1
|
Kim SI, Lyu H, Pujara DS, Bordiya Y, Bhatt PS, Mayorga J, Zogli PK, Kundu P, Chung H, Yan X, Zhang X, Kim J, Louis J, Yu Q, Kang HG. A nuclear tRNA-derived fragment triggers immunity in Arabidopsis. Commun Biol 2025; 8:533. [PMID: 40169869 PMCID: PMC11962134 DOI: 10.1038/s42003-025-07737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/13/2025] [Indexed: 04/03/2025] Open
Abstract
In Arabidopsis, effector-triggered immunity (ETI) against avirulent Pseudomonas syringae pv. tomato (Pst) correlates with the rapid, Dicer-Like 1 (DCL1)-dependent nuclear accumulation of a 31-nt 5'-tRNA fragment derived from Asp-tRNA (tRF31Asp2). Several tRFs, including tRF31Asp2, are induced at early stages of infection and associate with AGO2 in the nucleus. Infiltrating Arabidopsis leaves with synthetic tRF31Asp2 induces over 500 defense-associated genes, conferring immunity against virulent and avirulent Pst as well as aphids, while tRF31Asp2 depletion compromises resistance to avirulent Pst. The biological activity of tRF31Asp2 requires its 5' sequence and predicted stem-loop structure, and its loading into AGO2 or related clade members may contribute to activating defense responses. Chromatin affinity precipitation-sequencing revealed that tRF31Asp2 binds specific sequences in defense genes and the Gypsy superfamily of LTR retrotransposons, particularly at their primer binding sites (PBS). tRF31Asp2 binding appears to modulate transcriptional reprogramming, inducing neighboring tRF-responsive defense genes while suppressing active retrotransposons. Since Gypsy retrotransposon proliferation is primed by tRNA binding at PBS, tRF31Asp2 may exploit a similar mechanism to coordinate defense responses. Together, these findings reveal a role for DCL1 and tRF31Asp2 in regulating plant immunity and transcriptional dynamics at defense-associated loci and retrotransposons.
Collapse
Affiliation(s)
- Sung-Il Kim
- Department of Biology, Texas State University, San Marcos, USA
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Haomin Lyu
- Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX, USA
- Huazhi Biotechnology, Changsha, Hunan, China
| | - Dinesh S Pujara
- Department of Biology, Texas State University, San Marcos, USA
- School of Integrated Plant Science, Cornell University, Ithaca, NY, USA
| | - Yogendra Bordiya
- Department of Biology, Texas State University, San Marcos, USA
- Biosciences Division, Thermo Fisher Scientific, Austin, TX, USA
| | - Padam S Bhatt
- Department of Biology, Texas State University, San Marcos, USA
| | - José Mayorga
- Department of Biology, Texas State University, San Marcos, USA
| | - Prince K Zogli
- Department of Entomology & Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
- GALY.CO, Boston, MA, USA
| | - Pritha Kundu
- Department of Entomology & Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | - Haewon Chung
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
- Synthetic biology, Asimov, Boston, MA, USA
| | - Xingxing Yan
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Xiuren Zhang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Joe Louis
- Department of Entomology & Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | - Qingyi Yu
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA Agricultural Research Service, Hilo, HI, USA
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, USA.
| |
Collapse
|
2
|
Piscopo P, Grasso M, Manzini V, Zeni A, Castelluzzo M, Fontana F, Talarico G, Castellano AE, Rivabene R, Crestini A, Bruno G, Ricci L, Denti MA. Identification of miRNAs regulating MAPT expression and their analysis in plasma of patients with dementia. Front Mol Neurosci 2023; 16:1127163. [PMID: 37324585 PMCID: PMC10266489 DOI: 10.3389/fnmol.2023.1127163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Background Dementia is one of the most common diseases in elderly people and hundreds of thousand new cases per year of Alzheimer's disease (AD) are estimated. While the recent decade has seen significant advances in the development of novel biomarkers to identify dementias at their early stage, a great effort has been recently made to identify biomarkers able to improve differential diagnosis. However, only few potential candidates, mainly detectable in cerebrospinal fluid (CSF), have been described so far. Methods We searched for miRNAs regulating MAPT translation. We employed a capture technology able to find the miRNAs directly bound to the MAPT transcript in cell lines. Afterwards, we evaluated the levels of these miRNAs in plasma samples from FTD (n = 42) and AD patients (n = 33) and relative healthy controls (HCs) (n = 42) by using qRT-PCR. Results Firstly, we found all miRNAs that interact with the MAPT transcript. Ten miRNAs have been selected to verify their effect on Tau levels increasing or reducing miRNA levels by using cell transfections with plasmids expressing the miRNAs genes or LNA antagomiRs. Following the results obtained, miR-92a-3p, miR-320a and miR-320b were selected to analyse their levels in plasma samples of patients with FTD and AD respect to HCs. The analysis showed that the miR-92a-1-3p was under-expressed in both AD and FTD compared to HCs. Moreover, miR-320a was upregulated in FTD vs. AD patients, particularly in men when we stratified by sex. Respect to HC, the only difference is showed in men with AD who have reduced levels of this miRNA. Instead, miR-320b is up-regulated in both dementias, but only patients with FTD maintain this trend in both genders. Conclusions Our results seem to identify miR-92a-3p and miR-320a as possible good biomarkers to discriminate AD from HC, while miR-320b to discriminate FTD from HC, particularly in males. Combining three miRNAs improves the accuracy only in females, particularly for differential diagnosis (FTD vs. AD) and to distinguish FTD from HC.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Margherita Grasso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Valeria Manzini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
- Department of Biology and Biotechnology Charles Darwin, University of Rome “Sapienza”, Rome, Italy
| | - Andrea Zeni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Francesca Fontana
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Giuseppina Talarico
- Department of Human Neuroscience, University of Rome “Sapienza”, Rome, Italy
| | | | - Roberto Rivabene
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, University of Rome “Sapienza”, Rome, Italy
| | - Leonardo Ricci
- Department of Physics, University of Trento, Trento, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
3
|
Hwang H, Chang HR, Baek D. Determinants of Functional MicroRNA Targeting. Mol Cells 2023; 46:21-32. [PMID: 36697234 PMCID: PMC9880601 DOI: 10.14348/molcells.2023.2157] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) play cardinal roles in regulating biological pathways and processes, resulting in significant physiological effects. To understand the complex regulatory network of miRNAs, previous studies have utilized massivescale datasets of miRNA targeting and attempted to computationally predict the functional targets of miRNAs. Many miRNA target prediction tools have been developed and are widely used by scientists from various fields of biology and medicine. Most of these tools consider seed pairing between miRNAs and their mRNA targets and additionally consider other determinants to improve prediction accuracy. However, these tools exhibit limited prediction accuracy and high false positive rates. The utilization of additional determinants, such as RNA modifications and RNA-binding protein binding sites, may further improve miRNA target prediction. In this review, we discuss the determinants of functional miRNA targeting that are currently used in miRNA target prediction and the potentially predictive but unappreciated determinants that may improve prediction accuracy.
Collapse
Affiliation(s)
- Hyeonseo Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hee Ryung Chang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Smith SGJ, Greene CM. Long Non-Coding RNA Expression in Alpha-1 Antitrypsin Deficient Monocytes Pre- and Post-AAT Augmentation Therapy. Noncoding RNA 2023; 9:ncrna9010006. [PMID: 36649035 PMCID: PMC9844503 DOI: 10.3390/ncrna9010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/13/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression. Their expression in alpha-1 antitrypsin (AAT) deficiency has not been investigated. Treatment of AAT deficiency involves infusion of plasma-purified AAT and this augmentation therapy has previously been shown to alter microRNA expression in monocytes of AAT-deficient (ZZ) individuals. Here, we assess the effect of AAT augmentation therapy on the lncRNA expression profile in ZZ monocytes. Peripheral blood monocytes were isolated from ZZ individuals pre (Day 0)- and post (Day 2)-AAT augmentation therapy. Arraystar lncRNA microarray profiling was performed; a total of 17,761 lncRNAs were detectable across all samples. The array identified 7509 lncRNAs with differential expression post-augmentation therapy, 3084 were increased and 4425 were decreased (fold change ≥ 2). Expression of many of these lncRNAs were similarly altered in ZZ monocytes treated ex vivo with 27.5 μM AAT for 4 h. These properties may contribute to the manifold effects of AAT augmentation therapy.
Collapse
Affiliation(s)
- Stephen G. J. Smith
- Department of Clinical Microbiology, Trinity College Dublin, St. James’s Hospital, Dublin 2, Ireland
| | - Catherine M. Greene
- Lung Biology Group, Department of Clinical Microbiology, RCSI University of Medicine and Health Sciences, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
- Correspondence:
| |
Collapse
|
5
|
Minkner R, Boonyakida J, Park EY, Wätzig H. Oligonucleotide separation techniques for purification and analysis: What can we learn for today's tasks? Electrophoresis 2022; 43:2402-2427. [PMID: 36285667 DOI: 10.1002/elps.202200079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Nucleic acids are the blueprint of life. They are not only the construction plan of the single cell or higher associations of them, but also necessary for function, communication and regulation. Due to the pandemic, the attention shifted in particular to their therapeutic potential as a vaccine. As pharmaceutical oligonucleotides are unique in terms of their stability and application, special delivery systems were also considered. Oligonucleotide production systems can vary and depend on the feasibility, availability, price and intended application. To achieve good purity, reliable results and match the strict specifications in the pharmaceutical industry, the separation of oligonucleotides is always essential. Besides the separation required for production, additional and specifically different separation techniques are needed for analysis to determine if the product complies with the designated specifications. After a short introduction to ribonucleic acids (RNAs), messenger RNA vaccines, and their production and delivery systems, an overview regarding separation techniques will be provided. This not only emphasises electrophoretic separations but also includes spin columns, extractions, precipitations, magnetic nanoparticles and several chromatographic separation principles, such as ion exchange chromatography, ion-pair reversed-phase, size exclusion and affinity.
Collapse
Affiliation(s)
- Robert Minkner
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.,Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.,Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
6
|
Salim H, Pero-Gascon R, Pont L, Giménez E, Benavente F. A review of sample preparation for purification of microRNAs and analysis by mass spectrometry methods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Maslakova AA, Didych DA, Golyshev SA, Katrukha IA, Viushkov VS, Zamalutdinov AV, Potashnikova DM, Rubtsov MA, Smirnova OV, Orlovsky IV. Towards unveiling the nature of short SERPINA1 transcripts: Avoiding the main ORF control to translate alpha1-antitrypsin C-terminal peptides. Int J Biol Macromol 2022; 203:703-717. [PMID: 35090941 DOI: 10.1016/j.ijbiomac.2022.01.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/19/2022] [Indexed: 11/27/2022]
Abstract
Alternative ORFs in-frame with the known genes are challenging to reveal. Yet they may contribute significantly to proteome diversity. Here we focused on the individual expression of the SERPINA1 gene exon 5 leading to direct translation of alpha1-antitrypsin (AAT) C-terminal peptides. The discovery of alternative ways for their production may expand the current understanding of the serpin gene's functioning. We detected short transcripts expressed primarily in hepatocytes. We identified four variants of hepatocyte-specific SERPINA1 short transcripts and individually probed their potential to be translated in living cells. The long mRNA gave the full-length AAT-eGFP fusion, while in case of short transcripts we deduced four active SERPINA1 in-frame alternative ORFs encoding 10, 21, 153 and 169 amino acids AAT C-terminal oligo- and polypeptides. Unlike secretory AAT-eGFP fusion exhibiting classical AAT behavior, truncated AAT-fusions differ by intracellular retention and nuclear enrichment. Immunofluorescence on the endogenous AAT C-terminal epitope showed its accumulation in the cell nucleoli, indicating that short transcripts may be translated in vivo. FANTOM5 CAGE data on SERPINA1 suggest that short transcripts originate from the post-transcriptional cleavage of the spliced mRNA, initiated mainly from the hepatocyte-specific promoter. CONCLUSION: Short SERPINA1 transcripts may represent a source for the direct synthesis of AAT C-terminal peptides with properties uncommon to AAT.
Collapse
Affiliation(s)
- A A Maslakova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia.
| | - D A Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya, Moscow 117997, Russia
| | - S A Golyshev
- A.N. Belozersky Research Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - I A Katrukha
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia; HyTest Ltd., Joukahaisenkatu, Turku 20520, Finland
| | - V S Viushkov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - A V Zamalutdinov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - D M Potashnikova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - M A Rubtsov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya, Moscow 119991, Russia
| | - O V Smirnova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - I V Orlovsky
- A.N. Belozersky Research Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| |
Collapse
|
8
|
Dedeoğlu BG, Noyan S. Experimental MicroRNA Targeting Validation. Methods Mol Biol 2022; 2257:79-90. [PMID: 34432274 DOI: 10.1007/978-1-0716-1170-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
microRNAs (miRNAs) have recently been recognized as a new dimension of posttranscriptional regulation. It is well defined that most human protein-coding genes are regulated by one or more miRNAs. Therefore, it is crucial to identify genes targeted by the miRNAs to better understand their functions. Although bioinformatics tools have the ability to identify target candidates it is still essential to identify physiological targets by experimental approaches. Currently, the majority of miRNA-target experimental validation approaches assess the changes in target expression in mRNA or protein level upon miRNA upregulation or downregulation. Additionally, finding out direct physical interactions between miRNAs and their targets is also among the experimental techniques. In this chapter we reviewed the existing experimental techniques for miRNA target identification by considering their advantages and potential drawbacks.
Collapse
Affiliation(s)
| | - Senem Noyan
- Biotechnology Institute, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Zeni A, Grasso M, Denti MA. Identification of miRNAs Bound to an RNA of Interest by MicroRNA Capture Affinity Technology (miR-CATCH). Methods Mol Biol 2022; 2404:207-218. [PMID: 34694611 DOI: 10.1007/978-1-0716-1851-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
microRNA capture affinity technology (miR-CATCH) uses affinity capture biotinylated antisense oligonucleotides to co-purify a target transcript together with all its endogenously bound miRNAs. The miR-CATCH assay is performed to investigate miRNAs bound to a specific mRNA. This method allows to have a total vision of miRNAs bound not only to the 3'UTR but also to the 5'UTR and Coding Region of target messenger RNAs (mRNAs).
Collapse
Affiliation(s)
- Andrea Zeni
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
- Istituto Rainerum-SDB, Bolzano, Italy
| | - Margherita Grasso
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
- L.N.Age Srl-Link Neuroscience and Healthcare, Pomezia (RM), Italy
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
10
|
Matamala N, Lara B, Gómez-Mariano G, Martínez S, Vázquez-Domínguez I, Otero-Sobrino Á, Muñoz-Callejas A, Sánchez E, Esquinas C, Bustamante A, Cadenas S, Curi S, Lázaro L, Martínez MT, Rodríguez E, Miravitlles M, Torres-Duran M, Herrero I, Michel FJ, Castillo S, Hernández-Pérez JM, Blanco I, Casas F, Martínez-Delgado B. miR-320c Regulates SERPINA1 Expression and Is Induced in Patients With Pulmonary Disease. Arch Bronconeumol 2021; 57:457-463. [PMID: 35698951 DOI: 10.1016/j.arbr.2020.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/11/2020] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Alpha-1 antitrypsin deficiency (AATD) is a genetic condition resulting in lung and liver disease with a great clinical variability. MicroRNAs have been identified as disease modifiers; therefore miRNA deregulation could play an important role in disease heterogeneity. Members of miR-320 family are involved in regulating of multiple processes including inflammation, and have potential specific binding sites in the 3'UTR region of SERPINA1 gene. In this study we explore the involvement of miR-320c, a member of this family, in this disease. METHODS Firstly in vitro studies were carried out to demonstrate regulation of SERPINA1 gene by miR-320. Furthermore, the expression of miR-320c was analyzed in the blood of 98 individuals with different AAT serum levels by using quantitative PCR and expression was correlated to clinical parameters of the patients. Finally, HL60 cells were used to analyze induction of miR-320c in inflammatory conditions. RESULTS Overexpression of miR-320 members in human HepG2 cells led to inhibition of SERPINA1 expression. Analysis of miR-320c expression in patient's samples revealed significantly increased expression of miR-320c in individuals with pulmonary disease. Additionally, HL60 cells treated with the pro-inflammatory factor lipopolysaccharide (LPS) showed increase in miR-320c expression, suggesting that miR-320c responds to inflammation. CONCLUSION Our findings demonstrate that miR-320c inhibits SERPINA1 expression in a hepatic cell line and its levels in blood are associated with lung disease in a cohort of patients with different AAT serum levels. These results suggest that miR-320c can play a role in AAT regulation and could be a biomarker of inflammatory processes in pulmonary diseases.
Collapse
Affiliation(s)
- Nerea Matamala
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Beatriz Lara
- Respiratory Medicine Department, Coventry University Hospital, Coventry, UK
| | - Gema Gómez-Mariano
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Selene Martínez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Irene Vázquez-Domínguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Álvaro Otero-Sobrino
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonio Muñoz-Callejas
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cristina Esquinas
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain; Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Ana Bustamante
- Servicio de Neumología, Hospital de Sierrallana, Torrelavega, Cantabria, Spain
| | - Sergio Cadenas
- Servicio de Neumología, Hospital Clínico Universitario de Salamanca, Spain
| | - Sergio Curi
- Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Lourdes Lázaro
- Servicio de Neumología, Complejo Asistencial Universitario de Burgos, Spain
| | | | - Esther Rodríguez
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - María Torres-Duran
- Servicio de Neumología, Hospital Álvaro Cunqueiro, EOXI Vigo, Pneumovigo I+i, IIS Galicia Sur, Spain
| | - Inés Herrero
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Silvia Castillo
- Unidad de Neumología infantil y Fibrosis quística, Hospital Clínico Universitario de Valencia, Spain
| | | | - Ignacio Blanco
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain
| | - Francisco Casas
- Servicio de Neumología, Hospital Universitario San Cecilio, Granada, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
11
|
Bersimbaev R, Aripova A, Bulgakova O, Kussainova А, Akparova A, Izzotti A. The Plasma Levels of hsa-miR-19b-3p, hsa-miR-125b-5p and hsa-miR-320c in Patients with Asthma, COPD and Asthma-COPD Overlap Syndrome (ACOS). Microrna 2021; 10:130-138. [PMID: 34151771 DOI: 10.2174/2211536610666210609142859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bronchial Asthma (BA) and Chronic Obstructive Pulmonary Disease (COPD) are chronic airway inflammation diseases. In recent years, patients with signs of both BA and COPD have been assigned to a separate group as Asthma-COPD Overlap Syndrome (ACOS). Free-circulating plasma microRNAs are considered as potential biomarkers of pulmonary diseases, including BA, COPD and ACOS. OBJECTIVE This study aimed to investigate the expression level of free-circulating plasma microRNAs hsa-miR-19b-3p, hsa-miR-125b-5p and hsa-miR-320c in patients with BA, COPD and ACOS for the detection and validation of new microRNAs as biomarkers for chronic lung diseases. METHODS The relative expression levels of 720 microRNAs were evaluated by Real Time-Polymerase Chain Reaction (RT-PCR) in patients with COPD and BA. Three upregulated microRNAs (hsa-miR-19b-3p, hsa-miR-125b-5p and hsa-miR-320c) were selected for further study. The obtained data was analyzed using the microRNA PCR Array Data Analysis tool. The sensitivity and specificity were estimated using the area under the Receiver Operating Characteristics curve (ROC). RESULTS The expression level of free-circulating hsa-miR-19b-3p was decreased in the blood plasma of patients with BA and ACOS, and increased in patients with COPD. hsa-miR-125b-5p was downregulated in the blood plasma of patients with COPD, and upregulated in patients with BA and ACOS. hsa-miR-320c was downregulated in the blood plasma of patients with BA, and upregulated in patients with COPD and ACOS. The ROC curves of patients with BA for hsa-miR-19b-3p, patients with ACOS for hsa-miR-125b-5p and patients with COPD for hsa-miR-320c revealed the probability of them as valuable biomarkers with AUCs of 0.824, 0.825, and 0.855, respectively. CONCLUSION Our study revealed three promising biomarkers for the diagnosis of COPD, BA and ACOS.
Collapse
Affiliation(s)
- Rakhmetkazhy Bersimbaev
- Department of General Biology and Genomics, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Akmaral Aripova
- Department of General Biology and Genomics, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Olga Bulgakova
- Department of General Biology and Genomics, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Аssya Kussainova
- Department of General Biology and Genomics, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Almira Akparova
- Department of General Biology and Genomics, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, I-16132 Genoa, Italy
| |
Collapse
|
12
|
Cozzolino F, Iacobucci I, Monaco V, Monti M. Protein-DNA/RNA Interactions: An Overview of Investigation Methods in the -Omics Era. J Proteome Res 2021; 20:3018-3030. [PMID: 33961438 PMCID: PMC8280749 DOI: 10.1021/acs.jproteome.1c00074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The fields of application
of functional proteomics are not limited
to the study of protein–protein interactions; they also extend
to those involving protein complexes that bind DNA or RNA. These interactions
affect fundamental processes such as replication, transcription, and
repair in the case of DNA, as well as transport, translation, splicing,
and silencing in the case of RNA. Analytical or preparative experimental
approaches, both in vivo and in vitro, have been developed to isolate and identify DNA/RNA binding proteins
by exploiting the advantage of the affinity shown by these proteins
toward a specific oligonucleotide sequence. The present review proposes
an overview of the approaches most commonly employed in proteomics
applications for the identification of nucleic acid-binding proteins,
such as affinity purification (AP) protocols, EMSA, chromatin purification
methods, and CRISPR-based chromatin affinity purification, which are
generally associated with mass spectrometry methodologies for the
unbiased protein identification.
Collapse
Affiliation(s)
- Flora Cozzolino
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vittoria Monaco
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.,Interuniversity Consortium National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro, 305-00136 Rome, Italy
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
13
|
Carter JM, Ang DA, Sim N, Budiman A, Li Y. Approaches to Identify and Characterise the Post-Transcriptional Roles of lncRNAs in Cancer. Noncoding RNA 2021; 7:19. [PMID: 33803328 PMCID: PMC8005986 DOI: 10.3390/ncrna7010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
It is becoming increasingly evident that the non-coding genome and transcriptome exert great influence over their coding counterparts through complex molecular interactions. Among non-coding RNAs (ncRNA), long non-coding RNAs (lncRNAs) in particular present increased potential to participate in dysregulation of post-transcriptional processes through both RNA and protein interactions. Since such processes can play key roles in contributing to cancer progression, it is desirable to continue expanding the search for lncRNAs impacting cancer through post-transcriptional mechanisms. The sheer diversity of mechanisms requires diverse resources and methods that have been developed and refined over the past decade. We provide an overview of computational resources as well as proven low-to-high throughput techniques to enable identification and characterisation of lncRNAs in their complex interactive contexts. As more cancer research strategies evolve to explore the non-coding genome and transcriptome, we anticipate this will provide a valuable primer and perspective of how these technologies have matured and will continue to evolve to assist researchers in elucidating post-transcriptional roles of lncRNAs in cancer.
Collapse
Affiliation(s)
- Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Daniel Aron Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Andrea Budiman
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
14
|
Gerber AP. RNA-Centric Approaches to Profile the RNA-Protein Interaction Landscape on Selected RNAs. Noncoding RNA 2021; 7:ncrna7010011. [PMID: 33671874 PMCID: PMC7930960 DOI: 10.3390/ncrna7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
RNA–protein interactions frame post-transcriptional regulatory networks and modulate transcription and epigenetics. While the technological advances in RNA sequencing have significantly expanded the repertoire of RNAs, recently developed biochemical approaches combined with sensitive mass-spectrometry have revealed hundreds of previously unrecognized and potentially novel RNA-binding proteins. Nevertheless, a major challenge remains to understand how the thousands of RNA molecules and their interacting proteins assemble and control the fate of each individual RNA in a cell. Here, I review recent methodological advances to approach this problem through systematic identification of proteins that interact with particular RNAs in living cells. Thereby, a specific focus is given to in vivo approaches that involve crosslinking of RNA–protein interactions through ultraviolet irradiation or treatment of cells with chemicals, followed by capture of the RNA under study with antisense-oligonucleotides and identification of bound proteins with mass-spectrometry. Several recent studies defining interactomes of long non-coding RNAs, viral RNAs, as well as mRNAs are highlighted, and short reference is given to recent in-cell protein labeling techniques. These recent experimental improvements could open the door for broader applications and to study the remodeling of RNA–protein complexes upon different environmental cues and in disease.
Collapse
Affiliation(s)
- André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
15
|
Duan W, Kong X, Li J, Li P, Zhao Y, Liu T, Binang HB, Wang Y, Du L, Wang C. LncRNA AC010789.1 Promotes Colorectal Cancer Progression by Targeting MicroRNA-432-3p/ZEB1 Axis and the Wnt/β-Catenin Signaling Pathway. Front Cell Dev Biol 2020; 8:565355. [PMID: 33178684 PMCID: PMC7593606 DOI: 10.3389/fcell.2020.565355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating literatures have indicated that long non-coding RNAs (lncRNAs) are crucial molecules in tumor progression in various human cancers, including colorectal cancer (CRC). However, the clinical significance and regulatory mechanism of a vast majority of lncRNAs in CRC remain to be determined. The current study aimed to explore the function and molecular mechanism of lncRNA AC010789.1 in CRC progression. AC010789.1 found to be overexpressed in CRC tissues and cells. High expression of AC010789.1 was associated with lymph node metastasis and poor prognosis. Moreover, AC010789.1 silencing inhibited proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro as well as tumorigenesis and metastasis in vivo. Mechanistically, we demonstrated that repression of AC010789.1 promoted miR-432-3p expression, and miR-432-3p directly binds to ZEB1. We then proved the anti-tumor role of miR-432-3p in CRC, showing that the inhibitory effect of AC010789.1 knockdown on CRC cells was achieved by the upregulation of miR-432-3p but downregulation of ZEB1. We also established that silencing AC010789.1 suppressed the Wnt/β-catenin signaling pathway. However, this inhibitory effect was partially counteracted by inhibition of miR-432-3p. In summary, these results reveal that silencing AC010789.1 suppresses CRC progression via miR-432-3p-mediated ZEB1 downregulation and suppression of the Wnt/β-catenin signaling pathway, highlighting a potentially promising strategy for CRC treatment.
Collapse
Affiliation(s)
- Weili Duan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue Kong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tong Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Helen Barong Binang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan, China.,The Clinical Research Center of Shandong Province for Clinical Laboratory, Jinan, China
| |
Collapse
|
16
|
Matamala N, Lara B, Gómez-Mariano G, Martínez S, Vázquez-Domínguez I, Otero-Sobrino Á, Muñoz-Callejas A, Sánchez E, Esquinas C, Bustamante A, Cadenas S, Curi S, Lázaro L, Martínez MT, Rodríguez E, Miravitlles M, Torres-Duran M, Herrero I, Michel FJ, Castillo S, Hernández-Pérez JM, Blanco I, Casas F, Martínez-Delgado B. miR-320c Regulates SERPINA1 Expression and Is Induced in Patients With Pulmonary Disease. Arch Bronconeumol 2020; 57:S0300-2896(20)30084-3. [PMID: 32439252 DOI: 10.1016/j.arbres.2020.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Alpha-1 antitrypsin deficiency (AATD) is a genetic condition resulting in lung and liver disease with a great clinical variability. MicroRNAs have been identified as disease modifiers; therefore miRNA deregulation could play an important role in disease heterogeneity. Members of miR-320 family are involved in regulating of multiple processes including inflammation, and have potential specific binding sites in the 3'UTR region of SERPINA1 gene. In this study we explore the involvement of miR-320c, a member of this family, in this disease. METHODS Firstly in vitro studies were carried out to demonstrate regulation of SERPINA1 gene by miR-320. Furthermore, the expression of miR-320c was analyzed in the blood of 98 individuals with different AAT serum levels by using quantitative PCR and expression was correlated to clinical parameters of the patients. Finally, HL60 cells were used to analyze induction of miR-320c in inflammatory conditions. RESULTS Overexpression of miR-320 members in human HepG2 cells led to inhibition of SERPINA1 expression. Analysis of miR-320c expression in patient's samples revealed significantly increased expression of miR-320c in individuals with pulmonary disease. Additionally, HL60 cells treated with the pro-inflammatory factor lipopolysaccharide (LPS) showed increase in miR-320c expression, suggesting that miR-320c responds to inflammation. CONCLUSION Our findings demonstrate that miR-320c inhibits SERPINA1 expression in a hepatic cell line and its levels in blood are associated with lung disease in a cohort of patients with different AAT serum levels. These results suggest that miR-320c can play a role in AAT regulation and could be a biomarker of inflammatory processes in pulmonary diseases.
Collapse
Affiliation(s)
- Nerea Matamala
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Beatriz Lara
- Respiratory Medicine Department, Coventry University Hospital, Coventry, UK
| | - Gema Gómez-Mariano
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Selene Martínez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Irene Vázquez-Domínguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Álvaro Otero-Sobrino
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonio Muñoz-Callejas
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cristina Esquinas
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain; Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Ana Bustamante
- Servicio de Neumología, Hospital de Sierrallana, Torrelavega, Cantabria, Spain
| | - Sergio Cadenas
- Servicio de Neumología, Hospital Clínico Universitario de Salamanca, Spain
| | - Sergio Curi
- Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Lourdes Lázaro
- Servicio de Neumología, Complejo Asistencial Universitario de Burgos, Spain
| | | | - Esther Rodríguez
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - María Torres-Duran
- Servicio de Neumología, Hospital Álvaro Cunqueiro, EOXI Vigo, Pneumovigo I+i, IIS Galicia Sur, Spain
| | - Inés Herrero
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Silvia Castillo
- Unidad de Neumología infantil y Fibrosis quística, Hospital Clínico Universitario de Valencia, Spain
| | | | - Ignacio Blanco
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain
| | - Francisco Casas
- Servicio de Neumología, Hospital Universitario San Cecilio, Granada, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
17
|
Alpha-1 Antitrypsin-A Target for MicroRNA-Based Therapeutic Development for Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21030836. [PMID: 32012925 PMCID: PMC7037267 DOI: 10.3390/ijms21030836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder arising from mutations to the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Disruption to normal ion homeostasis in the airway results in impaired mucociliary clearance, leaving the lung more vulnerable to recurrent and chronic bacterial infections. The CF lung endures an excess of neutrophilic inflammation, and whilst neutrophil serine proteases are a crucial part of the innate host defence to infection, a surplus of neutrophil elastase (NE) is understood to create a net destructive effect. Alpha-1 antitrypsin (A1AT) is a key antiprotease in the control of NE protease activity but is ineffective in the CF lung due to the huge imbalance of NE levels. Therapeutic strategies to boost levels of protective antiproteases such as A1AT in the lung remain an attractive research strategy to limit the damage from excess protease activity. microRNAs are small non-coding RNA molecules that bind specific cognate sequences to inhibit expression of target mRNAs. The inhibition of miRNAs which target the SERPINA1 (A1AT-encoding gene) mRNA represents a novel therapeutic approach for CF inflammation. This could involve the delivery of antagomirs that bind and sequester the target miRNA, or target site blockers that bind miRNA recognition elements within the target mRNA to prevent miRNA interaction. Therefore, miRNA targeted therapies offer an alternative strategy to drive endogenous A1AT production and thus supplement the antiprotease shield of the CF lung.
Collapse
|
18
|
Biotin oligonucleotide labeling reactions: A method to assess their effectiveness and reproducibility. Anal Biochem 2020; 593:113590. [PMID: 31962102 DOI: 10.1016/j.ab.2020.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 11/24/2022]
Abstract
The strong molecular interaction between biotin and streptavidin is widely used in the growing field of nucleic acid nanotechnology. Several biotin labeled oligonucleotide tools have been developed for the detection of biological molecules as well as for protein purification. For these reasons, biotinylation can be considered one of the main chemical reactions for nucleic acid labeling. However, despite its widespread application and the presence on the market of many reagents for the conjugation of biotin to oligonucleotides, it is not yet available a cheap, easy and sensitive system able to assess the effectiveness and reproducibility of this reaction. Here, we present an accurate and reliable method to achieve a qualitative and quantitative analysis of oligonucleotide biotinylation. The protocol employs basic laboratory instruments and standard software for molecular biology applications and does not require advanced expertise for its execution. Most importantly, our method is independent from complex kinetic equilibrium parameters and shows a limit of detection more than one order of magnitude lower than the current fluorometric gold standard assay. Therefore, this method could become a standard, inexpensive and routinely used quality test for post-synthesis evaluation of biotin conjugation reactions.
Collapse
|
19
|
Theil K, Imami K, Rajewsky N. Identification of proteins and miRNAs that specifically bind an mRNA in vivo. Nat Commun 2019; 10:4205. [PMID: 31527589 PMCID: PMC6746756 DOI: 10.1038/s41467-019-12050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding regulation of an mRNA requires knowledge of its regulators. However, methods for reliable de-novo identification of proteins binding to a particular RNA are scarce and were thus far only successfully applied to abundant noncoding RNAs in cell culture. Here, we present vIPR, an RNA-protein crosslink, RNA pulldown, and shotgun proteomics approach to identify proteins bound to selected mRNAs in C. elegans. Applying vIPR to the germline-specific transcript gld-1 led to enrichment of known and novel interactors. By comparing enrichment upon gld-1 and lin-41 pulldown, we demonstrate that vIPR recovers both common and specific RNA-binding proteins, and we validate DAZ-1 as a specific gld-1 regulator. Finally, combining vIPR with small RNA sequencing, we recover known and biologically important transcript-specific miRNA interactions, and we identify miR-84 as a specific interactor of the gld-1 transcript. We envision that vIPR will provide a platform for investigating RNA in vivo regulation in diverse biological systems.
Collapse
Affiliation(s)
- Kathrin Theil
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Laboratory of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
| |
Collapse
|
20
|
Iadevaia V, Wouters MD, Kanitz A, Matia-González AM, Laing EE, Gerber AP. Tandem RNA isolation reveals functional rearrangement of RNA-binding proteins on CDKN1B/p27Kip1 3'UTRs in cisplatin treated cells. RNA Biol 2019; 17:33-46. [PMID: 31522610 PMCID: PMC6948961 DOI: 10.1080/15476286.2019.1662268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional control of gene expression is mediated via RNA-binding proteins (RBPs) that interact with mRNAs in a combinatorial fashion. While recent global RNA interactome capture experiments expanded the repertoire of cellular RBPs quiet dramatically, little is known about the assembly of RBPs on particular mRNAs; and how these associations change and control the fate of the mRNA in drug-treatment conditions. Here we introduce a novel biochemical approach, termed tobramycin-based tandem RNA isolation procedure (tobTRIP), to quantify proteins associated with the 3ʹUTRs of cyclin-dependent kinase inhibitor 1B (CDKN1B/p27Kip1) mRNAs in vivo. P27Kip1 plays an important role in mediating a cell’s response to cisplatin (CP), a widely used chemotherapeutic cancer drug that induces DNA damage and cell cycle arrest. We found that p27Kip1 mRNA is stabilized upon CP treatment of HEK293 cells through elements in its 3ʹUTR. Applying tobTRIP, we further compared the associated proteins in CP and non-treated cells, and identified more than 50 interacting RBPs, many functionally related and evoking a coordinated response. Knock-downs of several of the identified RBPs in HEK293 cells confirmed their involvement in CP-induced p27 mRNA regulation; while knock-down of the KH-type splicing regulatory protein (KHSRP) further enhanced the sensitivity of MCF7 adenocarcinoma cancer cells to CP treatment. Our results highlight the benefit of specific in vivo mRNA-protein interactome capture to reveal post-transcriptional regulatory networks implicated in cellular drug response and adaptation.
Collapse
Affiliation(s)
- Valentina Iadevaia
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Maikel D Wouters
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Ana M Matia-González
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Emma E Laing
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
21
|
Xun Y, Tang Y, Hu L, Xiao H, Long S, Gong M, Wei C, Wei K, Xiang S. Purification and Identification of miRNA Target Sites in Genome Using DNA Affinity Precipitation. Front Genet 2019; 10:778. [PMID: 31572429 PMCID: PMC6751328 DOI: 10.3389/fgene.2019.00778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Combination with genomic DNA is one of the important ways for microRNAs (miRNAs) to perform biological processes. However, because of lack of an experimental method, the identified genomic sites targeted by microRNA were only located in the promoter and enhancer regions. In this study, based on affinity purification of labeled biotin at the 3'-end of miRNAs, we established an efficiently experimental method to screen miRNA binding sequences in the whole genomic regions in vivo. Biotinylated miR-373 was used to test our approach in MCF-7 cells, and then Sanger and next-generation sequencing were used to screen miR-373 binding sequences. Our results demonstrated that the genomic fragments precipitated by miR-373 were located not only in promoter but also in intron, exon, and intergenic. Eleven potentially miR-373 targeting genes were selected for further study, and all of these genes were significantly regulated by miR-373. Furthermore, the targeting sequences located in E-cadherin, cold-shock domain-containing protein C2 (CSDC2), and PDE4D genes could interact with miR-373 in MCF-7 cells rather than HeLa cells, which is consistent with our data that these three genes can be regulated by miR-373 in MCF-7 cells while not in HeLa cells. On the whole, this is an efficient method to identify miRNA targeting sequences in the whole genome.
Collapse
Affiliation(s)
- Yu Xun
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Yinxin Tang
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Linmin Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Hui Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengwen Long
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Mengting Gong
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Chenxi Wei
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | - Ke Wei
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China.,Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
22
|
McKiernan PJ, Smith SGJ, Durham AL, Adcock IM, McElvaney NG, Greene CM. The Estrogen-Induced miR-19 Downregulates Secretory Leucoprotease Inhibitor Expression in Monocytes. J Innate Immun 2019; 12:90-102. [PMID: 31266011 DOI: 10.1159/000500419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Compared to females, males are more susceptible to acute viral and other respiratory tract infections that display greater severity and higher mortality. In contrast, females tend to fare worse with chronic inflammatory diseases. Circulating 17β-estradiol (E2) is a female-specific factor that may influence the progression of human lung diseases. Here we hypothesize that E2 modulates the inflammatory response of monocytes through microRNA (miRNA)-based modulation of secretory leucoprotease inhibitor (SLPI), an antiprotease with immunomodulatory effects. Monocytic cells were treated ± E2, and differentially expressed miRNAs were identified using PCR profiling. Cells were transfected with miRNA mimics or antimiRs and SLPI mRNA and protein levels were quantified. Luciferase activity assay using wildtype and ΔmiR-19a/b-SLPI3'UTR reporter constructs and chromatin immunoprecipitation on E2-treated monocytes were performed. E2 downregulated SLPI and upregulated miR-19 expression in monocytes. Transfection with premiR-19b reduced SLPI mRNA and protein levels and this effect was abrogated using antimiRs against miR-19b. miR-19b directly binds the SLPI 3'UTR. The mechanism responsible for E2-mediated upregulation of miR-19 occurs via increased MIR17HG promoter activity mediated by c-MYC. Overall E2 decreases SLPI expression in human monocytic cells, via changes in miRNA expression and highlights the potential for estrogen to modulate the innate immune system.
Collapse
Affiliation(s)
- Paul J McKiernan
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Stephen G J Smith
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Andrew L Durham
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Noel G McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland,
| |
Collapse
|
23
|
Ragusa M, Barbagallo D, Chioccarelli T, Manfrevola F, Cobellis G, Di Pietro C, Brex D, Battaglia R, Fasano S, Ferraro B, Sellitto C, Ambrosino C, Roberto L, Purrello M, Pierantoni R, Chianese R. CircNAPEPLD is expressed in human and murine spermatozoa and physically interacts with oocyte miRNAs. RNA Biol 2019; 16:1237-1248. [PMID: 31135264 DOI: 10.1080/15476286.2019.1624469] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) have a critical role in the control of gene expression. Their function in spermatozoa (SPZ) is unknown to date. Twenty-eight genes, involved in SPZ/testicular and epididymal physiology, were given in circBase database to find which of them may generate circular transcripts. We focused on circNAPEPLDiso1, one of the circular RNA isoforms of NAPEPLD transcript, because expressed in human and murine SPZ. In order to functionally characterize circNAPEPLDiso1 as potential microRNA (miRNA) sponge, we performed circNAPEPLDiso1-miR-CATCH and then profiled the expression of 754 miRNAs, by using TaqMan® Low Density Arrays. Among them, miRNAs 146a-5p, 203a-3p, 302c-3p, 766-3p and 1260a (some of them previously shown to be expressed in the oocyte), resulted enriched in circNAPEPLDiso1-miR-CATCHed cell lysate: the network of interactions generated from their validated targets was centred on a core of genes involved in the control of cell cycle. Moreover, computational analysis of circNAPEPLDiso1 sequence also showed its potential translation in a short form of NAPEPLD protein. Interestingly, the expression analysis in murine-unfertilized oocytes revealed low and high levels of circNAPEPLDiso1 and circNAPEPLDiso2, respectively. After fertilization, circNAPEPLDiso1 expression significantly increased, instead circNAPEPLDiso2 expression appeared constant. Based on these data, we suggest that SPZ-derived circNAPEPLDiso1 physically interacts with miRNAs primarily involved in the control of cell cycle; we hypothesize that it may represent a paternal cytoplasmic contribution to the zygote and function as a miRNA decoy inside the fertilized oocytes to regulate the first stages of embryo development. This role is proposed here for the first time.
Collapse
Affiliation(s)
- Marco Ragusa
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy.,b Oasi Research Institute - IRCCS , Troina , Italy
| | - Davide Barbagallo
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Teresa Chioccarelli
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Francesco Manfrevola
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Gilda Cobellis
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Cinzia Di Pietro
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Duilia Brex
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Rosalia Battaglia
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Silvia Fasano
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Bruno Ferraro
- d UOSD di Fisiopatologia della Riproduzione, Presidio Ospedaliero di Marcianise , Caserta , Italy
| | - Carolina Sellitto
- d UOSD di Fisiopatologia della Riproduzione, Presidio Ospedaliero di Marcianise , Caserta , Italy
| | - Concetta Ambrosino
- e Dipartimento di Scienze e Tecnologie, Università del Sannio , Benevento , Italy
| | - Luca Roberto
- f IRGS, Biogem , Ariano Irpino, Avellino , Italy
| | - Michele Purrello
- a Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania , Catania , Italy
| | - Riccardo Pierantoni
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Rosanna Chianese
- c Dipartimento di Medicina Sperimentale, sez "F. Bottazzi", Università della Campania "Luigi Vanvitelli" , Napoli , Italy
| |
Collapse
|
24
|
Marranci A, D'Aurizio R, Vencken S, Mero S, Guzzolino E, Rizzo M, Pitto L, Pellegrini M, Chiorino G, Greene CM, Poliseno L. Systematic evaluation of the microRNAome through miR-CATCHv2.0 identifies positive and negative regulators of BRAF-X1 mRNA. RNA Biol 2019; 16:865-878. [PMID: 30929607 DOI: 10.1080/15476286.2019.1600934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Here we present miR-CATCHv2.0, an implemented experimental method that allows the identification of the microRNA species directly bound to an RNA of interest. After cross-linking of microRNA::RNA::Ago2 complexes using formaldehyde, the RNA is fragmented using sonication and then subjected to affinity purification using two sets of biotinylated tiling probes (ODD and EVEN). Finally, enriched microRNA species are retrieved by means of small RNA sequencing coupled with an ad hoc analytical workflow. In BRAFV600E mutant A375 melanoma cells, miR-CATCHv2.0 allowed us to identify 20 microRNAs that target X1, the most abundant isoform of BRAF mRNA. These microRNAs fall into different functional classes, according to the effect that they exert (decrease/increase in BRAFV600E mRNA and protein levels) and to the mechanism they use to achieve it (destabilization/stabilization of X1 mRNA or decrease/increase in its translation). microRNA-induced variations in BRAFV600E protein levels are most of the times coupled to consistent variations in pMEK levels, in melanoma cell proliferation in vitro and in sensitivity to the BRAF inhibitor vemurafenib in a xenograft model in zebrafish. However, microRNAs exist that uncouple the degree of activation of the ERK pathway from the levels of BRAFV600E protein. Our study proposes miR-CATCHv2.0 as an effective tool for the identification of direct microRNA-target interactions and, by using such a tool, unveils the complexity of the post-transcriptional regulation to which BRAFV600E and the ERK pathway are subjected in melanoma cells.
Collapse
Affiliation(s)
- Andrea Marranci
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy.,c Signal Transduction Unit, Core Research Laboratory , ISPRO , Siena , Italy
| | | | - Sebastian Vencken
- e Department of Clinical Microbiology , Royal College of Surgeon in Ireland , Dublin , Ireland
| | - Serena Mero
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy
| | | | - Milena Rizzo
- a Institute of Clinical Physiology , CNR , Pisa , Italy
| | - Letizia Pitto
- a Institute of Clinical Physiology , CNR , Pisa , Italy
| | | | - Giovanna Chiorino
- f Cancer Genomics Lab , Fondazione Edo ed Elvo Tempia , Biella , Italy
| | - Catherine M Greene
- e Department of Clinical Microbiology , Royal College of Surgeon in Ireland , Dublin , Ireland
| | - Laura Poliseno
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy
| |
Collapse
|
25
|
Suppression of miR-93-5p inhibits high-risk HPV-positive cervical cancer progression via targeting of BTG3. Hum Cell 2019; 32:160-171. [DOI: 10.1007/s13577-018-00225-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022]
|
26
|
Capri M, Morsiani C, Santoro A, Moriggi M, Conte M, Martucci M, Bellavista E, Fabbri C, Giampieri E, Albracht K, Flück M, Ruoss S, Brocca L, Canepari M, Longa E, Di Giulio I, Bottinelli R, Cerretelli P, Salvioli S, Gelfi C, Franceschi C, Narici M, Rittweger J. Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting. FASEB J 2019; 33:5168-5180. [PMID: 30620616 PMCID: PMC6436655 DOI: 10.1096/fj.201801625r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Sarcolab pilot study of 2 crewmembers, investigated before and after a 6-mo International Space Station mission, has demonstrated the substantial muscle wasting and weakness, along with disruption of muscle's oxidative metabolism. The present work aimed at evaluating the pro/anti-inflammatory status in the same 2 crewmembers (A, B). Blood circulating (c-)microRNAs (miRs), c-proteasome, c-mitochondrial DNA, and cytokines were assessed by real-time quantitative PCR or ELISA tests. Time series analysis was performed ( i.e., before flight and after landing) at 1 and 15 d of recovery (R+1 and R+15, respectively). C-biomarkers were compared with an age-matched control population and with 2-dimensional proteomic analysis of the 2 crewmembers' muscle biopsies. Striking differences were observed between the 2 crewmembers at R+1, in terms of inflamma-miRs (c-miRs-21-5p, -126-3p, and -146a-5p), muscle specific (myo)-miR-206, c-proteasome, and IL-6/leptin, thus making the 2 astronauts dissimilar to each other. Final recovery levels of c-proteasome, c-inflamma-miRs, and c-myo-miR-206 were not reverted to the baseline values in crewmember A. In both crewmembers, myo-miR-206 changed significantly after recovery. Muscle biopsy of astronaut A showed an impressive 80% increase of α-1-antitrypsin, a target of miR-126-3p. These results point to a strong stress response induced by spaceflight involving muscle tissue and the proinflammatory setting, where inflamma-miRs and myo-miR-206 mediate the systemic recovery phase after landing.-Capri, M., Morsiani, C., Santoro, A., Moriggi, M., Conte, M., Martucci, M., Bellavista, E., Fabbri, C., Giampieri, E., Albracht, K., Flück, M., Ruoss, S., Brocca, L., Canepari, M., Longa, E., Di Giulio, I., Bottinelli, R., Cerretelli, P., Salvioli, S., Gelfi, C., Franceschi, C., Narici, M., Rittweger, J. Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Manuela Moriggi
- National Research Council-Institute of Molecular Bioimaging and Physiology (CNR-IBFM), Segrate, Milan, Italy.,Italian National Olympic Committee (CONI), Rome, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Morena Martucci
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Elena Bellavista
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Fabbri
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Enrico Giampieri
- Galvani Interdepartmental Center, University of Bologna, Bologna, Italy.,Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Kirsten Albracht
- Faculty of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany.,Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
| | - Martin Flück
- Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Severin Ruoss
- Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Emanuela Longa
- Sport Medicine Center, University of Pavia, Pavia, Italy
| | - Irene Di Giulio
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Fondazione Salvatore Maugeri, Institute of Hospitalization and Scientific Care (IRCCS), Scientific Institute of Pavia, Pavia, Italy
| | - Paolo Cerretelli
- National Research Council-Institute of Molecular Bioimaging and Physiology (CNR-IBFM), Segrate, Milan, Italy.,Italian National Olympic Committee (CONI), Rome, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCCS, Istituto Ortopedico Galeazzi, Milan, Italy
| | - Claudio Franceschi
- Department of Applied Mathematics, Institute of Information Technology, Mathematics, and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod-National Research University (UNN), Nizhny Novogoro, Russia
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; and.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
McKiernan PJ, Lynch P, Ramsey JM, Cryan SA, Greene CM. Knockdown of Gene Expression in Macrophages by microRNA Mimic-Containing Poly (Lactic- co-glycolic Acid) Microparticles. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E133. [PMID: 30558310 PMCID: PMC6313440 DOI: 10.3390/medicines5040133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 01/05/2023]
Abstract
Background: microRNA (miRNA) regulate target gene expression through translational repression and/or mRNA degradation and are involved in the regulation of inflammation. Macrophages are key inflammatory cells that are important in chronic inflammatory lung diseases such as cystic fibrosis (CF). Macrophage-expressed miRNA represent therapeutic drug targets, yet delivery of nucleic acids to macrophages has proved challenging. Methods: miRNAs were encapsulated in poly (lactic-co-glycolic acid) (PLGA)-based microparticles using double emulsion solvent evaporation and characterised for physicochemical features. Phorbol myristic acetate (PMA)-differentiated U937 macrophages were transfected with empty PLGA microparticles or those encapsulating a premiR-19b-3p or scrambled control miRNA mimic. miRNA internalisation and knockdown of a miR-19b-3p target gene, secretory leucoprotease inhibitor (SLPI), were determined by qRT-PCR. Results: Microparticle formulations were consistently found to be 2⁻3μm and all had a negative ζ potential (-5 mV to -14 mV). Encapsulation efficiency of premiR-19b-3p was 37.6 ± 13.4%. Levels of mature miR-19b-3p were higher in macrophages after delivery of premiR-19b-3p microparticles compared to empty or scrambled control miRNA-containing microparticles. Significant SLPI knockdown was achieved 72 hours post-delivery of premiR-19b-3p microparticles compared to controls. Conclusions: miRNA-encapsulating PLGA microparticles offer a new treatment paradigm for delivery to macrophages that could potentially be administered to CF lungs via inhalation.
Collapse
Affiliation(s)
- Paul J McKiernan
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | - Patrick Lynch
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
- Drug Delivery and Advanced Materials Team, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Joanne M Ramsey
- Drug Delivery and Advanced Materials Team, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway H91 HE94, Ireland.
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| | - Sally Ann Cryan
- Drug Delivery and Advanced Materials Team, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway H91 HE94, Ireland.
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland.
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| | - Catherine M Greene
- Lung Biology Group, Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
28
|
Long non-coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis. Oncotarget 2018; 7:20636-54. [PMID: 26943042 PMCID: PMC4991481 DOI: 10.18632/oncotarget.7833] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/03/2016] [Indexed: 12/12/2022] Open
Abstract
Ultraconserved regions (UCRs) have been shown to originate non-coding RNA transcripts (T-UCRs) that have different expression profiles and play functional roles in the pathophysiology of multiple cancers. The relevance of these functions to the pathogenesis of bladder cancer (BlCa) is speculative. To elucidate this relevance, we first used genome-wide profiling to evaluate the expression of T-UCRs in BlCa tissues. Analysis of two datasets comprising normal bladder tissues and BlCa specimens with a custom T-UCR microarray identified ultraconserved RNA (uc.) 8+ as the most upregulated T-UCR in BlCa tissues, although its expression was lower than in pericancerous bladder tissues. These results were confirmed on BlCa tissues by real-time PCR and by in situ hybridization. Although uc.8+ is located within intron 1 of CASZ1, a zinc-finger transcription factor, the transcribed non-coding RNA encoding uc.8+ is expressed independently of CASZ1. In vitro experiments evaluating the effects of uc.8+ silencing, showed significantly decreased capacities for cancer cell invasion, migration, and proliferation. From this, we proposed and validated a model of interaction in which uc.8+ shuttles from the nucleus to the cytoplasm of BlCa cells, interacts with microRNA (miR)-596, and cooperates in the promotion and development of BlCa. Using computational analysis, we investigated the miR-binding domain accessibility, as determined by base-pairing interactions within the uc.8+ predicted secondary structure, RNA binding affinity, and RNA species abundance in bladder tissues and showed that uc.8+ is a natural decoy for miR-596. Thus uc.8+ upregulation results in increased expression of MMP9, increasing the invasive potential of BlCa cells. These interactions between evolutionarily conserved regions of DNA suggest that natural selection has preserved this potentially regulatory layer that uses RNA to modulate miR levels, opening up the possibility for development of useful markers for early diagnosis and prognosis as well as for development of new RNA-based cancer therapies.
Collapse
|
29
|
Phan HD, Li J, Poi M, Nakanishi K. Quantification of miRNAs Co-Immunoprecipitated with Argonaute Proteins Using SYBR Green-Based qRT-PCR. Methods Mol Biol 2018; 1680:29-40. [PMID: 29030839 PMCID: PMC11323259 DOI: 10.1007/978-1-4939-7339-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that trigger post-transcriptional gene silencing. These RNAs need to be associated with the Argonaute proteins to be functional. This assembly begins with loading of a miRNA duplex, followed by the ejection of one of the strands (passenger). The remaining strand (guide) together with the Argonaute protein forms a ribonucleoprotein effector complex (the RNA-induced silencing complex, RISC). Mutation on the Argonaute protein, if affecting either step of the RISC assembly, impacts the function of miRNAs. Therefore, any observation of decreased miRNA level of mutants will provide insights into the role of those amino acid residues in the mechanical function of the Argonaute protein. In this chapter, we introduce a method to relatively quantify a specific miRNA co-immunoprecipitated with wild type and mutant Argonaute proteins from HEK293T cells, using Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR). Spiking a synthetic exogenous miRNA as an internal control with RNA extraction prior to cDNA synthesis will normalize the C t values obtained from the qRT-PCR assays and enable us to quantify the relative level of Argonaute-bound miRNA.
Collapse
Affiliation(s)
- Hong-Duc Phan
- Department of Chemistry and Biochemistry, The Ohio State University, 742 Riffe Bldg., 496 West 12th Avenue, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, Columbus, OH, 43210, USA
| | - Junan Li
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Ming Poi
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA.
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, 742 Riffe Bldg., 496 West 12th Avenue, Columbus, OH, 43210, USA.
- Ohio State Biochemistry Program, Columbus, OH, 43210, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Griffith A, Kelly PS, Vencken S, Lao NT, Greene CM, Clynes M, Barron N. miR-CATCH Identifies Biologically Active miRNA Regulators of the Pro-Survival Gene XIAP, in Chinese Hamster Ovary Cells. Biotechnol J 2017; 13:e1700299. [PMID: 28976632 DOI: 10.1002/biot.201700299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/18/2017] [Indexed: 01/01/2023]
Abstract
Genetic engineering of mammalian cells is of interest as a means to boost bio-therapeutic protein yield. X-linked inhibitor of apoptosis (XIAP) overexpression has previously been shown to enhance CHO cell growth and prolong culture longevity while additionally boosting productivity. The authors confirmed this across a range of recombinant products (SEAP, EPO, and IgG). However, stable overexpression of an engineering transgene competes for the cells translational machinery potentially compromising product titre. MicroRNAs are attractive genetic engineering candidates given their non-coding nature and ability to regulate multiple genes simultaneously, thereby relieving the translational burden associated with stable overexpression of a protein-encoding gene. The large number of potential targets of a single miRNA, falsely predicted in silico, presents difficulties in identifying those that could be useful engineering tools. The authors explored the identification of direct miRNA regulators of the pro-survival endogenous XIAP gene in CHO-K1 cells by using a miR-CATCH protocol. A biotin-tagged antisense DNA oligonucleotide for XIAP mRNA is designed and used to pull down and capture bound miRNAs. Two miRNAs are chosen out of the 14 miRNAs identified for further validation, miR-124-3p and miR-19b-3p. Transient transfection of mimics for both results in the diminished translation of endogenous CHO XIAP protein whereas their inhibition increases XIAP protein levels. A 3'UTR reporter assay confirms miR-124-3p to be a bona fide regulator of XIAP in CHO-K1 cells. This method demonstrates a useful approach to finding miRNA candidates for CHO cell engineering without competing for the cellular translational machinery.
Collapse
Affiliation(s)
- Alan Griffith
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul S Kelly
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Sebastian Vencken
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Nga T Lao
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Niall Barron
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,National Institute for Bioprocessing Research and Training, Fosters Ave, Dublin 4, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
31
|
Zhou K, Diebel KW, Holy J, Skildum A, Odean E, Hicks DA, Schotl B, Abrahante JE, Spillman MA, Bemis LT. A tRNA fragment, tRF5-Glu, regulates BCAR3 expression and proliferation in ovarian cancer cells. Oncotarget 2017; 8:95377-95391. [PMID: 29221134 PMCID: PMC5707028 DOI: 10.18632/oncotarget.20709] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is a complex disease marked by tumor heterogeneity, which contributes to difficulties in diagnosis and treatment. New molecular targets and better molecular profiles defining subsets of patients are needed. tRNA fragments (tRFs) offer a recently identified group of noncoding RNAs that are often as abundant as microRNAs in cancer cells. Initially their presence in deep sequencing data sets was attributed to the breakdown of mature tRNAs, however, it is now clear that they are actively generated and function in multiple regulatory events. One such tRF, a 5’ fragment of tRNA-Glu-CTC (tRF5-Glu), is processed from the mature tRNA-Glu and is shown in this study to be expressed in ovarian cancer cells. We confirmed that tRF5-Glu binds directly to a site in the 3’UTR of the Breast Cancer Anti-Estrogen Resistance 3 (BCAR3) mRNA thereby down regulating its expression. BCAR3 has not previously been studied in ovarian cancer cells and our studies demonstrate that inhibiting BCAR3 expression suppresses ovarian cancer cell proliferation. Furthermore, mimics of tRF5-Glu were found to inhibit proliferation of ovarian cancer cells. In summary, BCAR3 and tRF5-Glu contribute to the complex tumor heterogeneity of ovarian cancer cells and may provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Kevin W Diebel
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Jon Holy
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Andrew Skildum
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Evan Odean
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Douglas A Hicks
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brent Schotl
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Monique A Spillman
- Texas A&M University Medical School, Baylor University Medical Center, Dallas, TX, 75206 USA
| | - Lynne T Bemis
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| |
Collapse
|
32
|
Hu J, Li C, Liu C, Zhao S, Wang Y, Fu Z. Expressions of miRNAs in papillary thyroid carcinoma and their associations with the clinical characteristics of PTC. Cancer Biomark 2017; 18:87-94. [PMID: 28085013 DOI: 10.3233/cbm-161723] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The sensitivity and specificity of biomarkers which have been used in clinical practice for diagnosis of papillary thyroid carcinoma (PTC) are low, it is essential to develop novel diagnostic and prognostic biomarkers for PTC. OBJECTIVE To explore the expressions of miR-940, miR-15a, miR-16 and IL-23 in PTC tissues and plasma and their associations with the clinical characteristics of PTC. METHODS We investigated the expressions of miR-940, miR-15a, miR-16 and IL-23 in plasma and thyroid tissues of PTC, nodular goiter and healthy people with qRT-PCR, and further analyzed the associations between their levels and the clinical characteristics of PTC. RESULTS Level of IL-23 expression was higher while levels of miR-940, miR-15a and miR-16 expression in the PTC tissues were lower compared with the nodular goiter tissues and perineoplastic thyroid tissues. And the levels of miR-940, miR-15a, miR-16 and IL-23 expression in the PTC tissues were associated with some clinical characteristics of PTC, including bilateral tumor, multicentricity, extrallyroidal invasion, cervical lymph node metastasis, distant metastasis and clinical advanced stages (III/IV). CONCLUSIONS Expressions of miR-940, miR-15a, miR-16 and IL-23 in PTC tissues might be useful biomarkers and promising targets in the diagnosis of papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Jianxia Hu
- The Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,The Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chengqian Li
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,The Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chongkai Liu
- Department of Urology, The People's Hospital of Jimo, Qingdao, Shandong, China
| | - Shihua Zhao
- The Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yangang Wang
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhengju Fu
- Endocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
33
|
De Santi C, Vencken S, Blake J, Haase B, Benes V, Gemignani F, Landi S, Greene CM. Identification of MiR-21-5p as a Functional Regulator of Mesothelin Expression Using MicroRNA Capture Affinity Coupled with Next Generation Sequencing. PLoS One 2017; 12:e0170999. [PMID: 28125734 PMCID: PMC5268774 DOI: 10.1371/journal.pone.0170999] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate mRNA expression mainly by silencing target transcripts via binding to miRNA recognition elements (MREs) in the 3'untranslated region (3'UTR). The identification of bona fide targets is challenging for researchers working on the functional aspect of miRNAs. Recently, we developed a method (miR-CATCH) based on biotinylated DNA antisense oligonucleotides that capture the mRNA of interest and facilitates the characterisation of miRNAs::mRNA interactions in a physiological cellular context. Here, the miR-CATCH technique was applied to the mesothelin (MSLN) gene and coupled with next generation sequencing (NGS), to identify miRNAs that regulate MSLN mRNA and that may be responsible for its increased protein levels found in malignant pleural mesothelioma (MPM). Biotinylated MSLN oligos were employed to isolate miRNA::MSLN mRNA complexes from a normal cell line (Met-5A) which expresses low levels of MSLN. MiRNAs targeting the MSLN mRNA were identified by NGS and miR-21-5p and miR-100-5p were selected for further validation analyses. MiR-21-5p was shown to be able to modulate MSLN expression in miRNA mimic experiments in a panel of malignant and non-malignant cell lines. Further miRNA inhibitor experiments and luciferase assays in Mero-14 cells validated miR-21-5p as a true regulator of MSLN. Moreover, in vitro experiments showed that treatment with miR-21-5p mimic reduced proliferation of MPM cell lines. Altogether, this work shows that the miR-CATCH technique, coupled with NGS and in vitro validation, represents a reliable method to identify native miRNA::mRNA interactions. MiR-21-5p is suggested as novel regulator of MSLN with a possible functional role in cellular growth.
Collapse
Affiliation(s)
- Chiara De Santi
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Republic of Ireland
| | - Sebastian Vencken
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Republic of Ireland
| | - Jonathon Blake
- Genomics Core Facility, EMBL European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bettina Haase
- Genomics Core Facility, EMBL European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Catherine M. Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Republic of Ireland
| |
Collapse
|
34
|
Matia-González AM, Iadevaia V, Gerber AP. A versatile tandem RNA isolation procedure to capture in vivo formed mRNA-protein complexes. Methods 2016; 118-119:93-100. [PMID: 27746303 DOI: 10.1016/j.ymeth.2016.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/05/2016] [Accepted: 10/09/2016] [Indexed: 01/08/2023] Open
Abstract
We describe a tandem RNA isolation procedure (TRIP) that enables purification of in vivo formed messenger ribonucleoprotein (mRNP) complexes. The procedure relies on the purification of polyadenylated mRNAs with oligo(dT) beads from cellular extracts, followed by the capture of specific mRNAs with 3'-biotinylated 2'-O-methylated antisense RNA oligonucleotides, which are recovered with streptavidin beads. TRIP was applied to isolate in vivo crosslinked mRNP complexes from yeast, nematodes and human cells for subsequent analysis of RNAs and bound proteins. The method provides a basis for adaptation to other types of polyadenylated RNAs, enabling the comprehensive identification of bound proteins/RNAs, and the investigation of dynamic rearrangement of mRNPs imposed by cellular or environmental cues.
Collapse
Affiliation(s)
- Ana M Matia-González
- Dept. of Microbial and Cellular Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Valentina Iadevaia
- Dept. of Microbial and Cellular Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - André P Gerber
- Dept. of Microbial and Cellular Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
35
|
Yang HW, Liu GH, Liu YQ, Zhao HC, Yang Z, Zhao CL, Zhang XF, Ye H. Over-expression of microRNA-940 promotes cell proliferation by targeting GSK3β and sFRP1 in human pancreatic carcinoma. Biomed Pharmacother 2016; 83:593-601. [PMID: 27459115 DOI: 10.1016/j.biopha.2016.06.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
Increasing study reports that Wnt/β-catenin signaling pathway plays an essential role in numerous cancers growth, progression and metastasis. Aberrant miR-940 expression has been studied in gastric and breast cancer. However, the molecular mechanism of miR-940 enhancing proliferation and metastatic ability in human pancreatic carcinoma is far from to know. Real-time PCR was used to quantify miR-940 expression. Luciferase reporter assays here were performed to verify the activity of Wnt/β-catenin signaling pathway and targeting gene relationships, and immunofluorescence assay was applied to observe β-catenin expressed intensity. Bioinformatics analysis together with in vivo and vitro functional analysis indicated the potential targeting genes of miR-940. Specimens from 15 pairs of patients with human pancreatic carcinoma were involoved to confirm the relationship between miR-940 expression and the GSK3β/sFRP1 through real-time PCR and western blot assays. Bioinformatics combined with cell luciferase function researches determined the possible regulation of miR-940 on the 3'-UTR of the GSK3β and sFRP1 genes, resulting in the Wnt/β-catenin signaling activation. Further, miR-940 knockdown significantly recovered GSK3β and sFRP1 expression and relieved Wnt/β-catenin-mediated cell invasion, migration, metastasis and proliferation. The ectopic up-regulation of miR-940 significantly suppressed GSK3β/sFRP1 expression and promoted pancreatic carcinoma proliferation and invasion. Our study suggested mechanistic relationship between miR-940 and Wnt/β-catenin in the development and progression of pancreatic carcinoma through regulation of GSK3β and sFRP1.
Collapse
Affiliation(s)
- Hong-Wei Yang
- Department of Gastrointestinal Surgery, the first affiliated hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, Henan 450052, PR China
| | - Guang-Hui Liu
- Department of Gastrointestinal Surgery, the first affiliated hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, Henan 450052, PR China
| | - Yu-Qiong Liu
- Department of Gastrointestinal Surgery, the first affiliated hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, Henan 450052, PR China
| | - Hong-Chao Zhao
- Department of Gastrointestinal Surgery, the first affiliated hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, Henan 450052, PR China
| | - Zhen Yang
- Department of Gastrointestinal Surgery, the first affiliated hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, Henan 450052, PR China
| | - Chun-Lin Zhao
- Department of Gastrointestinal Surgery, the first affiliated hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, Henan 450052, PR China
| | - Xie-Fu Zhang
- Department of Gastrointestinal Surgery, the first affiliated hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, Henan 450052, PR China
| | - Hua Ye
- College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
36
|
Abbey M. Functional characterization of the several splice variants of Fmr1. RESEARCH IDEAS AND OUTCOMES 2016. [DOI: 10.3897/rio.2.e10593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Zheng D, Sabbagh JJ, Blair LJ, Darling AL, Wen X, Dickey CA. MicroRNA-511 Binds to FKBP5 mRNA, Which Encodes a Chaperone Protein, and Regulates Neuronal Differentiation. J Biol Chem 2016; 291:17897-906. [PMID: 27334923 DOI: 10.1074/jbc.m116.727941] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
Single nucleotide polymorphisms in the FKBP5 gene increase the expression of the FKBP51 protein and have been associated with increased risk for neuropsychiatric disorders such as major depression and post-traumatic stress disorder. Moreover, levels of FKBP51 are increased with aging and in Alzheimer disease, potentially contributing to disease pathogenesis. However, aside from its glucocorticoid responsiveness, little is known about what regulates FKBP5 In recent years, non-coding RNAs, and in particular microRNAs, have been shown to modulate disease-related genes and processes. The current study sought to investigate which miRNAs could target and functionally regulate FKBP5 Following in silico data mining and initial target expression validation, miR-511 was found to suppress FKBP5 mRNA and protein levels. Using luciferase p-miR-Report constructs and RNA pulldown assays, we confirmed that miR-511 bound directly to the 3'-UTR of FKBP5, validating the predicted gene-microRNA interaction. miR-511 suppressed glucocorticoid-induced up-regulation of FKBP51 in cells and primary neurons, demonstrating functional, disease-relevant control of the protein. Consistent with a regulator of FKBP5, miR-511 expression in the mouse brain decreased with age but increased following chronic glucocorticoid treatment. Analysis of the predicted target genes of miR-511 revealed that neurogenesis, neuronal development, and neuronal differentiation were likely controlled by these genes. Accordingly, miR-511 increased neuronal differentiation in cells and enhanced neuronal development in primary neurons. Collectively, these findings show that miR-511 is a functional regulator of FKBP5 and can contribute to neuronal differentiation.
Collapse
Affiliation(s)
- Dali Zheng
- From the Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613
| | - Jonathan J Sabbagh
- From the Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613
| | - Laura J Blair
- From the Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613
| | - April L Darling
- From the Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613
| | - Xiaoqi Wen
- From the Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613
| | - Chad A Dickey
- From the Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613
| |
Collapse
|
38
|
Molecular Background of miRNA Role in Asthma and COPD: An Updated Insight. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7802521. [PMID: 27376086 PMCID: PMC4916273 DOI: 10.1155/2016/7802521] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/29/2016] [Accepted: 05/15/2016] [Indexed: 12/14/2022]
Abstract
Inflammatory airway diseases are a significant health problems requiring new approaches to the existing therapies and addressing fundamental issues. Difficulties in developing effective therapeutic strategies might be caused by lack of understanding of their exact molecular mechanism. MicroRNAs (miRNAs) are a class of regulators that already revolutionized the view of gene expression regulation. A cumulating number of investigations show a pivotal role of miRNAs in the pathogenesis of asthma, chronic obstructive pulmonary disease (COPD), or airway remodeling through the regulation of many pathways involved in their pathogenesis. Expression changes of several miRNAs have also been found to play a role in the development and/or improvement in asthma or COPD. Still, relatively little is known about the role of miRNAs in inflammatory disorders. The microRNA profiles may differ depending on the cell type or antigen-presenting cell. Based on the newest literature, this review discusses the current knowledge concerning miRNA contribution and influence on lung inflammation and chosen inflammatory airway diseases: asthma and COPD.
Collapse
|
39
|
Steinkraus BR, Toegel M, Fulga TA. Tiny giants of gene regulation: experimental strategies for microRNA functional studies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:311-62. [PMID: 26950183 PMCID: PMC4949569 DOI: 10.1002/wdev.223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/19/2015] [Accepted: 11/28/2015] [Indexed: 12/11/2022]
Abstract
The discovery over two decades ago of short regulatory microRNAs (miRNAs) has led to the inception of a vast biomedical research field dedicated to understanding these powerful orchestrators of gene expression. Here we aim to provide a comprehensive overview of the methods and techniques underpinning the experimental pipeline employed for exploratory miRNA studies in animals. Some of the greatest challenges in this field have been uncovering the identity of miRNA-target interactions and deciphering their significance with regard to particular physiological or pathological processes. These endeavors relied almost exclusively on the development of powerful research tools encompassing novel bioinformatics pipelines, high-throughput target identification platforms, and functional target validation methodologies. Thus, in an unparalleled manner, the biomedical technology revolution unceasingly enhanced and refined our ability to dissect miRNA regulatory networks and understand their roles in vivo in the context of cells and organisms. Recurring motifs of target recognition have led to the creation of a large number of multifactorial bioinformatics analysis platforms, which have proved instrumental in guiding experimental miRNA studies. Subsequently, the need for discovery of miRNA-target binding events in vivo drove the emergence of a slew of high-throughput multiplex strategies, which now provide a viable prospect for elucidating genome-wide miRNA-target binding maps in a variety of cell types and tissues. Finally, deciphering the functional relevance of miRNA post-transcriptional gene silencing under physiological conditions, prompted the evolution of a host of technologies enabling systemic manipulation of miRNA homeostasis as well as high-precision interference with their direct, endogenous targets. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bruno R Steinkraus
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Toegel
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Wang Y, Hou J, He D, Sun M, Zhang P, Yu Y, Chen Y. The Emerging Function and Mechanism of ceRNAs in Cancer. Trends Genet 2016; 32:211-224. [PMID: 26922301 PMCID: PMC4805481 DOI: 10.1016/j.tig.2016.02.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/19/2016] [Accepted: 02/02/2016] [Indexed: 01/17/2023]
Abstract
Complex diseases, such as cancer, are often associated with aberrant gene expression at both the transcriptional and post-transcriptional level. Over the past several years, competing endogenous RNAs (ceRNAs) have emerged as an important class of post-transcriptional regulators that alter gene expression through a miRNA-mediated mechanism. Recent studies in both solid tumors and hematopoietic malignancies showed that ceRNAs have significant roles in cancer pathogenesis by altering the expression of key tumorigenic or tumor-suppressive genes. Characterizing the identity, function, and mechanism of the ceRNAs will not only further our fundamental understanding of RNA-mediated cancer pathogenesis, but may also shed light on the development of new RNA-based therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiakai Hou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dandan He
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yonghao Yu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
41
|
MicroRNA-134 modulates glioma cell U251 proliferation and invasion by targeting KRAS and suppressing the ERK pathway. Tumour Biol 2016; 37:11485-93. [PMID: 27012554 DOI: 10.1007/s13277-016-5027-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/18/2016] [Indexed: 12/27/2022] Open
Abstract
Dysregulated microRNA-134 (miR-134) has been observed in glioma carcinogenesis, and studies suggested that the ERK pathway plays vital roles in glioma cell growth and proliferation. However, the fundamental relationship between miR-134 and the ERK pathway in glioma has not been fully explained. As a result, this study was aimed to explore the underlying functions of miR-134 in human glioma. Intentionally overexpressed or inhibited miR-134 expression resulted from the transfection of miR-134 mimics, or miR-134 inhibitor within glioma cell line U251 was detected using RT-PCR. Both cell counting kit-8 (CCK-8) assays and Transwell assays were carried out to clarify the proliferation and invasion of U251 cells transfected with miR-134 mimics or miR-134 inhibitors. Our findings showed that miR-134 was significantly downexpressed in glioma tissues, and low miR-134 expression was significantly related to high histopathological grades. However, upregulated miR-134 expression restrained the proliferation and invasion of U251 cells in vitro. Kirsten rat sarcoma viral oncogene (KRAS), a vital factor for the ERK pathway, was directly targeted by miR-134 through its binding with the 3'-UTR of KRAS in glioma. Furthermore, KRAS expression exhibited a positive correlation with the activity of the ERK pathway. Overexpression of KRAS without 3'-UTR partly offsets the suppressive effect of miR-134 on glioma progression. Our data also indicated that miR-134 negatively modulated glioma progression and upregulated miR-134 triggered aberrant activation of the ERK pathway by targeting KRAS. Therefore, miR-134 might be considered as a benign therapeutic target of glioma.
Collapse
|
42
|
Haneklaus M. Analysis of Post-transcriptional Gene Regulation of Nod-Like Receptors via the 3'UTR. Methods Mol Biol 2016; 1390:197-211. [PMID: 26803631 DOI: 10.1007/978-1-4939-3335-8_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Innate immune signaling is the front line of defense against pathogens, leading to an appropriate response of immune cells upon activation of their pattern recognition receptors (PRRs) by microbial products, such as Toll-like receptors (TLRs). Apart from transcriptional control, gene expression in the innate immune system is also highly regulated at the post-transcriptional level. miRNA or RNA-binding protein can bind to the 3' untranslated region (UTR) of target mRNAs and affect their mRNA stability and translation efficiency, which ultimately affects the amount of protein that is produced. In recent years, a new group of PRRs, the Nod-like receptors (NLR) have been discovered. They often cooperate with TLR signaling to induce potent inflammatory responses. Many NLRs can form inflammasomes, which facilitate the production of the potent pro-inflammatory cytokine IL-1β and other inflammatory mediators. In contrast to TLRs, the importance of post-transcriptional regulators in the context of inflammasomes has not been well defined. This chapter describes a series of experimental approaches to determine the effect of post-transcriptional regulation for a gene of interest using the best-studied NLR, NLRP3, as an example. To start investigating post-transcriptional regulation, 3'UTR luciferase experiments can be performed to test if regulatory sequences in the 3'UTR are functional. An RNA pull-down approach followed by mass spectrometry provides an unbiased assay to identify RNA-binding proteins that target the 3'UTR. Candidate binding proteins can then be further validated by RNA immunoprecipitation (RNA-IP), where the candidate protein is isolated using a specific antibody and bound mRNAs are analyzed by qPCR.
Collapse
Affiliation(s)
- Moritz Haneklaus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
43
|
Tuccoli A, Vitiello M, Marranci A, Russo F, Poliseno L. Methods for the Identification of PTEN-Targeting MicroRNAs. Methods Mol Biol 2016; 1388:111-38. [PMID: 27033074 DOI: 10.1007/978-1-4939-3299-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The identification of PTEN-targeting microRNAs usually starts from an in silico bioinformatic prediction and then requires a careful experimental validation that exploits both heterologous and endogenous systems. Here we describe the methods used to carry on these analyses and experiments, examining pitfalls and alternatives for each step. Moreover, we give an overview of the latest high-throughput microRNA target identification techniques which offer a more comprehensive view of the microRNAs that can bind a fundamental tumor suppressor such as PTEN.
Collapse
Affiliation(s)
| | - Marianna Vitiello
- Oncogenomics Unit, Istituto Toscano Tumori, Pisa, Italy.,University of Siena, Siena, Italy
| | - Andrea Marranci
- Oncogenomics Unit, Istituto Toscano Tumori, Pisa, Italy.,University of Siena, Siena, Italy
| | - Francesco Russo
- LISM, IIT-IFC, CNR, Pisa, Italy.,Department of Computer Science, University of Pisa, Pisa, Italy
| | - Laura Poliseno
- Oncogenomics Unit, Istituto Toscano Tumori, Pisa, Italy. .,CNR-IFC, Pisa, Italy.
| |
Collapse
|
44
|
Exploring the dark matter of the human genome using oligonucleotide-based molecules. Future Med Chem 2015; 7:1627-30. [PMID: 26381721 DOI: 10.4155/fmc.15.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Su X, Wang H, Ge W, Yang M, Hou J, Chen T, Li N, Cao X. An In Vivo Method to Identify microRNA Targets Not Predicted by Computation Algorithms: p21 Targeting by miR-92a in Cancer. Cancer Res 2015; 75:2875-85. [DOI: 10.1158/0008-5472.can-14-2218] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
|
46
|
Poliseno L, Pandolfi PP. PTEN ceRNA networks in human cancer. Methods 2015; 77-78:41-50. [PMID: 25644446 DOI: 10.1016/j.ymeth.2015.01.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 12/14/2022] Open
Abstract
In multiple human cancer types, a close link exists between the expression levels of Phosphatase and Tensin Homolog deleted on chromosome 10 (PTEN) and its oncosuppressive activities. Therefore, an in depth understanding of the molecular mechanisms by which PTEN expression is modulated is crucial in order to achieve a comprehensive knowledge of its biological roles. In recent years, the competition between PTEN mRNA and other RNAs for shared microRNA molecules has emerged as one such mechanism and has brought into focus the coding-independent activities of PTEN and other mRNAs. In this review article, we examine the competing endogenous RNA (ceRNA) partners of PTEN that have been identified so far. We also discuss how PTEN-centered ceRNA networks can contribute to a deeper understanding of PTEN function and tumorigenesis.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori, Pisa, Italy; Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Vencken S, Hassan T, McElvaney NG, Smith SGJ, Greene CM. miR-CATCH: microRNA capture affinity technology. Methods Mol Biol 2015; 1218:365-373. [PMID: 25319664 DOI: 10.1007/978-1-4939-1538-5_23] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Several experimental methods exist to explore the microRNA (miRNA) regulome. These methods almost exclusively focus on multiple targets bound to a single, or perhaps a few miRNAs of interest. Here, we describe a microRNA capture affinity technology (miR-CATCH) which uses an affinity capture oligonucleotide to co-purify a single target messenger RNA (mRNA) together with all its endogenously bound miRNAs. This bench-top method is similar to RNA immunoprecipitation (RIP) and provides an experimental alternative to computational miRNA target prediction.
Collapse
Affiliation(s)
- Sebastian Vencken
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
48
|
miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat Chem Biol 2014; 11:107-14. [PMID: 25531890 DOI: 10.1038/nchembio.1713] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/29/2014] [Indexed: 12/19/2022]
Abstract
Identifying the interaction partners of noncoding RNAs is essential for elucidating their functions. We have developed an approach, termed microRNA crosslinking and immunoprecipitation (miR-CLIP), using pre-miRNAs modified with psoralen and biotin to capture their targets in cells. Photo-crosslinking and Argonaute 2 immunopurification followed by streptavidin affinity purification of probe-linked RNAs provided selectivity in the capture of targets, which were identified by deep sequencing. miR-CLIP with pre-miR-106a, a miR-17-5p family member, identified hundreds of putative targets in HeLa cells, many carrying conserved sequences complementary to the miRNA seed but also many that were not predicted computationally. miR-106a overexpression experiments confirmed that miR-CLIP captured functional targets, including H19, a long noncoding RNA that is expressed during skeletal muscle cell differentiation. We showed that miR-17-5p family members bind H19 in HeLa cells and myoblasts. During myoblast differentiation, levels of H19, miR-17-5p family members and mRNA targets changed in a manner suggesting that H19 acts as a 'sponge' for these miRNAs.
Collapse
|
49
|
Conserved microRNA function as a basis for Chinese hamster ovary cell engineering. Biotechnol Lett 2014; 37:787-98. [DOI: 10.1007/s10529-014-1751-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022]
|
50
|
Rajendiran S, Parwani AV, Hare RJ, Dasgupta S, Roby RK, Vishwanatha JK. MicroRNA-940 suppresses prostate cancer migration and invasion by regulating MIEN1. Mol Cancer 2014; 13:250. [PMID: 25406943 PMCID: PMC4246551 DOI: 10.1186/1476-4598-13-250] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/23/2014] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) are crucial molecules that regulate gene expression and hence pathways that are key to prostate cancer progression. These non-coding RNAs are highly deregulated in prostate cancer thus facilitating progression of the disease. Among the many genes that have gained importance in this disease, Migration and invasion enhancer 1 (MIEN1), a novel gene located next to HER2/neu in the 17q12 amplicon of the human chromosome, has been shown to enhance prostate cancer cell migration and invasion, two key processes in cancer progression. MIEN1 is differentially expressed between normal and cancer cells and tissues. Understanding the regulation of MIEN1 by microRNA may enable development of better targeting strategies. Methods The miRNAs that could target MIEN1 were predicted by in silico algorithms and microarray analysis. The validation for miRNA expression was performed by qPCR and northern blotting in cells and by in situ hybridization in tissues. MIEN1 and levels of other molecules upon miRNA regulation was determined by Western blotting, qPCR, and immunofluorescence. The functional effects of miRNA on cells were determined by wound healing cell migration, Boyden chamber cell invasion, clonal and colony formation assays. For knockdown or overexpression of the miRNA or overexpression of MIEN1 3′UTR, cells were transfected with the oligomiRs and plasmids, respectively. Results A novel miRNA, hsa-miR-940 (miR-940), identified and validated to be highly expressed in immortalized normal cells compared to cancer cells, is a regulator of MIEN1. Analysis of human prostate tumors and their matched normal tissues confirmed that miR-940 is highly expressed in the normal tissues compared to its low to negligible expression in the tumors. While MIEN1 is a direct target of miR-940, miR-940 alters MIEN1 RNA, in a quantity as well as cell dependent context, along with altering its downstream effectors. The miR-940 inhibited migratory and invasive potential of cells, attenuated their anchorage-independent growth ability, and increased E-cadherin expression, implicating its role in mesenchymal-to-epithelial transition (MET). Conclusions These results, for the first time, implicate miR-940, a regulator of MIEN1, as a promising novel diagnostic and prognostic tool for prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-250) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jamboor K Vishwanatha
- From the Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA.
| |
Collapse
|