1
|
Srinivasan P, Canova CT, Sha S, Nguyen TNT, Joseph J, Sangerman J, Maloney AJ, Katsikis G, Ou RW, Hong MS, Ng J, Yuan A, Antov D, Song S, Chen W, Neufeld C, Wolfrum JM, Barone PW, Sinskey AJ, Springs SL, Braatz RD. Multidose transient transfection of human embryonic kidney 293 cells modulates recombinant adeno-associated virus2/5 Rep protein expression and influences the enrichment fraction of filled capsids. Biotechnol Bioeng 2024; 121:3694-3714. [PMID: 39176568 DOI: 10.1002/bit.28828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/04/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is a commonly used in vivo gene therapy vector because of its nonpathogenicity, long-term transgene expression, broad tropism, and ability to transduce both dividing and nondividing cells. However, rAAV vector production via transient transfection of mammalian cells typically yields a low fraction of filled-to-total capsids (~1%-30% of total capsids produced). Analysis of our previously developed mechanistic model for rAAV2/5 production attributed these low fill fractions to a poorly coordinated timeline between capsid synthesis and viral DNA replication and the repression of later phase capsid formation by Rep proteins. Here, we extend the model by quantifying the expression dynamics of total Rep proteins and their influence on the key steps of rAAV2/5 production using a multiple dosing transfection of human embryonic kidney 293 (HEK293) cells. We report that the availability of preformed empty capsids and viral DNA copies per cell are not limiting to the capsid-filling reaction. However, optimal expression of Rep proteins (<240 ± 13 ag per cell) enables enrichment of the filled capsid population (>12% of total capsids/cell) upstream. Our analysis suggests increased enrichment of filled capsids via regulating the expression of Rep proteins is possible but at the expense of per cell capsid titer in a triple plasmid transfection. Our study reveals an intrinsic limitation of scaling rAAV2/5 vector genome (vg) production and underscores the need for approaches that allow for regulating the expression of Rep proteins to maximize vg titer per cell upstream.
Collapse
Affiliation(s)
- Prasanna Srinivasan
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher T Canova
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sha Sha
- Ultragenyx Pharmaceutical Inc., Novato, Cambridge, USA
| | | | - John Joseph
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jose Sangerman
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | - Rui Wen Ou
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Moo Sun Hong
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jaclyn Ng
- Stanford University School of Medicine, Stanford, California, USA
| | - Arella Yuan
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel Antov
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sally Song
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wenyu Chen
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jacqueline M Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard D Braatz
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Greitens C, Leroux JC, Burger M. The intracellular visualization of exogenous DNA in fluorescence microscopy. Drug Deliv Transl Res 2024; 14:2242-2261. [PMID: 38526634 PMCID: PMC11208204 DOI: 10.1007/s13346-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
In the development of non-viral gene delivery vectors, it is essential to reliably localize and quantify transfected DNA inside the cell. To track DNA, fluorescence microscopy methods are commonly applied. These mostly rely on fluorescently labeled DNA, DNA binding proteins fused to a fluorescent protein, or fluorescence in situ hybridization (FISH). In addition, co-stainings are often used to determine the colocalization of the DNA in specific cellular compartments, such as the endolysosomes or the nucleus. We provide an overview of these DNA tracking methods, advice on how they should be combined, and indicate which co-stainings or additional methods are required to draw precise conclusions from a DNA tracking experiment. Some emphasis is given to the localization of exogenous DNA inside the nucleus, which is the last step of DNA delivery. We argue that suitable tools which allow for the nuclear detection of faint signals are still missing, hampering the rational development of more efficient non-viral transfection systems.
Collapse
Affiliation(s)
- Christina Greitens
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
3
|
Oehler J, Morrow CA, Whitby MC. Gene duplication and deletion caused by over-replication at a fork barrier. Nat Commun 2023; 14:7730. [PMID: 38007544 PMCID: PMC10676400 DOI: 10.1038/s41467-023-43494-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023] Open
Abstract
Replication fork stalling can provoke fork reversal to form a four-way DNA junction. This remodelling of the replication fork can facilitate repair, aid bypass of DNA lesions, and enable replication restart, but may also pose a risk of over-replication during fork convergence. We show that replication fork stalling at a site-specific barrier in fission yeast can induce gene duplication-deletion rearrangements that are independent of replication restart-associated template switching and Rad51-dependent multi-invasion. Instead, they resemble targeted gene replacements (TGRs), requiring the DNA annealing activity of Rad52, the 3'-flap nuclease Rad16-Swi10, and mismatch repair protein Msh2. We propose that excess DNA, generated during the merging of a canonical fork with a reversed fork, can be liberated by a nuclease and integrated at an ectopic site via a TGR-like mechanism. This highlights how over-replication at replication termination sites can threaten genome stability in eukaryotes.
Collapse
Affiliation(s)
- Judith Oehler
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Carl A Morrow
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
4
|
Karami Fath M, Karimfar N, Fazlollahpour Naghibi A, Shafa S, Ghasemi Shiran M, Ataei M, Dehghanzadeh H, Nabi Afjadi M, Ghadiri T, Payandeh Z, Tarhriz V. Revisiting characteristics of oncogenic extrachromosomal DNA as mobile enhancers on neuroblastoma and glioma cancers. Cancer Cell Int 2022; 22:200. [PMID: 35614494 PMCID: PMC9131661 DOI: 10.1186/s12935-022-02617-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer can be induced by a variety of possible causes, including tumor suppressor gene failure and proto-oncogene hyperactivation. Tumor-associated extrachromosomal circular DNA has been proposed to endanger human health and speed up the progression of cancer. The amplification of ecDNA has raised the oncogene copy number in numerous malignancies according to whole-genome sequencing on distinct cancer types. The unusual structure and function of ecDNA, and its potential role in understanding current cancer genome maps, make it a hotspot to study tumor pathogenesis and evolution. The discovery of the basic mechanisms of ecDNA in the emergence and growth of malignancies could lead researchers to develop new cancer therapies. Despite recent progress, different aspects of ecDNA require more investigation. We focused on the features, and analyzed the bio-genesis, and origin of ecDNA in this review, as well as its functions in neuroblastoma and glioma cancers.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nastaran Karimfar
- Faculty of Veterinary Medicine, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | | | - Shahriyar Shafa
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Melika Ghasemi Shiran
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehran Ataei
- Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran. .,Neurosiences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Thakur BL, Ray A, Redon CE, Aladjem MI. Preventing excess replication origin activation to ensure genome stability. Trends Genet 2022; 38:169-181. [PMID: 34625299 PMCID: PMC8752500 DOI: 10.1016/j.tig.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/03/2023]
Abstract
Cells activate distinctive regulatory pathways that prevent excessive initiation of DNA replication to achieve timely and accurate genome duplication. Excess DNA synthesis is constrained by protein-DNA interactions that inhibit initiation at dormant origins. In parallel, specific modifications of pre-replication complexes prohibit post-replicative origin relicensing. Replication stress ensues when the controls that prevent excess replication are missing in cancer cells, which often harbor extrachromosomal DNA that can be further amplified by recombination-mediated processes to generate chromosomal translocations. The genomic instability that accompanies excess replication origin activation can provide a promising target for therapeutic intervention. Here we review molecular pathways that modulate replication origin dormancy, prevent excess origin activation, and detect, encapsulate, and eliminate persistent excess DNA.
Collapse
Affiliation(s)
- Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anagh Ray
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
6
|
Petrashova DA, Kolomeichuk SN. Effect of Angiotensin-I Converting Enzyme Gene Insertion/Deletion Polymorphism on genome instability in children living in Russian Arctic. Klin Lab Diagn 2021; 66:635-640. [PMID: 34665951 DOI: 10.51620/0869-2084-2021-66-10-635-640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Main risks of arterial hypertension manifest in childhood. Children living in the Far North are especially susceptible to this. There is a need for an inexpensive, non-invasive and simple diagnosis of the risk of childhood pathologies. It was previously found that the genotype DD of the in/del polymorphic marker of the ACE gene is found in people at risk of developing cardiovascular pathologies. Buccal micronucleus cytome assay and genetic analysis were used in the work. In total, 77 schoolchildren from the city of Apatity, aged 15-17 years old, were examined. We have shown that carriers of the D allele have a tendency to an increase in the frequency of cells with micronuclei. In the case of homozygous I/I variant, the frequency of occurrence of cells with karyopycnosis is significantly higher than in carriers of allele D. Polymorphic marker in/del of the ACE gene is associated with apoptotic changes in the cells of the studied children. The in/del polymorphic marker of the ACE gene can be used as a prognostic marker of the processes of genome destabilization at the early stages of development of the human body.
Collapse
Affiliation(s)
| | - S N Kolomeichuk
- Karelian Science Center, Russian Academy of Sciences
- Nothern State Medical University
| |
Collapse
|
7
|
Monnery BD. Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules 2021; 22:4060-4083. [PMID: 34498457 DOI: 10.1021/acs.biomac.1c00697] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyplex-mediated gene transfection is now in its' fourth decade of serious research, but the promise of polyplex-mediated gene therapy has yet to fully materialize. Only approximately one in a million applied plasmids actually expresses. A large part of this is due to an incomplete understanding of the mechanism of polyplex transfection. There is an assumption that internalization must follow a canonical mechanism of receptor mediated endocytosis. Herein, we present arguments that untargeted (and most targeted) polyplexes do not utilize these routes. By incorporating knowledge of syndecan-polyplex interactions, we can show that syndecans are the "target" for polyplexes. Further, it is known that free polycations (which disrupt cell-membranes by acid-catalyzed hydrolysis of phospholipid esters) are necessary for (untargeted) endocytosis. This can be incorporated into the model to produce a novel mechanism of endocytosis, which fits the observed phenomenology. After membrane translocation, polyplex containing vesicles reach the endosome after diffusing through the actin mesh below the cell membrane. From there, they are acidified and trafficked toward the lysosome. Some polyplexes are capable of escaping the endosome and unpacking, while others are not. Herein, it is argued that for some polycations, as acidification proceeds the polyplexes excluding free polycations, which disrupt the endosomal membrane by acid-catalyzed hydrolysis, allowing the polyplex to escape. The polyplex's internal charge ratio is now insufficient for stability and it releases plasmids which diffuse to the nucleus. A small proportion of these plasmids diffuse through the nuclear pore complex (NPC), with aggregation being the major cause of loss. Those plasmids that have diffused through the NPC will also aggregate, and this appears to be the reason such a small proportion of nuclear plasmids express mRNA. Thus, the structural features which promote unpacking in the endosome and allow for endosomal escape can be determined, and better polycations can be designed.
Collapse
Affiliation(s)
- Bryn D Monnery
- Department of Organic and (Bio)Polymer Chemistry, Hasselt University, Building F, Agoralaan 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
8
|
Gene Amplification and the Extrachromosomal Circular DNA. Genes (Basel) 2021; 12:genes12101533. [PMID: 34680928 PMCID: PMC8535887 DOI: 10.3390/genes12101533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Oncogene amplification is closely linked to the pathogenesis of a broad spectrum of human malignant tumors. The amplified genes localize either to the extrachromosomal circular DNA, which has been referred to as cytogenetically visible double minutes (DMs), or submicroscopic episome, or to the chromosomal homogeneously staining region (HSR). The extrachromosomal circle from a chromosome arm can initiate gene amplification, resulting in the formation of DMs or HSR, if it had a sequence element required for replication initiation (the replication initiation region/matrix attachment region; the IR/MAR), under a genetic background that permits gene amplification. In this article, the nature, intracellular behavior, generation, and contribution to cancer genome plasticity of such extrachromosomal circles are summarized and discussed by reviewing recent articles on these topics. Such studies are critical in the understanding and treating human cancer, and also for the production of recombinant proteins such as biopharmaceuticals by increasing the recombinant genes in the cells.
Collapse
|
9
|
Mao M, Chang CC, Pickar-Oliver A, Cervia LD, Wang L, Ji J, Liton PB, Gersbach CA, Yuan F. Redirecting Vesicular Transport to Improve Nonviral Delivery of Molecular Cargo. ADVANCED BIOSYSTEMS 2020; 4:e2000059. [PMID: 33179869 PMCID: PMC7747957 DOI: 10.1002/adbi.202000059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Indexed: 01/09/2023]
Abstract
Cell engineering relies heavily on viral vectors for the delivery of molecular cargo into cells due to their superior efficiency compared to nonviral ones. However, viruses are immunogenic and expensive to manufacture, and have limited delivery capacity. Nonviral delivery approaches avoid these limitations but are currently inefficient for clinical applications. This work demonstrates that the efficiency of nonviral delivery of plasmid DNA, mRNA, Sleeping Beauty transposon, and ribonucleoprotein can be significantly enhanced through pretreatment of cells with the nondegradable sugars (NDS), such as sucrose, trehalose, and raffinose. The enhancement is mediated by the incorporation of the NDS into cell membranes, causing enlargement of lysosomes and formation of large (>500 nm) amphisome-like bodies (ALBs). The changes in subcellular structures redirect transport of cargo to ALBs rather than to lysosomes, reducing cargo degradation in cells. The data indicate that pretreatment of cells with NDS is a promising approach to improve nonviral cargo delivery in biomedical applications.
Collapse
Affiliation(s)
- Mao Mao
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Adrian Pickar-Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Lisa D Cervia
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jing Ji
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Paloma B Liton
- Department of Ophthalmology, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Department of Ophthalmology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
10
|
Ain Q, Schmeer C, Wengerodt D, Witte OW, Kretz A. Extrachromosomal Circular DNA: Current Knowledge and Implications for CNS Aging and Neurodegeneration. Int J Mol Sci 2020; 21:E2477. [PMID: 32252492 PMCID: PMC7177960 DOI: 10.3390/ijms21072477] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Still unresolved is the question of how a lifetime accumulation of somatic gene copy number alterations impact organ functionality and aging and age-related pathologies. Such an issue appears particularly relevant in the broadly post-mitotic central nervous system (CNS), where non-replicative neurons are restricted in DNA-repair choices and are prone to accumulate DNA damage, as they remain unreplaced over a lifetime. Both DNA injuries and consecutive DNA-repair strategies are processes that can evoke extrachromosomal circular DNA species, apparently from either part of the genome. Due to their capacity to amplify gene copies and related transcripts, the individual cellular load of extrachromosomal circular DNAs will contribute to a dynamic pool of additional coding and regulatory chromatin elements. Analogous to tumor tissues, where the mosaicism of circular DNAs plays a well-characterized role in oncogene plasticity and drug resistance, we suggest involvement of the "circulome" also in the CNS. Accordingly, we summarize current knowledge on the molecular biogenesis, homeostasis and gene regulatory impacts of circular extrachromosomal DNA and propose, in light of recent discoveries, a critical role in CNS aging and neurodegeneration. Future studies will elucidate the influence of individual extrachromosomal DNA species according to their sequence complexity and regional distribution or cell-type-specific abundance.
Collapse
Affiliation(s)
- Quratul Ain
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
| | - Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Diane Wengerodt
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Alexandra Kretz
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| |
Collapse
|
11
|
Oobatake Y, Shimizu N. Double-strand breakage in the extrachromosomal double minutes triggers their aggregation in the nucleus, micronucleation, and morphological transformation. Genes Chromosomes Cancer 2020; 59:133-143. [PMID: 31569279 DOI: 10.1002/gcc.22810] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/27/2019] [Accepted: 09/15/2019] [Indexed: 01/09/2023] Open
Abstract
Gene amplification plays a pivotal role in malignant transformation. Amplified genes often reside on extrachromosomal double minutes (DMs). Low-dose hydroxyurea induces DM aggregation in the nucleus which, in turn, generates micronuclei composed of DMs. Low-dose hydroxyurea also induces random double-strand breakage throughout the nucleus. In the present study, we found that double-strand breakage in DMs is sufficient for induction of DM aggregation. Here, we used CRISPR/Cas9 to introduce specific breakages in both natural and artificially tagged DMs of human colorectal carcinoma COLO 320DM cells. Aggregation occurred in the S phase but not in the G1 phase within 4 hours after breakage, which suggested the possible involvement of homologous recombination in the aggregation of numerous DMs. Simultaneous detection of DMs and the phosphorylated histone H2AX revealed that the aggregation persisted after breakage repair. Thus, the aggregate generated cytoplasmic micronuclei at the next interphase. Our data also suggested that micronuclear entrapment eliminated the DMs or morphologically transformed them into giant DMs or homogeneously staining regions (HSRs). In this study, we obtained a model explaining the consequences of DMs after double-strand breakage in cancer cells. Because double-strand breakage is frequently involved in cancer therapy, the model suggests how it affects gene amplification.
Collapse
Affiliation(s)
- Yoshihiro Oobatake
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Recent advances in micro/nanoscale intracellular delivery. NANOTECHNOLOGY AND PRECISION ENGINEERING 2020. [DOI: 10.1016/j.npe.2019.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Shimizu N, Kapoor R, Naniwa S, Sakamaru N, Yamada T, Yamamura YK, Utani KI. Generation and maintenance of acentric stable double minutes from chromosome arms in inter-species hybrid cells. BMC Mol Cell Biol 2019; 20:2. [PMID: 31041889 PMCID: PMC6446505 DOI: 10.1186/s12860-019-0186-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extrachromosomal acentric double minutes (DMs) contribute to human malignancy by carrying amplified oncogenes. Recent cancer genomics revealed that the pulverization of defined chromosome arms (chromothripsis) may generate DMs, however, nobody had actually generated DMs from chromosome arm in culture. Human chromosomes are lost in human-rodent hybrid cells. RESULTS We found that human acentric DMs with amplified c-myc were stable in human-rodent hybrid cells, although the degree of stability depended on the specific rodent cell type. Based on this finding, stable human-rodent hybrids were efficiently generated by tagging human DMs with a plasmid with drug-resistance gene. After cell fusion, human chromosomes were specifically pulverised and lost. Consistent with chromothripsis, pulverization of human chromosome arms was accompanied by the incorporation into micronuclei. Such micronucleus showed different replication timing from the main nucleus. Surprisingly, we found that the hybrid cells retained not only the original DMs, but also new DMs without plasmid-tag and c-myc, but with human Alu. These DMs were devoid of telomeres and centromeres, and were stable in culture for more than 3 months. Microarray analysis showed that the new DMs were generated from several human chromosomal regions containing genes advantageous for cellular growth. Such regions were completely different from the original DMs. CONCLUSIONS The inter-species hybrid mimics the chromothripsis in culture. This is the first report that experimentally demonstrates the generation of multiple stable acentric DMs from the chromosome arm.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan.
| | - Rita Kapoor
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Shuhei Naniwa
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Naoto Sakamaru
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Taku Yamada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - You-Ki Yamamura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Koh-Ichi Utani
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan.,Present address; Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
14
|
Kruitwagen T, Chymkowitch P, Denoth-Lippuner A, Enserink J, Barral Y. Centromeres License the Mitotic Condensation of Yeast Chromosome Arms. Cell 2018; 175:780-795.e15. [PMID: 30318142 PMCID: PMC6197839 DOI: 10.1016/j.cell.2018.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022]
Abstract
During mitosis, chromatin condensation shapes chromosomes as separate, rigid, and compact sister chromatids to facilitate their segregation. Here, we show that, unlike wild-type yeast chromosomes, non-chromosomal DNA circles and chromosomes lacking a centromere fail to condense during mitosis. The centromere promotes chromosome condensation strictly in cis through recruiting the kinases Aurora B and Bub1, which trigger the autonomous condensation of the entire chromosome. Shugoshin and the deacetylase Hst2 facilitated spreading the condensation signal to the chromosome arms. Targeting Aurora B to DNA circles or centromere-ablated chromosomes or releasing Shugoshin from PP2A-dependent inhibition bypassed the centromere requirement for condensation and enhanced the mitotic stability of DNA circles. Our data indicate that yeast cells license the chromosome-autonomous condensation of their chromatin in a centromere-dependent manner, excluding from this process non-centromeric DNA and thereby inhibiting their propagation.
Collapse
Affiliation(s)
- Tom Kruitwagen
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Pierre Chymkowitch
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | | | - Jorrit Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Faculty of Medicine, Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Faculty of Mathematics and Natural Sciences, Department of Biosciences, University of Oslo, Norway
| | - Yves Barral
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
15
|
Kurywchak P, Kalluri R. An evolving function of DNA-containing exosomes in chemotherapy-induced immune response. Cell Res 2017; 27:722-723. [PMID: 28524163 DOI: 10.1038/cr.2017.74] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chemotherapy is a predominant strategy to treat cancer and is often associated with toxicities like severe diarrhea that puts patients at additional risk and can hinder treatment strategies. Lian et al. recently explored the immune-mediated mechanisms of Irinotecan-induced diarrhea in colorectal cancer and found that double-stranded DNA in small vesicles can launch inflammation pathways in immune cells through the cytosolic DNA sensor AIM2.
Collapse
Affiliation(s)
- Paul Kurywchak
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| |
Collapse
|
16
|
Kisurina-Evgenieva OP, Sutiagina OI, Onishchenko GE. Biogenesis of Micronuclei. BIOCHEMISTRY (MOSCOW) 2017; 81:453-64. [PMID: 27297896 DOI: 10.1134/s0006297916050035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The presence of micronuclei in a cell is an indicator of DNA damage and genetic instability. In this review, mechanisms of emergence of micronuclei, their functional activity, and pathways of elimination are discussed. It is supposed that morphological and functional varieties of micronuclei as well as their degradation pathways can be determined by the chromosomal material localized inside these cell structures.
Collapse
|
17
|
Rapid nuclear import of short nucleic acids. Bioorg Med Chem Lett 2016; 26:4568-4570. [PMID: 27597250 DOI: 10.1016/j.bmcl.2016.08.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 01/12/2023]
Abstract
Exogenous short-chain nucleic acids undergo rapid import into the nucleus. Fluorescence-labeled dT1-13 DNA microinjected into the cytoplasm domain of a HeLa cell was rapidly imported into the nucleus domain within 1min. This is much more rapid than what has been observed for intracellular diffusion of small molecules. In contrast, import of longer nucleic acids with a length of over 30nt into the nucleus was suppressed.
Collapse
|
18
|
Miremadi F, Sherkat F, Stojanovska L. Hypocholesterolaemic effect and anti-hypertensive properties of probiotics and prebiotics: A review. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
19
|
Asymmetric partitioning of transfected DNA during mammalian cell division. Proc Natl Acad Sci U S A 2016; 113:7177-82. [PMID: 27298340 DOI: 10.1073/pnas.1606091113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Foreign DNA molecules and chromosomal fragments are generally eliminated from proliferating cells, but we know little about how mammalian cells prevent their propagation. Here, we show that dividing human and canine cells partition transfected plasmid DNA asymmetrically, preferentially into the daughter cell harboring the young centrosome. Independently of how they entered the cell, most plasmids clustered in the cytoplasm. Unlike polystyrene beads of similar size, these clusters remained relatively immobile and physically associated to endoplasmic reticulum-derived membranes, as revealed by live cell and electron microscopy imaging. At entry of mitosis, most clusters localized near the centrosomes. As the two centrosomes split to assemble the bipolar spindle, predominantly the old centrosome migrated away, biasing the partition of the plasmid cluster toward the young centrosome. Down-regulation of the centrosomal proteins Ninein and adenomatous polyposis coli abolished this bias. Thus, we suggest that DNA clustering, cluster immobilization through association to the endoplasmic reticulum membrane, initial proximity between the cluster and centrosomes, and subsequent differential behavior of the two centrosomes together bias the partition of plasmid DNA during mitosis. This process leads to their progressive elimination from the proliferating population and might apply to any kind of foreign DNA molecule in mammalian cells. Furthermore, the functional difference of the centrosomes might also promote the asymmetric partitioning of other cellular components in other mammalian and possibly stem cells.
Collapse
|
20
|
Sugawara K, Shinohara H, Kadoya T, Kuramitz H. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe. Anal Chim Acta 2016; 924:106-113. [DOI: 10.1016/j.aca.2016.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/09/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
|
21
|
Wolf C, Rapp A, Berndt N, Staroske W, Schuster M, Dobrick-Mattheuer M, Kretschmer S, König N, Kurth T, Wieczorek D, Kast K, Cardoso MC, Günther C, Lee-Kirsch MA. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA. Nat Commun 2016; 7:11752. [PMID: 27230542 PMCID: PMC4895045 DOI: 10.1038/ncomms11752] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/26/2016] [Indexed: 11/15/2022] Open
Abstract
Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA. A central antiviral defence is immune recognition of cystolic DNA. Here the authors show that RPA and RAD51, in cooperation with TREX1, function to protect the cytosol from self-DNA.
Collapse
Affiliation(s)
- Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexander Rapp
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nicole Berndt
- Department of Dermatology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wolfgang Staroske
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Max Schuster
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Manuela Dobrick-Mattheuer
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefanie Kretschmer
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nadja König
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Thomas Kurth
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.,Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Heinrich-Heine-University, Medical Faculty, 40225 Düsseldorf, Germany
| | - Karin Kast
- Department of Gynecology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - M Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Claudia Günther
- Department of Dermatology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
22
|
Roy P, Mukherjee A, Giri S. Evaluation of genetic damage in tobacco and arsenic exposed population of Southern Assam, India using buccal cytome assay and comet assay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:169-176. [PMID: 26517729 DOI: 10.1016/j.ecoenv.2015.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Ground water is the principal source of drinking water in Assam. Ground water contamination of arsenic in drinking water is a great concern for human health and considered as a human carcinogen. The present cytogenetic biomonitoring study was undertaken to investigate the genotoxic effects associated with people of southern Assam consuming arsenic contaminated water and chewing tobacco. Employing the buccal cytome assay, exfoliated cells were analyzed in 138 individuals of age range 22-42 years and divided into four groups. Group I (n=54) are participants residing in localities where ground water contains arsenic concentration below the permissible limit (<10μg/l) and without any tobacco chewing history. Group II (n=32) participants from the same area but they are tobacco chewers. Group III (n=24) participants from localities where significantly high arsenic contamination in ground water were observed. Whereas the Group IV (n=28) consists of participants from the arsenic contaminated area and also tobacco chewers. Body mass index (BMI) in all the groups are found to be nearly same and in normal range. Statistically significant (P<0.001) increase in genotoxic, cell death parameters and cell proliferation biomarkers were observed in the Group IV compared to other groups. In the comet assay, percent of tail DNA gradually increases among the groups and has statistical significance. Spearman correlation revealed strong positive correlation between the arsenic exposed peoples and the binucleated cells (r=0.4763; P<0.001). Amount of chewing tobacco had significant positive correlation with micronucleus frequency (r=0.268; P<0.05) and karyolitic cells (r=0.217; P<0.05) and also in the percentage of tail DNA (r=0.5532, P<0.001). A statistically significant increase in glucose content and decrease in hemoglobin content as well as acetylcholine esterase in the blood of exposed individuals was observed. Our preliminary study indicate that population exposed to arsenic through drinking water may become more susceptible towards chewing tobacco induced nuclear damage as evaluated by buccal cytome assay and comet assay.
Collapse
Affiliation(s)
- Prasenjit Roy
- Laboratory of Genetic Toxicology and Environmental Health, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India.
| | - Anita Mukherjee
- Laboratory of Cell Biology and Genetic Toxicology, Department of Genetics, Ballygunge Science College, University of Calcutta, Kolkata, India
| | - Sarbani Giri
- Laboratory of Genetic Toxicology and Environmental Health, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
23
|
Qiu GH. Genome defense against exogenous nucleic acids in eukaryotes by non-coding DNA occurs through CRISPR-like mechanisms in the cytosol and the bodyguard protection in the nucleus. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:31-41. [DOI: 10.1016/j.mrrev.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/22/2015] [Accepted: 01/03/2016] [Indexed: 02/07/2023]
|
24
|
Rombouts K, Braeckmans K, Remaut K. Fluorescent Labeling of Plasmid DNA and mRNA: Gains and Losses of Current Labeling Strategies. Bioconjug Chem 2015; 27:280-97. [PMID: 26670733 DOI: 10.1021/acs.bioconjchem.5b00579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Live-cell imaging has provided the life sciences with insights into the cell biology and dynamics. Fluorescent labeling of target molecules proves to be indispensable in this regard. In this Review, we focus on the current fluorescent labeling strategies for nucleic acids, and in particular mRNA (mRNA) and plasmid DNA (pDNA), which are of interest to a broad range of scientific fields. By giving a background of the available techniques and an evaluation of the pros and cons, we try to supply scientists with all the information needed to come to an informed choice of nucleic acid labeling strategy aimed at their particular needs.
Collapse
Affiliation(s)
- K Rombouts
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Braeckmans
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Remaut
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| |
Collapse
|
25
|
Characterization of exogenous DNA mobility in live cells through fluctuation correlation spectroscopy. Sci Rep 2015; 5:13848. [PMID: 26354725 PMCID: PMC4564760 DOI: 10.1038/srep13848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/04/2015] [Indexed: 12/28/2022] Open
Abstract
The spatial-temporal dynamics of delivered DNA is a critical aspect influencing successful gene delivery. A comprehensive model of DNA lipoplex trafficking through live cells has yet to be demonstrated. Here the bioimaging approaches Raster Image Correlation Spectroscopy (RICS) and image-Means Square Displacement (iMSD) were applied to quantify DNA mechanical dynamics in live cells. DNA lipoplexes formed from DNA with a range of 21 bp to 5.5 kbp exhibited a similar range of motion within the cytoplasm of myoblast cells regardless of size. However, the rate of motion was dictated by the intracellular location, and DNA cluster size. This analysis demonstrated that the different transport mechanisms either had a size dependent mobility, including random diffusion, whereas other mechanisms were not influenced by the DNA size such as active transport. The transport mechanisms identified followed a spatial dependence comparable to viral trafficking of non-active transport mechanism upon cellular entry, active transport within the cytoplasm and further inactive transportation along the peri-nuclear region. This study provides the first real-time insight into the trafficking of DNA delivered through lipofection using image-based fluctuation correlation spectroscopy approaches. Thereby, gaining information with single particle sensitivity to develop a deeper understanding of DNA lipoplex delivery through the cell.
Collapse
|
26
|
Kwon H, Park HS, Yu J, Hong S, Choi Y. Spatio-temporally controlled transfection by quantitative injection into a single cell. Biomaterials 2015. [PMID: 26222285 DOI: 10.1016/j.biomaterials.2015.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transfection-based cellular control has been widely used in biology; however, conventional transfection methods cannot control spatio-temporal differences in gene expression or the quantity of delivered materials such as external DNA or RNA. Here, we present a non-viral and spatio-temporally controlled transfection technique of a quantitative injection into a single cell. DNA was quantitatively injected into a single cell at a desired location and time, and the optimal gene delivery and expression conditions were determined based on the amount of the delivered DNA and the transfection efficacy. Interestingly, an injection of 1500 DNAs produced an about average 30% gene expression efficiency, which was the optimal condition, and gene expression was sustained for more than 14 days. In a single cell, fluorescent intensity and polymerase chain reaction (PCR) results were compared for the quantity of gene expression. The high coincidence of both results suggests that the fluorescence intensity can reveal gene expression level which was investigated by PCR. In addition, 3 multiple DNA genes were successfully expressed in a single cell with different ratio. Overall, these results demonstrate that spatio-temporally controlled transfection by quantitative transfection is a useful technique for regulating gene expression in a single cell, which suggests that this technique may be used for stem cell research, including the creation of induced pluripotent stem (iPS) cells.
Collapse
Affiliation(s)
- Hyosung Kwon
- Department of Bio-convergence Engineering, Korea University, Seoul 136-701, South Korea
| | - Hang-soo Park
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 136-701, South Korea
| | - Jewon Yu
- Department of Biomedical Engineering, Korea University, Seoul 136-701, South Korea
| | - Sunghoi Hong
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 136-701, South Korea; School of Biosystem and Biomedical Science, Korea University, Seoul 136-701, South Korea.
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul 136-701, South Korea; Department of Biomedical Engineering, Korea University, Seoul 136-701, South Korea.
| |
Collapse
|
27
|
Poking cells for efficient vector-free intracellular delivery. Nat Commun 2014; 5:4466. [DOI: 10.1038/ncomms5466] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 06/19/2014] [Indexed: 02/07/2023] Open
|
28
|
Sánchez-Siles M, Camacho-Alonso F, Ros-Llor I, López-Jornet P. Cytogenetic biomonitoring in oral leukoplakia patients with mild dysplasia. Int J Dermatol 2014; 53:1454-9. [DOI: 10.1111/ijd.12223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mariano Sánchez-Siles
- Department of Oral Medicine; University of Murcia; Murcia Spain
- Department of Dentistry; University of Murcia; Murcia Spain
| | - Fabio Camacho-Alonso
- Department of Oral Medicine; University of Murcia; Murcia Spain
- Department of Dentistry; University of Murcia; Murcia Spain
| | - Irene Ros-Llor
- Department of Oral Medicine; University of Murcia; Murcia Spain
- Department of Dentistry; University of Murcia; Murcia Spain
| | - Pia López-Jornet
- Department of Oral Medicine; University of Murcia; Murcia Spain
- Department of Dentistry; University of Murcia; Murcia Spain
| |
Collapse
|
29
|
Abstract
Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the two distinct ways to organize chromosomes are driven by the differences between the global-consecutive chromosome cycle of eukaryotes and the local-concurrent chromosome cycle of prokaryotes. Specifically, progressive chromosome segregation in prokaryotes demands a single duplicon per chromosome, while other "precarious" features of the prokaryotic chromosomes can be viewed as compensations for this severe restriction.
Collapse
|
30
|
Changes in buccal micronucleus cytome parameters associated with smokeless tobacco and pesticide exposure among female tea garden workers of Assam, India. Int J Hyg Environ Health 2014; 217:169-75. [DOI: 10.1016/j.ijheh.2013.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 03/20/2013] [Accepted: 04/16/2013] [Indexed: 11/21/2022]
|
31
|
Rattan R, Vaidyanathan S, Wu GSH, Shakya A, Orr BG, Banaszak Holl MM. Polyplex-induced cytosolic nuclease activation leads to differential transgene expression. Mol Pharm 2013; 10:3013-22. [PMID: 23834286 DOI: 10.1021/mp400103f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytosolic nucleases have been proposed to play an important role in limiting the effectiveness of polyplex-based gene delivery agents. In order to explore the effect of cell membrane disruption on nuclease activation, nuclease activity upon polyplex uptake and localization, and nuclease activity upon gene expression, we employed an oligonucleotide molecular beacon (MB). The MB was incorporated as an integral part of the polymer/DNA polyplex, and two-color flow cytometry experiments were performed to explore the relationship of MB cleavage with propidium iodide (PI) uptake, protein expression, and polyplex uptake. In addition, confocal fluorescence microcopy was performed to examine both polyplex and cleaved MB localization. The impact of cell membrane disruption was also probed using whole-cell patch clamp measurement of the plasma membrane's electrical conductance. Differential activation of cytosolic nuclease was observed with substantial activity for B-PEI and G5 PAMAM dendrimer (G5), less cleavage for jetPEI, and little activity for L-PEI. jetPEI and L-PEI exhibited substantially greater transgene expression, consistent with the lower amounts of MB oligonucleotide cleavage observed. Cytosolic nuclease activity, although dependent on the choice of polymer employed, was not related to the degree of cell plasma membrane disruption that occurred as measured by PI uptake or whole-cell patch clamp.
Collapse
Affiliation(s)
- Rahul Rattan
- Department of Biomedical Engineering, Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan , Ann Arbor, Michigan 48019, United States
| | | | | | | | | | | |
Collapse
|
32
|
Togashi R, Harashima H, Kamiya H. Correlation between transgen expression and plasmid DNA loss in mouse liver. J Gene Med 2013; 15:242-8. [DOI: 10.1002/jgm.2716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ryohei Togashi
- Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo; Japan
| | | | | |
Collapse
|
33
|
Symens N, Soenen SJ, Rejman J, Braeckmans K, De Smedt SC, Remaut K. Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Adv Drug Deliv Rev 2012; 64:78-94. [PMID: 22210278 DOI: 10.1016/j.addr.2011.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 02/06/2023]
Abstract
The nucleocytoplasmic partitioning of nanoparticles as a result of cell division is highly relevant to the field of nonviral gene delivery. We reviewed the literature on the intracellular distribution of cell organelles (the endosomal vesicles, Golgi apparatus, endoplasmic reticulum and nucleus), foreign macromolecules (dextrans and plasmid DNA) and inorganic nanoparticles (gold, quantum dot and iron oxide) during mitosis. For nonviral gene delivery particles (lipid- or polymer-based), indirect proof of nuclear entry during mitosis is provided. We also describe how retroviruses and latent DNA viruses take advantage of mitosis to transfer their viral genome and segregate their episomes into the host daughter nuclei. Based on this knowledge, we propose strategies to improve nonviral gene delivery in dividing cells with the ultimate goal of designing nonviral gene delivery systems that are as efficient as their viral counterparts but non-immunogenic, non-oncogenic and easy and inexpensive to prepare.
Collapse
Affiliation(s)
- Nathalie Symens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
34
|
Utani KI, Okamoto A, Shimizu N. Generation of micronuclei during interphase by coupling between cytoplasmic membrane blebbing and nuclear budding. PLoS One 2011; 6:e27233. [PMID: 22073297 PMCID: PMC3206950 DOI: 10.1371/journal.pone.0027233] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/12/2011] [Indexed: 11/22/2022] Open
Abstract
Micronucleation, mediated by interphase nuclear budding, has been repeatedly suggested, but the process is still enigmatic. In the present study, we confirmed the previous observation that there are lamin B1-negative micronuclei in addition to the positive ones. A large cytoplasmic bleb was found to frequently entrap lamin B1-negative micronuclei, which were connected to the nucleus by a thin chromatin stalk. At the bottom of the stalk, the nuclear lamin B1 structure appeared broken. Chromatin extrusion through lamina breaks has been referred to as herniation or a blister of the nucleus, and has been observed after the expression of viral proteins. A cell line in which extrachromosomal double minutes and lamin B1 protein were simultaneously visualized in different colors in live cells was established. By using these cells, time-lapse microscopy revealed that cytoplasmic membrane blebbing occurred simultaneously with the extrusion of nuclear content, which generated lamin B1-negative micronuclei during interphase. Furthermore, activation of cytoplasmic membrane blebbing by the addition of fresh serum or camptothecin induced nuclear budding within 1 to 10 minutes, which suggested that blebbing might be the cause of the budding. After the induction of blebbing, the frequency of lamin-negative micronuclei increased. The budding was most frequent during S phase and more efficiently entrapped small extrachromosomal chromatin than the large chromosome arm. Based on these results, we suggest a novel mechanism in which cytoplasmic membrane dynamics pulls the chromatin out of the nucleus through the lamina break. Evidence for such a mechanism was obtained in certain cancer cell lines including human COLO 320 and HeLa. The mechanism could significantly perturb the genome and influence cancer cell phenotypes.
Collapse
Affiliation(s)
- Koh-ichi Utani
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Atsushi Okamoto
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| |
Collapse
|
35
|
Sanchez-Siles M, Ros-Llor I, Camacho-Alonso F, Lopez-Jornet P. A novel application of the buccal micronucleus cytome assay in oral lichen planus: A pilot study. Arch Oral Biol 2011; 56:1148-53. [DOI: 10.1016/j.archoralbio.2011.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/08/2011] [Accepted: 02/26/2011] [Indexed: 11/29/2022]
|
36
|
Eldib M, Dean DA. Cyclic stretch of alveolar epithelial cells alters cytoskeletal micromechanics. Biotechnol Bioeng 2011; 108:446-53. [PMID: 20830684 DOI: 10.1002/bit.22941] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cytoplasmic transport of large molecules such as plasmid DNA (pDNA) has been shown to increase when cells are subjected to mild levels of cyclic stretch for brief periods. In the case of pDNA, this is in part due to the increased active transport of pDNA along stabilized, acetylated microtubules in the cytoplasm, whose levels are increased in response to stretch. It also has been shown that disruption of the dense actin network leads to increased pDNA and macromolecule diffusion as well. We hypothesize that stretch not only increases active transport of pDNA but also, similar to actin disrupting drugs, decreases cytoplasmic stiffness leading to a less restive pathway for macromolecules to diffuse. To test this we used particle tracking microrheology to measure cytoplasmic mechanics. We conclude that while cyclic stretch transiently decreases cytoplasmic stiffness and increases diffusivity, stretch-independent modulation of the levels of acetylated, stable microtubules has no effect on cytoplasmic stiffness. Furthermore, stretching cells that have maximally acetylated microtubules increases cytoplasmic trafficking of pDNA, without increasing levels of acetylated microtubules. These findings suggest that stretch-enhanced gene transfer may occur by two independent mechanisms: increased levels of acetylated microtubules for directed active transport, and reduced cytoplasmic stiffness for increased diffusion.
Collapse
Affiliation(s)
- Mootaz Eldib
- Department of Biomedical Engineering, University of Rochester, New York, USA
| | | |
Collapse
|
37
|
Shimizu N. Molecular mechanisms of the origin of micronuclei from extrachromosomal elements. Mutagenesis 2011; 26:119-23. [PMID: 21164192 DOI: 10.1093/mutage/geq053] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In addition to micronuclei that are formed from chromosomal material (the chromosome-type micronuclei), there are also micronuclei formed from extrachromosomal elements [the double minute (DM)-type micronuclei]. These two types of micronuclei are distinct entities, which exist and arise independently in a cell. A DM is a large extrachromosomal element that consists of amplified genes that are commonly seen in cancer cells; the aggregates of DMs can eventually be expressed as DM-type micronuclei. The question of how the DM-type micronuclei arise was answered by uncovering the quite unique intracellular behaviour of DMs during the cell cycle progression. This behaviour of DMs appeared to be common among the broad spectrum of extrachromosomal elements of endogenous, exogenous or artificial origin. Therefore, studying the biology of DM-type micronuclei will enable us to understand how these extrachromosomal structures may be retained within a cell or expelled from the nucleus and eliminated from the cell. This knowledge could also be used for the treatment of cancers and the development of a new mammalian host-vector system.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521 Japan.
| |
Collapse
|
38
|
Abstract
The Buccal Micronucleus Cytome (BMCyt) assay is a new minimally invasive system for studying DNA damage, chromosomal instability, cell death, and the regenerative potential of buccal mucosal tissue. This method is increasingly being used in molecular epidemiologic studies investigating the impact of nutrition, life-style factors, genotoxin exposure, and genotype on DNA damage and cell death. Biomarkers of this assay have been associated with increased risk for accelerated aging, cancer, and neurodegenerative diseases. This protocol describes the current established methods for buccal cell collection, slide preparation, cellular and nuclear staining, and scoring criteria.
Collapse
|
39
|
Ooi LG, Liong MT. Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 2010; 11:2499-522. [PMID: 20640165 PMCID: PMC2904929 DOI: 10.3390/ijms11062499] [Citation(s) in RCA: 389] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 05/26/2010] [Accepted: 06/16/2010] [Indexed: 01/12/2023] Open
Abstract
Probiotics are live microorganisms that promote health benefits upon consumption, while prebiotics are nondigestible food ingredients that selectively stimulate the growth of beneficial microorganisms in the gastrointestinal tract. Probiotics and/or prebiotics could be used as alternative supplements to exert health benefits, including cholesterol-lowering effects on humans. Past in vivo studies showed that the administration of probiotics and/or prebiotics are effective in improving lipid profiles, including the reduction of serum/plasma total cholesterol, LDL-cholesterol and triglycerides or increment of HDL-cholesterol. However, other past studies have also shown that probiotics and prebiotics had insignificant effects on lipid profiles, disputing the hypocholesterolemic claim. Additionally, little information is available on the effective dosage of probiotics and prebiotics needed to exert hypocholesterolemic effects. Probiotics and prebiotics have been suggested to reduce cholesterol via various mechanisms. However, more clinical evidence is needed to strengthen these proposals. Safety issues regarding probiotics and/or prebiotics have also been raised despite their long history of safe use. Although probiotic-mediated infections are rare, several cases of systemic infections caused by probiotics have been reported and the issue of antibiotic resistance has sparked much debate. Prebiotics, classified as food ingredients, are generally considered safe, but overconsumption could cause intestinal discomfort. Conscientious prescription of probiotics and/or prebiotics is crucial, especially when administering to specific high risk groups such as infants, the elderly and the immuno-compromised.
Collapse
Affiliation(s)
- Lay-Gaik Ooi
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; E-Mail:
| | - Min-Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; E-Mail:
| |
Collapse
|
40
|
Lachish-Zalait A, Lau CK, Fichtman B, Zimmerman E, Harel A, Gaylord MR, Forbes DJ, Elbaum M. Transportin mediates nuclear entry of DNA in vertebrate systems. Traffic 2010; 10:1414-28. [PMID: 19761539 DOI: 10.1111/j.1600-0854.2009.00968.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Delivery of DNA to the cell nucleus is an essential step in many types of viral infection, transfection, gene transfer by the plant pathogen Agrobacterium tumefaciens and in strategies for gene therapy. Thus, the mechanism by which DNA crosses the nuclear pore complex (NPC) is of great interest. Using nuclei reconstituted in vitro in Xenopus egg extracts, we previously studied DNA passage through the nuclear pores using a single-molecule approach based on optical tweezers. Fluorescently labeled DNA molecules were also seen to accumulate within nuclei. Here we find that this import of DNA relies on a soluble protein receptor of the importin family. To identify this receptor, we used different pathway-specific cargoes in competition studies as well as pathway-specific dominant negative inhibitors derived from the nucleoporin Nup153. We found that inhibition of the receptor transportin suppresses DNA import. In contrast, inhibition of importin beta has little effect on the nuclear accumulation of DNA. The dependence on transportin was fully confirmed in assays using permeabilized HeLa cells and a mammalian cell extract. We conclude that the nuclear import of DNA observed in these different vertebrate systems is largely mediated by the receptor transportin. We further report that histones, a known cargo of transportin, can act as an adaptor for the binding of transportin to DNA.
Collapse
Affiliation(s)
- Aurelie Lachish-Zalait
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, Fenech M. Buccal micronucleus cytome assay. Nat Protoc 2009; 4:825-37. [DOI: 10.1038/nprot.2009.53] [Citation(s) in RCA: 381] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Chen HH, Ho YP, Jiang X, Mao HQ, Wang TH, Leong KW. Simultaneous Non-invasive Analysis of DNA Condensation and Stability by Two-step QD-FRET. NANO TODAY 2009; 4:125-134. [PMID: 20161048 PMCID: PMC2746678 DOI: 10.1016/j.nantod.2009.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoscale vectors comprised of cationic polymers that condense DNA to form nanocomplexes are promising options for gene transfer. The rational design of more efficient nonviral gene carriers will be possible only with better mechanistic understanding of the critical rate-limiting steps, such as nanocomplex unpacking to release DNA and degradation by nucleases. We present a two-step quantum dot fluorescence resonance energy transfer (two-step QD-FRET) approach to simultaneously and non-invasively analyze DNA condensation and stability. Plasmid DNA, double-labeled with QD (525 nm emission) and nucleic acid dyes, were complexed with Cy5-labeled cationic gene carriers. The QD donor drives energy transfer stepwise through the intermediate nucleic acid dye to the final acceptor Cy5. At least three distinct states of DNA condensation and integrity were distinguished in single particle manner and within cells by quantitative ratiometric analysis of energy transfer efficiencies. This novel two-step QD-FRET method allows for more detailed assessment of the onset of DNA release and degradation simultaneously.
Collapse
Affiliation(s)
- Hunter H. Chen
- Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD
- Dept. of Biomedical Engineering, Duke University, Durham, NC
| | - Yi-Ping Ho
- Dept. of Mechanical Engineering, Johns Hopkins University, Baltimore, MD
- Dept. of Biomedical Engineering, Duke University, Durham, NC
| | - Xuan Jiang
- Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD
| | - Hai-Quan Mao
- Dept. of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD
| | - Tza-Huei Wang
- Dept. of Mechanical Engineering, Johns Hopkins University, Baltimore, MD
| | - Kam W. Leong
- Dept. of Biomedical Engineering, Duke University, Durham, NC
| |
Collapse
|
43
|
Wagstaff KM, Jans DA. Nucleocytoplasmic transport of DNA: enhancing non-viral gene transfer. Biochem J 2007; 406:185-202. [PMID: 17680778 DOI: 10.1042/bj20070505] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene therapy, the correction of dysfunctional or deleted genes by supplying the lacking component, has long been awaited as a means to permanently treat or reverse many genetic disorders. To achieve this, therapeutic DNA must be delivered to the nucleus of cells using a safe and efficient delivery vector. Although viral-based vectors have been utilized extensively due to their innate ability to deliver DNA to intact cells, safety considerations, such as pathogenicity, oncogenicity and the stimulation of an immunological response in the host, remain problematical. There has, however, been much progress in the development of safe non-viral gene-delivery vectors, although they remain less efficient than the viral counterparts. The major limitations of non-viral gene transfer reside in the fact that it must be tailored to overcome the intracellular barriers to DNA delivery that viruses already master, including the cellular and nuclear membranes. In particular, nuclear transport of the therapeutic DNA is known to be the rate-limiting step in the gene-delivery process. Despite this, much progress had been made in recent years in developing novel means to overcome these barriers and efficiently deliver DNA to the nuclei of intact cells. This review focuses on the nucleocytoplasmic delivery of DNA and mechanisms to enhance to non-viral-mediated gene transfer.
Collapse
Affiliation(s)
- Kylie M Wagstaff
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | |
Collapse
|
44
|
Thomas P, Harvey S, Gruner T, Fenech M. The buccal cytome and micronucleus frequency is substantially altered in Down's syndrome and normal ageing compared to young healthy controls. Mutat Res 2007; 638:37-47. [PMID: 17920640 DOI: 10.1016/j.mrfmmm.2007.08.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/20/2007] [Accepted: 08/21/2007] [Indexed: 11/30/2022]
Abstract
The buccal micronucleus cytome assay was used to investigate biomarkers for DNA damage, cell death and basal cell frequency in buccal cells of healthy young, healthy old and young Down's syndrome cohorts. With normal ageing a significant increase in cells with micronuclei (P<0.05, average increase +366%), karyorrhectic cells (P<0.001, average increase +439%), condensed chromatin cells (P<0.01, average increase +45.8%) and basal cells (P<0.001, average increase +233%) is reported relative to young controls. In Down's syndrome we report a significant increase in cells with micronuclei (P<0.001, average increase +733%) and binucleated cells (P<0.001, average increase +84.5%) and a significant decrease in condensed chromatin cells (P<0.01, average decrease -52%), karyolytic cells (P<0.001, average decrease -51.8%) and pyknotic cells (P<0.001, average decrease -75.0%) relative to young controls. These changes show distinct differences between the cytome profile of normal ageing relative to that for a premature ageing syndrome, and highlight the diagnostic value of the cytome approach for measuring the profile of cells with DNA damage, cell death and proportion of cells with proliferative potential (i.e., basal cells). Significant correlations amongst cell death biomarkers observed in this study were used to propose a new model of the inter-relationship of cell types scored within the buccal micronucleus cytome assay. This study validates the use of a cytome approach to investigate DNA damage, cell death and cell proliferation in buccal cells with ageing.
Collapse
Affiliation(s)
- Philip Thomas
- CSIRO Human Nutrition, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia.
| | | | | | | |
Collapse
|
45
|
Utani KI, Kawamoto JK, Shimizu N. Micronuclei bearing acentric extrachromosomal chromatin are transcriptionally competent and may perturb the cancer cell phenotype. Mol Cancer Res 2007; 5:695-704. [PMID: 17606478 DOI: 10.1158/1541-7786.mcr-07-0031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extrachromosomal double minutes (DM) bear amplified genes that contribute to the malignancy of human cancer cells. A novel intracellular behavior of DMs resulted in their selective entrapment within micronuclei; opening the vista, this could perturb the cancer cell phenotype if genes located on DMs were expressed in micronuclei. Here, using fluorescence in situ hybridization, we detected transcripts in DM-enriched micronuclei. Visualization of DMs and their transcripts in live cells showed that DMs are as actively transcribed in the micronuclei and nuclei. Moreover, pulse-incorporated bromouridine was detected in the micronuclei, and the transcripts eventually exited from the micronuclei, similar to the behavior of nuclear transcripts. This apparently normal pattern of gene expression in DM-enriched micronuclei was restricted to micronuclei associated with lamin B, and lamin B association was more frequent for micronuclei that incorporated DMs than for those that incorporated a chromosome arm. The frequency of lamin B-associated micronuclei increased after entry into S phase, and accordingly, there was a concomitant increase in transcription in micronuclei. Taken together, these results indicate that the expression of genes on DMs can be temporally altered by their incorporation into micronuclei. This may be relevant for a broad spectrum of other extrachromosomal elements.
Collapse
Affiliation(s)
- Koh-ichi Utani
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima 739-8521, Japan
| | | | | |
Collapse
|
46
|
Shimizu N, Misaka N, Utani KI. Nonselective DNA damage induced by a replication inhibitor results in the selective elimination of extrachromosomal double minutes from human cancer cells. Genes Chromosomes Cancer 2007; 46:865-74. [PMID: 17616968 DOI: 10.1002/gcc.20473] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene amplification plays a pivotal role in human malignancy. Highly amplified genes frequently localize to extrachromosomal double minutes (dmin), which usually segregate to daughter cells in association with mitotic chromosomes. We and others had shown that treatment with low-dose hydroxyurea (HU) results in the elimination of dmin and reversion of the cancer cell phenotype. HU treatment in early S-phase, when dmin are replicated, results in their detachment from chromosomes at the next M-phase, leading to the appearance of micronuclei enriched in dmin, followed by their elimination. In this article, we examined the effect of low-dose HU on the behavior of dmin in relation to DNA damage induction by simultaneously monitoring LacO-tagged dmin and phosphorylated histone H2AX (gammaH2AX). As expected, treatment with low-dose HU induced numerous gammaH2AX foci throughout the nucleus in early S-phase, and these rarely coincided with dmin. Most chromosomal gammaH2AX foci disappeared by metaphase, whereas, unexpectedly, those that persisted frequently associated with dmin. We found that these dmin aggregated, detached from anaphase chromosomes, and apparently formed micronuclei. Because gammaH2AX foci likely represent DNA double strand breaks (DSBs), the response to DSBs sustained by extrachromosomal dmin appears to be different from that sustained by chromosomal loci, which may explain why DSB-inducing agents cause the selective elimination of dmin.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, Japan.
| | | | | |
Collapse
|
47
|
Choi HS, Kim HH, Yang JM, Shin S. An insight into the gene delivery mechanism of the arginine peptide system: Role of the peptide/DNA complex size. Biochim Biophys Acta Gen Subj 2006; 1760:1604-12. [PMID: 17064849 DOI: 10.1016/j.bbagen.2006.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Revised: 08/31/2006] [Accepted: 09/13/2006] [Indexed: 11/21/2022]
Abstract
Cationic peptides have been used successfully to transfer macromolecules into living cells. Previously, we have reported a short arginine peptide-based gene delivery system. However, the mechanisms that allow arginine peptides to promote gene delivery yet remain unknown. In the present study, we investigated the effect of the arginine peptide/DNA complex size on the transfection efficiency. After combining peptides with DNA, a 400 nm complex was observed. As the incubation time was increased, the complex grew larger, reaching 6 microm after 1 h of incubation. Transfection and cellular uptake efficiency were likewise investigated for the effects of the different sizes of complexes. Large complexes were found to be advantageous for transfection. However, better internalization efficiency was found with small complexes, indicating that the amount of peptide/DNA complexes taken up by cells is not the rate-limiting step in the final transfection efficiency. The intracellular path of the peptide/DNA complex was studied using fluorescent labeling and confocal microscopy. In the early stages of transfection, complexes were observed only on the cell surface, and these complexes migrated into cytoplasm however, after 6 h, the presence of complexes in the perinuclear region was noted. We were able to detect colocalization of green and red fluorescence in both the cytoplasm and the nucleus. These results suggest that peptide/DNA complexes reach the nucleus as associated complexes.
Collapse
Affiliation(s)
- Hong Seok Choi
- Department of Life Science, Sogang University, Shinsu-Dong, Mapo-Gu, Seoul 121-742, Korea
| | | | | | | |
Collapse
|
48
|
Lechardeur D, Lukacs GL. Nucleocytoplasmic transport of plasmid DNA: a perilous journey from the cytoplasm to the nucleus. Hum Gene Ther 2006; 17:882-9. [PMID: 16972756 DOI: 10.1089/hum.2006.17.882] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonviral vectors represent a promising approach for the safe delivery of therapeutic DNA in genetic and acquired human diseases. Before synthetic vector systems can be used for clinical applications, their limited efficacy must be addressed. At the cellular level, successful gene transfer is dependent on several additional factors including DNA uptake, release from the DNA-vector complex, and nucleocytoplasmic transport. This paper reviews the major metabolic and physical impediments that plasmid DNA vectorized by synthetic vectors encounters between the cytosol and the nucleus. Plasmid DNA that escapes the endolysosomal compartment encounters the diffusional and metabolic barriers of the cytoplasm, reducing the number of intact plasmids that reach the nuclear envelope. Nuclear translocation of DNA requires either the disassembly of the nuclear envelope during cell division or active nuclear transport via the nuclear pore complex. In the nucleus, plasmid DNA is relatively stable, but its transcription and its fate during cell division are still debated. A better understanding of the cellular and molecular basis of nonviral gene transfer during nucleocytoplasmic trafficking may provide strategies to overcome those obstacles that limit the efficiency of nonviral gene delivery. We review some of the current methods of gene transfer mediated by synthetic vectors, highlighting systems that exploit our actual knowledge of the nucleocytoplasmic transport of plasmid DNA.
Collapse
Affiliation(s)
- Delphine Lechardeur
- Hospital for Sick Children, Program in Cell and Lung Biology, Department of Biochemistry and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5G 1X8 Canada.
| | | |
Collapse
|
49
|
Perspectives of micronuclear test in human lymphocytes cultivated in cytogenetic block conditions. Part 1: Cell proliferation. ACTA ACUST UNITED AC 2006. [DOI: 10.17816/ecogen437-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cultivation of human blood lymphocytes under the conditions of cytokinetic block with cytochalasin B creates unique opportunity to analyze the total spectrum of the changes describing genome instability. The main task of the present publication is the analysis of a modern state, opportunities and outlooks of the micronuclear test on human blood lymphocytes. The special attention is given those directions of researches which are rather seldom present in the literature - to laws of cellular proliferation, to existence of physiological conditionality and genetic predisposition to development of effects of genome instability; to effects of emotional stress and the adaptive response to action of ionizing irradiation, etc. The material is presented in 2 consecutive publications. It is finished with discussion of methodical features of statement of culture, results of the microscopic analysis and ideology of creation of the conclusions of the study.
Collapse
|
50
|
Lechardeur D, Lukacs GL. Nucleocytoplasmic Transport of Plasmid DNA: A Perilous Journey from the Cytoplasm to the Nucleus. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|