1
|
Narducci DN, Hansen AS. Putative looping factor ZNF143/ZFP143 is an essential transcriptional regulator with no looping function. Mol Cell 2025; 85:9-23.e9. [PMID: 39708803 DOI: 10.1016/j.molcel.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/20/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Interactions between distal loci, including those involving enhancers and promoters, are a central mechanism of gene regulation in mammals, yet the protein regulators of these interactions remain largely undetermined. The zinc-finger transcription factor (TF) ZNF143/ZFP143 has been strongly implicated as a regulator of chromatin interactions, functioning either with or without CTCF. However, how ZNF143/ZFP143 functions as a looping factor is not well understood. Here, we tagged both CTCF and ZNF143/ZFP143 with dual-purpose degron/imaging tags to combinatorially assess their looping function and effect on each other. We find that ZNF143/ZFP143, contrary to prior reports, possesses no general looping function in mouse and human cells and that it largely functions independently of CTCF. Instead, ZNF143/ZFP143 is an essential and highly conserved transcription factor that largely binds promoters proximally, exhibits an extremely stable chromatin dwell time (>20 min), and regulates an important subset of mitochondrial and ribosomal genes.
Collapse
Affiliation(s)
- Domenic N Narducci
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Hu S, Song Y, Li X, Chen Q, Tang B, Chen J, Yang G, Yan H, Wang J, Wang W, Hu J, He H, Li L, Wang J. Comparative transcriptomics analysis identifies crucial genes and pathways during goose spleen development. Front Immunol 2024; 15:1327166. [PMID: 38375472 PMCID: PMC10875100 DOI: 10.3389/fimmu.2024.1327166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
As the largest peripheral lymphoid organ in poultry, the spleen plays an essential role in regulating the body's immune capacity. However, compared with chickens and ducks, information about the age- and breed-related changes in the goose spleen remains scarce. In this study, we systematically analyzed and compared the age-dependent changes in the morphological, histological, and transcriptomic characteristics between Landes goose (LG; Anser anser) and Sichuan White goose (SWG; Anser cygnoides). The results showed a gradual increase in the splenic weights for both LG and SWG until week 10, while their splenic organ indexes reached the peak at week 6. Meanwhile, the splenic histological indexes of both goose breeds continuously increased with age, reaching the highest levels at week 30. The red pulp (RP) area was significantly higher in SWG than in LG at week 0, while the splenic corpuscle (AL) diameter was significantly larger in LG than in SWG at week 30. At the transcriptomic level, a total of 1710 and 1266 differentially expressed genes (DEGs) between week 0 and week 30 were identified in spleens of LG and SWG, respectively. Meanwhile, a total of 911 and 808 DEGs in spleens between LG and SWG were identified at weeks 0 and 30, respectively. Both GO and KEGG enrichment analysis showed that the age-related DEGs of LG or SWG were dominantly enriched in the Cell cycle, TGF-beta signaling, and Wnt signaling pathways, while most of the breed-related DEGs were enriched in the Neuroactive ligand-receptor interaction, Cytokine-cytokine receptor interaction, ECM-receptor interaction, and metabolic pathways. Furthermore, through construction of protein-protein interaction networks using significant DEGs, it was inferred that three hub genes including BUB1, BUB1B, and TTK could play crucial roles in regulating age-dependent goose spleen development while GRIA2, GRIA4, and RYR2 could be crucial for the breed-specific goose spleen development. These data provide novel insights into the splenic developmental differences between Chinese and European domestic geese, and the identified crucial pathways and genes are helpful for a better understanding of the mechanisms regulating goose immune functions.
Collapse
Affiliation(s)
- Shenqiang Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yang Song
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaopeng Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingliang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bincheng Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiasen Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guang Yang
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Haoyu Yan
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junqi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wanxia Wang
- Department of Animal Production, General Station of Animal Husbandry of Sichuan Province, Chengdu, China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Li X, Wang W, Ding X. Pan-cancer investigation of psoriasis-related BUB1B gene: genetical alteration and oncogenic immunology. Sci Rep 2023; 13:6058. [PMID: 37055476 PMCID: PMC10102166 DOI: 10.1038/s41598-023-33174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/08/2023] [Indexed: 04/15/2023] Open
Abstract
Unknown factors contribute to psoriasis' hyperproliferative, chronic, inflammatory, and arthritic features. Psoriasis patients have been linked to an increased risk of cancer, though the underlying genetics remain unknown. Since our prior research indicated that BUB1B contributes to the development of psoriasis, we designed and carried out this investigation using bioinformatics analysis. Using the TCGA database, we investigated the oncogenic function of BUB1B in 33 tumor types. To sum up, our work sheds light on BUB1B's function in pan-cancer from various perspectives, including its pertinent signaling pathways, mutation locations, and connection to immune cell infiltration. BUB1B was shown to have a non-negligible role in pan-cancer, which is connected to immunology, cancer stemness, and genetic alterations in a variety of cancer types. BUB1B is highly expressed in a variety of cancers and may serve as a prognostic marker. This study is anticipated to offer molecular details on the elevated cancer risk that psoriasis sufferers experience.
Collapse
Affiliation(s)
- Xiaobin Li
- Department of Orthopedic Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenwen Wang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiaoxia Ding
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Zhang N, Hu Q, Sui T, Fu L, Zhang X, Wang Y, Zhu X, Huang B, Lu J, Li Z, Zhang Y. Unique progerin C-terminal peptide ameliorates Hutchinson-Gilford progeria syndrome phenotype by rescuing BUBR1. NATURE AGING 2023; 3:185-201. [PMID: 36743663 PMCID: PMC10154249 DOI: 10.1038/s43587-023-00361-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/04/2023] [Indexed: 04/30/2023]
Abstract
An accumulating body of evidence indicates an association between mitotic defects and the aging process in Hutchinson-Gilford progeria syndrome (HGPS), which is a premature aging disease caused by progerin accumulation. Here, we found that BUBR1, a core component of the spindle assembly checkpoint, was downregulated during HGPS cellular senescence. The remaining BUBR1 was anchored to the nuclear membrane by binding with the C terminus of progerin, thus further limiting the function of BUBR1. Based on this, we established a unique progerin C-terminal peptide (UPCP) that effectively blocked the binding of progerin and BUBR1 and enhanced the expression of BUBR1 by interfering with the interaction between PTBP1 and progerin. Finally, UPCP significantly inhibited HGPS cellular senescence and ameliorated progeroid phenotypes, extending the lifespan of LmnaG609G/G609G mice. Our findings reveal an essential role for the progerin-PTBP1-BUBR1 axis in HGPS. Therapeutics designed around UPCP may be a beneficial strategy for HGPS treatment.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Qianying Hu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Tingting Sui
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| | - Lu Fu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xinglin Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yu Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Baiqu Huang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jun Lu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China.
| | - Yu Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China.
| |
Collapse
|
5
|
Liu S, Cao Y, Cui K, Tang Q, Zhao K. Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops. Nat Commun 2022; 13:6679. [PMID: 36335136 PMCID: PMC9637178 DOI: 10.1038/s41467-022-34276-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
The three-dimensional genomic structure plays a critical role in gene expression, cellular differentiation, and pathological conditions. It is pivotal to elucidate fine-scale chromatin architectures, especially interactions of regulatory elements, to understand the temporospatial regulation of gene expression. In this study, we report Hi-TrAC as a proximity ligation-free, robust, and sensitive technique to profile genome-wide chromatin interactions at high-resolution among regulatory elements. Hi-TrAC detects chromatin looping among accessible regions at single nucleosome resolution. With almost half-million identified loops, we reveal a comprehensive interaction network of regulatory elements across the genome. After integrating chromatin binding profiles of transcription factors, we discover that cohesin complex and CTCF are responsible for organizing long-range chromatin loops, related to domain formation; whereas ZNF143 and HCFC1 are involved in structuring short-range chromatin loops between regulatory elements, which directly regulate gene expression. Thus, we introduce a methodology to identify a delicate and comprehensive network of cis-regulatory elements, revealing the complexity and a division of labor of transcription factors in organizing chromatin loops for genome organization and gene expression.
Collapse
Affiliation(s)
- Shuai Liu
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Yaqiang Cao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Kairong Cui
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Qingsong Tang
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Keji Zhao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
6
|
Ye B, Shen W, Zhang C, Yu M, Ding X, Yin M, Wang Y, Guo X, Bai G, Lin K, Shi S, Li P, Zhang Y, Yu G, Zhao Z. The role of ZNF143 overexpression in rat liver cell proliferation. BMC Genomics 2022; 23:483. [PMID: 35780101 PMCID: PMC9250731 DOI: 10.1186/s12864-022-08714-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Zinc finger protein 143(ZNF143), a member of the Krüppel C2H2-type zinc finger protein family, is strongly associated with cell cycle regulation and cancer development. A recent study suggested that ZNF143 plays as a transcriptional activator that promotes hepatocellular cancer (HCC) cell proliferation and cell cycle transition. However, the exact biological role of ZNF143 in liver regeneration and normal liver cell proliferation has not yet been investigated. Methods In our study, we constructed a stable rat liver cell line (BRL-3A) overexpressing ZNF143 and then integrated RNA-seq and Cleavage Under Targets and Tagmentation (CUT&Tag) data to identify the mechanism underlying differential gene expression. Results Our results show that ZNF143 expression is upregulated during the proliferation phase of liver regeneration after 2/3 partial hepatectomy (PH). The cell counting kit-8 (CCK-8) assay, EdU staining and RNA-seq data analyses revealed that ZNF143 overexpression (OE) significantly inhibited BRL-3A cell proliferation and cell cycle progression. We then performed CUT&Tag assays and found that approximately 10% of ZNF143-binding sites (BSs) were significantly changed genome-wide by ZNF143 OE. However, CCCTC-binding factor (CTCF) binding to chromatin was not affected. Interestingly, the integration analysis of RNA-seq and CUT&Tag data showed that some of genes affected by ZNF143 differential BSs are in the center of each gene regulation module. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these genes are critical in the maintenance of cell identity. Conclusion These results indicated that the expression level of ZNF143 in the liver is important for the maintenance of cell identity. ZNF143 plays different roles in HCC and normal liver cells and may be considered as a potential therapeutic target in liver disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08714-2.
Collapse
Affiliation(s)
- Bingyu Ye
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.,Fengtai District, Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, 100071, China
| | - Wenlong Shen
- Fengtai District, Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, 100071, China
| | - Chunyan Zhang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Mengli Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Xinru Ding
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Man Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yahao Wang
- Fengtai District, Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, 100071, China
| | - Xinjie Guo
- Fengtai District, Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, 100071, China
| | - Ge Bai
- Fengtai District, Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, 100071, China
| | - Kailin Lin
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.,Fengtai District, Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, 100071, China
| | - Shu Shi
- Fengtai District, Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, 100071, China
| | - Ping Li
- Fengtai District, Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, 100071, China
| | - Yan Zhang
- Fengtai District, Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, 100071, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Zhihu Zhao
- Fengtai District, Beijing Institute of Biotechnology, No. 20, Dongdajie Street, Beijing, 100071, China.
| |
Collapse
|
7
|
Zhou X, Yuan Y, Kuang H, Tang B, Zhang H, Zhang M. BUB1B (BUB1 Mitotic Checkpoint Serine/Threonine Kinase B) Promotes Lung Adenocarcinoma by Interacting with Zinc Finger Protein ZNF143 and Regulating Glycolysis. Bioengineered 2022; 13:2471-2485. [PMID: 35068350 PMCID: PMC8974056 DOI: 10.1080/21655979.2021.2013108] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common causes of cancer death in men. BUB1B (BUB1 mitotic checkpoint serine/threonine kinase B) has been reported to contribute to the initiation and development of several cancers. Here, we aimed to explore the potential role of BUB1B in LUAD. We found BUB1B was upregulated in LUAD, suggesting its potential role as a biomarker for LUAD diagnosis. Significantly, LUAD patients with high BUB1B expression had a shorter survival time than those with low BUB1B expression. Knocking-out BUB1B resulted in suppression of cell proliferation, migration, and invasion in vitro, and inhibition of tumor growth in the xenograft experiment. Further analysis revealed that BUB1B regulates glycolysis in LUAD and interacting with ZNF143 in LUAD cells. The interaction was demonstrated by silencing ZNF143, which led to a decrease in proliferation, migration, and invasion in LUAD cells, whereas overexpressing BUB1B had the opposite effects. Our study suggested that the ZNF143/BUB1B axis plays a pivotal role in LUAD progression, which might be a potential target for LUAD management.
Collapse
Affiliation(s)
- Xiaolei Zhou
- Department of respiratory and critical medicine, Henan Chest Hospital, Zhengzhou, P.R. China
| | - Yanli Yuan
- Department of respiratory and critical medicine, Henan Chest Hospital, Zhengzhou, P.R. China
| | - Hongping Kuang
- Department of respiratory and critical medicine, Henan Chest Hospital, Zhengzhou, P.R. China
| | - Bingxiang Tang
- Department of respiratory and critical medicine, Henan Chest Hospital, Zhengzhou, P.R. China
| | - Hui Zhang
- Department of respiratory and critical medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Manlin Zhang
- Department of respiratory and critical medicine, Henan Chest Hospital, Zhengzhou, P.R. China
| |
Collapse
|
8
|
Komura K, Inamoto T, Tsujino T, Matsui Y, Konuma T, Nishimura K, Uchimoto T, Tsutsumi T, Matsunaga T, Maenosono R, Yoshikawa Y, Taniguchi K, Tanaka T, Uehara H, Hirata K, Hirano H, Nomi H, Hirose Y, Ono F, Azuma H. Increased BUB1B/BUBR1 expression contributes to aberrant DNA repair activity leading to resistance to DNA-damaging agents. Oncogene 2021; 40:6210-6222. [PMID: 34545188 PMCID: PMC8553621 DOI: 10.1038/s41388-021-02021-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
There has been accumulating evidence for the clinical benefit of chemoradiation therapy (CRT), whereas mechanisms in CRT-recurrent clones derived from the primary tumor are still elusive. Herein, we identified an aberrant BUB1B/BUBR1 expression in CRT-recurrent clones in bladder cancer (BC) by comprehensive proteomic analysis. CRT-recurrent BC cells exhibited a cell-cycle-independent upregulation of BUB1B/BUBR1 expression rendering an enhanced DNA repair activity in response to DNA double-strand breaks (DSBs). With DNA repair analyses employing the CRISPR/cas9 system, we revealed that cells with aberrant BUB1B/BUBR1 expression dominantly exploit mutagenic nonhomologous end joining (NHEJ). We further found that phosphorylated ATM interacts with BUB1B/BUBR1 after ionizing radiation (IR) treatment, and the resistance to DSBs by increased BUB1B/BUBR1 depends on the functional ATM. In vivo, tumor growth of CRT-resistant T24R cells was abrogated by ATM inhibition using AZD0156. A dataset analysis identified FOXM1 as a putative BUB1B/BUBR1-targeting transcription factor causing its increased expression. These data collectively suggest a redundant role of BUB1B/BUBR1 underlying mutagenic NHEJ in an ATM-dependent manner, aside from the canonical activity of BUB1B/BUBR1 on the G2/M checkpoint, and offer novel clues to overcome CRT resistance.
Collapse
Affiliation(s)
- Kazumasa Komura
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan. .,Translational Research Program, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan.
| | - Teruo Inamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Takuya Tsujino
- Division of Urology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Yusuke Matsui
- Biomedical and Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 461-8673, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Kazuki Nishimura
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Taizo Uchimoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Takeshi Tsutsumi
- Division of Urology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Tomohisa Matsunaga
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Ryoichi Maenosono
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Yuki Yoshikawa
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Kohei Taniguchi
- Translational Research Program, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Tomohito Tanaka
- Translational Research Program, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Hirofumi Uehara
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Koichi Hirata
- Department of Pathology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Hajime Hirano
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Hayahito Nomi
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Fumihito Ono
- Translational Research Program, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan.,Department of Physiology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, 569-8686, Japan
| |
Collapse
|
9
|
Lai MC, Zhu QQ, Xu J, Zhang WJ. Experimental and clinical evidence suggests that GRPEL2 plays an oncogenic role in HCC development. Am J Cancer Res 2021; 11:4175-4198. [PMID: 34659882 PMCID: PMC8493396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) continues to cause severe burden worldwide. The limited options especially toward HCC with metastasis prompts us to identify novel molecules for either diagnostic/prognostic or therapeutic purposes. GRPEL2 is well defined in maintaining mitochondrial homeostasis, which is critical to multiple biological processes for cancer survival. However, its role in HCC progression was not investigated before. In our analysis using data from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA LIHC) dataset and tissue microarray, higher expression levels of GRPEL2 were obseved in HCC tissues compared to in normal liver tissues, and indicated higher tumor grade, higher tumor stage, and shorter overall survival (OS). Consistent with the results of above analyses, the functional experiments validated that GRPEL2 acted as a tumor-promoting factor in HCC progression. GRPEL2 knockdown suppressed cell growth, migration, and invasion in vitro, as well as inhibited tumor growth in vivo. Moreover, GRPEL2 deficiency also accelerated reactive oxygen species (ROS) production and increased mitochondrial membrane potential (MMP), leading to cell apoptosis. In addition, we found that the cell cycle and NF-κB signaling pathways were responsible for GRPEL2-induced HCC progression, based on the results of Gene Set Enrichment Analysis (GSEA) and subsequent experimental validation. Our study, for the first time, identified the role of GRPEL2 in HCC development and provided a compelling biomarker for targted therapy in HCC treatment.
Collapse
Affiliation(s)
- Ming-Chun Lai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310003, China
| | - Qian-Qian Zhu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Jun Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310003, China
| | - Wen-Jin Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310003, China
| |
Collapse
|
10
|
Jiang W, Xu J, Liao Z, Li G, Zhang C, Feng Y. Prognostic Signature for Lung Adenocarcinoma Patients Based on Cell-Cycle-Related Genes. Front Cell Dev Biol 2021; 9:655950. [PMID: 33869220 PMCID: PMC8044954 DOI: 10.3389/fcell.2021.655950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To screen lung adenocarcinoma (LUAC)-specific cell-cycle-related genes (CCRGs) and develop a prognostic signature for patients with LUAC. Methods The GSE68465, GSE42127, and GSE30219 data sets were downloaded from the GEO database. Single-sample gene set enrichment analysis was used to calculate the cell cycle enrichment of each sample in GSE68465 to identify CCRGs in LUAC. The differential CCRGs compared with LUAC data from The Cancer Genome Atlas were determined. The genetic data from GSE68465 were divided into an internal training group and a test group at a ratio of 1:1, and GSE42127 and GSE30219 were defined as external test groups. In addition, we combined LASSO (least absolute shrinkage and selection operator) and Cox regression analysis with the clinical information of the internal training group to construct a CCRG risk scoring model. Samples were divided into high- and low-risk groups according to the resulting risk values, and internal and external test sets were used to prove the validity of the signature. A nomogram evaluation model was used to predict prognosis. The CPTAC and HPA databases were chosen to verify the protein expression of CCRGs. Results We identified 10 LUAC-specific CCRGs (PKMYT1, ETF1, ECT2, BUB1B, RECQL4, TFRC, COCH, TUBB2B, PITX1, and CDC6) and constructed a model using the internal training group. Based on this model, LUAC patients were divided into high- and low-risk groups for further validation. Time-dependent receiver operating characteristic and Cox regression analyses suggested that the signature could precisely predict the prognosis of LUAC patients. Results obtained with CPTAC, HPA, and IHC supported significant dysregulation of these CCRGs in LUAC tissues. Conclusion This prognostic prediction signature based on CCRGs could help to evaluate the prognosis of LUAC patients. The 10 LUAC-specific CCRGs could be used as prognostic markers of LUAC.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiameng Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zirui Liao
- Medical College, Orthopedic Institute, Soochow University, Suzhou, China
| | - Guangbin Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Wang Y, Zhou Z, Chen L, Li Y, Zhou Z, Chu X. Identification of key genes and biological pathways in lung adenocarcinoma via bioinformatics analysis. Mol Cell Biochem 2021; 476:931-939. [PMID: 33130972 DOI: 10.1007/s11010-020-03959-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Lung adenocarcinoma (LUAD) accounts for the majority of cancer-related deaths worldwide. Our study identified key LUAD genes and their potential mechanism via bioinformatics analysis of public datasets. GSE10799, GSE40791, and GSE27262 microarray datasets were retrieved from the Gene Expression Omnibus (GEO) database. The RobustRankAggreg package was used to perform a meta-analysis, and 50 upregulated genes and 87 downregulated genes overlapped in three datasets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Furthermore, protein-protein interaction (PPI) networks of the differentially expressed genes (DEGs) were built by the Search Tool for the Retrieval of Interacting Genes (STRING) and 22 core genes were identified by Molecular Complex Detection (MCODE) and visualized with Cytoscape. Subsequently, these core genes were analyzed by the Kaplan-Meier Plotter and Gene Expression Profiling Interactive Analysis (GEPIA). The results showed that all 22 genes were significantly associated with reduced survival rates. For GEPIA, the expression of only one gene was not significantly different between LUAD tissues and normal tissues. A KEGG pathway enrichment reanalysis of the 21 genes identified five key genes (CCNB1, BUB1B, CDC20, TTK, and MAD2L1) in the cell cycle pathway. Finally, the Comparative Toxicogenomics Database (CTD) website was used to explore the relationship between these key genes and certain drugs. Based on the bioinformatics analysis, five key genes were identified in LUAD, and drugs closely associated these genes can provide clues for the treatment and prognosis of LUAD.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, P. R. China
| | - Zihao Zhou
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, P. R. China
| | - Liang Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, P. R. China
| | - Yuzheng Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, P. R. China
| | - Zengyuan Zhou
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, P. R. China
| | - Xia Chu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, P. R. China.
| |
Collapse
|
12
|
Huning L, Kunkel GR. The ubiquitous transcriptional protein ZNF143 activates a diversity of genes while assisting to organize chromatin structure. Gene 2020; 769:145205. [PMID: 33031894 DOI: 10.1016/j.gene.2020.145205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
Zinc Finger Protein 143 (ZNF143) is a pervasive C2H2 zinc-finger transcriptional activator protein regulating the efficiency of eukaryotic promoter regions. ZNF143 is able to activate transcription at both protein coding genes and small RNA genes transcribed by either RNA polymerase II or RNA polymerase III. Target genes regulated by ZNF143 are involved in an array of different cellular processes including both cancer and development. Although a key player in regulating eukaryotic genes, the molecular mechanism by with ZNF143 binds and activates genes transcribed by two different polymerases is still relatively unknown. In addition to its role as a transcriptional regulator, recent genomics experiments have implicated ZNF143 as a potential co-factor involved in chromatin looping and establishing higher order structure within the genome. This review focuses primarily on possible activation mechanisms of promoters by ZNF143, with less emphasis on the role of ZNF143 in cancer and development, and its function in establishing higher order chromatin contacts within the genome.
Collapse
Affiliation(s)
- Laura Huning
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Gary R Kunkel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
13
|
Transcriptome Analysis Reveals the Negative Effect of 16 T High Static Magnetic Field on Osteoclastogenesis of RAW264.7 Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5762932. [PMID: 32309435 PMCID: PMC7140147 DOI: 10.1155/2020/5762932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 01/05/2023]
Abstract
The magnetic field is the most common element in the universe, and high static magnetic field (HiSMF) has been reported to act as an inhibited factor for osteoclasts differentiation. Although many studies have indicated the negative role of HiSMF on osteoclastogenesis of RANKL-induced RAW264.7 cells, the molecular mechanism is still elusive. In this study, the HiSMF-retarded cycle and weakened differentiation of RAW264.7 cells was identified. Through RNA-seq analysis, RANKL-induced RAW264.7 cells under HiSMF were analysed, and a total number of 197 differentially expressed genes (DEGs) were discovered. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that regulators of cell cycle and cell division such as Bub1b, Rbl1, Ube2c, Kif11, and Nusap1 were highly expressed, and CtsK, the marker gene of osteoclastogenesis was downregulated in HiSMF group. In addition, pathways related to DNA replication, cell cycle, and metabolic pathways were significantly inhibited in the HiSMF group compared to the Control group. Collectively, this study describes the negative changes occurring throughout osteoclastogenesis under 16 T HiSMF treatment from the morphological and molecular perspectives. Our study provides information that may be utilized in improving magnetotherapy on bone disease.
Collapse
|
14
|
Zhang L, Huo Q, Ge C, Zhao F, Zhou Q, Chen X, Tian H, Chen T, Xie H, Cui Y, Yao M, Li H, Li J. ZNF143-Mediated H3K9 Trimethylation Upregulates CDC6 by Activating MDIG in Hepatocellular Carcinoma. Cancer Res 2020; 80:2599-2611. [PMID: 32312832 DOI: 10.1158/0008-5472.can-19-3226] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
Zinc finger protein 143 (ZNF143) belongs to the zinc finger protein family and possesses transcription factor activity by binding sequence-specific DNA. The exact biological role of ZNF143 in hepatocellular carcinoma (HCC) has not been investigated. Here we report that ZNF143 is overexpressed in HCC tissues and its overexpression correlates with poor prognosis. Gain- and loss-of-function experiments showed that ZNF143 promoted HCC cell proliferation, colony formation, and tumor growth in vitro and in vivo. ZNF143 accelerated HCC cell-cycle progression by activating cell division cycle 6 (CDC6). Mechanistically, ZNF143 promoted expression of CDC6 by directly activating transcription of histone demethylase mineral dust-induced gene (MDIG), which in turn reduced H3K9me3 enrichment in the CDC6 promoter region. Consistently, ZNF143 expression correlated significantly with MDIG and CDC6 expression in HCC. Collectively, we propose a model for a ZNF143-MDIG-CDC6 oncoprotein axis that provides novel insight into ZNF143, which may serve as a therapeutic target in HCC. SIGNIFICANCE: These findings describe the mechanism by which ZNF143 promotes HCC proliferation and provide important clues for exploring new targets and strategies for clinical treatment of human liver cancer.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Huo
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qingqing Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoxia Chen
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Haiyang Xie
- Department of General Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Cui
- Cancer Institute of Guangxi, Nanning, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Ye B, Yang G, Li Y, Zhang C, Wang Q, Yu G. ZNF143 in Chromatin Looping and Gene Regulation. Front Genet 2020; 11:338. [PMID: 32318100 PMCID: PMC7154149 DOI: 10.3389/fgene.2020.00338] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/20/2020] [Indexed: 01/02/2023] Open
Abstract
ZNF143, a human homolog of the transcriptional activator Staf, is a C2H2-type protein consisting of seven zinc finger domains. As a transcription factor (TF), ZNF143 is sequence specifically binding to chromatin and activates the expression of protein-coding and non-coding genes on a genome scale. Although it is ubiquitous expressed, its expression in cancer cells and tissues is usually higher than that in normal cells and tissues. Therefore, abnormal expression of ZNF143 is related to cancer cell survival, proliferation, differentiation, migration, and invasion, suggesting that new small molecules can be designed by targeting ZNF143 as it may be a good potential biomarker and therapeutic target for related cancers. However, the mechanism on how ZNF143 regulates its targeting gene remains unclear. Recently, with the development of chromatin conformation capture (3C) and its derivatives, and high-throughput sequencing technology, new findings have been obtained in the study of ZNF143. Pioneering studies have showed that ZNF143 binds directly to promoters and contributes to chromatin interactions connecting promoters to distal regulatory elements, such as enhancers. Further, it has proved that ZNF143 is involved in CCCTC-binding factor (CTCF) in establishing the conserved chromatin loops by cooperating with cohesin and other partners. These results indicate that ZNF143 is a key loop formation factor. In addition, we report ZNF143 is dynamically bound to chromatin during the cell cycle demonstrated that it is a potential mitotic bookmarking factor. It may be associated with CTCF for mitosis-to-G1 phase transition and chromatin loop re-establishment in early G1 phase. In the future, researchers could further clarify the fine mechanism of ZNF143 in mediating chromatin loops with the help of CUT&RUN (CUT&Tag) and Cut-C technology. Thus, in this review, we summarize the research progress of TF ZNF143 in detail and also predict the potential functions of ZNF143 in cell fate and identity based on our recent discoveries.
Collapse
Affiliation(s)
- Bingyu Ye
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Ganggang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Yuanmeng Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chunyan Zhang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Qiwen Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| |
Collapse
|
16
|
Karri K, Waxman DJ. Widespread Dysregulation of Long Noncoding Genes Associated With Fatty Acid Metabolism, Cell Division, and Immune Response Gene Networks in Xenobiotic-exposed Rat Liver. Toxicol Sci 2020; 174:291-310. [PMID: 31926019 PMCID: PMC7098378 DOI: 10.1093/toxsci/kfaa001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Xenobiotic exposure dysregulates hundreds of protein-coding genes in mammalian liver, impacting many physiological processes and inducing diverse toxicological responses. Little is known about xenobiotic effects on long noncoding RNAs (lncRNAs), many of which have important regulatory functions. Here, we present a computational framework to discover liver-expressed, xenobiotic-responsive lncRNAs (xeno-lncs) with strong functional, gene regulatory potential and elucidate the impact of xenobiotic exposure on their gene regulatory networks. We assembled the long noncoding transcriptome of xenobiotic-exposed rat liver using RNA-seq datasets from male rats treated with 27 individual chemicals, representing 7 mechanisms of action (MOAs). Ortholog analysis was combined with coexpression data and causal inference methods to infer lncRNA function and deduce gene regulatory networks, including causal effects of lncRNAs on protein-coding gene expression and biological pathways. We discovered > 1400 liver-expressed xeno-lncs, many with human and/or mouse orthologs. Xenobiotics representing different MOAs often regulated common xeno-lnc targets: 123 xeno-lncs were dysregulated by ≥ 10 chemicals, and 5 xeno-lncs responded to ≥ 20 of the 27 chemicals investigated; 81 other xeno-lncs served as MOA-selective markers of xenobiotic exposure. Xeno-lnc-protein-coding gene coexpression regulatory network analysis identified xeno-lncs closely associated with exposure-induced perturbations of hepatic fatty acid metabolism, cell division, or immune response pathways, and with apoptosis or cirrhosis. We also identified hub and bottleneck lncRNAs, which are expected to be key regulators of gene expression. This work elucidates extensive networks of xeno-lnc-protein-coding gene interactions and provides a framework for understanding the widespread transcriptome-altering actions of foreign chemicals in a key-responsive mammalian tissue.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| |
Collapse
|
17
|
Shih JH, Chen HY, Lin SC, Yeh YC, Shen R, Lang YD, Wu DC, Chen CY, Chen RH, Chou TY, Jou YS. Integrative analyses of noncoding RNAs reveal the potential mechanisms augmenting tumor malignancy in lung adenocarcinoma. Nucleic Acids Res 2020; 48:1175-1191. [PMID: 31853539 PMCID: PMC7026595 DOI: 10.1093/nar/gkz1149] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/06/2019] [Accepted: 12/01/2019] [Indexed: 01/12/2023] Open
Abstract
Precise noncoding RNA (ncRNA)-based network prediction is necessary to reveal ncRNA functions and pathological mechanisms. Here, we established a systemic pipeline to identify prognostic ncRNAs, predict their functions and explore their pathological mechanisms in lung adenocarcinoma (LUAD). After in silico and experimental validation based on evaluations of prognostic value in multiple LUAD cohorts, we selected the PTTG3P pseudogene from among other prognostic ncRNAs (MIR497HG, HSP078, TBX5-AS1, LOC100506990 and C14orf64) for mechanistic studies. PTTG3P upregulation in LUAD cells shortens the metaphase to anaphase transition in mitosis, increases cell viability after cisplatin or paclitaxel treatment, facilitates tumor growth that leads to poor survival in orthotopic lung models, and is associated with a poor survival rate in LUAD patients in the TCGA cohort who received chemotherapy. Mechanistically, PTTG3P acts as an ncRNA that interacts with the transcription factor FOXM1 to regulate the transcriptional activation of the mitotic checkpoint kinase BUB1B, which augments tumor growth and chemoresistance and leads to poor outcomes for LUAD patients. Overall, we established a systematic strategy to uncover prognostic ncRNAs with functional prediction methods suitable for pan-cancer studies. Moreover, we revealed that PTTG3P, due to its upregulation of the PTTG3P/FOXM1/BUB1B axis, could be a therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Jou-Ho Shih
- Genome and Systems Biology Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Yi Chen
- Graduate Institute of Cancer Biology & Drug Discovery, College of Medical Science & Technology, Taipei Medical University, Taipei 11221, Taiwan
| | - Shin-Chih Lin
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.,Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11221, Taiwan
| | - Yi-Chen Yeh
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11221, Taiwan
| | - Roger Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan
| | - Yaw-Dong Lang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Dung-Chi Wu
- Genome and Systems Biology Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan.,Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Yu Chen
- Genome and Systems Biology Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan.,Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Teh-Ying Chou
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.,Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11221, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yuh-Shan Jou
- Genome and Systems Biology Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan
| |
Collapse
|
18
|
Huning L, Kunkel GR. Two paralogous znf143 genes in zebrafish encode transcriptional activator proteins with similar functions but expressed at different levels during early development. BMC Mol Cell Biol 2020; 21:3. [PMID: 31969120 PMCID: PMC6977252 DOI: 10.1186/s12860-020-0247-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/16/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND ZNF143 is an important transcriptional regulator protein conserved in metazoans and estimated to bind over 2000 promoter regions of both messenger RNA and small nuclear RNA genes. The use of zebrafish is a useful model system to study vertebrate gene expression and development. Here we characterize znf143a, a novel paralog of znf143b, previously known simply as znf143 in zebrafish. This study reveals a comparison of quantitative and spatial expression patterns, transcriptional activity, and a knockdown analysis of both ZNF143 proteins. RESULTS ZNF143a and ZNF143b have a fairly strong conservation with 65% amino acid sequence identity, and both are potent activators in transient transfection experiments. In situ hybridization analyses of both znf143 mRNAs show that these genes are expressed strongly in regions of the brain at 24 h post fertilization in zebrafish development. A transient knockdown analysis of znf143 expression from either gene using CRISPR interference revealed similar morphological defects in brain development, and caused brain abnormalities in up to 50% of injected embryos. Although present in the same tissues, znf143a is expressed at a higher level in early development which might confer an evolutionary benefit for the maintenance of two paralogs in zebrafish. CONCLUSIONS znf143a encodes a strong activator protein with high expression in neural tissues during early embryogenesis in zebrafish. Similar to its paralogous gene, znf143b, both znf143 genes are required for normal development in zebrafish.
Collapse
Affiliation(s)
- Laura Huning
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Gary R Kunkel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA.
| |
Collapse
|
19
|
Paek AR, Mun JY, Jo MJ, Choi H, Lee YJ, Cheong H, Myung JK, Hong DW, Park J, Kim KH, You HJ. The Role of ZNF143 in Breast Cancer Cell Survival Through the NAD(P)H Quinone Dehydrogenase 1⁻p53⁻Beclin1 Axis Under Metabolic Stress. Cells 2019; 8:cells8040296. [PMID: 30935019 PMCID: PMC6523662 DOI: 10.3390/cells8040296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 01/22/2023] Open
Abstract
Autophagy is a cellular process that disrupts and uses unnecessary or malfunctioning components for cellular homeostasis. Evidence has shown a role for autophagy in tumor cell survival, but the molecular determinants that define sensitivity against autophagic regulation in cancers are not clear. Importantly, we found that breast cancer cells with low expression levels of a zinc-finger protein, ZNF143 (MCF7 sh-ZNF143), showed better survival than control cells (MCF7 sh-Control) under starvation, which was compromised with chloroquine, an autophagy inhibitor. In addition, there were more autophagic vesicles in MCF7 sh-ZNF143 cells than in MCF7 sh-Control cells, and proteins related with the autophagic process, such as Beclin1, p62, and ATGs, were altered in cells with less ZNF143. ZNF143 knockdown affected the stability of p53, which showed a dependence on MG132, a proteasome inhibitor. Data from proteome profiling in breast cancer cells with less ZNF143 suggest a role of NAD(P)H quinone dehydrogenase 1(NQO1) for p53 stability. Taken together, we showed that a subset of breast cancer cells with low expression of ZNF143 might exhibit better survival via an autophagic process by regulating the p53–Beclin1 axis, corroborating the necessity of blocking autophagy for the best therapy.
Collapse
Affiliation(s)
- A Rome Paek
- Division of Translational Science, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Ji Young Mun
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu 41068, Korea.
| | - Mun Jeong Jo
- Division of Translational Science, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Hyosun Choi
- BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon 34824, Korea.
| | - Yun Jeong Lee
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Heesun Cheong
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
- Division of Cancer Biology, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Jae Kyung Myung
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Dong Wan Hong
- Bioinformatics Analysis Team, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Jongkeun Park
- Bioinformatics Analysis Team, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Kyung-Hee Kim
- Proteogenomic Analysis Team, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Hye Jin You
- Division of Translational Science, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| |
Collapse
|
20
|
Sadłecki P, Grabiec M, Grzanka D, Jóźwicki J, Antosik P, Walentowicz-Sadłecka M. Expression of zinc finger transcription factors (ZNF143 and ZNF281) in serous borderline ovarian tumors and low-grade ovarian cancers. J Ovarian Res 2019; 12:23. [PMID: 30885238 PMCID: PMC6423742 DOI: 10.1186/s13048-019-0501-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
Low-grade ovarian cancers represent up to 8% of all epithelial ovarian carcinomas (EOCs). Recent studies demonstrated that epithelial-mesenchymal transition (EMT) is crucial for the progression of EOCs. EMT plays a key role in cancer invasion, metastasis formation and chemotherapy resistance. An array of novel EMT transcription factors from the zinc finger protein family have been described recently, among them zinc finger protein 143 (ZNF143) and zinc finger protein 281 (ZNF281). The study included tissue specimens from 42 patients. Based on histopathological examination of surgical specimens, eight lesions were classified as serous borderline ovarian tumors (sBOTs) and 34 as low-grade EOCs. The proportions of the ovarian tumors that tested positively for ZNF143 and ZNF281 were 90 and 57%, respectively. No statistically significant differences were found in the expressions of ZNF143 and ZNF281 transcription factors in SBOTs and low-grade EOCs. Considering the expression patterns for ZNF143 and ZNF281 identified in this study, both sBOTs and low-grade EOCs might undergo a dynamic epithelial-mesenchymal interconversion. The lack of statistically significant differences in the expressions of the zinc finger proteins in sBOTs and low-grade serous EOCs might constitute an evidence for common origin of these two tumor types.
Collapse
Affiliation(s)
- Paweł Sadłecki
- Department of Obstetrics and Gynecology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland.
| | - Marek Grabiec
- Department of Obstetrics and Gynecology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Jakub Jóźwicki
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Małgorzata Walentowicz-Sadłecka
- Department of Obstetrics and Gynecology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland
| |
Collapse
|
21
|
Paek AR, Mun JY, Hong KM, Lee J, Hong DW, You HJ. Zinc finger protein 143 expression is closely related to tumor malignancy via regulating cell motility in breast cancer. BMB Rep 2018; 50:621-627. [PMID: 29065970 PMCID: PMC5749908 DOI: 10.5483/bmbrep.2017.50.12.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
We previously reported the involvement of zinc-finger protein 143 (ZNF143) on cancer cell motility in colon cancer cells. Here, ZNF143 was further characterized in breast cancer. Immunohistochemistry was used to determine the expression of ZNF143 in normal tissues and in tissues from metastatic breast cancer at various stages. Notably, ZNF143 was selectively expressed in duct and gland epithelium of normal breast tissues, which decreased when the tissue became malignant. To determine the molecular mechanism how ZNF143 affects breast cancer progression, it was knocked down by infecting benign breast cancer cells with short-hairpin (sh) RNA-lentiviral particles against ZNF143 (MCF7 sh-ZNF143). MCF7 sh-ZNF143 cells showed different cell-cell contacts and actin filament (F-actin) structures when compared with MCF7 sh-Control cells. In migration and invasion assays, ZNF143 knockdown induced increased cellular motility in breast carcinoma cells. This was reduced by the recovery of ZNF143 expression. Taken together, these results suggest that ZNF143 expression contributes to breast cancer progression.
Collapse
Affiliation(s)
- A Rome Paek
- Translational Research Branch, Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Ji Young Mun
- Department of Biomedical Laboratory Science (Seongnam campus) Eulji University, Seongnam 13135, Korea; BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon 34824, Korea
| | - Kyeong-Man Hong
- Omics Core Laboratory, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jongkeun Lee
- Clinical Genomics Analysis Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Dong Wan Hong
- Clinical Genomics Analysis Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Hye Jin You
- Translational Research Branch, Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea; Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
22
|
Wang X, Niu J, Li J, Shen X, Shen S, Straubinger RM, Qu J. Temporal Effects of Combined Birinapant and Paclitaxel on Pancreatic Cancer Cells Investigated via Large-Scale, Ion-Current-Based Quantitative Proteomics (IonStar). Mol Cell Proteomics 2018; 17:655-671. [PMID: 29358341 PMCID: PMC5880105 DOI: 10.1074/mcp.ra117.000519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Indexed: 01/05/2023] Open
Abstract
Despite decades of effort, pancreatic adenocarcinoma (PDAC) remains an intractable clinical challenge. An insufficient understanding of mechanisms underlying tumor cell responses to chemotherapy contributes significantly to the lack of effective treatment regimens. Here, paclitaxel, a first-line chemotherapeutic agent, was observed to interact synergistically with birinapant, a second mitochondrial-derived activator of caspases mimetic. Therefore, we investigated molecular-level drug interaction mechanisms using comprehensive, reproducible, and well-controlled ion-current-based MS1 quantification (IonStar). By analyzing 40 biological samples in a single batch, we compared temporal proteomic responses of PDAC cells treated with birinapant and paclitaxel, alone and combined. Using stringent criteria (e.g. strict false-discovery-rate (FDR) control, two peptides/protein), we quantified 4069 unique proteins confidently (99.8% without any missing data), and 541 proteins were significantly altered in the three treatment groups, with an FDR of <1%. Interestingly, most of these proteins were altered only by combined birinapant/paclitaxel, and these predominantly represented three biological processes: mitochondrial function, cell growth and apoptosis, and cell cycle arrest. Proteins responsible for activation of oxidative phosphorylation, fatty acid β-oxidation, and inactivation of aerobic glycolysis were altered largely by combined birinapant/paclitaxel compared with single drugs, suggesting the Warburg effect, which is critical for survival and proliferation of cancer cells, was alleviated by the combination treatment. Metabolic profiling was performed to confirm substantially greater suppression of the Warburg effect by the combined agents compared with either drug alone. Immunoassays confirmed proteomic data revealing changes in apoptosis/survival signaling pathways, such as inhibition of PI3K/AKT, JAK/STAT, and MAPK/ERK signal transduction, as well as induction of G2/M arrest, and showed the drug combination induced much more apoptosis than did single agents. Overall, this in-depth, large-scale proteomics study provided novel insights into molecular mechanisms underlying synergy of combined birinapant/paclitaxel and describes a proteomics/informatics pipeline that can be applied broadly to the development of cancer drug combination regimens.
Collapse
Affiliation(s)
- Xue Wang
- From the ‡Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
- §New York State Center of Excellence in Bioinformatics and Life Sciences, New York 14203
| | - Jin Niu
- ¶Department of Pharmaceutical Sciences
| | - Jun Li
- §New York State Center of Excellence in Bioinformatics and Life Sciences, New York 14203
| | - Xiaomeng Shen
- §New York State Center of Excellence in Bioinformatics and Life Sciences, New York 14203
- ‖Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York 14214
| | - Shichen Shen
- §New York State Center of Excellence in Bioinformatics and Life Sciences, New York 14203
- ‖Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York 14214
| | - Robert M Straubinger
- From the ‡Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263;
- §New York State Center of Excellence in Bioinformatics and Life Sciences, New York 14203
- ¶Department of Pharmaceutical Sciences
| | - Jun Qu
- From the ‡Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263;
- §New York State Center of Excellence in Bioinformatics and Life Sciences, New York 14203
- ¶Department of Pharmaceutical Sciences
| |
Collapse
|
23
|
Zeng S, Yu X, Ma C, Song R, Zhang Z, Zi X, Chen X, Wang Y, Yu Y, Zhao J, Wei R, Sun Y, Xu C. Transcriptome sequencing identifies ANLN as a promising prognostic biomarker in bladder urothelial carcinoma. Sci Rep 2017; 7:3151. [PMID: 28600503 PMCID: PMC5466664 DOI: 10.1038/s41598-017-02990-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
The prognosis of bladder urothelial carcinoma (BLCA) varies greatly even for patients with similar pathological characteristics. We conducted transcriptome sequencing on ten pairs of BLCA samples and adjacent normal tissues to identify differentially expressed genes. Anillin (ANLN) was identified as a transcript that was significantly up-regulated in BLCA samples compared with normal tissues. Prognostic power of candidate gene was studied using qRT-PCR and immunohistochemistry on 40 and 209 patients, respectively. Patients with elevated ANLN expression level was correlated with poorer cancer-specific (median, 22.4 vs. 37.3 months, p = 0.001), progression-free (median, 19.7 vs. 27.9 months, p = 0.001) and recurrence-free survival (median, 17.1 vs. 25.2 months, p = 0.011) compared with low ANLN expression. Public datasets TCGA and NCBI-GEO were analyzed for external validation. Knockdown of ANLN in J82 and 5637 cells using small interfering RNA significantly inhibited cell proliferation, migration, and invasion ability. Moreover, knockdown of ANLN resulted in G2/M phase arrest and decreased expression of cyclin B1 and D1. Microarray analysis suggested that ANLN played a major role in cell migration and was closely associated with several cancer-related signaling pathways. In conclusion, ANLN was identified as a promising prognostic biomarker which could be used to stratify different risks of BLCA.
Collapse
Affiliation(s)
- Shuxiong Zeng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Xiaowen Yu
- Department of Geriatrics, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Chong Ma
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Ruixiang Song
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Zhensheng Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Xiaoyuan Zi
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Xin Chen
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Yang Wang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Yongwei Yu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Junjie Zhao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Rongchao Wei
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China.
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China.
| |
Collapse
|
24
|
Haibara H, Yamazaki R, Nishiyama Y, Ono M, Kobayashi T, Hokkyo-Itagaki A, Nishisaka F, Nishiyama H, Kurita A, Matsuzaki T, Izumi H, Kohno K. YPC-21661 and YPC-22026, novel small molecules, inhibit ZNF143 activity in vitro and in vivo. Cancer Sci 2017; 108:1042-1048. [PMID: 28192620 PMCID: PMC5448606 DOI: 10.1111/cas.13199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 01/09/2023] Open
Abstract
Zinc‐finger protein 143 (ZNF143) is a transcription factor that is involved in anticancer drug resistance and cancer cell survival. In the present study, we identified a novel small molecule N‐(5‐bromo‐2‐methoxyphenyl)‐3‐(pyridine‐3‐yl) propiolamide (YPC‐21661) that inhibited ZNF143 promoter activity and down‐regulated the expression of the ZNF143‐regulated genes, RAD51, PLK1, and Survivin, by inhibiting the binding of ZNF143 to DNA. In addition, YPC‐21661 was cytotoxic and induced apoptosis in the human colon cancer cell line, HCT116 and human prostate cancer cell line, PC‐3. 2‐(pyridine‐3‐ylethynyl)‐5‐(2‐(trifluoromethoxy)phenyl)‐1,3,4‐oxadiazole (YPC‐22026), a metabolically stable derivative of YPC‐21661, induced tumor regression accompanied by the suppression of ZNF143‐regulated genes in a mouse xenograft model. The present study revealed that the inhibition of ZNF143 activity by small molecules induced tumor regression in vitro and in vivo; therefore, ZNF143 is a promising target of cancer therapeutics.
Collapse
Affiliation(s)
- Hirotaka Haibara
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi, Tokyo, Japan
| | - Ryuta Yamazaki
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi, Tokyo, Japan
| | - Yukiko Nishiyama
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi, Tokyo, Japan
| | - Masahiro Ono
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi, Tokyo, Japan
| | | | | | - Fukiko Nishisaka
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi, Tokyo, Japan
| | - Hiroyuki Nishiyama
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi, Tokyo, Japan
| | - Akinobu Kurita
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi, Tokyo, Japan
| | - Takeshi Matsuzaki
- Yakult Central Institute, Yakult Honsha Co., Ltd., Kunitachi, Tokyo, Japan
| | - Hiroto Izumi
- The University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kimitoshi Kohno
- The University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
25
|
Diamanti K, Umer HM, Kruczyk M, Dąbrowski MJ, Cavalli M, Wadelius C, Komorowski J. Maps of context-dependent putative regulatory regions and genomic signal interactions. Nucleic Acids Res 2016; 44:9110-9120. [PMID: 27625394 PMCID: PMC5100580 DOI: 10.1093/nar/gkw800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 08/31/2016] [Indexed: 12/24/2022] Open
Abstract
Gene transcription is regulated mainly by transcription factors (TFs). ENCODE and Roadmap Epigenomics provide global binding profiles of TFs, which can be used to identify regulatory regions. To this end we implemented a method to systematically construct cell-type and species-specific maps of regulatory regions and TF-TF interactions. We illustrated the approach by developing maps for five human cell-lines and two other species. We detected ∼144k putative regulatory regions among the human cell-lines, with the majority of them being ∼300 bp. We found ∼20k putative regulatory elements in the ENCODE heterochromatic domains suggesting a large regulatory potential in the regions presumed transcriptionally silent. Among the most significant TF interactions identified in the heterochromatic regions were CTCF and the cohesin complex, which is in agreement with previous reports. Finally, we investigated the enrichment of the obtained putative regulatory regions in the 3D chromatin domains. More than 90% of the regions were discovered in the 3D contacting domains. We found a significant enrichment of GWAS SNPs in the putative regulatory regions. These significant enrichments provide evidence that the regulatory regions play a crucial role in the genomic structural stability. Additionally, we generated maps of putative regulatory regions for prostate and colorectal cancer human cell-lines.
Collapse
Affiliation(s)
- Klev Diamanti
- Department of Cell and Molecular Biology, Uppsala University, Uppsala SE-751-24, Sweden
| | - Husen M Umer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala SE-751-24, Sweden
| | - Marcin Kruczyk
- Department of Cell and Molecular Biology, Uppsala University, Uppsala SE-751-24, Sweden
| | - Michał J Dąbrowski
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala SE-751-08, Sweden
| | - Marco Cavalli
- Institute of Computer Science, Polish Academy of Sciences, Warsaw 012-48, Poland
| | - Claes Wadelius
- Institute of Computer Science, Polish Academy of Sciences, Warsaw 012-48, Poland
| | - Jan Komorowski
- Department of Cell and Molecular Biology, Uppsala University, Uppsala SE-751-24, Sweden .,Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala SE-751-08, Sweden
| |
Collapse
|
26
|
Deregulation of HMGA1 expression induces chromosome instability through regulation of spindle assembly checkpoint genes. Oncotarget 2016; 6:17342-53. [PMID: 26009897 PMCID: PMC4627312 DOI: 10.18632/oncotarget.3944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/05/2015] [Indexed: 02/05/2023] Open
Abstract
The mitotic spindle assembly checkpoint (SAC) is an essential control system of the cell cycle that contributes to mantain the genomic stability of eukaryotic cells. SAC genes expression is often deregulated in cancer cells, leading to checkpoint impairment and chromosome instability. The mechanisms responsible for the transcriptional regulation and deregulation of these genes are still largely unknown. Herein we identify the nonhistone architectural nuclear proteins High Mobility Group A1 (HMGA1), whose overexpression is a feature of several human malignancies and has a key role in cancer progression, as transcriptional regulators of SAC genes expression. In particular, we show that HMGA1 proteins are able to increase the expression of the SAC genes Ttk, Mad2l1, Bub1 and Bub1b, binding to their promoter regions. Consistently, HMGA1-depletion induces SAC genes downregulation associated to several mitotic defects. In particular, we observed a high number of unaligned chromosomes in metaphase, a reduction of prometaphase time, a delay of anaphase, a higher cytokinesis time and a higher percentage of cytokinesis failure by using live-cell microscopy. Finally, a significant direct correlation between HMGA1 and SAC genes expression was detected in human colon carcinomas indicating a novel mechanism by which HMGA1 contributes to cancer progression.
Collapse
|
27
|
Nath S, Ghatak D, Das P, Roychoudhury S. Transcriptional control of mitosis: deregulation and cancer. Front Endocrinol (Lausanne) 2015; 6:60. [PMID: 25999914 PMCID: PMC4419714 DOI: 10.3389/fendo.2015.00060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022] Open
Abstract
Research over the past few decades has well established the molecular functioning of mitosis. Deregulation of these functions has also been attributed to the generation of aneuploidy in different tumor types. Numerous studies have given insight into the regulation of mitosis by cell cycle specific proteins. Optimum abundance of these proteins is pivotal to timely execution of mitosis. Aberrant expressions of these mitotic proteins have been reported in different cancer types. Several post-transcriptional mechanisms and their interplay have subsequently been identified that control the level of mitotic proteins. However, to date, infrequent incidences of cancer-associated mutations have been reported for the genes expressing these proteins. Therefore, altered expression of these mitotic regulators in tumor samples can largely be attributed to transcriptional deregulation. This review discusses the biology of transcriptional control for mitosis and evaluates its role in the generation of aneuploidy and tumorigenesis.
Collapse
Affiliation(s)
- Somsubhra Nath
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Present address: Somsubhra Nath, Genetics, Cell Biology and Anatomy Division, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- *Correspondence: Susanta Roychoudhury, Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India, ;
| |
Collapse
|
28
|
The combination of strong expression of ZNF143 and high MIB-1 labelling index independently predicts shorter disease-specific survival in lung adenocarcinoma. Br J Cancer 2014; 110:2583-92. [PMID: 24736586 PMCID: PMC4021533 DOI: 10.1038/bjc.2014.202] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/06/2014] [Accepted: 03/18/2014] [Indexed: 12/25/2022] Open
Abstract
Background: The transcription factor, zinc finger protein 143 (ZNF143), positively regulates many cell-cycle-related genes. The ZNF143 would show high expression of multiple solid tumours related closely to cancer cell growth, similar to the widely accepted Ki67 (MIB-1) protein, but the underlying mechanisms for ZNF143 remain unclear. We investigated the association of ZNF143 expression with clinicopathological features and prognoses of patients with lung adenocarcinoma. Methods: Expressions of ZNF143 and MIB-1 were immunohistochemically analysed in 183 paraffin-embedded tumour samples of patients with lung adenocarcinoma. The ZNF143 expression was considered to be strong when >30% of the cancer cells demonstrated positive staining. Results: Strong ZNF143+ expression showed a significantly close relationship to pathologically moderate to poor differentiation and highly invasive characteristics. The ZNF143 positivity potentially induced cell growth of lung adenocarcinoma, correlated significantly with high MIB-1 labelling index (⩾10%). Univariate and multivariate analyses demonstrated that both strong ZNF143+ and the high MIB-1 index group have only and significantly worse survival rates. Conclusions: The combination of strong ZNF143 expression and high MIB-1 index potentially predicts high proliferating activity and poor prognosis in patients with lung adenocarcinoma, and may offer a therapeutic target against ZNF143.
Collapse
|
29
|
Ngondo RP, Carbon P. Transcription factor abundance controlled by an auto-regulatory mechanism involving a transcription start site switch. Nucleic Acids Res 2014; 42:2171-84. [PMID: 24234445 PMCID: PMC3936768 DOI: 10.1093/nar/gkt1136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/09/2013] [Accepted: 10/24/2013] [Indexed: 02/01/2023] Open
Abstract
A transcriptional feedback loop is the simplest and most direct means for a transcription factor to provide an increased stability of gene expression. In this work performed in human cells, we reveal a new negative auto-regulatory mechanism involving an alternative transcription start site (TSS) usage. Using the activating transcription factor ZNF143 as a model, we show that the ZNF143 low-affinity binding sites, located downstream of its canonical TSS, play the role of protein sensors to induce the up- or down-regulation of ZNF143 gene expression. We uncovered that the TSS switch that mediates this regulation implies the differential expression of two transcripts with an opposite protein production ability due to their different 5' untranslated regions. Moreover, our analysis of the ENCODE data suggests that this mechanism could be used by other transcription factors to rapidly respond to their own aberrant expression level.
Collapse
Affiliation(s)
- Richard Patryk Ngondo
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Philippe Carbon
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 Rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
30
|
Fischer M, Quaas M, Wintsche A, Müller GA, Engeland K. Polo-like kinase 4 transcription is activated via CRE and NRF1 elements, repressed by DREAM through CDE/CHR sites and deregulated by HPV E7 protein. Nucleic Acids Res 2013; 42:163-80. [PMID: 24071582 PMCID: PMC3874167 DOI: 10.1093/nar/gkt849] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infection by oncogenic viruses is a frequent cause for tumor formation as observed in cervical cancer. Viral oncoproteins cause inactivation of p53 function and false transcriptional regulation of central cell cycle genes. Here we analyze the regulation of Plk4, serving as an example of many cell cycle- and p53-regulated genes. Cell cycle genes are often repressed via CDE and CHR elements in their promoters and activated by NF-Y binding to CCAAT-boxes. In contrast, general activation of Plk4 depends on NRF1 and CRE sites. Bioinformatic analyses imply that NRF1 and CRE are central elements of the transcriptional network controlling cell cycle genes. We identify CDE and CHR sites in the Plk4 promoter, which are necessary for binding of the DREAM (DP, RB-like, E2F4 and MuvB) complex and for mediating repression in G0/G1. When cells progress to G2 and mitosis, DREAM is replaced by the MMB (Myb-MuvB) complex that only requires the CHR element for binding. Plk4 expression is downregulated by the p53-p21WAF1/CIP1-DREAM signaling pathway through the CDE and CHR sites. Cell cycle- and p53-dependent repression is abrogated by HPV E7 oncoprotein. Together with genome-wide analyses our results imply that many cell cycle genes upregulated in tumors by viral infection are bound by DREAM through CDE/CHR sites.
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany and Computational EvoDevo Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | | | | | | | | |
Collapse
|
31
|
Paek AR, Lee CH, You HJ. A role of zinc-finger protein 143 for cancer cell migration and invasion through ZEB1 and E-cadherin in colon cancer cells. Mol Carcinog 2013; 53 Suppl 1:E161-8. [PMID: 24009065 DOI: 10.1002/mc.22083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/26/2013] [Accepted: 08/07/2013] [Indexed: 01/27/2023]
Abstract
To investigate the role of zinc-finger protein 143 in cancer cells, we stably introduced ZNF143 expression knockdown by infecting colon cancer cells with short hairpin (sh) RNA-lentiviral particles against ZNF143 (HCT116 sh-ZNF143). Compared to sh-control cells, HCT116 sh-ZNF143 cells showed faster wound healing, increased migration through Transwell chambers, and increased invasion through Matrigel in Transwell chambers. ZNF143 knockdown increased transcriptional expression of ZEB1. Additionally, ZNF143 regulated E-cadherin transcriptional expression. Small interfering-RNA-mediated silencing of ZEB1 expression affected motility in HCT116 sh-ZNF143 cells. These data suggest that ZNF143 is involved in cellular motility through a ZEB1-E-cadherin-linked pathway in colon cancer cells.
Collapse
Affiliation(s)
- A Rome Paek
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi, South Korea
| | | | | |
Collapse
|
32
|
Ngondo-Mbongo RP, Myslinski E, Aster JC, Carbon P. Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11. Nucleic Acids Res 2013; 41:4000-14. [PMID: 23408857 PMCID: PMC3627581 DOI: 10.1093/nar/gkt088] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ZNF143 is a zinc-finger protein involved in the transcriptional regulation of both coding and non-coding genes from polymerase II and III promoters. Our study deciphers the genome-wide regulatory role of ZNF143 in relation with the two previously unrelated transcription factors Notch1/ICN1 and thanatos-associated protein 11 (THAP11) in several human and murine cells. We show that two distinct motifs, SBS1 and SBS2, are associated to ZNF143-binding events in promoters of >3000 genes. Without co-occupation, these sites are also bound by Notch1/ICN1 in T-lymphoblastic leukaemia cells as well as by THAP11, a factor involved in self-renewal of embryonic stem cells. We present evidence that ICN1 binding overlaps with ZNF143 binding events at the SBS1 and SBS2 motifs, whereas the overlap occurs only at SBS2 for THAP11. We demonstrate that the three factors modulate expression of common target genes through the mutually exclusive occupation of overlapping binding sites. The model we propose predicts that the binding competition between the three factors controls biological processes such as rapid cell growth of both neoplastic and stem cells. Overall, our study establishes a novel relationship between ZNF143, THAP11 and ICN1 and reveals important insights into ZNF143-mediated gene regulation.
Collapse
Affiliation(s)
- Richard Patryk Ngondo-Mbongo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
33
|
Global Gene Expression Profiling in PPAR-γ Agonist-Treated Kidneys in an Orthologous Rat Model of Human Autosomal Recessive Polycystic Kidney Disease. PPAR Res 2012; 2012:695898. [PMID: 22666229 PMCID: PMC3359747 DOI: 10.1155/2012/695898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/17/2012] [Indexed: 01/07/2023] Open
Abstract
Kidneys are enlarged by aberrant proliferation of tubule epithelial cells leading to the formation of numerous cysts, nephron loss, and interstitial fibrosis in polycystic kidney disease (PKD). Pioglitazone (PIO), a PPAR-γ agonist, decreased cell proliferation, interstitial fibrosis, and inflammation, and ameliorated PKD progression in PCK rats (Am. J. Physiol.-Renal, 2011). To explore genetic mechanisms involved, changes in global gene expression were analyzed. By Gene Set Enrichment Analysis of 30655 genes, 13 of the top 20 downregulated gene ontology biological process gene sets and six of the top 20 curated gene set canonical pathways identified to be downregulated by PIOtreatment were related to cell cycle and proliferation, including EGF, PDGF and JNK pathways. Their relevant pathways were identified using the Kyoto Encyclopedia of Gene and Genomes database. Stearoyl-coenzyme A desaturase 1 is a key enzyme in fatty acid metabolism found in the top 5 genes downregulated by PIO treatment. Immunohistochemical analysis revealed that the gene product of this enzyme was highly expressed in PCK kidneys and decreased by PIO. These data show that PIO alters the expression of genes involved in cell cycle progression, cell proliferation, and fatty acid metabolism.
Collapse
|
34
|
Halbig KM, Lekven AC, Kunkel GR. The transcriptional activator ZNF143 is essential for normal development in zebrafish. BMC Mol Biol 2012; 13:3. [PMID: 22268977 PMCID: PMC3282657 DOI: 10.1186/1471-2199-13-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/23/2012] [Indexed: 12/25/2022] Open
Abstract
Background ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. Results The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Conclusions Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development.
Collapse
Affiliation(s)
- Kari M Halbig
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|
35
|
Adhesion-dependent Skp2 transcription requires selenocysteine tRNA gene transcription-activating factor (STAF). Biochem J 2011; 436:133-43. [PMID: 21352097 DOI: 10.1042/bj20101798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell adhesion is essential for cell cycle progression in most normal cells. Loss of adhesion dependence is a hallmark of cellular transformation. The F-box protein Skp2 (S-phase kinase-associated protein 2) controls G(1)-S-phase progression and is subject to adhesion-dependent transcriptional regulation, although the mechanisms are poorly understood. We identify two cross-species conserved binding elements for the STAF (selenocysteine tRNA gene transcription-activating factor) in the Skp2 promoter that are essential for Skp2 promoter activity. Endogenous STAF specifically binds these elements in EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation) analysis. STAF is sufficient and necessary for Skp2 promoter activity since exogenous STAF activates promoter activity and expression and STAF siRNA (small interfering RNA) inhibits Skp2 promoter activity, mRNA and protein expression and cell proliferation. Furthermore, ectopic Skp2 expression completely reverses the inhibitory effects of STAF silencing on proliferation. Importantly, STAF expression and binding to the Skp2 promoter is adhesion-dependent and associated with adhesion-dependent Skp2 expression in non-transformed cells. Ectopic STAF rescues Skp2 expression in suspension cells. Taken together, these results demonstrate that STAF is essential and sufficient for Skp2 promoter activity and plays a role in the adhesion-dependent expression of Skp2 and ultimately cell proliferation.
Collapse
|
36
|
Anno YN, Myslinski E, Ngondo-Mbongo RP, Krol A, Poch O, Lecompte O, Carbon P. Genome-wide evidence for an essential role of the human Staf/ZNF143 transcription factor in bidirectional transcription. Nucleic Acids Res 2010; 39:3116-27. [PMID: 21177654 PMCID: PMC3082894 DOI: 10.1093/nar/gkq1301] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the human genome, ∼10% of the genes are arranged head to head so that their transcription start sites reside within <1 kbp on opposite strands. In this configuration, a bidirectional promoter generally drives expression of the two genes. How bidirectional expression is performed from these particular promoters constitutes a puzzling question. Here, by a combination of in silico and biochemical approaches, we demonstrate that hStaf/ZNF143 is involved in controlling expression from a subset of divergent gene pairs. The binding sites for hStaf/ZNF143 (SBS) are overrepresented in bidirectional versus unidirectional promoters. Chromatin immunoprecipitation assays with a significant set of bidirectional promoters containing putative SBS revealed that 93% of them are associated with hStaf/ZNF143. Expression of dual reporter genes directed by bidirectional promoters are dependent on the SBS integrity and requires hStaf/ZNF143. Furthermore, in some cases, functional SBS are located in bidirectional promoters of gene pairs encoding a noncoding RNA and a protein gene. Remarkably, hStaf/ZNF143 per se exhibits an inherently bidirectional transcription activity, and together our data provide the demonstration that hStaf/ZNF143 is indeed a transcription factor controlling the expression of divergent protein–protein and protein–non-coding RNA gene pairs.
Collapse
Affiliation(s)
- Yannick-Noël Anno
- Department of Structural Biology and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, The Centre National de la Recherche Scientifique, UMR7104, F-67400 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Izumi H, Wakasugi T, Shimajiri S, Tanimoto A, Sasaguri Y, Kashiwagi E, Yasuniwa Y, Akiyama M, Han B, Wu Y, Uchiumi T, Arao T, Nishio K, Yamazaki R, Kohno K. Role of ZNF143 in tumor growth through transcriptional regulation of DNA replication and cell-cycle-associated genes. Cancer Sci 2010; 101:2538-45. [PMID: 20860770 PMCID: PMC11159644 DOI: 10.1111/j.1349-7006.2010.01725.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cell cycle is strictly regulated by numerous mechanisms to ensure cell division. The transcriptional regulation of cell-cycle-related genes is poorly understood, with the exception of the E2F family that governs the cell cycle. Here, we show that a transcription factor, zinc finger protein 143 (ZNF143), positively regulates many cell-cycle-associated genes and is highly expressed in multiple solid tumors. RNA-interference (RNAi)-mediated knockdown of ZNF143 showed that expression of 152 genes was downregulated in human prostate cancer PC3 cells. Among these ZNF143 targets, 41 genes (27%) were associated with cell cycle and DNA replication including cell division cycle 6 homolog (CDC6), polo-like kinase 1 (PLK1) and minichromosome maintenance complex component (MCM) DNA replication proteins. Furthermore, RNAi of ZNF143 induced apoptosis following G2/M cell cycle arrest. Cell growth of 10 lung cancer cell lines was significantly correlated with cellular expression of ZNF143. Our data suggest that ZNF143 might be a master regulator of the cell cycle. Our findings also indicate that ZNF143 is a member of the growing list of non-oncogenes that are promising cancer drug targets.
Collapse
Affiliation(s)
- Hiroto Izumi
- Department of Molecular Biology Otorhinolaryngology Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu T, Zhang X, Huang X, Yang Y, Hua X. Regulation of cyclin B2 expression and cell cycle G2/m transition by menin. J Biol Chem 2010; 285:18291-300. [PMID: 20404349 DOI: 10.1074/jbc.m110.106575] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) results from mutations in tumor suppressor gene Men1, which encodes nuclear protein menin. Menin up-regulates certain cyclin-dependent kinase inhibitors through increasing histone H3 lysine 4 (H3K4) methylation and inhibits G(0)/G(1) to S phase transition. However, little is known as to whether menin controls G(2)/M-phase transition, another important cell cycle checkpoint. Here, we show that menin expression delays G(2)/M phase transition and reduces expression of Ccnb2 (encoding cyclin B2). Menin associates with the promoter of Ccnb2 and reduces histone H3 acetylation, a positive chromatin marker for gene transcription, at the Ccnb2 locus. Moreover, Men1 ablation leads to an increase in cyclin B2 expression, histone H3 acetylation at the Ccnb2 locus, and G(2)/M transition. In contrast, knockdown of cyclin B2 diminishes the number of cells at M phase and reduces cell proliferation. Furthermore, menin interferes with binding of certain positive transcriptional regulators, such as nuclear factor Y (NF-Y), E2 factors (E2Fs), and histone acetyltransferase CREB (cAMP-response element-binding protein)-binding protein (CBP) to the Ccnb2 locus. Notably, MEN1 disease-related mutations, A242V and L22R, abrogate the ability of menin to repress cyclin B2 expression and G(2)/M transition. Both of the mutants fail to reduce the acetylated level of the Ccnb2 locus. Together, these results suggest that menin-mediated repression of cyclin B2 is crucial for inhibiting G(2)/M transition and cell proliferation through a previously unrecognized molecular mechanism for menin-induced suppression of MEN1 tumorigenesis.
Collapse
Affiliation(s)
- Ting Wu
- Department of Biomedical Sciences, School of Life Science,Medical College, Xiamen University, Xiamen 361005, China
| | | | | | | | | |
Collapse
|
39
|
Nishihara M, Yamada M, Nozaki M, Nakahira K, Yanagihara I. Transcriptional regulation of the human establishment of cohesion 1 homolog 2 gene. Biochem Biophys Res Commun 2010; 393:111-7. [PMID: 20116366 DOI: 10.1016/j.bbrc.2010.01.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/22/2010] [Indexed: 01/30/2023]
Abstract
Transcriptional regulation of human establishment of cohesion 1 homolog 2 (ESCO2), the causative gene of Roberts syndrome, was investigated. Deletion and mutation analyses of the ESCO2 promoter indicated that the selenocysteine tRNA-activating factor (Staf) binding site (SBS) is an essential element for transcriptional activation of ESCO2. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay revealed that the zinc finger protein 143 (ZNF143), a human homolog of Xenopus Staf, bound to the ESCO2 promoter. The ACTACAN submotif, adjacent to SBS, also contributed to transcriptional activation of ESCO2. EMSA indicated that the ACTACAN submotif was not involved in binding of ZNF143 to SBS. S phase-specific expression of the ESCO2 gene was confirmed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR), but EMSA revealed binding of ZNF143 to SBS in G1/S and G2/M phases. These results demonstrated that SBS functioned as the basal transcriptional activator of the S phase-specific gene ESCO2, but other mechanisms are required for cell cycle-dependent expression.
Collapse
Affiliation(s)
- Masahiro Nishihara
- Department of Developmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka 594-1101, Japan
| | | | | | | | | |
Collapse
|
40
|
Gérard MA, Myslinski E, Chylak N, Baudrey S, Krol A, Carbon P. The scaRNA2 is produced by an independent transcription unit and its processing is directed by the encoding region. Nucleic Acids Res 2010; 38:370-81. [PMID: 19906720 PMCID: PMC2811027 DOI: 10.1093/nar/gkp988] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/12/2009] [Accepted: 10/15/2009] [Indexed: 01/30/2023] Open
Abstract
The C/D box scaRNA2 is predicted to guide specific 2'-O-methylation of U2 snRNA. In contrast to other SCARNA genes, SCARNA2 appears to be independently transcribed. By transient expression of SCARNA2-reporter gene constructs, we have demonstrated that this gene is transcribed by RNA polymerase II and that the promoter elements responsible for its transcription are contained within a 161 bp region upstream of the transcription start site. In mammals, we have identified four cross species conserved promoter elements, a TATA motif, an hStaf/ZNF143 binding site and two novel elements that are required for full promoter activity. Binding of the human hStaf/ZNF143 transcription factor to its target sequence is required for promoter activity, suggesting that hStaf/ZNF143 is a fundamental regulator of the SCARNA2 gene. We also showed that RNA polymerase II continues transcription past the 3'-end of the mature RNA, irrespective of the identity of the Pol II promoter. The 3'-end processing and accumulation are governed by the sole information contained in the scaRNA2 encoding region, the maturation occurring via a particular pathway incompatible with that of mRNA or snRNA production.
Collapse
Affiliation(s)
| | | | | | | | | | - Philippe Carbon
- Architecture et Réactivité de l'A;RN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
41
|
Müller GA, Engeland K. The central role of CDE/CHR promoter elements in the regulation of cell cycle-dependent gene transcription. FEBS J 2009; 277:877-93. [PMID: 20015071 DOI: 10.1111/j.1742-4658.2009.07508.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cell cycle-dependent element (CDE) and the cell cycle genes homology region (CHR) control the transcription of genes with maximum expression in G(2) phase and in mitosis. Promoters of these genes are repressed by proteins binding to CDE/CHR elements in G(0) and G(1) phases. Relief from repression begins in S phase and continues into G(2) phase and mitosis. Generally, CDE sites are located four nucleotides upstream of CHR elements in TATA-less promoters of genes such as Cdc25C, Cdc2 and cyclin A. However, expression of some other genes, such as human cyclin B1 and cyclin B2, has been shown to be controlled only by a CHR lacking a functional CDE. To date, it is not fully understood which proteins bind to and control CDE/CHR-containing promoters. Recently, components of the DREAM complex were shown to be involved in CDE/CHR-dependent transcriptional regulation. In addition, the expression of genes regulated by CDE/CHR elements is mostly achieved through CCAAT-boxes, which bind heterotrimeric NF-Y proteins as well as the histone acetyltransferase p300. Importantly, many CDE/CHR promoters are downregulated by the tumor suppressor p53. In this review, we define criteria for CDE/CHR-regulated promoters and propose to distinguish two classes of CDE/CHR-regulated genes. The regulation through transcription factors potentially binding to the CDE/CHR is discussed, and recently discovered links to central pathways regulated by E2F, the pRB family and p53 are highlighted.
Collapse
Affiliation(s)
- Gerd A Müller
- Molecular Oncology, Department of Obstetrics and Gynecology, University of Leipzig, Germany
| | | |
Collapse
|
42
|
Zhang X, Liu D, Lv S, Wang H, Zhong X, Liu B, Wang B, Liao J, Li J, Pfeifer GP, Xu X. CDK5RAP2 is required for spindle checkpoint function. Cell Cycle 2009; 8:1206-16. [PMID: 19282672 DOI: 10.4161/cc.8.8.8205] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The combination of paclitaxel and doxorubicin is among the most successful chemotherapy regimens in cancer treatment. CDK5RAP2, when mutated, causes primary microcephaly. We show here that inhibition of CDK5RAP2 expression causes chromosome mis-segregation, fails to maintain the spindle checkpoint, and is associated with reduced expression of the spindle checkpoint proteins BUBR1 and MAD2 and an increase in chromatin-associated CDC20. CDK5RAP2 resides on the BUBR1 and MAD2 promoters and regulates their transcription. Furthermore, CDK5RAP2-knockdown cells have increased resistance to paclitaxel and doxorubicin, and this resistance is partially rescued upon restoration of CDK5RAP2 expression. Cancer cells cultured in the presence of paclitaxel or doxorubicin exhibit dramatically decreased CDK5RAP2 levels. These results suggest that CDK5RAP2 is required for spindle checkpoint function and is a common target in paclitaxel and doxorubicin resistance.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Laboratory of Cancer Biology, Capital Normal University College of Life Science, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gérard MA, Krol A, Carbon P. Transcription factor hStaf/ZNF143 is required for expression of the human TFAM gene. Gene 2007; 401:145-53. [PMID: 17707600 DOI: 10.1016/j.gene.2007.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/02/2007] [Accepted: 07/12/2007] [Indexed: 12/17/2022]
Abstract
The mitochondrial transcription factor A (Tfam) is essential for transcription initiation and replication of mitochondrial DNA. It was previously reported that transcription factors Sp1, NRF-1, NRF-2 were critical for maintaining the normal transcription levels of the mammalian TFAM gene. In this work, investigation of the transcriptional regulation of the human TFAM gene revealed the presence of two cross-species conserved binding sites for the transcription factor hStaf/ZNF143. By using promoter binding assays, transient expression of mutant TFAM reporter gene constructs and chromatin immunoprecipitation experiments, we provided insight into the involvement of hStaf/ZNF143 in promoter activity. Furthermore, we reported the identification of two other functionally important elements. Altogether, our data led to the conclusion that the promoter of the human TFAM gene harbors a complex organization with at least six transcriptional regulatory elements.
Collapse
Affiliation(s)
- Marie-Aline Gérard
- Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | |
Collapse
|