1
|
Moindrot B, Imaizumi Y, Feil R. Differential 3D genome architecture and imprinted gene expression: cause or consequence? Biochem Soc Trans 2024; 52:973-986. [PMID: 38775198 PMCID: PMC11346452 DOI: 10.1042/bst20230143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Imprinted genes provide an attractive paradigm to unravel links between transcription and genome architecture. The parental allele-specific expression of these essential genes - which are clustered in chromosomal domains - is mediated by parental methylation imprints at key regulatory DNA sequences. Recent chromatin conformation capture (3C)-based studies show differential organization of topologically associating domains between the parental chromosomes at imprinted domains, in embryonic stem and differentiated cells. At several imprinted domains, differentially methylated regions show allelic binding of the insulator protein CTCF, and linked focal retention of cohesin, at the non-methylated allele only. This generates differential patterns of chromatin looping between the parental chromosomes, already in the early embryo, and thereby facilitates the allelic gene expression. Recent research evokes also the opposite scenario, in which allelic transcription contributes to the differential genome organization, similarly as reported for imprinted X chromosome inactivation. This may occur through epigenetic effects on CTCF binding, through structural effects of RNA Polymerase II, or through imprinted long non-coding RNAs that have chromatin repressive functions. The emerging picture is that epigenetically-controlled differential genome architecture precedes and facilitates imprinted gene expression during development, and that at some domains, conversely, the mono-allelic gene expression also influences genome architecture.
Collapse
Affiliation(s)
- Benoit Moindrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Yui Imaizumi
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
2
|
Rupasinghe M, Bersaglieri C, Leslie Pedrioli DM, Pedrioli PG, Panatta M, Hottiger MO, Cinelli P, Santoro R. PRAMEL7 and CUL2 decrease NuRD stability to establish ground-state pluripotency. EMBO Rep 2024; 25:1453-1468. [PMID: 38332149 PMCID: PMC10933316 DOI: 10.1038/s44319-024-00083-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Pluripotency is established in E4.5 preimplantation epiblast. Embryonic stem cells (ESCs) represent the immortalization of pluripotency, however, their gene expression signature only partially resembles that of developmental ground-state. Induced PRAMEL7 expression, a protein highly expressed in the ICM but lowly expressed in ESCs, reprograms developmentally advanced ESC+serum into ground-state pluripotency by inducing a gene expression signature close to developmental ground-state. However, how PRAMEL7 reprograms gene expression remains elusive. Here we show that PRAMEL7 associates with Cullin2 (CUL2) and this interaction is required to establish ground-state gene expression. PRAMEL7 recruits CUL2 to chromatin and targets regulators of repressive chromatin, including the NuRD complex, for proteasomal degradation. PRAMEL7 antagonizes NuRD-mediated repression of genes implicated in pluripotency by decreasing NuRD stability and promoter association in a CUL2-dependent manner. Our data link proteasome degradation pathways to ground-state gene expression, offering insights to generate in vitro models to reproduce the in vivo ground-state pluripotency.
Collapse
Affiliation(s)
- Meneka Rupasinghe
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
- Molecular Life Science Program, Life Science Zurich Graduate School, University of Zurich, 8057, Zurich, Switzerland
| | - Cristiana Bersaglieri
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
| | - Deena M Leslie Pedrioli
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
| | - Patrick Ga Pedrioli
- Department of Health Sciences and Technology, ETH Zurich, 8093, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Martina Panatta
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
- RNA Biology Program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland
| | - Paolo Cinelli
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Raffaella Santoro
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Morgan RK, Wang K, Svoboda LK, Rygiel CA, Lalancette C, Cavalcante R, Bartolomei MS, Prasasya R, Neier K, Perera BP, Jones TR, Colacino JA, Sartor MA, Dolinoy DC. Effects of Developmental Lead and Phthalate Exposures on DNA Methylation in Adult Mouse Blood, Brain, and Liver Identifies Tissue- and Sex-Specific Changes with Implications for Genomic Imprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560131. [PMID: 37873115 PMCID: PMC10592650 DOI: 10.1101/2023.09.29.560131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. Objective We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. Methods Female mice were exposed to human relevant doses of either Pb (32ppm) via drinking water or DEHP (5 mg/kg-day) via chow for two weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and Chipenrich were used for genomic annotations and geneset enrichment tests of DMRs, respectively. Results The cortex contained the majority of DMRs associated with Pb (69%) and DEHP (58%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n = 17 and 14 DMRs with Pb and DEHP exposure, respectively) and exposure types (n = 79 and 47 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, with 15 and 17 ICR-located DMRs across cortex, blood, and liver in each gene, respectively. The ICRs were also the location of DMRs replicated across target and surrogate tissues, suggesting epigenetic changes these regions may be potentially viable biomarkers. Conclusions We observed Pb- and DEHP-specific DNAm changes in cortex, blood, and liver, and the greatest degree of overlap in DMR signatures was seen between exposures followed by sex and tissue type. DNAm at imprinted control regions was altered by both Pb and DEHP, highlighting the susceptibility of genomic imprinting to these exposures during the perinatal window of development.
Collapse
Affiliation(s)
- Rachel K. Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christine A. Rygiel
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claudia Lalancette
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raymond Cavalcante
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rexxi Prasasya
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Neier
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bambarendage P.U. Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Loftus D, Bae B, Whilden CM, Whipple AJ. Allelic chromatin structure precedes imprinted expression of Kcnk9 during neurogenesis. Genes Dev 2023; 37:829-843. [PMID: 37821107 PMCID: PMC10620047 DOI: 10.1101/gad.350896.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Differences in chromatin state inherited from the parental gametes influence the regulation of maternal and paternal alleles in offspring. This phenomenon, known as genomic imprinting, results in genes preferentially transcribed from one parental allele. While local epigenetic factors such as DNA methylation are known to be important for the establishment of imprinted gene expression, less is known about the mechanisms by which differentially methylated regions (DMRs) lead to differences in allelic expression across broad stretches of chromatin. Allele-specific higher-order chromatin structure has been observed at multiple imprinted loci, consistent with the observation of allelic binding of the chromatin-organizing factor CTCF at multiple DMRs. However, whether allelic chromatin structure impacts allelic gene expression is not known for most imprinted loci. Here we characterize the mechanisms underlying brain-specific imprinted expression of the Peg13-Kcnk9 locus, an imprinted region associated with intellectual disability. We performed region capture Hi-C on mouse brains from reciprocal hybrid crosses and found imprinted higher-order chromatin structure caused by the allelic binding of CTCF to the Peg13 DMR. Using an in vitro neuron differentiation system, we showed that imprinted chromatin structure precedes imprinted expression at the locus. Additionally, activation of a distal enhancer induced imprinted expression of Kcnk9 in an allelic chromatin structure-dependent manner. This work provides a high-resolution map of imprinted chromatin structure and demonstrates that chromatin state established in early development can promote imprinted expression upon differentiation.
Collapse
Affiliation(s)
- Daniel Loftus
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Bongmin Bae
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Courtney M Whilden
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Amanda J Whipple
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
5
|
Loftus D, Bae B, Whilden CM, Whipple AJ. Allelic chromatin structure primes imprinted expression of Kcnk9 during neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544389. [PMID: 37333073 PMCID: PMC10274912 DOI: 10.1101/2023.06.09.544389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Differences in chromatin state inherited from the parental gametes influence the regulation of maternal and paternal alleles in offspring. This phenomenon, known as genomic imprinting, results in genes preferentially transcribed from one parental allele. While local epigenetic factors such as DNA methylation are known to be important for the establishment of imprinted gene expression, less is known about the mechanisms by which differentially methylated regions (DMRs) lead to differences in allelic expression across broad stretches of chromatin. Allele-specific higher-order chromatin structure has been observed at multiple imprinted loci, consistent with the observation of allelic binding of the chromatin-organizing factor CTCF at multiple DMRs. However, whether allelic chromatin structure impacts allelic gene expression is not known for most imprinted loci. Here we characterize the mechanisms underlying brain-specific imprinted expression of the Peg13-Kcnk9 locus, an imprinted region associated with intellectual disability. We performed region capture Hi-C on mouse brain from reciprocal hybrid crosses and found imprinted higher-order chromatin structure caused by the allelic binding of CTCF to the Peg13 DMR. Using an in vitro neuron differentiation system, we show that on the maternal allele enhancer-promoter contacts formed early in development prime the brain-specific potassium leak channel Kcnk9 for maternal expression prior to neurogenesis. In contrast, these enhancer-promoter contacts are blocked by CTCF on the paternal allele, preventing paternal Kcnk9 activation. This work provides a high-resolution map of imprinted chromatin structure and demonstrates that chromatin state established in early development can promote imprinted expression upon differentiation.
Collapse
Affiliation(s)
- Daniel Loftus
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Bongmin Bae
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Courtney M. Whilden
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Amanda J. Whipple
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
6
|
Juan AM, Foong YH, Thorvaldsen JL, Lan Y, Leu NA, Rurik JG, Li L, Krapp C, Rosier CL, Epstein JA, Bartolomei MS. Tissue-specific Grb10/Ddc insulator drives allelic architecture for cardiac development. Mol Cell 2022; 82:3613-3631.e7. [PMID: 36108632 PMCID: PMC9547965 DOI: 10.1016/j.molcel.2022.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Allele-specific expression of imprinted gene clusters is governed by gametic DNA methylation at master regulators called imprinting control regions (ICRs). Non-gametic or secondary differentially methylated regions (DMRs) at promoters and exonic regions reinforce monoallelic expression but do not control an entire cluster. Here, we unveil an unconventional secondary DMR that is indispensable for tissue-specific imprinting of two previously unlinked genes, Grb10 and Ddc. Using polymorphic mice, we mapped an intronic secondary DMR at Grb10 with paternal-specific CTCF binding (CBR2.3) that forms contacts with Ddc. Deletion of paternal CBR2.3 removed a critical insulator, resulting in substantial shifting of chromatin looping and ectopic enhancer-promoter contacts. Destabilized gene architecture precipitated abnormal Grb10-Ddc expression with developmental consequences in the heart and muscle. Thus, we redefine the Grb10-Ddc imprinting domain by uncovering an unconventional intronic secondary DMR that functions as an insulator to instruct the tissue-specific, monoallelic expression of multiple genes-a feature previously ICR exclusive.
Collapse
Affiliation(s)
- Aimee M Juan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yee Hoon Foong
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanne L Thorvaldsen
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolae A Leu
- Department of Biomedical Sciences, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Joel G Rurik
- Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Krapp
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Casey L Rosier
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Schrott R, Greeson KW, King D, Crow KMS, Easley CA, Murphy SK. Cannabis alters DNA methylation at maternally imprinted and autism candidate genes in spermatogenic cells. Syst Biol Reprod Med 2022; 68:357-369. [PMID: 35687495 PMCID: PMC10032331 DOI: 10.1080/19396368.2022.2073292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Cannabis use in the United States is increasing, with highest consumption among men at their peak reproductive years. We previously demonstrated widespread changes in sperm DNA methylation with cannabis exposure in humans and rats, including genes important in neurodevelopment. Here, we use an in vitro human spermatogenesis model to recapitulate chronic cannabis use and assess DNA methylation at imprinted and autism spectrum disorder (ASD) candidate genes in spermatogonial stem cell (SSC)- and spermatid-like cells. Methylation at maternally imprinted genes SGCE and GRB10 was significantly altered in SSC- and spermatid-like cells, respectively, while PEG3 was significantly differentially methylated in spermatid-like cells. Two of ten randomly selected ASD candidate genes, HCN1 and NR4A2, had significantly altered methylation with cannabis exposure in SSC-like cells. These results support our findings in human cohorts and provide a new tool with which to gain mechanistic insights into the association between paternal cannabis use and risk of ASD in offspring.
Collapse
Affiliation(s)
- Rose Schrott
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, 27701, USA
| | - Katherine W. Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Dillon King
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, 27701, USA
| | - Krista M. Symosko Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Charles A. Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Susan K. Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, 27701, USA
| |
Collapse
|
8
|
Dehingia B, Milewska M, Janowski M, Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022; 23:e55146. [PMID: 35993175 PMCID: PMC9442299 DOI: 10.15252/embr.202255146] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
CCCTC-binding factor (CTCF) is an eleven zinc finger (ZF), multivalent transcriptional regulator, that recognizes numerous motifs thanks to the deployment of distinct combinations of its ZFs. The great majority of the ~50,000 genomic locations bound by the CTCF protein in a given cell type is intergenic, and a fraction of these sites overlaps with transcriptional enhancers. Furthermore, a proportion of the regions bound by CTCF intersect genes and promoters. This suggests multiple ways in which CTCF may impact gene expression. At promoters, CTCF can directly affect transcription. At more distal sites, CTCF may orchestrate interactions between regulatory elements and help separate eu- and heterochromatic areas in the genome, exerting a chromatin barrier function. In this review, we outline how CTCF contributes to the regulation of the three-dimensional structure of chromatin and the formation of chromatin domains. We discuss how CTCF binding and architectural functions are regulated. We examine the literature implicating CTCF in controlling gene expression in development and disease both by acting as an insulator and a factor facilitating regulatory elements to efficiently interact with each other in the nuclear space.
Collapse
Affiliation(s)
- Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Małgorzata Milewska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Marcin Janowski
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
9
|
Dong Y, Jin L, Liu X, Li D, Chen W, Huo H, Zhang C, Li S. IMPACT and OSBPL1A are two isoform-specific imprinted genes in bovines. Theriogenology 2022; 184:100-109. [DOI: 10.1016/j.theriogenology.2022.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
|
10
|
Zfp57 inactivation illustrates the role of ICR methylation in imprinted gene expression during neural differentiation of mouse ESCs. Sci Rep 2021; 11:13802. [PMID: 34226608 PMCID: PMC8257706 DOI: 10.1038/s41598-021-93297-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
ZFP57 is required to maintain the germline-marked differential methylation at imprinting control regions (ICRs) in mouse embryonic stem cells (ESCs). Although DNA methylation has a key role in genomic imprinting, several imprinted genes are controlled by different mechanisms, and a comprehensive study of the relationship between DMR methylation and imprinted gene expression is lacking. To address the latter issue, we differentiated wild-type and Zfp57-/- hybrid mouse ESCs into neural precursor cells (NPCs) and evaluated allelic expression of imprinted genes. In mutant NPCs, we observed a reduction of allelic bias of all the 32 genes that were imprinted in wild-type cells, demonstrating that ZFP57-dependent methylation is required for maintaining or acquiring imprinted gene expression during differentiation. Analysis of expression levels showed that imprinted genes expressed from the non-methylated chromosome were generally up-regulated, and those expressed from the methylated chromosome were down-regulated in mutant cells. However, expression levels of several imprinted genes acquiring biallelic expression were not affected, suggesting the existence of compensatory mechanisms that control their RNA level. Since neural differentiation was partially impaired in Zfp57-mutant cells, this study also indicates that imprinted genes and/or non-imprinted ZFP57-target genes are required for proper neurogenesis in cultured ESCs.
Collapse
|
11
|
Varrault A, Dubois E, Le Digarcher A, Bouschet T. Quantifying Genomic Imprinting at Tissue and Cell Resolution in the Brain. EPIGENOMES 2020; 4:21. [PMID: 34968292 PMCID: PMC8594728 DOI: 10.3390/epigenomes4030021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Imprinted genes are a group of ~150 genes that are preferentially expressed from one parental allele owing to epigenetic marks asymmetrically distributed on inherited maternal and paternal chromosomes. Altered imprinted gene expression causes human brain disorders such as Prader-Willi and Angelman syndromes and additional rare brain diseases. Research data principally obtained from the mouse model revealed how imprinted genes act in the normal and pathological brain. However, a better understanding of imprinted gene functions calls for building detailed maps of their parent-of-origin-dependent expression and of associated epigenetic signatures. Here we review current methods for quantifying genomic imprinting at tissue and cell resolutions, with a special emphasis on methods to detect parent-of-origin dependent expression and their applications to the brain. We first focus on bulk RNA-sequencing, the main method to detect parent-of-origin-dependent expression transcriptome-wide. We discuss the benefits and caveats of bulk RNA-sequencing and provide a guideline to use it on F1 hybrid mice. We then review methods for detecting parent-of-origin-dependent expression at cell resolution, including single-cell RNA-seq, genetic reporters, and molecular probes. Finally, we provide an overview of single-cell epigenomics technologies that profile additional features of genomic imprinting, including DNA methylation, histone modifications and chromatin conformation and their combination into sc-multimodal omics approaches, which are expected to yield important insights into genomic imprinting in individual brain cells.
Collapse
Affiliation(s)
- Annie Varrault
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France; (A.V.); (A.L.D.)
| | - Emeric Dubois
- Montpellier GenomiX (MGX), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France;
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France; (A.V.); (A.L.D.)
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France; (A.V.); (A.L.D.)
| |
Collapse
|
12
|
Yin Z, Zhang X, Li J, Jiao Y, Kong Q, Mu Y. Identification of Imprinted Genes and Their Differentially Methylated Regions in Porcine. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795419120135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Millership SJ, Van de Pette M, Withers DJ. Genomic imprinting and its effects on postnatal growth and adult metabolism. Cell Mol Life Sci 2019; 76:4009-4021. [PMID: 31270580 PMCID: PMC6785587 DOI: 10.1007/s00018-019-03197-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
Imprinted genes display parent-of-origin-specific expression with this epigenetic system of regulation found exclusively in therian mammals. Historically, defined imprinted gene functions were almost solely focused on pregnancy and the influence on the growth parameters of the developing embryo and placenta. More recently, a number of postnatal functions have been identified which converge on resource allocation, both for animals in the nest and in adults. While many of the prenatal functions of imprinted genes that have so far been described adhere to the "parental conflict" hypothesis, no clear picture has yet emerged on the functional role of imprints on postnatal metabolism. As these roles are uncovered, interest in the potential for these genes to influence postnatal metabolism and associated adult-onset disease outcomes when dysregulated has gathered pace. Here, we review the published data on imprinted genes and their influence on postnatal metabolism, starting in the nest, and then progressing through to adulthood. When observing the functional effects of these genes on adult metabolism, we must always be careful to acknowledge the influence both of direct expression in the relevant metabolic tissue, but also indirect metabolic programming effects caused by their modulation of both in utero and postnatal growth trajectories.
Collapse
Affiliation(s)
- Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Mathew Van de Pette
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
14
|
Lee HJ, Choi NY, Lee SW, Lee Y, Ko K, Kim GJ, Hwang HS, Ko K. Alteration of Genomic Imprinting Status of Human Parthenogenetic Induced Pluripotent Stem Cells during Neural Lineage Differentiation. Int J Stem Cells 2019; 12:31-42. [PMID: 30836722 PMCID: PMC6457707 DOI: 10.15283/ijsc18084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 12/29/2018] [Indexed: 12/16/2022] Open
Abstract
Background and Objectives Genomic imprinting modulates growth and development in mammals and is associated with genetic disorders. Although uniparental embryonic stem cells have been used to study genomic imprinting, there is an ethical issue associated with the destruction of human embryos. In this study, to investigate the genomic imprinting status in human neurodevelopment, we used human uniparental induced pluripotent stem cells (iPSCs) that possessed only maternal alleles and differentiated into neural cell lineages. Methods Human somatic iPSCs (hSiPSCs) and human parthenogenetic iPSCs (hPgiPSCs) were differentiated into neural stem cells (NSCs) and named hSi-NSCs and hPgi-NSCs respectively. DNA methylation and gene expression of imprinted genes related neurodevelopment was analyzed during reprogramming and neural lineage differentiation. Results The DNA methylation and expression of imprinted genes were altered or maintained after differentiation into NSCs. The imprinting status in NSCs were maintained after terminal differentiation into neurons and astrocytes. In contrast, gene expression was differentially presented in a cell type-specific manner. Conclusions This study suggests that genomic imprinting should be determined in each neural cell type because the genomic imprinting status can differ in a cell type-specific manner. In addition, the in vitro model established in this study would be useful for verifying the epigenetic alteration of imprinted genes which can be differentially changed during neurodevelopment in human and for screening novel imprinted genes related to neurodevelopment. Moreover, the confirmed genomic imprinting status could be used to find out an abnormal genomic imprinting status of imprinted genes related with neurogenetic disorders according to uniparental genotypes.
Collapse
Affiliation(s)
- Hye Jeong Lee
- Departement of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - Na Young Choi
- Departement of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - Seung-Wong Lee
- Departement of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - Yukyeong Lee
- Departement of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - Kisung Ko
- Departments of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Gwang Jun Kim
- Departments of Obstetrics and Gynecology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Han Sung Hwang
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, Korea
| | - Kinarm Ko
- Departement of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea.,Research Institute of Medical Science, Konkuk University, Seoul, Korea
| |
Collapse
|
15
|
Kochmanski JJ, Marchlewicz EH, Cavalcante RG, Perera BPU, Sartor MA, Dolinoy DC. Longitudinal Effects of Developmental Bisphenol A Exposure on Epigenome-Wide DNA Hydroxymethylation at Imprinted Loci in Mouse Blood. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:077006. [PMID: 30044229 PMCID: PMC6108846 DOI: 10.1289/ehp3441] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/04/2018] [Accepted: 06/15/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Epigenetic machinery plays an important role in genomic imprinting, a developmental process that establishes parent-of-origin-specific monoallelic gene expression. Although a number of studies have investigated the role of 5-methylcytosine in imprinting control, the contribution of 5-hydroxymethylcytosine (5-hmC) to this epigenetic phenomenon remains unclear. OBJECTIVES Using matched mouse blood samples (from mice at 2, 4, and 10 months of age), our objective was to examine the effects of perinatal bisphenol A (BPA) exposure (50 μg/kg diet) on longitudinal 5-hmC patterns at imprinted regions. We also aimed to test the hypothesis that 5-hmC would show defined patterns at imprinted genes that persist across the life course. METHODS Genome-wide 5-hmC levels were measured using hydroxymethylated DNA immunoprecipitation sequencing (HMeDIP-seq). Modeling of differential hydroxymethylation by BPA exposure was performed using a pipeline of bioinformatics tools, including the csaw R package. RESULTS Based on BPA exposure, we identified 5,950 differentially hydroxymethylated regions (DHMRs), including 12 DHMRs that were annotated to murine imprinted genes—Gnas, Grb10, Plagl1, Klf14, Pde10a, Snrpn, Airn, Cmah, Ppp1r9a, Kcnq1, Phactr2, and Pde4d. When visualized, these imprinted gene DHMRs showed clear, consistent patterns of differential 5-hmC by developmental BPA exposure that persisted throughout adulthood. CONCLUSIONS These data show long-term establishment of 5-hmC marks at imprinted loci during development. Further, the effect of perinatal BPA exposure on 5-hmC at specific imprinted loci indicates that developmental exposure to environmental toxicants may alter long-term imprinted gene regulation via an epigenetic mechanism. https://doi.org/10.1289/EHP3441.
Collapse
Affiliation(s)
- Joseph J Kochmanski
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Elizabeth H Marchlewicz
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Raymond G Cavalcante
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Matsuzaki H, Okamura E, Kuramochi D, Ushiki A, Hirakawa K, Fukamizu A, Tanimoto K. Synthetic DNA fragments bearing ICR cis elements become differentially methylated and recapitulate genomic imprinting in transgenic mice. Epigenetics Chromatin 2018; 11:36. [PMID: 29958543 PMCID: PMC6027785 DOI: 10.1186/s13072-018-0207-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/01/2018] [Indexed: 11/24/2022] Open
Abstract
Background Genomic imprinting is governed by allele-specific DNA methylation at imprinting control regions (ICRs), and the mechanism controlling its differential methylation establishment during gametogenesis has been a subject of intensive research interest. However, recent studies have reported that gamete methylation is not restricted at the ICRs, thus highlighting the significance of ICR methylation maintenance during the preimplantation period where genome-wide epigenetic reprogramming takes place. Using transgenic mice (TgM), we previously demonstrated that the H19 ICR possesses autonomous activity to acquire paternal-allele-specific DNA methylation after fertilization. Furthermore, this activity is indispensable for the maintenance of imprinted methylation at the endogenous H19 ICR during the preimplantation period. In addition, we showed that a specific 5′ fragment of the H19 ICR is required for its paternal methylation after fertilization, while CTCF and Sox-Oct motifs are essential for its maternal protection from undesirable methylation after implantation. Results To ask whether specific cis elements are sufficient to reconstitute imprinted methylation status, we employed a TgM co-placement strategy for facilitating detection of postfertilization methylation activity and precise comparison of test sequences. Bacteriophage lambda DNA becomes highly methylated regardless of its parental origin and thus can be used as a neutral sequence bearing no inclination for differential DNA methylation. We previously showed that insertion of only CTCF and Sox-Oct binding motifs from the H19 ICR into a lambda DNA (LCb) decreased its methylation level after both paternal and maternal transmission. We therefore appended a 478-bp 5′ sequence from the H19 ICR into the LCb fragment and found that it acquired paternal-allele-specific methylation, the dynamics of which was identical to that of the H19 ICR, in TgM. Crucially, transgene expression also became imprinted. Although there are potential binding sites for ZFP57 (a candidate protein thought to control the methylation imprint) in the larger H19 ICR, they are not found in the 478-bp fragment, rendering the role of ZFP57 in postfertilization H19 ICR methylation a still open question. Conclusions Our results demonstrate that a differentially methylated region can be reconstituted by combining the activities of specific imprinting elements and that these elements together determine the activity of a genomically imprinted region in vivo. Electronic supplementary material The online version of this article (10.1186/s13072-018-0207-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Eiichi Okamura
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Daichi Kuramochi
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Aki Ushiki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| | - Katsuhiko Hirakawa
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Akiyoshi Fukamizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan. .,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
17
|
Dent CL, Humby T, Lewis K, Ward A, Fischer-Colbrie R, Wilkinson LS, Wilkins JF, Isles AR. Impulsive Choice in Mice Lacking Paternal Expression of Grb10 Suggests Intragenomic Conflict in Behavior. Genetics 2018; 209:233-239. [PMID: 29563147 PMCID: PMC5937175 DOI: 10.1534/genetics.118.300898] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Imprinted genes are expressed from one parental allele only as a consequence of epigenetic events that take place in the mammalian germ line and are thought to have evolved through intragenomic conflict between parental alleles. We demonstrate, for the first time, oppositional effects of imprinted genes on brain and behavior. Specifically, we show that mice lacking paternal Grb10 make fewer impulsive choices, with no dissociable effects on a separate measure of impulsive action. Taken together with previous work showing that mice lacking maternal Nesp55 make more impulsive choices, this suggests that impulsive choice behavior is a substrate for the action of genomic imprinting. Moreover, the contrasting effect of these two genes suggests that impulsive choices are subject to intragenomic conflict and that maternal and paternal interests pull this behavior in opposite directions. Finally, these data may also indicate that an imbalance in expression of imprinted genes contributes to pathological conditions such as gambling and drug addiction, where impulsive behavior becomes maladaptive.
Collapse
Affiliation(s)
- Claire L Dent
- Behavioural Genetics Group, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, CF24 4HQ United Kingdom
| | - Trevor Humby
- Behavioural Genetics Group, School of Psychology, Cardiff University, CF10 3AT United Kingdom
| | - Katie Lewis
- Behavioural Genetics Group, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, CF24 4HQ United Kingdom
| | - Andrew Ward
- Department of Biology and Biochemistry, University of Bath, BA2 7AX United Kingdom
| | | | - Lawrence S Wilkinson
- Behavioural Genetics Group, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, CF24 4HQ United Kingdom
- Behavioural Genetics Group, School of Psychology, Cardiff University, CF10 3AT United Kingdom
| | | | - Anthony R Isles
- Behavioural Genetics Group, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, CF24 4HQ United Kingdom
| |
Collapse
|
18
|
Abstract
This paper provides a brief introductory review of the most recent advances in our knowledge about the structural and functional aspects of two transcriptional regulators: MeCP2, a protein whose mutated forms are involved in Rett syndrome; and CTCF, a constitutive transcriptional insulator. This is followed by a description of the PTMs affecting these two proteins and an analysis of their known interacting partners. A special emphasis is placed on the recent studies connecting these two proteins, focusing on the still poorly understood potential structural and functional interactions between the two of them on the chromatin substrate. An overview is provided for some of the currently known genes that are dually regulated by these two proteins. Finally, a model is put forward to account for their possible involvement in their regulation of gene expression.
Collapse
Affiliation(s)
- Juan Ausió
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.,b Center for Biomedical Research, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Philippe T Georgel
- c Department of Biological Sciences, Marshall University, Huntington, WV 25755, USA.,d Cell Differentiation and Development Center, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
19
|
Tsanov N, Samacoits A, Chouaib R, Traboulsi AM, Gostan T, Weber C, Zimmer C, Zibara K, Walter T, Peter M, Bertrand E, Mueller F. smiFISH and FISH-quant - a flexible single RNA detection approach with super-resolution capability. Nucleic Acids Res 2016; 44:e165. [PMID: 27599845 PMCID: PMC5159540 DOI: 10.1093/nar/gkw784] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/26/2016] [Indexed: 11/12/2022] Open
Abstract
Single molecule FISH (smFISH) allows studying transcription and RNA localization by imaging individual mRNAs in single cells. We present smiFISH (single molecule inexpensive FISH), an easy to use and flexible RNA visualization and quantification approach that uses unlabelled primary probes and a fluorescently labelled secondary detector oligonucleotide. The gene-specific probes are unlabelled and can therefore be synthesized at low cost, thus allowing to use more probes per mRNA resulting in a substantial increase in detection efficiency. smiFISH is also flexible since differently labelled secondary detector probes can be used with the same primary probes. We demonstrate that this flexibility allows multicolor labelling without the need to synthesize new probe sets. We further demonstrate that the use of a specific acrydite detector oligonucleotide allows smiFISH to be combined with expansion microscopy, enabling the resolution of transcripts in 3D below the diffraction limit on a standard microscope. Lastly, we provide improved, fully automated software tools from probe-design to quantitative analysis of smFISH images. In short, we provide a complete workflow to obtain automatically counts of individual RNA molecules in single cells.
Collapse
Affiliation(s)
- Nikolay Tsanov
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Aubin Samacoits
- Unité Imagerie et Modélisation, Institut Pasteur and CNRS UMR 3691, 28 rue du Docteur Roux, 75015 Paris, France.,C3BI, USR 3756 IP CNRS - Paris, France
| | - Racha Chouaib
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France.,ER045, Laboratory of Stem Cells, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Abdel-Meneem Traboulsi
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Thierry Gostan
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Christian Weber
- Unité Imagerie et Modélisation, Institut Pasteur and CNRS UMR 3691, 28 rue du Docteur Roux, 75015 Paris, France.,C3BI, USR 3756 IP CNRS - Paris, France
| | - Christophe Zimmer
- Unité Imagerie et Modélisation, Institut Pasteur and CNRS UMR 3691, 28 rue du Docteur Roux, 75015 Paris, France.,C3BI, USR 3756 IP CNRS - Paris, France
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, DSST, PRASE, Lebanese University, Beirut, Lebanon.,Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Thomas Walter
- MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 77300 Fontainebleau, France.,Institut Curie, 75248 Paris Cedex, France.,INSERM, U900, 75248 Paris Cedex, France
| | - Marion Peter
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France .,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France .,Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Florian Mueller
- Unité Imagerie et Modélisation, Institut Pasteur and CNRS UMR 3691, 28 rue du Docteur Roux, 75015 Paris, France .,C3BI, USR 3756 IP CNRS - Paris, France
| |
Collapse
|
20
|
Yuan H, Huang L, Hu X, Li Q, Sun X, Xie Y, Kong S, Wang X. FGFR3 gene mutation plus GRB10 gene duplication in a patient with achondroplasia plus growth delay with prenatal onset. Orphanet J Rare Dis 2016; 11:89. [PMID: 27370225 PMCID: PMC4930580 DOI: 10.1186/s13023-016-0465-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022] Open
Abstract
Background Achondroplasia is a well-defined and common bone dysplasia. Genotype- and phenotype-level correlations have been found between the clinical symptoms of achondroplasia and achondroplasia-specific FGFR3 mutations. Result A 2-year-old boy with clinical features consistent with achondroplasia and Silver-Russell syndrome-like symptoms was found to carry a mutation in the fibroblast growth factor receptor-3 (FGFR3) gene at c.1138G > A (p.Gly380Arg) and a de novo 574 kb duplication at chromosome 7p12.1 that involved the entire growth-factor receptor bound protein 10 (GRB10) gene. Using quantitative real-time PCR analysis, GRB10 was over-expressed, and, using enzyme-linked immunosorbent assays for IGF1 and IGF-binding protein-3 (IGFBP3), we found that IGF1 and IGFBP3 were low-expressed in this patient. Conclusions We demonstrate that a combination of uncommon, rare and exceptional molecular defects related to the molecular bases of particular birth defects can be analyzed and diagnosed to potentially explain the observed variability in the combination of molecular defects. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0465-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiming Yuan
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, 510330, Guangdong, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510330, Guangdong, China
| | - Linhuan Huang
- Fetal Medicine Centre, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong, 510080, China
| | - Xizi Hu
- Fairmont Preparatory Academy, Anaheim, CA, 92801, USA
| | - Qian Li
- Affymetrix Biotech Shanghai Ltd., Shanghai, 200020, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China
| | - Yingjun Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China.
| | - Shu Kong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China
| | - Xiaoman Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Rd., Guangzhou, 510150, People's Republic of China
| |
Collapse
|
21
|
Stelzer Y, Bar S, Bartok O, Afik S, Ronen D, Kadener S, Benvenisty N. Differentiation of Human Parthenogenetic Pluripotent Stem Cells Reveals Multiple Tissue- and Isoform-Specific Imprinted Transcripts. Cell Rep 2015; 11:308-20. [DOI: 10.1016/j.celrep.2015.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/19/2015] [Accepted: 03/10/2015] [Indexed: 11/24/2022] Open
|
22
|
Tissue-specific regulation and function of Grb10 during growth and neuronal commitment. Proc Natl Acad Sci U S A 2014; 112:6841-7. [PMID: 25368187 DOI: 10.1073/pnas.1411254111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth-factor receptor bound protein 10 (Grb10) is a signal adapter protein encoded by an imprinted gene that has roles in growth control, cellular proliferation, and insulin signaling. Additionally, Grb10 is critical for the normal behavior of the adult mouse. These functions are paralleled by Grb10's unique tissue-specific imprinted expression; the paternal copy of Grb10 is expressed in a subset of neurons whereas the maternal copy is expressed in most other adult tissues in the mouse. The mechanism that underlies this switch between maternal and paternal expression is still unclear, as is the role for paternally expressed Grb10 in neurons. Here, we review recent work and present complementary data that contribute to the understanding of Grb10 gene regulation and function, with specific emphasis on growth and neuronal development. Additionally, we show that in vitro differentiation of mouse embryonic stem cells into alpha motor neurons recapitulates the switch from maternal to paternal expression observed during neuronal development in vivo. We postulate that this switch in allele-specific expression is related to the functional role of Grb10 in motor neurons and other neuronal tissues.
Collapse
|
23
|
Cleaton MA, Edwards CA, Ferguson-Smith AC. Phenotypic Outcomes of Imprinted Gene Models in Mice: Elucidation of Pre- and Postnatal Functions of Imprinted Genes. Annu Rev Genomics Hum Genet 2014; 15:93-126. [DOI: 10.1146/annurev-genom-091212-153441] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Carol A. Edwards
- Department of Genetics, University of Cambridge, Cambridge CB2 3EG, United Kingdom;
| | | |
Collapse
|
24
|
Battistelli C, Busanello A, Maione R. Functional interplay between MyoD and CTCF in regulating long-range chromatin interactions during differentiation. J Cell Sci 2014; 127:3757-67. [PMID: 25002401 DOI: 10.1242/jcs.149427] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Higher-order chromatin structures appear to be dynamically arranged during development and differentiation. However, the molecular mechanism underlying their maintenance or disruption and their functional relevance to gene regulation are poorly understood. We recently described a dynamic long-range chromatin interaction between the gene promoter of the cdk inhibitor p57(kip2) (also known as Cdkn1c) and the imprinting control region KvDMR1 in muscle cells. Here, we show that CTCF, the best characterized organizer of long-range chromatin interactions, binds to both the p57(kip2) promoter and KvDMR1 and is necessary for the maintenance of their physical contact. Moreover, we show that CTCF-mediated looping is required to prevent p57(kip2) expression before differentiation. Finally, we provide evidence that the induction of p57(kip2) during myogenesis involves the physical interaction of the muscle-regulatory factor MyoD with CTCF at KvDMR1, the displacement of the cohesin complex subunit Rad21 and the destabilization of the chromatin loop. The finding that MyoD affects chromatin looping at CTCF-binding sites represents the first evidence that a differentiation factor regulates chromatin-loop dynamics and provides a useful paradigm for gaining insights into the developmental regulation of long-range chromatin contacts.
Collapse
Affiliation(s)
- Cecilia Battistelli
- Pasteur Institute-Fondazione Cenci Bolognetti, Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Anna Busanello
- Pasteur Institute-Fondazione Cenci Bolognetti, Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Rossella Maione
- Pasteur Institute-Fondazione Cenci Bolognetti, Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
25
|
Post-natal imprinting: evidence from marsupials. Heredity (Edinb) 2014; 113:145-55. [PMID: 24595366 DOI: 10.1038/hdy.2014.10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 12/31/2022] Open
Abstract
Genomic imprinting has been identified in therian (eutherian and marsupial) mammals but not in prototherian (monotreme) mammals. Imprinting has an important role in optimising pre-natal nutrition and growth, and most imprinted genes are expressed and imprinted in the placenta and developing fetus. In marsupials, however, the placental attachment is short-lived, and most growth and development occurs post-natally, supported by a changing milk composition tailor-made for each stage of development. Therefore there is a much greater demand on marsupial females during post-natal lactation than during pre-natal placentation, so there may be greater selection for genomic imprinting in the mammary gland than in the short-lived placenta. Recent studies in the tammar wallaby confirm the presence of genomic imprinting in nutrient-regulatory genes in the adult mammary gland. This suggests that imprinting may influence infant post-natal growth via the mammary gland as it does pre-natally via the placenta. Similarly, an increasing number of imprinted genes have been implicated in regulating feeding and nurturing behaviour in both the adult and the developing neonate/offspring in mice. Together these studies provide evidence that genomic imprinting is critical for regulating growth and subsequently the survival of offspring not only pre-natally but also post-natally.
Collapse
|
26
|
Influencing the Social Group. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:107-34. [DOI: 10.1016/b978-0-12-800222-3.00006-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Tran DA, Bai AY, Singh P, Wu X, Szabó PE. Characterization of the imprinting signature of mouse embryo fibroblasts by RNA deep sequencing. Nucleic Acids Res 2013; 42:1772-83. [PMID: 24217910 PMCID: PMC3919614 DOI: 10.1093/nar/gkt1042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mouse embryo fibroblasts (MEFs) are convenient sources for biochemical studies when cell number in mouse embryos is limiting. To derive the imprinting signature of MEFs and potentially detect novel imprinted genes we performed strand- and allele-specific RNA deep sequencing. We used sequenom allelotyping in embryo and adult organs to verify parental allele-specific expression. Thirty-two known ubiquitously imprinted genes displayed correct parental allele-specific transcripts in MEFs. Our analysis did not reveal any novel imprinted genes, but detected extended parental allele-specific transcripts in several known imprinted domains: maternal allele-specific transcripts downstream of Grb10 and downstream of Meg3, Rtl1as and Rian in the Dlk1-Dio3 cluster, an imprinted domain implicated in development and pluripotency. We detected paternal allele-specific transcripts downstream of Nespas, Peg3, Peg12 and Snurf/Snrpn. These imprinted transcript extensions were not unique to MEFs, but were also present in other somatic cells. The 5′ end points of the imprinted transcript extensions did not carry opposing chromatin marks or parental allele-specific DNA methylation, suggesting that their parental allele-specific transcription is under the control of the extended imprinted genes. Based on the imprinting signature of MEFs, these cells provide valid models for understanding the biochemical aspects of genomic imprinting.
Collapse
Affiliation(s)
- Diana A Tran
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA, Eugene and Ruth Roberts Summer Academy, City of Hope National Medical Center, Duarte, CA 91010, USA and Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
28
|
Prickett AR, Barkas N, McCole RB, Hughes S, Amante SM, Schulz R, Oakey RJ. Genome-wide and parental allele-specific analysis of CTCF and cohesin DNA binding in mouse brain reveals a tissue-specific binding pattern and an association with imprinted differentially methylated regions. Genome Res 2013; 23:1624-35. [PMID: 23804403 PMCID: PMC3787260 DOI: 10.1101/gr.150136.112] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 06/20/2013] [Indexed: 11/25/2022]
Abstract
DNA binding factors are essential for regulating gene expression. CTCF and cohesin are DNA binding factors with central roles in chromatin organization and gene expression. We determined the sites of CTCF and cohesin binding to DNA in mouse brain, genome wide and in an allele-specific manner with high read-depth ChIP-seq. By comparing our results with existing data for mouse liver and embryonic stem (ES) cells, we investigated the tissue specificity of CTCF binding sites. ES cells have fewer unique CTCF binding sites occupied than liver and brain, consistent with a ground-state pattern of CTCF binding that is elaborated during differentiation. CTCF binding sites without the canonical consensus motif were highly tissue specific. In brain, a third of CTCF and cohesin binding sites coincide, consistent with the potential for many interactions between cohesin and CTCF but also many instances of independent action. In the context of genomic imprinting, CTCF and/or cohesin bind to a majority but not all differentially methylated regions, with preferential binding to the unmethylated parental allele. Whether the parental allele-specific methylation was established in the parental germlines or post-fertilization in the embryo is not a determinant in CTCF or cohesin binding. These findings link CTCF and cohesin with the control regions of a subset of imprinted genes, supporting the notion that imprinting control is mechanistically diverse.
Collapse
Affiliation(s)
- Adam R. Prickett
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Nikolaos Barkas
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Ruth B. McCole
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Siobhan Hughes
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Samuele M. Amante
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Reiner Schulz
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Rebecca J. Oakey
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| |
Collapse
|
29
|
Frequency and characterization of DNA methylation defects in children born SGA. Eur J Hum Genet 2012; 21:838-43. [PMID: 23232699 DOI: 10.1038/ejhg.2012.262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/16/2012] [Accepted: 11/01/2012] [Indexed: 11/08/2022] Open
Abstract
Various genes located at imprinted loci and regulated by epigenetic mechanisms are involved in the control of growth and differentiation. The broad phenotypic variability of imprinting disorders suggests that individuals with inborn errors of imprinting might remain undetected among patients born small for gestational age (SGA). We evaluated quantitative DNA methylation analysis at differentially methylated regions (DMRs) of 10 imprinted loci (PLAGL1, IGF2R DMR2, GRB10, H19 DMR, IGF2, MEG3, NDN, SNRPN, NESP, NESPAS) by bisulphite pyrosequencing in 98 patients born SGA and 50 controls. For IGF2R DMR2, methylation patterns of additional 47 parent pairs and one mother (95 individuals) of patients included in the SGA cohort were analyzed. In six out of 98 patients born SGA, we detected DNA methylation changes at single loci. In one child, the diagnosis of upd(14)mat syndrome owing to an epimutation of the MEG3 locus in 14q32 could be established. The remaining five patients showed hypomethylation at GRB10 (n=2), hypomethylation at the H19 3CTCF-binding site (n=1), hypermethylation at NDN (n=1) and hypermethylation at IGF2 (n=1). IGF2R DMR2 hypermethylation was detected in five patients, six parents of patients in the SGA cohort and two controls. We conclude that aberrant methylation at imprinted loci in children born SGA exists but seems to be rare if known imprinting syndromes are excluded. Further investigations on the physiological variations and the functional consequences of the detected aberrant methylation are necessary before final conclusions on the clinical impact can be drawn.
Collapse
|
30
|
Zhang J, Zhang N, Liu M, Li X, Zhou L, Huang W, Xu Z, Liu J, Musi N, DeFronzo RA, Cunningham JM, Zhou Z, Lu XY, Liu F. Disruption of growth factor receptor-binding protein 10 in the pancreas enhances β-cell proliferation and protects mice from streptozotocin-induced β-cell apoptosis. Diabetes 2012; 61:3189-98. [PMID: 22923474 PMCID: PMC3501856 DOI: 10.2337/db12-0249] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Defects in insulin secretion and reduction in β-cell mass are associated with type 2 diabetes in humans, and understanding the basis for these dysfunctions may reveal strategies for diabetes therapy. In this study, we show that pancreas-specific knockout of growth factor receptor-binding protein 10 (Grb10), which is highly expressed in pancreas and islets, leads to elevated insulin/IGF-1 signaling in islets, enhanced β-cell mass and insulin content, and increased insulin secretion in mice. Pancreas-specific disruption of Grb10 expression also improved glucose tolerance in mice fed with a high-fat diet and protected mice from streptozotocin-induced β-cell apoptosis and body weight loss. Our study has identified Grb10 as an important regulator of β-cell proliferation and demonstrated that reducing the expression level of Grb10 could provide a novel means to increase β-cell mass and reduce β-cell apoptosis. This is critical for effective therapeutic treatment of both type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Jingjing Zhang
- From the Metabolic Syndrome Research Center, Diabetes Center, Institute of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; the
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas; the
| | - Ning Zhang
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; the
| | - Meilian Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas; the
| | - Xiuling Li
- Department of Hematology/Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee; and the
| | - Lijun Zhou
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas; the
| | - Wei Huang
- From the Metabolic Syndrome Research Center, Diabetes Center, Institute of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; the
| | - Zhipeng Xu
- From the Metabolic Syndrome Research Center, Diabetes Center, Institute of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; the
| | - Jing Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas; the
| | - Nicolas Musi
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; the
| | - Ralph A. DeFronzo
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; the
| | - John M. Cunningham
- Department of Hematology/Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee; and the
| | - Zhiguang Zhou
- From the Metabolic Syndrome Research Center, Diabetes Center, Institute of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; the
- Key Laboratory of Diabetes Immunology, Ministry of Education, Diabetes Center, Institute of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas; the
| | - Feng Liu
- From the Metabolic Syndrome Research Center, Diabetes Center, Institute of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; the
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas; the
- Corresponding author: Feng Liu,
| |
Collapse
|
31
|
Hoekstra EJ, von Oerthel L, van der Linden AJA, Schellevis RD, Scheppink G, Holstege FCP, Groot-Koerkamp MJ, van der Heide LP, Smidt MP. Lmx1a is an activator of Rgs4 and Grb10 and is responsible for the correct specification of rostral and medial mdDA neurons. Eur J Neurosci 2012; 37:23-32. [PMID: 23106268 DOI: 10.1111/ejn.12022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 11/26/2022]
Abstract
The LIM homeodomain transcription factor Lmx1a is a very potent inducer of stem cells towards dopaminergic neurons. Despite several studies on the function of this gene, the exact in vivo role of Lmx1a in mesodiencephalic dopamine (mdDA) neuronal specification is still not understood. To analyse the genes functioning downstream of Lmx1a, we performed expression microarray analysis of LMX1A-overexpressing MN9D dopaminergic cells. Several interesting regulated genes were identified, based on their regulation in other previously generated expression arrays and on their expression pattern in the developing mdDA neuronal field. Post analysis through in vivo expression analysis in Lmx1a mouse mutant (dr/dr) embryos demonstrated a clear decrease in expression of the genes Grb10 and Rgs4, in and adjacent to the rostral and dorsal mdDA neuronal field and within the Lmx1a expression domain. Interestingly, the DA marker Vmat2 was significantly up-regulated as a consequence of increased LMX1A dose, and subsequent analysis on Lmx1a-mutant E14.5 and adult tissue revealed a significant decrease in Vmat2 expression in mdDA neurons. Taken together, microarray analysis of an LMX1A-overexpression cell system resulted in the identification of novel direct or indirect downstream targets of Lmx1a in mdDA neurons: Grb10, Rgs4 and Vmat2.
Collapse
Affiliation(s)
- Elisa J Hoekstra
- Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Singh P, Lee DH, Szabó PE. More than insulator: multiple roles of CTCF at the H19-Igf2 imprinted domain. Front Genet 2012; 3:214. [PMID: 23087708 PMCID: PMC3471092 DOI: 10.3389/fgene.2012.00214] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/27/2012] [Indexed: 12/28/2022] Open
Abstract
CTCF (CCCTC-binding factor)-mediated insulation at the H19-Insulin-like growth factor 2 (Igf2) imprinted domain is a classic example for imprinted gene regulation. DNA methylation difference in the imprinting control region (ICR) is inherited from the gametes and subsequently determines parental allele-specific enhancer blocking and imprinted expression in the soma. Recent genetic studies showed that proper monoallelic enhancer blocking at the H19-Igf2 ICR is critical for development. Strict biallelic insulation at this locus causes perinatal lethality, whereas leaky biallelic insulation results in smaller size but no lethality. Apart from enhancer blocking, CTCF is also the master organizer of chromatin composition in the maternal allele along this imprinted domain, affecting not only histone tail covalent modifications but also those in the histone core. Additionally, CTCF binding in the soma protects the maternal allele from de novo DNA methylation. CTCF binding is not involved in the establishment of the gametic marks at the ICR, but it slightly delays de novo methylation in the maternally inherited ICR allele in prospermatogonia. This review focuses on the developmental and epigenetic consequences of CTCF binding at the H19-Igf2 ICR.
Collapse
Affiliation(s)
- Purnima Singh
- Department of Molecular and Cellular Biology, Beckman Research Institute Duarte, CA, USA
| | | | | |
Collapse
|
33
|
Data mining as a discovery tool for imprinted genes. Methods Mol Biol 2012; 925:89-134. [PMID: 22907493 DOI: 10.1007/978-1-62703-011-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
This chapter serves as an introduction to the collection of genome-wide sequence and epigenomic data, as well as the use of these data in training generalized linear models (glm) to predicted imprinted status. This is meant to be an introduction to the method, so only the most straightforward examples will be covered. For instance, the examples given below refer to 11 classes of genomic regions (the entire gene body, introns, exons, 5' UTR, 3' UTR, and 1, 10, and 100 kb upstream and downstream of each gene). One could also build models based on combinations of these regions. Likewise, models could be built on combinations of epigenetic features, or on combinations of both genomic regions and epigenetic features.This chapter relies heavily on computational methods, including basic programming. However, this chapter is not meant to be an introduction to programming. Throughout the chapter, the reader will be provided with example code in the Perl programming language.
Collapse
|
34
|
Stringer JM, Suzuki S, Pask AJ, Shaw G, Renfree MB. GRB10 imprinting is eutherian mammal specific. Mol Biol Evol 2012; 29:3711-9. [PMID: 22787282 DOI: 10.1093/molbev/mss173] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
GRB10 is an imprinted gene differently expressed from two promoters in mouse and human. Mouse Grb10 is maternally expressed from the major promoter in most tissues and paternally expressed from the brain-specific promoter within specific regions of the fetal and adult central nervous system. Human GRB10 is biallelically expressed from the major promoter in most tissues except in the placental villus trophoblast where it is maternally expressed, whereas the brain-specific promoter is paternally expressed in the fetal brain. This study characterized the ortholog of GRB10 in a marsupial, the tammar wallaby (Macropus eugenii) to investigate the origin and evolution of imprinting at this locus. The protein coding exons and predicted amino acid sequence of tammar GRB10 were highly conserved with eutherian GRB10. The putative first exon, which is located in the orthologous region to the eutherian major promoter, was found in the tammar, but no exon was found in the downstream region corresponding to the eutherian brain-specific promoter, suggesting that marsupials only have a single promoter. Tammar GRB10 was widely expressed in various tissues including the brain but was not imprinted in any of the tissues examined. Thus, it is likely that GRB10 imprinting evolved in eutherians after the eutherian-marsupial divergence approximately 160 million years ago, subsequent to the acquisition of a brain-specific promoter, which resides within the imprinting control region in eutherians.
Collapse
Affiliation(s)
- Jessica M Stringer
- ARC Centre of Excellence in Kangaroo Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
35
|
Fedoriw A, Mugford J, Magnuson T. Genomic imprinting and epigenetic control of development. Cold Spring Harb Perspect Biol 2012; 4:a008136. [PMID: 22687277 PMCID: PMC3385953 DOI: 10.1101/cshperspect.a008136] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epigenetic mechanisms are extensively utilized during mammalian development. Specific patterns of gene expression are established during cell fate decisions, maintained as differentiation progresses, and often augmented as more specialized cell types are required. Much of what is known about these mechanisms comes from the study of two distinct epigenetic phenomena: genomic imprinting and X-chromosome inactivation. In the case of genomic imprinting, alleles are expressed in a parent-of-origin-dependent manner, whereas X-chromosome inactivation in females requires that only one X chromosome is active in each somatic nucleus. As model systems for epigenetic regulation, genomic imprinting and X-chromosome inactivation have identified and elucidated the numerous regulatory mechanisms that function throughout the genome during development.
Collapse
Affiliation(s)
- Andrew Fedoriw
- The University of North Carolina at Chapel Hill School of Medicine, Department of Genetics, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
36
|
Kohama C, Kato H, Numata K, Hirose M, Takemasa T, Ogura A, Kiyosawa H. ES cell differentiation system recapitulates the establishment of imprinted gene expression in a cell-type-specific manner. Hum Mol Genet 2011; 21:1391-401. [PMID: 22156770 DOI: 10.1093/hmg/ddr577] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is a phenomenon whereby monoallelic gene expression occurs in a parent-of-origin-specific manner. A subset of imprinted genes acquires a tissue-specific imprinted status during the course of tissue development, and this process can be analyzed by means of an in vitro differentiation system utilizing embryonic stem (ES) cells. In neurons, the gene Ube3a is expressed from the maternal allele only, and a paternally expressed non-coding, antisense RNA has been implicated in the imprinting process in mice and humans. Here, to study the genomic imprinting mechanism, we established F1 hybrid ES cells derived from two sub-species of Mus musculus and established an in vitro neuronal differentiation system in which neuron-specific imprinting of Ube3a was recapitulated. With this system, we revealed that the switch from biallelic expression to maternal, monoallelic expression of Ube3a occurs late in neuronal development, during the neurite outgrowth period, and that the expression of endogenous antisense transcript from the Ube3a locus is up-regulated several hundred-fold during the same period. Our results suggest that evaluation of the quality of ES cells by studying their differentiation in vitro should include evaluation of epigenetic aspects, such as a comparison with the genomic imprinting status found in tissues in vivo, in addition to the evaluation of differentiation gene markers and morphology. Our F1 hybrid ES cells and in vitro differentiation system will allow researchers to investigate complex end-points such as neuron-specific genomic imprinting, and our F1 hybrid ES cells are a useful resource for other tissue-specific genomic imprinting and epigenetic analyses.
Collapse
Affiliation(s)
- Chihiro Kohama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Genome instability is a hallmark of cancer cells and how it arises is still not completely understood. Correct chromosome segregation is a pre-requisite for preserving genome integrity. Cohesin helps to ensure faithful chromosome segregation during cell cycle, however, much evidence regarding its functions have come to light over the last few years and suggest that cohesin plays multiple roles in the maintenance of genome stability. Here we review our rapidly increasing knowledge on the involvement of cohesin pathway in genome stability and cancer.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Richerche, Pisa, Italy
| | | |
Collapse
|
38
|
Abstract
Chromatin insulators are DNA-protein complexes with broad functions in nuclear biology. Based on the ability of insulator proteins to interact with each other, it was originally found that insulators form loops that bring together distant regions of the genome. Data from genome-wide localization studies indicate that insulator proteins can be present in intergenic regions as well as at the 5', introns or 3' of genes, suggesting a variety of roles for insulator loops in chromosome biology. Recent results suggest that insulators mediate intra- and interchromosomal interactions to affect transcription, imprinting, and recombination. Cells have developed mechanisms to control insulator activity by recruiting specialized proteins or by covalent modification of core components. It is then possible that insulator-mediated interactions set up cell-specific blueprints of nuclear organization that may contribute to the establishment of different patterns of gene expression during cell differentiation and development. As a consequence, disruption of insulator activity could result in the development of cancer or other disease states.
Collapse
Affiliation(s)
- Jingping Yang
- Department of Biology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
39
|
Suzuki S, Shaw G, Kaneko-Ishino T, Ishino F, Renfree MB. The evolution of mammalian genomic imprinting was accompanied by the acquisition of novel CpG islands. Genome Biol Evol 2011; 3:1276-83. [PMID: 22016334 PMCID: PMC3217256 DOI: 10.1093/gbe/evr104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parent-of-origin–dependent expression of imprinted genes is mostly associated with allele-specific DNA methylation of the CpG islands (CGIs) called germ line differentially methylated regions (gDMRs). Although the essential role of gDMRs for genomic imprinting has been well established, little is known about how they evolved. In several imprinted loci, the CGIs forming gDMRs may have emerged with the insertion of a retrotransposon or retrogene. To examine the generality of the hypothesis that the CGIs forming gDMRs were novel CGIs recently acquired during mammalian evolution, we reviewed the time of novel CGI emergence for all the maternal gDMR loci using the novel data analyzed in this study combined with the data from previous reports. The comparative sequence analyses using mouse, human, dog, cow, elephant, tammar, opossum, platypus, and chicken genomic sequences were carried out for Peg13, Meg1/Grb10, Plagl1/Zac1, Gnas, and Slc38a4 imprinted loci to obtain comprehensive results. The combined data showed that emergence of novel CGIs occurred universally in the maternal gDMR loci at various time points during mammalian evolution. Furthermore, the analysis of Meg1/Grb10 locus provided evidence that gradual base pair–wise sequence change was involved in the accumulation of CpG sequence, suggesting the mechanism of novel CGI emergence is more complex than the suggestion that CpG sequences originated solely by insertion of CpG-rich transposable elements. We propose that acquisition of novel CGIs was a key genomic change for the evolution of imprinting and that it usually occurred in the maternal gDMR loci.
Collapse
Affiliation(s)
- Shunsuke Suzuki
- Australian Research Council Centre of Excellence for Kangaroo Genomics, The University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
40
|
Lin S, Ferguson-Smith AC, Schultz RM, Bartolomei MS. Nonallelic transcriptional roles of CTCF and cohesins at imprinted loci. Mol Cell Biol 2011; 31:3094-104. [PMID: 21628529 PMCID: PMC3147605 DOI: 10.1128/mcb.01449-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/29/2011] [Accepted: 05/17/2011] [Indexed: 11/20/2022] Open
Abstract
The cohesin complex holds sister chromatids together and is essential for chromosome segregation. Recently, cohesins have been implicated in transcriptional regulation and insulation through genome-wide colocalization with the insulator protein CTCF, including involvement at the imprinted H19/Igf2 locus. CTCF binds to multiple imprinted loci and is required for proper imprinted expression at the H19/Igf2 locus. Here we report that cohesins colocalize with CTCF at two additional imprinted loci, the Dlk1-Dio3 and the Kcnq1/Kcnq1ot1 loci. Similar to the H19/Igf2 locus, CTCF and cohesins preferentially bind to the Gtl2 differentially methylated region (DMR) on the unmethylated maternal allele. To determine the functional importance of the binding of CTCF and cohesins at the three imprinted loci, CTCF and cohesins were depleted in mouse embryonic fibroblast cells. The monoallelic expression of imprinted genes at these three loci was maintained. However, mRNA levels for these genes were typically increased; for H19 and Igf2 the increased level of expression was independent of the CTCF-binding sites in the imprinting control region. Results of these experiments demonstrate an unappreciated role for CTCF and cohesins in the repression of imprinted genes in somatic cells.
Collapse
Affiliation(s)
- Shu Lin
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Anne C. Ferguson-Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Richard M. Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
41
|
Lucas-Fernández E, García-Palmero I, Villalobo A. Genomic organization and control of the grb7 gene family. Curr Genomics 2011; 9:60-8. [PMID: 19424485 PMCID: PMC2674303 DOI: 10.2174/138920208783884847] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 11/22/2022] Open
Abstract
Grb7 and their related family members Grb10 and Grb14 are adaptor proteins, which participate in the functionality of multiple signal transduction pathways under the control of a variety of activated tyrosine kinase receptors and other tyrosine-phosphorylated proteins. They are involved in the modulation of important cellular and organismal functions such as cell migration, cell proliferation, apoptosis, gene expression, protein degradation, protein phosphorylation, angiogenesis, embryonic development and metabolic control. In this short review we shall describe the organization of the genes encoding the Grb7 protein family, their transcriptional products and the regulatory mechanisms implicated in the control of their expression. Finally, the alterations found in these genes and the mechanisms affecting their expression under pathological conditions such as cancer, diabetes and some congenital disorders will be highlighted.
Collapse
Affiliation(s)
- E Lucas-Fernández
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid. Arturo Duperier 4, E-28029 Madrid, Spain
| | | | | |
Collapse
|
42
|
An extended domain of Kcnq1ot1 silencing revealed by an imprinted fluorescent reporter. Mol Cell Biol 2011; 31:2827-37. [PMID: 21576366 DOI: 10.1128/mcb.01435-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distal region of mouse chromosome 7 contains two imprinted domains separated by a relatively gene-poor interval. We have previously described a transgenic mouse line called Tel7KI, which contains a green fluorescent protein (GFP) reporter inserted 2.6 kb upstream of the Ins2 gene at the proximal end of this interval. The GFP reporter from Tel7KI is imprinted and maternally expressed in postimplantation embryos. Here, we present evidence that the distal imprinting center, KvDMR1 (IC2), is responsible for the paternal silencing of Tel7KI. First, we show that Tel7KI is silenced when the noncoding RNA Kcnq1ot1 is biallelically expressed due to absence of maternal DNA methylation at IC2. Second, we use an embryonic stem (ES) cell differentiation assay to examine the effect of an IC2 deletion in cis to Tel7KI and show that it impairs the ability of the paternal transmission Tel7KI ES cells to silence GFP. These results suggested that Kcnq1ot1 silencing extends nearly 300 kb further than previously reported and led us to examine other transcripts between IC1 and IC2. We found that splice variants of Th and Ins2 are imprinted, maternally expressed, and regulated by IC2, showing that the silencing domain uncovered by our transgenic line also affects endogenous transcripts.
Collapse
|
43
|
Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, Boileau P, Le Bouc Y, Deal CL, Lillycrop K, Scharfmann R, Sheppard A, Skinner M, Szyf M, Waterland RA, Waxman DJ, Whitelaw E, Ong K, Albertsson-Wikland K. Child health, developmental plasticity, and epigenetic programming. Endocr Rev 2011; 32:159-224. [PMID: 20971919 PMCID: PMC3365792 DOI: 10.1210/er.2009-0039] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs.
Collapse
Affiliation(s)
- Z Hochberg
- Rambam Medical Center, Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE, Gilroy K, Baker S, Xia J, Dalley JW, Hurst LD, Wilkinson LS, Isles AR, Ward A. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature 2011; 469:534-8. [PMID: 21270893 PMCID: PMC3031026 DOI: 10.1038/nature09651] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 11/04/2010] [Indexed: 02/02/2023]
Abstract
Imprinted genes, defined by their preferential expression of a single parental allele, represent a subset of the mammalian genome and often have key roles in embryonic development, but also postnatal functions including energy homeostasis and behaviour. When the two parental alleles are unequally represented within a social group (when there is sex bias in dispersal and/or variance in reproductive success), imprinted genes may evolve to modulate social behaviour, although so far no such instance is known. Predominantly expressed from the maternal allele during embryogenesis, Grb10 encodes an intracellular adaptor protein that can interact with several receptor tyrosine kinases and downstream signalling molecules. Here we demonstrate that within the brain Grb10 is expressed from the paternal allele from fetal life into adulthood and that ablation of this expression engenders increased social dominance specifically among other aspects of social behaviour, a finding supported by the observed increase in allogrooming by paternal Grb10-deficient animals. Grb10 is, therefore, the first example of an imprinted gene that regulates social behaviour. It is also currently alone in exhibiting imprinted expression from each of the parental alleles in a tissue-specific manner, as loss of the peripherally expressed maternal allele leads to significant fetal and placental overgrowth. Thus Grb10 is, so far, a unique imprinted gene, able to influence distinct physiological processes, fetal growth and adult behaviour, owing to actions of the two parental alleles in different tissues.
Collapse
Affiliation(s)
- Alastair S. Garfield
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine, and Psychology, Cardiff University, Cardiff, CF14 4XN, UK
| | - Michael Cowley
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
| | - Florentia M. Smith
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
| | - Kim Moorwood
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
| | - Joanne E. Stewart-Cox
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
| | - Kerry Gilroy
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine, and Psychology, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sian Baker
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine, and Psychology, Cardiff University, Cardiff, CF14 4XN, UK
| | - Jing Xia
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Hill's Road, Cambridge, CB2 2QQ, UK
| | - Laurence D. Hurst
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
| | - Lawrence S. Wilkinson
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine, and Psychology, Cardiff University, Cardiff, CF14 4XN, UK
| | - Anthony R. Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine, and Psychology, Cardiff University, Cardiff, CF14 4XN, UK
| | - Andrew Ward
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
45
|
Dnmt3a1 upregulates transcription of distinct genes and targets chromosomal gene clusters for epigenetic silencing in mouse embryonic stem cells. Mol Cell Biol 2011; 31:1577-92. [PMID: 21262766 DOI: 10.1128/mcb.01093-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dnmt3a1 and Dnmt3a2 are two de novo DNA methyltransferases expressed in mouse embryonic stem cells (mESCs). They differ in that a 219-amino-acid (aa) amino (N)-terminal noncatalytic domain is present only in Dnmt3a1. Here, we examined the unique functions of Dnmt3a1 in mESCs by targeting the coding sequence of the Dnmt3a1 N-terminal domain tagged with enhanced green fluorescent protein (GFP) for insertion into the mouse Rosa26 locus. Using these targeted cells (GFP-3a1Nter), we showed that Dnmt3a1 was efficiently recruited to the silenced Oct3/4 and activated Vtn (vitronectin) gene promoters via its unique N-terminal domain. This recruitment affected the two genes in contrasting ways, compromising Oct3/4 gene promoter DNA methylation to prevent consolidation of the silent state while significantly reducing Vtn transcription. We used this negative effect of the Dnmt3a1 N-terminal domain to investigate the extent of transcriptional regulation by Dnmt3a1 in mESCs by using microarrays. A small group of all-trans retinoic acid (tRA)-inducible genes had lower transcript levels in GFP-3a1Nter cells than in wild-type mESCs. Intriguingly, this group included genes that are important for fetal nutrition, placenta development, and metabolic functions and is enriched for a distinct set of imprinted genes. We also identified a larger group of genes that showed higher transcript levels in the GFP-3a1Nter-expressing cells than in wild-type mESCs, including pluripotency factors and key regulators of primordial germ cell differentiation. Thus, Dnmt3a1 in mESCs functions primarily as a negative and to a lesser extent as a positive regulator of transcription. Our findings suggest that Dnmt3a1 positively affects transcription of specific genes at the promoter level and targets chromosomal domains to epigenetically silence gene clusters in mESCs.
Collapse
|
46
|
Brideau CM, Kauppinen KP, Holmes R, Soloway PD. A non-coding RNA within the Rasgrf1 locus in mouse is imprinted and regulated by its homologous chromosome in trans. PLoS One 2010; 5:e13784. [PMID: 21072176 PMCID: PMC2970558 DOI: 10.1371/journal.pone.0013784] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 10/12/2010] [Indexed: 01/01/2023] Open
Abstract
Background Rasgrf1 is imprinted in mouse, displaying paternal allele specific expression in neonatal brain. Paternal expression is accompanied by paternal-specific DNA methylation at a differentially methylated domain (DMD) within the locus. The cis-acting elements necessary for Rasgrf1 imprinting are known. A series of tandem DNA repeats control methylation of the adjacent DMD, which is a methylation sensitive enhancer-blocking element. These two sequences constitute a binary switch that controls imprinting and represents the Imprinting Control Region (ICR). One paternally transmitted mutation, which helped define the ICR, induced paramutation, in trans, on the maternal allele. Like many imprinted genes, Rasgrf1 lies within an imprinted cluster. One of four noncoding transcripts in the cluster, AK015891, is known to be imprinted. Methodology/Principal Findings Here we demonstrate that an additional noncoding RNA, AK029869, is imprinted and paternally expressed in brain throughout development. Intriguingly, any of several maternally inherited ICR mutations affected expression of the paternal AK029869 transcript in trans. Furthermore, we found that the ICR mutations exert different trans effects on AK029869 at different developmental times. Conclusions/Significance Few trans effects have been defined in mammals and, those that exist, do not show the great variation seen at the Rasgrf1 imprinted domain, either in terms of the large number of mutations that produce the effects or the range of phenotypes that emerge when they are seen. These results suggest that trans regulation of gene expression may be more common than originally appreciated and that where trans regulation occurs it can change dynamically during development.
Collapse
Affiliation(s)
- Chelsea M. Brideau
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Krista P. Kauppinen
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Rebecca Holmes
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Paul D. Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Ohlsson R, Bartkuhn M, Renkawitz R. CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin. Chromosoma 2010; 119:351-60. [PMID: 20174815 PMCID: PMC2910314 DOI: 10.1007/s00412-010-0262-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/17/2010] [Accepted: 01/19/2010] [Indexed: 11/30/2022]
Abstract
More than 10(9) base pairs of the genome in higher eucaryotes are positioned in the interphase nucleus such that gene activation, gene repression, remote gene regulation by enhancer elements, and reading as well as adjusting epigenetic marks are possible. One important structural and functional component of chromatin organization is the zinc finger factor CTCF. Two decades of research has advanced the understanding of the fundamental role that CTCF plays in regulating such a vast expanse of DNA.
Collapse
Affiliation(s)
- Rolf Ohlsson
- Institute for Microbiology, Tumor- and Cellbiology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
48
|
|
49
|
Charalambous M, Cowley M, Geoghegan F, Smith FM, Radford EJ, Marlow BP, Graham CF, Hurst LD, Ward A. Maternally-inherited Grb10 reduces placental size and efficiency. Dev Biol 2009; 337:1-8. [PMID: 19833122 DOI: 10.1016/j.ydbio.2009.10.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/02/2009] [Accepted: 10/02/2009] [Indexed: 01/01/2023]
Abstract
The control of foetal growth is poorly understood and yet it is critically important that at birth the body has attained appropriate size and proportions. Growth and survival of the mammalian foetus is dependent upon a functional placenta throughout most of gestation. A few genes are known that influence both foetal and placental growth and might therefore coordinate growth of the conceptus, including the imprinted Igf2 and Grb10 genes. Grb10 encodes a signalling adapter protein, is expressed predominantly from the maternally-inherited allele and acts to restrict foetal and placental growth. Here, we show that following disruption of the maternal allele in mice, the labyrinthine volume was increased in a manner consistent with a cell-autonomous function of Grb10 and the enlarged placenta was more efficient in supporting foetal growth. Thus, Grb10 is the first example of a gene that acts to limit placental size and efficiency. In addition, we found that females inheriting a mutant Grb10 allele from their mother had larger litters and smaller offspring than those inheriting a mutant allele from their father. This grandparental effect suggests Grb10 can influence reproductive strategy through the allocation of maternal resources such that offspring number is offset against size.
Collapse
Affiliation(s)
- Marika Charalambous
- Department of Biology and Biochemistry, University of Bath, Building 4 South, Bath BA27AY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|