sequence-specific inhibition of target gene PKC-α expression was also increased by approximately two-fold by urea at 200-300 nM AsODN. In animal studies, urea significantly decreased the tumor volume (approximately 40%) and increased its doubling time from approximately 13 days to 17 days. CONCLUSIONS Urea, and possibly other membrane fluidizers, could be regarded as penetration enhancers for liposomal AsODN delivery and may improve the therapeutic effect of these gene-therapy vectors at both cellular and animal levels.
Collapse
Affiliation(s)
- Mostafa Saffari
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
14
|
Fan F, Nie S, Yang D, Luo M, Shi H, Zhang YH. Labeling Lysosomes and Tracking Lysosome-Dependent Apoptosis with a Cell-Permeable Activity-Based Probe. Bioconjug Chem 2012; 23:1309-17. [DOI: 10.1021/bc300143p] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fengkai Fan
- Britton Chance Center
for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, and ‡Key Laboratory
of Biomedical Photonics of Ministry of Education, Department of Biomedical
Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074,
P. R. China
| | - Si Nie
- Britton Chance Center
for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, and ‡Key Laboratory
of Biomedical Photonics of Ministry of Education, Department of Biomedical
Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074,
P. R. China
| | - Dongmei Yang
- Britton Chance Center
for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, and ‡Key Laboratory
of Biomedical Photonics of Ministry of Education, Department of Biomedical
Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074,
P. R. China
| | - Meijie Luo
- Britton Chance Center
for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, and ‡Key Laboratory
of Biomedical Photonics of Ministry of Education, Department of Biomedical
Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074,
P. R. China
| | - Hua Shi
- Britton Chance Center
for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, and ‡Key Laboratory
of Biomedical Photonics of Ministry of Education, Department of Biomedical
Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074,
P. R. China
| | - Yu-Hui Zhang
- Britton Chance Center
for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, and ‡Key Laboratory
of Biomedical Photonics of Ministry of Education, Department of Biomedical
Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074,
P. R. China
| |
Collapse
|
15
|
Dinç E, Tóth SZ, Schansker G, Ayaydin F, Kovács L, Dudits D, Garab G, Bottka S. Synthetic antisense oligodeoxynucleotides to transiently suppress different nucleus- and chloroplast-encoded proteins of higher plant chloroplasts. PLANT PHYSIOLOGY 2011; 157:1628-41. [PMID: 21980174 PMCID: PMC3327186 DOI: 10.1104/pp.111.185462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/05/2011] [Indexed: 05/18/2023]
Abstract
Selective inhibition of gene expression by antisense oligodeoxynucleotides (ODNs) is widely applied in gene function analyses; however, experiments with ODNs in plants are scarce. In this work, we extend the use of ODNs in different plant species, optimizing the uptake, stability, and efficiency of ODNs with a combination of molecular biological and biophysical techniques to transiently inhibit the gene expression of different chloroplast proteins. We targeted the nucleus-encoded phytoene desaturase (pds) gene, encoding a key enzyme in carotenoid biosynthesis, the chlorophyll a/b-binding (cab) protein genes, and the chloroplast-encoded psbA gene, encoding the D1 protein. For pds and psbA, the in vivo stability of ODNs was increased by phosphorothioate modifications. After infiltration of ODNs into juvenile tobacco (Nicotiana benthamiana) leaves, we detected a 25% to 35% reduction in mRNA level and an approximately 5% decrease in both carotenoid content and the variable fluorescence of photosystem II. In detached etiolated wheat (Triticum aestivum) leaves, after 8 h of greening, the mRNA level, carotenoid content, and variable fluorescence were inhibited up to 75%, 25%, and 20%, respectively. Regarding cab, ODN treatments of etiolated wheat leaves resulted in an up to 59% decrease in the amount of chlorophyll b, a 41% decrease of the maximum chlorophyll fluorescence intensity, the cab mRNA level was reduced to 66%, and the protein level was suppressed up to 85% compared with the control. The psbA mRNA and protein levels in Arabidopsis (Arabidopsis thaliana) leaves were inhibited by up to 85% and 72%, respectively. To exploit the potential of ODNs for photosynthetic genes, we propose molecular design combined with fast, noninvasive techniques to test their functional effects.
Collapse
Affiliation(s)
- Emine Dinç
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shi H, He X, Yuan Y, Wang K, Liu D. Nanoparticle-based biocompatible and long-life marker for lysosome labeling and tracking. Anal Chem 2010; 82:2213-20. [PMID: 20155925 DOI: 10.1021/ac902417s] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, a novel biocompatible and long-life lysosome labeling and tracking method based on dye entrapped silica nanoparticles (DSiNPs) has been put forward. Through colocalization studies using LysoTracker Green as the standard lysosome marker, it has been demonstrated that DSiNPs selectively accumulated in lysosomes of Hela cells and the photostability of DSiNPs associated with lysosomes was detectable, at least, 30 times as long as that of LysoTracker Green involved in lysosomes. By comparison with LysoTracker Green and Alexa 488-dextran, the fluorescence of DSiNPs could be detected over a 5-day postrecultivation period and the staining pattern in lysosomes could be well retained after cell fixation and permeabilization. In addition, results from MTT assays showed that DSiNPs did not affect the viability of Hela cells at the concentration for lysosome labeling. Primary applications of DSiNPs were then further performed in lysosome tracking in chloroquine-treated Hela cells, and lysosome labeling of differnet cell lines, including MCF-7 cells, MEAR cells, and MSC cells. These results indicated that DSiNPs, therefore, can be used as a biocompatible, long-life, and highly photostable lysosome marker for lysosome-related studies.
Collapse
Affiliation(s)
- Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Biomedical Engineering Center, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | | | | | | | | |
Collapse
|
17
|
Stierlé V, Duca M, Halby L, Senamaud-Beaufort C, Capobianco ML, Laigle A, Jollès B, Arimondo PB. Targeting MDR1 gene: synthesis and cellular study of modified daunomycin-triplex-forming oligonucleotide conjugates able to inhibit gene expression in resistant cell lines. Mol Pharmacol 2008; 73:1568-77. [PMID: 18299310 DOI: 10.1124/mol.107.042010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reversal of the multidrug-resistant (MDR) phenotype is very important for chemotherapy success. In fact, the expression of the MDR1 gene-encoded P-glycoprotein (P-gp) actively expels antitumor agents such as daunomycin (DNM) out of the cells, resulting in drug resistance. We show that upon conjugation to triplex-forming oligonucleotides, it is possible to address DNM in resistant cells (MCF7-R and NIH-MDR-G185). The oligonucleotide moiety of the conjugate changes the cellular penetration properties of the antitumor agent that is no more the target of P-gp in resistant cells. We observe an accumulation of conjugated DNM in cells up to 72 h. For more efficient delivery in the cells' nuclei, transfectant agents must be used. In addition, the conjugate recognizes a sequence located in exon 3 of MDR1, and it inhibits its gene expression as measured both by Western blot and by reverse transcription-polymerase chain reaction.
Collapse
Affiliation(s)
- Vérène Stierlé
- Unité Mixte de Recherche 5153 Centre National de la Recherche Scientifique-MNHN USM0503, Institut National de la Santé et de la Recherche Médicale UR565, 43 rue Cuvier, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Reinsch C, Siepi E, Dieckmann A, Panzner S. Strategies for the Delivery of Oligonucleotides in vivo. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Sun C, Ridderstråle K, Höglund AS, Larsson LG, Jansson C. Sweet delivery - sugar translocators as ports of entry for antisense oligodeoxynucleotides in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1192-1198. [PMID: 17922813 DOI: 10.1111/j.1365-313x.2007.03287.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Antisense oligodeoxynucleotides (ODNs) are short (12-25 nt long) stretches of single-stranded DNA that may be delivered to a cell, where they hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. Here we used confocal microscopy to monitor the uptake and trafficking of ODNs in barley tissues. We conclude that uptake of ODNs across the plant plasma membrane is mediated by active transport of mono- or disaccharides through sugar translocators. We demonstrate that sugar transport can deliver ODNs to barley seeds, and that this strategy may be employed to suppress gene activity in endosperm cells by antisense ODN inhibition. We further found that sucrose compared favorably with oligofectamine as a vehicle for ODN delivery to human cells in a low-serum environment.
Collapse
Affiliation(s)
- Chuanxin Sun
- Department of Plant Biology & Forest Genetics, The Swedish University of Agricultural Sciences (SLU), Uppsala BioCenter, PO Box 7080, SE-75007 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
20
|
Tian YH, Xiong CL, Wan H, Huang DH, Guan HT, Ding XF, Shang XJ. Inhibition of the urokinase-type plasminogen activator by triplex-forming oligonucleotides in rat Sertoli cells: a new contraceptive alternative? Oligonucleotides 2007; 17:174-88. [PMID: 17638522 DOI: 10.1089/oli.2006.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Urokinase-type plasminogen activator (uPA), expressed in Sertoli cells in the testis, is closely related with tight junctions of blood-testis barrier (BTB), and it has been considered as a potential contraceptive target. In the present study, the antigene effects of triplex-forming oligodeoxynucleotides (TFO) targeting uPA in rat Sertoli cells were investigated in vitro. The stable triplexes, formed by uPA specific TFOs under physiological conditions, were tested by means of electrophoretic mobility shift assays (EMSA). Although tPA, another form of plasminogen activators (PAs), partially compensated the lose of PAs activities, uPA mRNA and protein were significantly reduced as demonstrated by real-time reverse transcription PCR and a chromogenic assay, after the treatment of Sertoli cells with uPA specific TFOs at a concentration of 330 nM. The capacity of TFOs resistance to nuclease degradation was enhanced by the phosphorothioated on the backbone of the oligonucleotides. Our results indicated that the TFOs can downregulate uPA expression and uPA might be an alternative contraceptive target.
Collapse
Affiliation(s)
- Yong-Hong Tian
- Center of Reproductive Medicine, Institute of Family Planning Research, Tongji Medical College, Huazhong Science and Technology University, Wuhan, Hubei Province, 430030, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Hussain S, Plückthun A, Allen TM, Zangemeister-Wittke U. Chemosensitization of carcinoma cells using epithelial cell adhesion molecule-targeted liposomal antisense against bcl-2/bcl-xL. Mol Cancer Ther 2007; 5:3170-80. [PMID: 17172421 DOI: 10.1158/1535-7163.mct-06-0412] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanoscale drug delivery systems, such as sterically stabilized immunoliposomes binding to internalizing tumor-associated antigens, can increase therapeutic efficacy and reduce toxicity to normal tissues compared with nontargeted liposomes. The epithelial cell adhesion molecule (EpCAM) is of interest as a ligand for targeted drug delivery because it is abundantly expressed in solid tumors but shows limited distribution in normal tissues. To generate EpCAM-specific immunoliposomes for targeted cancer therapy, the humanized single-chain Fv antibody fragment 4D5MOCB was covalently linked to the exterior of coated cationic liposomes. As anticancer agent, we encapsulated the previously described antisense oligonucleotide 4625 specific for both bcl-2 and bcl-xL. The EpCAM-targeted immunoliposomes (SIL25) showed specific binding to EpCAM-overexpressing tumor cells, with a 10- to 20-fold increase in binding compared with nontargeted control liposomes. No enhanced binding was observed on EpCAM-negative control cells. On cell binding, SIL25 was efficiently internalized by receptor-mediated endocytosis, ultimately leading to down-regulation of both bcl-2 and bcl-xL expression on both the mRNA and protein level, which resulted in enhanced tumor cell apoptosis. In combination experiments, the use of SIL25 led to a 2- to 5-fold sensitization of EpCAM-positive tumor cells of diverse origin to death induction by doxorubicin. Our data show the promise of EpCAM-specific drug delivery systems, such as antisense-loaded immunoliposomes, for targeted cancer therapy.
Collapse
Affiliation(s)
- Sajid Hussain
- Department of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
22
|
Garofalo M, Romano G, Quintavalle C, Romano MF, Chiurazzi F, Zanca C, Condorelli G. Selective inhibition of PED protein expression sensitizes B-cell chronic lymphocytic leukaemia cells to TRAIL-induced apoptosis. Int J Cancer 2007; 120:1215-22. [PMID: 17192900 DOI: 10.1002/ijc.22495] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
B-cell chronic lymphocytic leukaemia (B-CLL) cells fail to undergo apoptosis. The mechanism underlying this resistance to cell death is still largely unknown. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) effectively kills tumour cells but not normal cells, and thus represents an attractive tool for the treatment of cancer. Unfortunately, lymphocytes from B-CLL patients are resistant to TRAIL-mediated apoptosis. Thus, we aimed to study the involvement of PED, a DED-family member with a broad antiapoptotic action, in this resistance. We demonstrate that B lymphocytes obtained from patients with B-CLL express high levels of PED. Treatment of B-CLL cells with specific PED antisense oligonucleotides, a protein synthesis inhibitor or HDAC inhibitors, induced a significant downregulation of PED and sensitized these cells to TRAIL-induced cell death. These findings suggest a direct involvement of PED in resistance to TRAIL-induced apoptosis in B-CLL. It also identifies this DED-family member as a potential therapeutic target for this form of leukaemia.
Collapse
MESH Headings
- Apoptosis
- Apoptosis Regulatory Proteins
- Down-Regulation
- Drug Resistance, Neoplasm/genetics
- Enzyme Inhibitors
- Female
- Histone Deacetylase Inhibitors
- Humans
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Oligonucleotides, Antisense/pharmacology
- Phosphoproteins/antagonists & inhibitors
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- TNF-Related Apoptosis-Inducing Ligand/pharmacology
Collapse
Affiliation(s)
- Michela Garofalo
- Department of Cellular and Molecular Biology and Pathology, University of Naples Federico II, Via Pansini 5, 80131-Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Plant Breeding: Antisense ODN Inhibition in in vitro spike cultures as a powerful Diagnostic Tool in Studies on Cereal Grain Development. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-36832-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
24
|
Mahato RI, Cheng K, Guntaka RV. Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA. Expert Opin Drug Deliv 2006; 2:3-28. [PMID: 16296732 DOI: 10.1517/17425247.2.1.3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antisense oligodeoxynucleotides, triplex-forming oligodeoxynucleotides and double-stranded small interfering RNAs have great potential for the treatment of many severe and debilitating diseases. Concerted efforts from both industry and academia have made significant progress in turning these nucleic acid drugs into therapeutics, and there is already one FDA-approved antisense drug in the clinic. Despite the success of one product and several other ongoing clinical trials, challenges still exist in their stability, cellular uptake, disposition, site-specific delivery and therapeutic efficacy. The principles, strategies and delivery consideration of these nucleic acids are reviewed. Furthermore, the ways to overcome the biological barriers are also discussed so that therapeutic concentrations at their target sites can be maintained for a desired period.
Collapse
MESH Headings
- Animals
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- Drug Carriers
- Gene Expression Regulation
- Gene Silencing
- Gene Targeting/methods
- Genetic Therapy/methods
- Humans
- Nucleic Acid Conformation/drug effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Biosynthesis/drug effects
- RNA Interference
- RNA Splicing/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Ram I Mahato
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, 26 South Dunlap Street, Feurt Bldg RM 406, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
25
|
Meidan VM, Glezer J, Salomon S, Sidi Y, Barenholz Y, Cohen JS, Lilling G. Specific lipoplex-mediated antisense against Bcl-2 in breast cancer cells: a comparison between different formulations. J Liposome Res 2006; 16:27-43. [PMID: 16556548 DOI: 10.1080/08982100500528685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
G3139 is an antisense oligonucleotide (ODN) that can down-regulate bcl-2, thus potentially acting as a potent anticancer drug. However, effective therapy requires efficient ODN delivery, which may be achieved by employing G3139 lipoplexes. Yet, lipofection is a complex, multifactorial process that is still poorly understood. In order to shed more light on this issue, we prepared 18 different G3139 lipoplex formulations and compared them in terms of their capability to transfect MCF-7 breast cancer cells. Each formulation was composed of a cationic lipid and sometimes a helper lipid. The cationic lipid was either DOTAP (N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride), DC-CHOL (3ss[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol), or CCS (ceramide carbomoyl spermine). The helper lipid was either DOPC, DOPE, or cholesterol. Each lipid combination existed in two different structural forms--either large unilamellar vesicles (approximately 100 nm LUV) or unsized heterolamellar vesicles (UHV). Cell proliferation assays were used to evaluate the cytotoxicity of G3139 lipoplexes, control cationic lipid assemblies, and free G3139. Western blots were used to confirm the specific activity of G3139 as an anti-bcl-2 antisense agent. We determined that treatment of MCF-7 cells with G3139:CCS lipoplexes (UHV-derived) produced a maximal 50-fold improvement in antisense efficacy compared to treatment with free G3139. The other G3139 lipoplexes were not superior to free G3139. Thus, successful lipofection requires precise optimization of lipoplex lipid composition, structure, and concentration.
Collapse
Affiliation(s)
- Victor M Meidan
- Department of Pharmaceutical Sciences, SIBS, University of Strathclyde, Glasgow, G4 0NR, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Bartsch M, Weeke-Klimp AH, Meijer DKF, Scherphof GL, Kamps JAAM. Cell-specific targeting of lipid-based carriers for ODN and DNA. J Liposome Res 2005; 15:59-92. [PMID: 16194928 DOI: 10.1081/lpr-64961] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is well recognized that there is an urgent need for non-toxic systemically applicable vectors for biologically active nucleotides to fully exploit the current potential of molecular medicine in gene therapy. Cell-specific targeting of non-viral lipid-based carriers for ODN and DNA is a prerequisite to attain the concentration of nucleic acids required for therapeutic efficacy in the target tissue. In this review we will address the most promising approaches to selective targeting of liposomal nucleic acid carriers in vivo. In addition, the routes of entry and intracellular processing of these carrier systems are discussed as well as physiological factors potentially interfering with the biological and/or therapeutic activity of their nucleotide pay-load.
Collapse
Affiliation(s)
- Martin Bartsch
- Department of Cell Biology, Section Liposome Research, Groningen University Institute for Drug Exploration (GUIDE), Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Abstract
BACKGROUND Understanding the mechanism of oligonucleotide (ON) uptake and cellular distribution is important for rational design of ON-based therapeutic strategies. The aim of this study was to investigate the possible relationship between cellular distribution of ON and the protein pigpen. METHODS In vitro interaction of ON with the protein pigpen was detected using mass spectrometry. Cellular distribution of pigpen and co-localization of pigpen with ON was studied by fluorescence microscopy in endothelial YPEN and microglial N9 cells. RESULTS Pigpen had similar distribution patterns in endothelial YPEN and microglial N9 cells. Pigpen was localized to the cytoplasm of both cell types. In addition, pigpen distributed to nuclei, excluding the nucleoli, and concentrated along the nuclear membrane and plasma membrane. Intensely stained foci were only observed in the nucleus and cytoplasm of YPEN cells. Although co-localization of pigpen with phosphorothioate (PS) ON was not observed for the first hour after ON uptake, co-localization was observed 8 h later. DISCUSSION These data suggest that pigpen binds therapeutic ON and thus might contribute to ON cellular distribution.
Collapse
Affiliation(s)
- Z Zhang
- Institute of Brain Research, University of Tuebingen, Calwer Strasse 3, D-72076 Tuebingen, Germany
| | | |
Collapse
|
28
|
Sun C, Höglund AS, Olsson H, Mangelsen E, Jansson C. Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:128-38. [PMID: 16167901 DOI: 10.1111/j.1365-313x.2005.02515.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Sugar signalling cascades are important components of regulatory networks in cells. Compared with the situation in bacteria, yeast and animals, participants of the sugar signalling pathways in plants are poorly understood. Several genes involved in starch synthesis are known to be sugar inducible, although the signal transduction pathways remain undisclosed. We reported recently the isolation of SUSIBA2, a transcription factor involved in sugar-mediated regulation of starch synthesis. Here, we used antisense oligodeoxynucleotide (ODN) inhibition, a powerful approach in medical sciences, to block the effects of SUSIBA2 in sugar-treated barley leaves. The uptake and intracellular trafficking of an 18-mer susiba2 antisense ODN in leaves were followed by confocal microscopy. Administration of the antisense ODN to the leaves impeded susiba2 expression by RNase H activation. This dramatically diminished the ectopic expression of the iso1 and sbeIIb genes and resulted in altered starch synthesis. This study illustrates the successful exploitation of the antisense ODN technology in plant biology, e.g. as a rapid antecedent to time-consuming transgenic studies, and identifies SUSIBA2 as a transcriptional activator in plant sugar signalling. Based on our findings, we propose a model for sugar-signalling control of starch synthesis.
Collapse
Affiliation(s)
- Chuanxin Sun
- Department of Plant Biology & Forest Genetics, The Swedish University of Agricultural Sciences, PO Box 7080, SE-75007 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
29
|
Jason TLH, Koropatnick J, Berg RW. Toxicology of antisense therapeutics. Toxicol Appl Pharmacol 2004; 201:66-83. [PMID: 15519609 DOI: 10.1016/j.taap.2004.04.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 04/28/2004] [Indexed: 12/24/2022]
Abstract
Targeting unique mRNA molecules using antisense approaches, based on sequence specificity of double-stranded nucleic acid interactions should, in theory, allow for design of drugs with high specificity for intended targets. Antisense-induced degradation or inhibition of translation of a target mRNA is potentially capable of inhibiting the expression of any target protein. In fact, a large number of proteins of widely varied character have been successfully downregulated using an assortment of antisense-based approaches. The most prevalent approach has been to use antisense oligonucleotides (ASOs), which have progressed through the preclinical development stages including pharmacokinetics and toxicological studies. A small number of ASOs are currently in human clinical trials. These trials have highlighted several toxicities that are attributable to the chemical structure of the ASOs, and not to the particular ASO or target mRNA sequence. These include mild thrombocytopenia and hyperglycemia, activation of the complement and coagulation cascades, and hypotension. Dose-limiting toxicities have been related to hepatocellular degeneration leading to decreased levels of albumin and cholesterol. Despite these toxicities, which are generally mild and readily treatable with available standard medications, the clinical trials have clearly shown that ASOs can be safely administered to patients. Alternative chemistries of ASOs are also being pursued by many investigators to improve specificity and antisense efficacy and to reduce toxicity. In the design of ASOs for anticancer therapeutics in particular, the goal is often to enhance the cytotoxicity of traditional drugs toward cancer cells or to reduce the toxicity to normal cells to improve the therapeutic index of existing clinically relevant cancer chemotherapy drugs. We predict that use of antisense ASOs in combination with small molecule therapeutics against the target protein encoded by the antisense-targeted mRNA, or an alternate target in the same or a connected biological pathway, will likely be the most beneficial application of this emerging class of therapeutic agent.
Collapse
Affiliation(s)
- Tracey L H Jason
- Cancer Research Laboratories, London Regional Cancer Centre, London, Ontario, Canada N6A 4L6
| | | | | |
Collapse
|
30
|
Yang JH, Zhang YC, Qian HQ. Survivin antisense oligodeoxynucleotide inhibits growth of gastric cancer cells. World J Gastroenterol 2004; 10:1121-4. [PMID: 15069710 PMCID: PMC4656345 DOI: 10.3748/wjg.v10.i8.1121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the effect of transfected survivin antisense oligonucleotide (ASODN) on proliferation and apoptosis of gastric cancer cells.
METHODS: The authors designed ASODNs targeting different regions of survivin mRNA, including surviving ASODN1, ASODN2 and ASODN3. ASODNs were transfected into gastric cancer cell line SGC 7901, cell growth was detected by MTT assay. Cells exposed to the potent oligonucleotide were also examined for apoptosis induction by FCM and fluorescence microscopy. Semiquantitive RT-PCR and Western blot examinations were carried for expression of survivin mRNA and protein.
RESULTS: ASODN3 caused a statistically significant reduction of cell viability to 60.6% (± 2.9%) (P < 0.01), while ASODN1 and ASODN2 had no such changes (P > 0.05). The cell growth was also significantly inhibited by ASODN3, compared with reversal and scrambled sequence. A significant loss of survivin mRNA was presented in ASODN3 treated cells and this was not seen in treatment with sense ODN or scramble ODN. Protein level was significantly decreased 48 h after survivin ASODN trasfected by approximately 2-fold decrease compared with untreated controls. However, ASODN3 did not induce significant apoptosis response until 48 h after transfection (P > 0.05).
CONCLUSION: ASODN3, which targets translation initiation part, can be identified as a most potent antisense compound. Srvivin ASODN3 may provide a novel approach to therapy of gastric cancer.
Collapse
Affiliation(s)
- Jian-Hui Yang
- Department of Oncological Surgery, Shidong Hospital, Ningguo Road 236, Shanghai 20090, China.
| | | | | |
Collapse
|
31
|
Abstract
The overwhelming problem of cutaneous melanoma is chemoresistance. Subversion of the biochemical changes that lead to chemoresistance intersects the apoptosis pathways. The mitochondrion has been a focal point of this intersection for the development of therapeutic strategies aimed at reducing the progression of melanoma. The Bcl-2 family of apoptotic regulators is arguably the most pivotal component to this mitochondrial response. The shear number of studies conducted on the relationship between melanoma and Bcl-2 members prompted us to evaluate the literature available and discern some rational utility of the data. We have found that there are striking inconsistencies for the expression of Bcl-2 family proteins with melanoma progression, particularly for Bcl-2. Roughly one-third of the data suggests an increase in Bcl-2 expression with advancing melanoma, while another third suggests a decrease. Furthermore, the remaining third found on the whole, a detectable level of Bcl-2 in all tissues of melanocytic origin. These discrepancies are difficult to rectify in light of the apparent success of recent clinical trials utilizing Bcl-2 antisense strategies. The general consensus in the literature is that pro-apoptotic Bax is decreased with melanoma progression while anti-apoptotic Bcl-xL and Mcl-1 appear to increase with progression. We suggest that the biochemical techniques being used for analysis present too great of a heterogeneity, which could be mitigated with more standard procedures and reagents. Finally the utility of 'multi-specific' antisense tactics could be a more effective way of targeting advanced melanoma disease.
Collapse
Affiliation(s)
- Jason A Bush
- Division of Dermatology, Department of Medicine, Vancouver Hospital and Health Sciences Centre, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
32
|
Kostarelos K. Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Adv Colloid Interface Sci 2003; 106:147-68. [PMID: 14672846 DOI: 10.1016/s0001-8686(03)00109-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Engineering delivery systems of therapeutic agents has grown into an independent field, transcending the scope of traditional disciplines and capturing the interest of both academic and industrial research. At the same time, the acceleration in the discovery of new therapeutic moieties (chemical, biological, genetic and radiological) has led to an increasing demand for delivery systems capable of protecting, transporting, and selectively depositing those therapeutic agents to desired sites. The vast majority of delivery systems physically reside in the colloidal domain, while their surface properties and interfacial interactions with the biological milieu critically determine the pharmacological profiles of the delivered therapeutic agents. Interestingly though, the colloidal and surface properties of delivery systems are commonly overlooked in view of the predominant attention placed on the therapeutic effectiveness achieved. Moreover, the development and evaluation of novel delivery systems towards clinical use is often progressed by serendipity rather than a systematic design process, often leading to failure. The present article will attempt to illustrate the colloid and interfacial perspective of a delivery event, as well as exemplify the vast opportunities offered by treating, analysing and manipulating delivery systems as colloidal systems. Exploring and defining the colloid and surface nature of the interactions taking place between the biological moieties in the body and an administered delivery vehicle will allow for the rational engineering of effective delivery systems. A design scheme is also proposed on the way in which the engineering of advanced delivery systems should be practiced towards their transformation from laboratory inventions to clinically viable therapeutics. Lastly, three case studies are presented, demonstrating how rational manipulation of the colloidal and surface properties of delivery systems can lead to newly engineered systems relevant to chemotherapy, gene therapy and radiotherapy.
Collapse
Affiliation(s)
- Kostas Kostarelos
- Imperial College Genetic Therapies Centre, Flowers Building, South Kensington Campus, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
33
|
Hanaki KI, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, Yamamoto K. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 2003; 302:496-501. [PMID: 12615061 DOI: 10.1016/s0006-291x(03)00211-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For the purpose of selecting the efficient dispersion condition of hydrophilic semiconductor quantum dots (QDs) in biological buffers, the dispersion of the QDs mixed with a serum albumin from 9 different species or an ovalbumin was compared by a fluorescence intensity analysis. The QDs mixed with sheep serum albumin (SSA) showed the highest fluorescence of all when the mixtures were dissolved in Dulbecco's MEM. QD/SSA complexes were accumulated in the endosome/lysosome of Vero cells and the fluorescence could be detected over a 5-day post-incubation period. The photostability of QD/SSA complexes associated with the endosomes was detectable, at least, 30 times as long as that of fluorescein-labeled dextran involved in endosomes. QD/SSA complex, therefore, can be used as a long-life and highly photostable endosome marker.
Collapse
Affiliation(s)
- Ken-ichi Hanaki
- Domestic Research Fellow, Japan Science and Technology Corporation, 4-1-8 Honmachi, Kawaguchi, Saitama 332-0012, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Noguchi S, Hirashima N, Furuno T, Nakanishi M. Remarkable induction of apoptosis in cancer cells by a novel cationic liposome complexed with a bcl-2 antisense oligonucleotide. J Control Release 2003; 88:313-20. [PMID: 12628337 DOI: 10.1016/s0168-3659(02)00484-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We reported recently a novel cationic cholesterol derivative with a hydroxyethylamino head group, cholesteryl-3beta-carboxyamidoethylene-N-hydroxyethylamine (I) for liposome-mediated gene transfection [FEBS Lett., 408 (1997) 232]. In the present paper we have studied whether this novel cationic liposome is prominent in nature to suppress cell growth of human cancer cells. Bcl-2 antisense phosphorothioate oligonucleotides (AS-ODNs) were complexed with the cationic liposomes with the derivative (I) and they were introduced into human cervix epithelial carcinoma cell lines HeLa, and mouse fibroblast NIH3T3 cells. An AS-ODNs targeting/bcl-2 gene induced probably apoptosis (including necrosis in some cases) in HeLa and NIH3T3 cells, however, nonsense oligonucleotides (NS-ODNs) corresponding to a scrambled-sequence control hardly induced apoptosis. Induction of apoptosis was much greater than that by commercially available DC-Chol liposomes. Fluorescence intensities of FITC-conjugated bcl-2 AS-ODNs were specifically found in the nucleus. The intensity of the AS-ODNs was mostly consistent with the amounts of Bcl-2 proteins observed by Western blot analysis in the target cells. The results showed the possibility that this new cationic cholesterol derivative might be very promising to be used for liposome-mediated gene targeting in vitro and in vivo.
Collapse
Affiliation(s)
- Shoichiro Noguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Japan
| | | | | | | |
Collapse
|
35
|
Literature Alerts. J Microencapsul 2003. [DOI: 10.3109/02652040309178068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|