1
|
Bae DW, Lee SH, Park JH, Son SY, Lin Y, Lee J, Jang BR, Lee KH, Lee YH, Lee H, Kang S, Kim B, Cha SS. An archaeal transcription factor EnfR with a novel 'eighth note' fold controls hydrogen production of a hyperthermophilic archaeon Thermococcus onnurineus NA1. Nucleic Acids Res 2023; 51:10026-10040. [PMID: 37650645 PMCID: PMC10570040 DOI: 10.1093/nar/gkad699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
Thermococcus onnurineus NA1, a hyperthermophilic carboxydotrophic archaeon, produces H2 through CO oxidation catalyzed by proteins encoded in a carbon monoxide dehydrogenase (CODH) gene cluster. TON_1525 with a DNA-binding helix-turn-helix (HTH) motif is a putative repressor regulating the transcriptional expression of the codh gene cluster. The T55I mutation in TON_1525 led to enhanced H2 production accompanied by the increased expression of genes in the codh cluster. Here, TON_1525 was demonstrated to be a dimer. Monomeric TON_1525 adopts a novel 'eighth note' symbol-like fold (referred to as 'eighth note' fold regulator, EnfR), and the dimerization mode of EnfR is unique in that it has no resemblance to structures in the Protein Data Bank. According to footprinting and gel shift assays, dimeric EnfR binds to a 36-bp pseudo-palindromic inverted repeat in the promoter region of the codh gene cluster, which is supported by an in silico EnfR/DNA complex model and mutational studies revealing the implication of N-terminal loops as well as HTH motifs in DNA recognition. The DNA-binding affinity of the T55I mutant was lowered by ∼15-fold, for which the conformational change of N-terminal loops is responsible. In addition, transcriptome analysis suggested that EnfR could regulate diverse metabolic processes besides H2 production.
Collapse
Affiliation(s)
- Da-Woon Bae
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seong Hyuk Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
| | - Ji Hye Park
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Se-Young Son
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, Chungbuk 28119, Republic of Korea
| | - Jung Hyen Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Bo-Ram Jang
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Kyu-Ho Lee
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, Chungbuk 28119, Republic of Korea
- Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Lemay-St-Denis C, Alejaldre L, Jemouai Z, Lafontaine K, St-Aubin M, Hitache K, Valikhani D, Weerasinghe NW, Létourneau M, Thibodeaux CJ, Doucet N, Baron C, Copp JN, Pelletier JN. A conserved SH3-like fold in diverse putative proteins tetramerizes into an oxidoreductase providing an antimicrobial resistance phenotype. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220040. [PMID: 36633286 PMCID: PMC9835603 DOI: 10.1098/rstb.2022.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
We present a potential mechanism for emergence of catalytic activity that is essential for survival, from a non-catalytic protein fold. The type B dihydrofolate reductase (DfrB) family of enzymes were first identified in pathogenic bacteria because their dihydrofolate reductase activity is sufficient to provide trimethoprim (TMP) resistance. DfrB enzymes are described as poorly evolved as a result of their unusual structural and kinetic features. No characterized protein shares sequence homology with DfrB enzymes; how they evolved to emerge in the modern resistome is unknown. In this work, we identify DfrB homologues from a database of putative and uncharacterized proteins. These proteins include an SH3-like fold homologous to the DfrB enzymes, embedded in a variety of additional structural domains. By means of functional, structural and biophysical characterization, we demonstrate that these distant homologues and their extracted SH3-like fold can display dihydrofolate reductase activity and confer TMP resistance. We provide evidence of tetrameric assembly and catalytic mechanism analogous to that of DfrB enzymes. These results contribute, to our knowledge, the first insights into a potential evolutionary path taken by this SH3-like fold to emerge in the modern resistome following introduction of TMP. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Claudèle Lemay-St-Denis
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Lorea Alejaldre
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Zakaria Jemouai
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Kiana Lafontaine
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Maxime St-Aubin
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Katia Hitache
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Donya Valikhani
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Chemistry Department, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Nuwani W. Weerasinghe
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec H3A 0B8, Canada
| | - Myriam Létourneau
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Québec H7V 1B7, Canada
| | - Christopher J. Thibodeaux
- Department of Chemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec H3A 0B8, Canada
| | - Nicolas Doucet
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Québec H7V 1B7, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Janine N. Copp
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Joelle N. Pelletier
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, Québec G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H2V 0B3, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Chemistry Department, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
3
|
Cho SY, Na HW, Oh H, Kwak YM, Song WS, Park S, Jeon WJ, Cho H, Oh BC, Park J, Kang S, Lee GS, Yoon SI. Structural basis of flagellar motility regulation by the MogR repressor and the GmaR antirepressor in Listeria monocytogenes. Nucleic Acids Res 2022; 50:11315-11330. [PMID: 36283692 PMCID: PMC9638930 DOI: 10.1093/nar/gkac815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 08/01/2022] [Accepted: 09/11/2022] [Indexed: 08/27/2023] Open
Abstract
The pathogenic Listeria monocytogenes bacterium produces the flagellum as a locomotive organelle at or below 30°C outside the host, but it halts flagellar expression at 37°C inside the human host to evade the flagellum-induced immune response. Listeria monocytogenes GmaR is a thermosensor protein that coordinates flagellar expression by binding the master transcriptional repressor of flagellar genes (MogR) in a temperature-responsive manner. To understand the regulatory mechanism whereby GmaR exerts the antirepression activity on flagellar expression, we performed structural and mutational analyses of the GmaR-MogR system. At or below 30°C, GmaR exists as a functional monomer and forms a circularly enclosed multidomain structure via an interdomain interaction. GmaR in this conformation recognizes MogR using the C-terminal antirepressor domain in a unique dual binding mode and mediates the antirepressor function through direct competition and spatial restraint mechanisms. Surprisingly, at 37°C, GmaR rapidly forms autologous aggregates that are deficient in MogR neutralization capabilities.
Collapse
Affiliation(s)
- So Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hye-won Na
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Han Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yun Mi Kwak
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wan Seok Song
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun Cheol Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wook-Jong Jeon
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Jeongho Park
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung-il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
4
|
Padmanabhan S, Pérez-Castaño R, Osete-Alcaraz L, Polanco MC, Elías-Arnanz M. Vitamin B 12 photoreceptors. VITAMINS AND HORMONES 2022; 119:149-184. [PMID: 35337618 DOI: 10.1016/bs.vh.2022.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Photoreceptor proteins enable living organisms to sense light and transduce this signal into biochemical outputs to elicit appropriate cellular responses. Their light sensing is typically mediated by covalently or noncovalently bound molecules called chromophores, which absorb light of specific wavelengths and modulate protein structure and biological activity. Known photoreceptors have been classified into about ten families based on the chromophore and its associated photosensory domain in the protein. One widespread photoreceptor family uses coenzyme B12 or 5'-deoxyadenosylcobalamin, a biological form of vitamin B12, to sense ultraviolet, blue, or green light, and its discovery revealed both a new type of photoreceptor and a novel functional facet of this vitamin, best known as an enzyme cofactor. Large strides have been made in our understanding of how these B12-based photoreceptors function, high-resolution structural descriptions of their functional states are available, as are details of their unusual photochemistry. Additionally, they have inspired notable applications in optogenetics/optobiochemistry and synthetic biology. Here, we provide an overview of what is currently known about these B12-based photoreceptors, their discovery, distribution, molecular mechanism of action, and the structural and photochemical basis of how they orchestrate signal transduction and gene regulation, and how they have been used to engineer optogenetic control of protein activities in living cells.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Lucía Osete-Alcaraz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María Carmen Polanco
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
5
|
Pérez-Castaño R, Bastida-Martínez E, Fernández Zapata J, Polanco MDC, Galbis-Martínez ML, Iniesta AA, Fontes M, Padmanabhan S, Elías-Arnanz M. Coenzyme B 12 -dependent and independent photoregulation of carotenogenesis across Myxococcales. Environ Microbiol 2022; 24:1865-1886. [PMID: 35005822 PMCID: PMC9304148 DOI: 10.1111/1462-2920.15895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Abstract
Light-induced carotenogenesis in Myxococcus xanthus is controlled by the B12 -based CarH repressor and photoreceptor, and by a separate intricate pathway involving singlet oxygen, the B12 -independent CarH paralog CarA and various other proteins, some eukaryotic-like. Whether other myxobacteria conserve these pathways and undergo photoregulated carotenogenesis is unknown. Here, comparative analyses across 27 Myxococcales genomes identified carotenogenic genes, albeit arranged differently, with carH often in their genomic vicinity, in all three Myxococcales suborders. However, CarA and its associated factors were found exclusively in suborder Cystobacterineae, with carA-carH invariably in tandem in a syntenic carotenogenic operon, except for Cystobacter/Melittangium, which lack CarA but retain all other factors. We experimentally show B12 -mediated photoregulated carotenogenesis in representative myxobacteria, and a remarkably plastic CarH operator design and DNA binding across Myxococcales. Unlike the two characterized CarH from other phyla, which are tetrameric, Cystobacter CarH (the first myxobacterial homolog amenable to analysis in vitro) is a dimer that combines direct CarH-like B12 -based photoregulation with CarA-like DNA-binding and inhibition by an antirepressor. This study provides new molecular insights into B12 -dependent photoreceptors. It further establishes the B12 -dependent pathway for photoregulated carotenogenesis as broadly prevalent across myxobacteria and its evolution, exclusively in one suborder, into a parallel complex B12 -independent circuit. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Jesús Fernández Zapata
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - María Del Carmen Polanco
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - María Luisa Galbis-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Antonio A Iniesta
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
6
|
Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation. Microorganisms 2021; 9:microorganisms9051067. [PMID: 34063365 PMCID: PMC8156234 DOI: 10.3390/microorganisms9051067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Myxobacteria are Gram-negative δ-proteobacteria found predominantly in terrestrial habitats and often brightly colored due to the biosynthesis of carotenoids. Carotenoids are lipophilic isoprenoid pigments that protect cells from damage and death by quenching highly reactive and toxic oxidative species, like singlet oxygen, generated upon growth under light. The model myxobacterium Myxococcus xanthus turns from yellow in the dark to red upon exposure to light because of the photoinduction of carotenoid biosynthesis. How light is sensed and transduced to bring about regulated carotenogenesis in order to combat photooxidative stress has been extensively investigated in M. xanthus using genetic, biochemical and high-resolution structural methods. These studies have unearthed new paradigms in bacterial light sensing, signal transduction and gene regulation, and have led to the discovery of prototypical members of widely distributed protein families with novel functions. Major advances have been made over the last decade in elucidating the molecular mechanisms underlying the light-dependent signaling and regulation of the transcriptional response leading to carotenogenesis in M. xanthus. This review aims to provide an up-to-date overview of these findings and their significance.
Collapse
|
7
|
Whitworth DE, Zwarycz A. A Genomic Survey of Signalling in the Myxococcaceae. Microorganisms 2020; 8:microorganisms8111739. [PMID: 33171896 PMCID: PMC7694542 DOI: 10.3390/microorganisms8111739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022] Open
Abstract
As prokaryotes diverge by evolution, essential 'core' genes required for conserved phenotypes are preferentially retained, while inessential 'accessory' genes are lost or diversify. We used the recently expanded number of myxobacterial genome sequences to investigate the conservation of their signalling proteins, focusing on two sister genera (Myxococcus and Corallococcus), and on a species within each genus (Myxococcus xanthus and Corallococcus exiguus). Four new C. exiguus genome sequences are also described here. Despite accessory genes accounting for substantial proportions of each myxobacterial genome, signalling proteins were found to be enriched in the core genome, with two-component system genes almost exclusively so. We also investigated the conservation of signalling proteins in three myxobacterial behaviours. The linear carotenogenesis pathway was entirely conserved, with no gene gain/loss observed. However, the modular fruiting body formation network was found to be evolutionarily plastic, with dispensable components in all modules (including components required for fruiting in the model myxobacterium M. xanthus DK1622). Quorum signalling (QS) is thought to be absent from most myxobacteria, however, they generally appear to be able to produce CAI-I (cholerae autoinducer-1), to sense other QS molecules, and to disrupt the QS of other organisms, potentially important abilities during predation of other prokaryotes.
Collapse
|
8
|
Kawalek A, Modrzejewska M, Zieniuk B, Bartosik AA, Jagura-Burdzy G. Interaction of ArmZ with the DNA-binding domain of MexZ induces expression of mexXY multidrug efflux pump genes and antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01199-19. [PMID: 31527038 PMCID: PMC6879243 DOI: 10.1128/aac.01199-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Multidrug efflux pumps play an important role in antibiotic resistance in bacteria. In Pseudomonas aeruginosa, MexXY pump provides intrinsic resistance to many antimicrobials, including aminoglycosides. The expression of mexXY operon is negatively regulated by MexZ repressor. The repression is alleviated in response to the antibiotic-induced ribosome stress, which results in increased synthesis of anti-repressor ArmZ, interacting with MexZ. The molecular mechanism of MexZ inactivation by ArmZ is not known. Here, we showed that the N-terminal part of MexZ, encompassing the DNA-binding domain, is required for interaction with ArmZ. Using the bacterial two hybrid system based mutant screening and pull-down analyses we identified substitutions in MexZ that diminished (R3S, K6E, R13H) or completely impaired (K53E) the interaction with ArmZ without blocking MexZ activity as a transcriptional repressor. Introduction of corresponding mexZ missense mutations into P aeruginosa PAO1161 chromosome impaired (mexZ K6E, mexZ R13H) or blocked (mexZ K53E) tetracycline mediated induction of mexY expression. Concomitantly, PAO1161 mexZ K53E strain was more susceptible to aminoglycosides. The identified residues are highly conserved in MexZ-like transcriptional regulators found in bacterial genomes encoding both MexX/MexY/MexZ and ArmZ/PA5470 orthologs, suggesting that a similar mechanism may contribute to induction of efflux mediated resistance in other bacterial species. Overall, our data shed light on the molecular mechanism of ArmZ mediated induction of intrinsic antimicrobial resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Adam Kawalek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Magdalena Modrzejewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Bartlomiej Zieniuk
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Aneta Agnieszka Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| |
Collapse
|
9
|
Wang H, Chou C, Hsu K, Lee C, Wang AH. New paradigm of functional regulation by DNA mimic proteins: Recent updates. IUBMB Life 2018; 71:539-548. [DOI: 10.1002/iub.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Hao‐Ching Wang
- Graduate Institute of Translational MedicineCollege of Medical Science and Technology, Taipei Medical University Taipei 110 Taiwan
| | - Chia‐Cheng Chou
- National Center for High‐performance ComputingNational Applied Research Laboratories Hsinchu 300 Taiwan
| | - Kai‐Cheng Hsu
- Graduate Institute of Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and Technology, Taipei Medical University Taipei 110 Taiwan
| | - Chi‐Hua Lee
- Institute of Biological Chemistry, Academia Sinica Taipei 115 Taiwan
| | - Andrew H.‐J. Wang
- Graduate Institute of Translational MedicineCollege of Medical Science and Technology, Taipei Medical University Taipei 110 Taiwan
- Institute of Biological Chemistry, Academia Sinica Taipei 115 Taiwan
| |
Collapse
|
10
|
Blair KM, Mears KS, Taylor JA, Fero J, Jones LA, Gafken PR, Whitney JC, Salama NR. The Helicobacter pylori cell shape promoting protein Csd5 interacts with the cell wall, MurF, and the bacterial cytoskeleton. Mol Microbiol 2018; 110:114-127. [PMID: 30039535 DOI: 10.1111/mmi.14087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Chronic infection with Helicobacter pylori can lead to the development of gastric ulcers and stomach cancers. The helical cell shape of H. pylori promotes stomach colonization. Screens for loss of helical shape have identified several periplasmic peptidoglycan (PG) hydrolases and non-enzymatic putative scaffolding proteins, including Csd5. Both over and under expression of the PG hydrolases perturb helical shape, but the mechanism used to coordinate and localize their enzymatic activities is not known. Using immunoprecipitation and mass spectrometry we identified Csd5 interactions with cytosolic proteins CcmA, a bactofilin required for helical shape, and MurF, a PG precursor synthase, as well as the inner membrane spanning ATP synthase. A combination of Csd5 domain deletions, point mutations, and transmembrane domain chimeras revealed that the N-terminal transmembrane domain promotes MurF, CcmA, and ATP synthase interactions, while the C-terminal SH3 domain mediates PG binding. We conclude that Csd5 promotes helical shape as part of a membrane associated, multi-protein shape complex that includes interactions with the periplasmic cell wall, a PG precursor synthesis enzyme, the bacterial cytoskeleton, and ATP synthase.
Collapse
Affiliation(s)
- Kris M Blair
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, 98109, USA.,Molecular and Cellular Biology Ph.D. Program, University of Washington, 1959 NE Pacific Street, HSB T-466, Box 357275, Seattle, WA, 98195-7275, USA
| | - Kevin S Mears
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, 98109, USA
| | - Jennifer A Taylor
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, 98109, USA.,Department of Microbiology, University of Washington, 1705 NE Pacific St., HSB K-343, Box 357735, Seattle, WA, 98195-7735, USA
| | - Jutta Fero
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, 98109, USA
| | - Lisa A Jones
- Proteomics Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., DE-352, Seattle, WA, 98109-1024, USA
| | - Philip R Gafken
- Proteomics Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., DE-352, Seattle, WA, 98109-1024, USA
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Nina R Salama
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA, 98109, USA
| |
Collapse
|
11
|
Paredes-Amaya CC, Valdés-García G, Juárez-González VR, Rudiño-Piñera E, Bustamante VH. The Hcp-like protein HilE inhibits homodimerization and DNA binding of the virulence-associated transcriptional regulator HilD in Salmonella. J Biol Chem 2018. [PMID: 29535187 DOI: 10.1074/jbc.ra117.001421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HilD is an AraC-like transcriptional regulator that plays a central role in Salmonella virulence. HilD controls the expression of the genes within the Salmonella pathogenicity island 1 (SPI-1) and of several genes located outside SPI-1, which are mainly required for Salmonella invasion of host cells. The expression, amount, and activity of HilD are tightly controlled by the activities of several factors. The HilE protein represses the expression of the SPI-1 genes through its interaction with HilD; however, the mechanism by which HilE affects HilD is unknown. In this study, we used genetic and biochemical assays revealing how HilE controls the transcriptional activity of HilD. We found that HilD needs to assemble in homodimers to induce expression of its target genes. Our results further indicated that HilE individually interacts with each the central and the C-terminal HilD regions, mediating dimerization and DNA binding, respectively. We also observed that these interactions consistently inhibit HilD dimerization and DNA binding. Interestingly, a computational analysis revealed that HilE shares sequence and structural similarities with Hcp proteins, which act as structural components of type 6 secretion systems in Gram-negative bacteria. In conclusion, our results uncover the molecular mechanism by which the Hcp-like protein HilE controls dimerization and DNA binding of the virulence-promoting transcriptional regulator HilD. Our findings may indicate that HilE's activity represents a functional adaptation during the evolution of Salmonella pathogenicity.
Collapse
Affiliation(s)
| | - Gilberto Valdés-García
- Molecular Medicine and Bioprocesses, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Víctor R Juárez-González
- Molecular Medicine and Bioprocesses, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Enrique Rudiño-Piñera
- Molecular Medicine and Bioprocesses, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | | |
Collapse
|
12
|
Padmanabhan S, Jost M, Drennan CL, Elías-Arnanz M. A New Facet of Vitamin B 12: Gene Regulation by Cobalamin-Based Photoreceptors. Annu Rev Biochem 2017; 86:485-514. [PMID: 28654327 PMCID: PMC7153952 DOI: 10.1146/annurev-biochem-061516-044500] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Living organisms sense and respond to light, a crucial environmental factor, using photoreceptors, which rely on bound chromophores such as retinal, flavins, or linear tetrapyrroles for light sensing. The discovery of photoreceptors that sense light using 5'-deoxyadenosylcobalamin, a form of vitamin B12 that is best known as an enzyme cofactor, has expanded the number of known photoreceptor families and unveiled a new biological role of this vitamin. The prototype of these B12-dependent photoreceptors, the transcriptional repressor CarH, is widespread in bacteria and mediates light-dependent gene regulation in a photoprotective cellular response. CarH activity as a transcription factor relies on the modulation of its oligomeric state by 5'-deoxyadenosylcobalamin and light. This review surveys current knowledge about these B12-dependent photoreceptors, their distribution and mode of action, and the structural and photochemical basis of how they orchestrate signal transduction and control gene expression.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain;
| | - Marco Jost
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158-2140;
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética, Unidad Asociada al Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
| |
Collapse
|
13
|
Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P. Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum. Front Microbiol 2017; 8:633. [PMID: 28484430 PMCID: PMC5401885 DOI: 10.3389/fmicb.2017.00633] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/28/2017] [Indexed: 11/29/2022] Open
Abstract
Corynebacterium glutamicum is a natural producer of the C50 carotenoid decaprenoxanthin. The crtEcg0722crtBIYEb operon comprises most of its genes for terpenoid biosynthesis. The MarR-type regulator encoded upstream and in divergent orientation of the carotenoid biosynthesis operon has not yet been characterized. This regulator, named CrtR in this study, is encoded in many actinobacterial genomes co-occurring with terpenoid biosynthesis genes. CrtR was shown to repress the crt operon of C. glutamicum since DNA microarray experiments revealed that transcript levels of crt operon genes were increased 10 to 70-fold in its absence. Transcriptional fusions of a promoter-less gfp gene with the crt operon and crtR promoters confirmed that CrtR represses its own gene and the crt operon. Gel mobility shift assays with purified His-tagged CrtR showed that CrtR binds to a region overlapping with the −10 and −35 promoter sequences of the crt operon. Isoprenoid pyrophosphates interfered with binding of CrtR to its target DNA, a so far unknown mechanism for regulation of carotenogenesis. The molecular details of protein-ligand interactions remain to be studied. Decaprenoxanthin synthesis by C. glutamicum wild type was enhanced 10 to 30-fold upon deletion of crtR and was decreased 5 to 6-fold as result of crtR overexpression. Moreover, deletion of crtR was shown as metabolic engineering strategy to improve production of native and non-native carotenoids including lycopene, β-carotene, C.p. 450 and sarcinaxanthin.
Collapse
Affiliation(s)
- Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Sabine A E Heider
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Silvin Hannibal
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| |
Collapse
|
14
|
Bianco PR, Lyubchenko YL. SSB and the RecG DNA helicase: an intimate association to rescue a stalled replication fork. Protein Sci 2017; 26:638-649. [PMID: 28078722 DOI: 10.1002/pro.3114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022]
Abstract
In E. coli, the regression of stalled DNA replication forks is catalyzed by the DNA helicase RecG. One means of gaining access to the fork is by binding to the single strand binding protein or SSB. This interaction occurs via the wedge domain of RecG and the intrinsically disordered linker (IDL) of SSB, in a manner similar to that of SH3 domains binding to PXXP motif-containing ligands in eukaryotic cells. During loading, SSB remodels the wedge domain so that the helicase domains bind to the parental, duplex DNA, permitting the helicase to translocate using thermal energy. This translocation may be used to clear the fork of obstacles, prior to the initiation of fork regression.
Collapse
Affiliation(s)
- Piero R Bianco
- SUNY Microbiology and Immunology, Center for Single Molecule Biophysics, University at Buffalo, 321 Cary Hall, 3435 Main St, Buffalo, New York 14214.,Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York.,Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6025
| |
Collapse
|
15
|
Noncanonical DNA-binding mode of repressor and its disassembly by antirepressor. Proc Natl Acad Sci U S A 2016; 113:E2480-8. [PMID: 27099293 DOI: 10.1073/pnas.1602618113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA-binding repressors are involved in transcriptional repression in many organisms. Disabling a repressor is a crucial step in activating expression of desired genes. Thus, several mechanisms have been identified for the removal of a stably bound repressor (Rep) from the operator. Here, we describe an uncharacterized mechanism of noncanonical DNA binding and induction by a Rep from the temperate Salmonella phage SPC32H; this mechanism was revealed using the crystal structures of homotetrameric Rep (92-198) and a hetero-octameric complex between the Rep and its antirepressor (Ant). The canonical method of inactivating a repressor is through the competitive binding of the antirepressor to the operator-binding site of the repressor; however, these studies revealed several noncanonical features. First, Ant does not compete for the DNA-binding region of Rep. Instead, the tetrameric Ant binds to the C-terminal domains of two asymmetric Rep dimers. Simultaneously, Ant facilitates the binding of the Rep N-terminal domains to Ant, resulting in the release of two Rep dimers from the bound DNA. Second, the dimer pairs of the N-terminal DNA-binding domains originate from different dimers of a Rep tetramer (trans model). This situation is different from that of other canonical Reps, in which two N-terminal DNA-binding domains from the same dimeric unit form a dimer upon DNA binding (cis model). On the basis of these observations, we propose a noncanonical model for the reversible inactivation of a Rep by an Ant.
Collapse
|
16
|
Takano H. The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria. Biosci Biotechnol Biochem 2016; 80:1264-73. [PMID: 26967471 DOI: 10.1080/09168451.2016.1156478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Light is a ubiquitous environmental factor serving as an energy source and external stimulus. Here, I review the conserved molecular mechanism of light-inducible production of carotenoids in three nonphototrophic bacteria: Streptomyces coelicolor A3(2), Thermus thermophilus HB27, and Bacillus megaterium QM B1551. A MerR family transcriptional regulator, LitR, commonly plays a central role in their light-inducible carotenoid production. Genetic and biochemical studies on LitR proteins revealed a conserved function: LitR in complex with adenosyl B12 (AdoB12) has a light-sensitive DNA-binding activity and thus suppresses the expression of the Crt biosynthesis gene cluster. The in vitro DNA-binding and transcription assays showed that the LitR-AdoB12 complex serves as a repressor allowing transcription initiation by RNA polymerase in response to illumination. The existence of novel light-inducible genes and the unique role of the megaplasmid were revealed by the transcriptomic analysis of T. thermophilus. The findings suggest that LitR is a general regulator responsible for the light-inducible carotenoid production in the phylogenetically divergent nonphototrophic bacteria, and that LitR performs diverse physiological functions in bacteria.
Collapse
Affiliation(s)
- Hideaki Takano
- a Applied Biological Science and Life Science Research Center, College of Bioresource Sciences , Nihon University , Fujisawa , Japan
| |
Collapse
|
17
|
Yüksel D, Bianco PR, Kumar K. De novo design of protein mimics of B-DNA. MOLECULAR BIOSYSTEMS 2016; 12:169-77. [PMID: 26568416 PMCID: PMC4699573 DOI: 10.1039/c5mb00524h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural mimicry of DNA is utilized in nature as a strategy to evade molecular defences mounted by host organisms. One such example is the protein Ocr - the first translation product to be expressed as the bacteriophage T7 infects E. coli. The structure of Ocr reveals an intricate and deliberate arrangement of negative charges that endows it with the ability to mimic ∼24 base pair stretches of B-DNA. This uncanny resemblance to DNA enables Ocr to compete in binding the type I restriction modification (R/M) system, and neutralizes the threat of hydrolytic cleavage of viral genomic material. Here, we report the de novo design and biophysical characterization of DNA mimicking peptides, and describe the inhibitory action of the designed helical bundles on a type I R/M enzyme, EcoR124I. This work validates the use of charge patterning as a design principle for creation of protein mimics of DNA, and serves as a starting point for development of therapeutic peptide inhibitors against human pathogens that employ molecular camouflage as part of their invasion stratagem.
Collapse
Affiliation(s)
- Deniz Yüksel
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA.
| | - Piero R Bianco
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| | - Krishna Kumar
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA. and Cancer Center, Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
18
|
Shah S, Heddle JG. Squaring up to DNA: pentapeptide repeat proteins and DNA mimicry. Appl Microbiol Biotechnol 2014; 98:9545-60. [PMID: 25343976 DOI: 10.1007/s00253-014-6151-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 02/01/2023]
Abstract
Pentapeptide repeats are a class of proteins characterized by the presence of multiple repeating sequences five amino acids in length. The sequences fold into a right-handed β-helix with a roughly square-shaped cross section. Pentapeptide repeat proteins include a number of examples which are thought to function as structural mimics of DNA and act to competitively bind to the type II topoisomerase DNA gyrase, an important antibacterial target. DNA gyrase-targeting pentapeptide repeat proteins can both inhibit DNA gyrase-a potentially useful therapeutic property-and contribute to resistance to quinolone antibacterials (by acting to prevent them forming a lethal complex with the DNA and enzyme). Pentapeptide repeat proteins are therefore of wide interest not only because of their unusual structure, function, and potential as an antibacterial target, but also because knowledge of their mechanism of action may lead to both a greater understanding of the details of DNA gyrase function as well as being a useful template for the design of new DNA gyrase inhibitors. However, many puzzling aspects as to how these DNA mimics function and indeed even their ability to act as DNA mimics itself remains open to question. This review summarizes the current state of knowledge regarding pentapeptide repeat proteins, focusing on those that are thought to mimic DNA, and speculates on potential structure-function relationships which may account for their differing specificities.
Collapse
Affiliation(s)
- Shama Shah
- Heddle Initiative Research Unit, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
19
|
Wang HC, Ho CH, Hsu KC, Yang JM, Wang AHJ. DNA mimic proteins: functions, structures, and bioinformatic analysis. Biochemistry 2014; 53:2865-74. [PMID: 24766129 DOI: 10.1021/bi5002689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.
Collapse
Affiliation(s)
- Hao-Ching Wang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University , Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Wang HC, Hsu KC, Yang JM, Wu ML, Ko TP, Lin SR, Wang AHJ. Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Res 2013; 42:1354-64. [PMID: 24150946 PMCID: PMC3902945 DOI: 10.1093/nar/gkt964] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA mimic proteins are unique factors that control the DNA binding activity of target proteins by directly occupying their DNA binding sites. The extremely divergent amino acid sequences of the DNA mimics make these proteins hard to predict, and although they are likely to be ubiquitous, to date, only a few have been reported and functionally analyzed. Here we used a bioinformatic approach to look for potential DNA mimic proteins among previously reported protein structures. From ∼14 candidates, we selected the Staphylococcus conserved hypothetical protein SSP0047, and used proteomic and structural approaches to show that it is a novel DNA mimic protein. In Staphylococcus aureus, we found that this protein acts as a uracil-DNA glycosylase inhibitor, and therefore named it S. aureus uracil-DNA glycosylase inhibitor (SAUGI). We also determined and analyzed the complex structure of SAUGI and S. aureus uracil-DNA glycosylase (SAUDG). Subsequent BIAcore studies further showed that SAUGI has a high binding affinity to both S. aureus and human UDG. The two uracil-DNA glycosylase inhibitors (UGI and p56) previously known to science were both found in Bacillus phages, and this is the first report of a bacterial DNA mimic that may regulate SAUDG’s functional roles in DNA repair and host defense.
Collapse
Affiliation(s)
- Hao-Ching Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan, Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30050, Taiwan, Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, 30050, Taiwan and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang HC, Wu ML, Ko TP, Wang AHJ. Neisseria conserved hypothetical protein DMP12 is a DNA mimic that binds to histone-like HU protein. Nucleic Acids Res 2013; 41:5127-38. [PMID: 23531546 PMCID: PMC3643605 DOI: 10.1093/nar/gkt201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 12/16/2022] Open
Abstract
DNA mimic proteins are unique factors that control the DNA-binding activity of target proteins by directly occupying their DNA-binding sites. To date, only a few DNA mimic proteins have been reported and their functions analyzed. Here, we present evidence that the Neisseria conserved hypothetical protein DMP12 should be added to this list. Our gel filtration and analytical ultracentrifugation results showed that the DMP12 monomer interacts with the dimeric form of the bacterial histone-like protein HU. Subsequent structural analysis of DMP12 showed that the shape and electrostatic surface of the DMP12 monomer are similar to those of the straight portion of the bent HU-bound DNA and complementary to those of HU protein dimer. DMP12 also protects HU protein from limited digestion by trypsin and enhances the growth rate Escherichia coli. Functionally, HU proteins participate in bacterial nucleoid formation, as well as recombination, gene regulation and DNA replication. The interaction between DMP12 and HU protein might, therefore, play important roles in these DNA-related mechanisms.
Collapse
Affiliation(s)
- Hao-Ching Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan, and Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Mao-Lun Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan, and Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan, and Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan, and Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
22
|
Analytical ultracentrifugation studies of oligomerization and DNA-binding of TtCarH, a Thermus thermophilus coenzyme B12-based photosensory regulator. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:463-76. [PMID: 23512413 DOI: 10.1007/s00249-013-0897-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 12/23/2022]
Abstract
Thermus thermophilus transcriptional factor TtCarH belongs to a newly discovered class of photoreceptors that use 5'-deoxyadenosylcobalamin (AdoB12) as the light-sensing chromophore. Photoregulation relies on the repressor activity of AdoB12-bound oligomers in the dark, which light counteracts by oligomer disruption due to AdoB12 photolysis. In this study, we investigated TtCarH self-association and binding to DNA in the dark and in the light using analytical ultracentrifugation (AUC) methods, both sedimentation velocity (SV) as well as equilibrium (SE). From a methodological point of view, this study shows that AUC can provide hydrodynamic insights in cases where light is a crucial determinant of solution properties. For the light-sensitive TtCarH, absorbance as well as interference AUC data yielded comparable results. Sedimentation coefficients and whole-body hydrodynamic analysis from SV experiments indicate that in solution apo-TtCarH and light-exposed AdoB12-TtCarH are predominantly aspherical, ellipsoidal monomers, in accord with SE data. By comparison, AdoB12-TtCarH exists as a more compact tetramer in the dark, with smaller forms such as dimers or monomers remaining undetected and low levels of larger oligomers appearing at higher protein concentrations. AUC analyses indicate that in the dark AdoB12-TtCarH associates as a tetramer with DNA but forms smaller complexes in the apo form or if exposed to light. The self-association and DNA-binding properties of TtCarH deduced from AUC are consistent with data from size-exclusion and DNA-binding gel-shift assays. AUC analyses together with hydrodynamic modeling provide insights into the AdoB12- and light-dependent self-association and DNA-binding of TtCarH.
Collapse
|
23
|
Schmidt RL, Lenz LL. Distinct licensing of IL-18 and IL-1β secretion in response to NLRP3 inflammasome activation. PLoS One 2012; 7:e45186. [PMID: 23028835 PMCID: PMC3445464 DOI: 10.1371/journal.pone.0045186] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/14/2012] [Indexed: 01/09/2023] Open
Abstract
Inflammasome activation permits processing of interleukins (IL)-1β and 18 and elicits cell death (pyroptosis). Whether these responses are independently licensed or are “hard-wired” consequences of caspase-1 (casp1) activity has not been clear. Here, we show that that each of these responses is independently regulated following activation of NLRP3 inflammasomes by a “non-canonical” stimulus, the secreted Listeria monocytogenes (Lm) p60 protein. Primed murine dendritic cells (DCs) responded to p60 stimulation with reactive oxygen species (ROS) production and secretion of IL-1β and IL-18 but not pyroptosis. Inhibitors of ROS production inhibited secretion of IL-1β, but did not impair IL-18 secretion. Furthermore, DCs from caspase-11 (casp11)-deficient 129S6 mice failed to secrete IL-1β in response to p60 but were fully responsive for IL-18 secretion. These findings reveal that there are distinct licensing requirements for processing of IL-18 versus IL-1β by NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Rebecca L. Schmidt
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Laurel L. Lenz
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
- Departments of Immunology and Microbiology, University of Colorado - Denver School of Medicine, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
24
|
Tschowri N, Lindenberg S, Hengge R. Molecular function and potential evolution of the biofilm-modulating blue light-signalling pathway of Escherichia coli. Mol Microbiol 2012; 85:893-906. [PMID: 22783906 PMCID: PMC3509220 DOI: 10.1111/j.1365-2958.2012.08147.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Escherichia coli senses blue light via the BLUF-EAL protein BluF (YcgF). The degenerate EAL domain of BluF does not have cyclic-di-GMP phosphodiesterase activity, but BluF directly antagonizes the MerR-like repressor BluR (YcgE), which leads to expression of the ycgZ-ymgABC operon and activation of the Rcs system (Tschowri et al., 2009; Genes Dev 23: 522–534). While bluR, bluF and ycgZ have individual transcriptional start sites, comparative genome analysis indicates that the bluR-bluF-ycgZ-ymgAB region represents a functional unit in various enteric bacteria that is characterized by bluF alleles encoding degenerate EAL domains. Re-introducing conserved amino acids involved in phosphodiesterase activity of EAL domains did not restore enzymatic activity or c-di-GMP binding of BluF, but weakened its ability to antagonize BluR and improved a residual interaction with the BluR paralogue MlrA, which controls expression of the biofilm regulator CsgD and curli fibres. We identified the BluR binding site in the ycgZ promoter and observed that BluR also has residual affinity for the MlrA-dependent csgD promoter. Altogether, we propose that BluF evolved from a blue light-regulated PDE into a specific antagonist of a duplicate of MlrA that became BluR, which controls not only curli but various biofilm functions via the Ymg/Rcs pathway.
Collapse
Affiliation(s)
- Natalia Tschowri
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | |
Collapse
|
25
|
Baker MD, Neiditch MB. Structural basis of response regulator inhibition by a bacterial anti-activator protein. PLoS Biol 2011; 9:e1001226. [PMID: 22215984 PMCID: PMC3246441 DOI: 10.1371/journal.pbio.1001226] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/14/2011] [Indexed: 01/26/2023] Open
Abstract
The complex interplay between the response regulator ComA, the anti-activator RapF, and the signaling peptide PhrF controls competence development in Bacillus subtilis. More specifically, ComA drives the expression of genetic competence genes, while RapF inhibits the interaction of ComA with its target promoters. The signaling peptide PhrF accumulates at high cell density and upregulates genetic competence by antagonizing the interaction of RapF and ComA. How RapF functions mechanistically to inhibit ComA activity and how PhrF in turn antagonizes the RapF-ComA interaction were unknown. Here we present the X-ray crystal structure of RapF in complex with the ComA DNA binding domain. Along with biochemical and genetic studies, the X-ray crystal structure reveals how RapF mechanistically regulates ComA function. Interestingly, we found that a RapF surface mimics DNA to block ComA binding to its target promoters. Furthermore, RapF is a monomer either alone or in complex with PhrF, and it undergoes a conformational change upon binding to PhrF, which likely causes the dissociation of ComA from the RapF-ComA complex. Finally, we compare the structure of RapF complexed with the ComA DNA binding domain and the structure of RapH complexed with Spo0F. This comparison reveals that RapF and RapH have strikingly similar overall structures, and that they have evolved different, non-overlapping surfaces to interact with diverse cellular targets. To our knowledge, the data presented here reveal the first atomic level insight into the inhibition of response regulator DNA binding by an anti-activator. Compounds that affect the interaction of Rap and Rap-like proteins with their target domains could serve to regulate medically and commercially important phenotypes in numerous Bacillus species, such as sporulation in B. anthracis and sporulation and the production of Cry protein endotoxin in B. thuringiensis.
Collapse
Affiliation(s)
- Melinda D. Baker
- Department of Microbiology and Molecular Genetics, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Matthew B. Neiditch
- Department of Microbiology and Molecular Genetics, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
26
|
Schmidt RL, Filak HC, Lemon JD, Potter TA, Lenz LL. A LysM and SH3-domain containing region of the Listeria monocytogenes p60 protein stimulates accessory cells to promote activation of host NK cells. PLoS Pathog 2011; 7:e1002368. [PMID: 22072975 PMCID: PMC3207947 DOI: 10.1371/journal.ppat.1002368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/22/2011] [Indexed: 11/21/2022] Open
Abstract
Listeria monocytogenes (Lm) infection induces rapid and robust activation of host natural killer (NK) cells. Here we define a region of the abundantly secreted Lm endopeptidase, p60, that potently but indirectly stimulates NK cell activation in vitro and in vivo. Lm expression of p60 resulted in increased IFNγ production by naïve NK cells co-cultured with treated dendritic cells (DCs). Moreover, recombinant p60 protein stimulated activation of naive NK cells when co-cultured with TLR or cytokine primed DCs in the absence of Lm. Intact p60 protein weakly digested bacterial peptidoglycan (PGN), but neither muropeptide recognition by RIP2 nor the catalytic activity of p60 was required for NK cell activation. Rather, the immune stimulating activity mapped to an N-terminal region of p60, termed L1S. Treatment of DCs with a recombinant L1S polypeptide stimulated them to activate naïve NK cells in a cell culture model. Further, L1S treatment activated NK cells in vivo and increased host resistance to infection with Francisella tularensis live vaccine strain (LVS). These studies demonstrate an immune stimulating function for a bacterial LysM domain-containing polypeptide and suggest that recombinant versions of L1S or other p60 derivatives can be used to promote NK cell activation in therapeutic contexts.
Collapse
Affiliation(s)
- Rebecca L. Schmidt
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Holly C. Filak
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Jack D. Lemon
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Terry A. Potter
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Laurel L. Lenz
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| |
Collapse
|
27
|
Light-dependent gene regulation by a coenzyme B12-based photoreceptor. Proc Natl Acad Sci U S A 2011; 108:7565-70. [PMID: 21502508 DOI: 10.1073/pnas.1018972108] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cobalamin (B(12)) typically functions as an enzyme cofactor but can also regulate gene expression via RNA-based riboswitches. B(12)-directed gene regulatory mechanisms via protein factors have, however, remained elusive. Recently, we reported down-regulation of a light-inducible promoter in the bacterium Myxococcus xanthus by two paralogous transcriptional repressors, of which one, CarH, but not the other, CarA, absolutely requires B(12) for activity even though both have a canonical B(12)-binding motif. Unanswered were what underlies this striking difference, what is the specific cobalamin used, and how it acts. Here, we show that coenzyme B(12) (5'-deoxyadenosylcobalamin, AdoB(12)), specifically dictates CarH function in the dark and on exposure to light. In the dark, AdoB(12)-binding to the autonomous domain containing the B(12)-binding motif foments repressor oligomerization, enhances operator binding, and blocks transcription. Light, at various wavelengths at which AdoB(12) absorbs, dismantles active repressor oligomers by photolysing the bound AdoB(12) and weakens repressor-operator binding to allow transcription. By contrast, AdoB(12) alters neither CarA oligomerization nor operator binding, thus accounting for its B(12)-independent activity. Our findings unveil a functional facet of AdoB(12) whereby it serves as the chromophore of a unique photoreceptor protein class acting in light-dependent gene regulation. The prevalence of similar proteins of unknown function in microbial genomes suggests that this distinct B(12)-based molecular mechanism for photoregulation may be widespread in bacteria.
Collapse
|
28
|
Elías-Arnanz M, Padmanabhan S, Murillo FJ. Light-dependent gene regulation in nonphototrophic bacteria. Curr Opin Microbiol 2011; 14:128-35. [DOI: 10.1016/j.mib.2010.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 11/24/2022]
|
29
|
Elías-Arnanz M, Padmanabhan S, Murillo FJ. The regulatory action of the myxobacterial CarD/CarG complex: a bacterial enhanceosome? FEMS Microbiol Rev 2010; 34:764-78. [PMID: 20561058 DOI: 10.1111/j.1574-6976.2010.00235.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A global regulatory complex made up of two unconventional transcriptional factors, CarD and CarG, is implicated in the control of various processes in Myxococcus xanthus, a Gram-negative bacterium that serves as a prokaryotic model system for multicellular development and the response to blue light. CarD has a unique two-domain architecture composed of: (1) a C-terminal DNA-binding domain that resembles eukaryotic high mobility group A (HMGA) proteins, which are relatively abundant, nonhistone components of chromatin that remodel DNA and prime it for the assembly of multiprotein-DNA complexes essential for various DNA transactions, and (2) an N-terminal domain involved in interactions with CarG and RNA polymerase, which is also the founding member of the large CarD_TRCF family of bacterial proteins. CarG, which does not bind DNA directly, has a zinc-binding motif of the type found in the archaemetzincin class of metalloproteases that, in CarG, appears to play a purely structural role. This review aims to provide an overview of the known molecular details and insights emerging from the study of the singular CarD-CarG prokaryotic regulatory complex and its parallels with enhanceosomes, the higher order, nucleoprotein transcription complexes in eukaryotes.
Collapse
Affiliation(s)
- Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Area de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | | |
Collapse
|