1
|
Suresh D, Mukherjee S, Zambre A, Ghoshdastidar S, Yadavilli S, Rekha KR, Upendran A, Kannan R. Nanoparticle-Mediated Cosilencing of Drug Resistance and Compensatory Genes Enhances Lung Cancer Therapy. ACS NANO 2025. [PMID: 40239042 DOI: 10.1021/acsnano.4c12318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Non-small cell lung cancer (NSCLC) is challenging to treat due to acquired drug resistance, leading to high mortality rates. NSCLC patients with mutations in the epidermal growth factor receptor (EGFR) region are treated with tyrosine kinase inhibitors (TKI) as a first-line treatment, but many develop resistance within 1-2 years. AXL overexpression contributes to drug resistance in over 25% of patients, as shown by tumor analyses, prompting efforts to develop small-molecule inhibitors targeting AXL. However, we found that AXL repression increases compensatory FN14 signaling that could affect the therapeutic efficacy. Therefore, we chose to evaluate therapeutic efficacy after silencing both AXL and FN14 genes using short interfering RNA (siRNA) therapy. While siRNAs are more selective than small-molecule inhibitors, they are prone to in vivo degradation. To address this, we developed gelatin nanoparticles carrying siRNAs targeting AXL and FN14 (GsiAF). These nanoparticles were designed to protect siRNA from serum degradation and to allow antibody functionalization on their surface. We demonstrate that GsiAF selectively and effectively silences the respective genes under both in vitro and in vivo conditions, thereby overcoming compensatory FN14 signaling. Results indicate that GsiAF was successful in delivering siRNAs to tumors and downregulating both AXL and FN14 genes. We show that coinhibition of AXL and FN14 has effectively decreased TKI resistance in cancer cells and significantly reduced tumor growth in mice bearing lung cancer. The gelatin-siRNA nanoconstruct combined with TKI represents a promising strategy for overcoming drug resistance in NSCLC and other cancers, with potential for future clinical translation.
Collapse
Affiliation(s)
- Dhananjay Suresh
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65212, United States
- Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
| | - Soumavo Mukherjee
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65212, United States
| | - Ajit Zambre
- Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
| | - Shreya Ghoshdastidar
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65212, United States
| | - Sairam Yadavilli
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65212, United States
| | - Karamkolly R Rekha
- Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
| | - Anandhi Upendran
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri 65212, United States
| | - Raghuraman Kannan
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65212, United States
- Department of Radiology, University of Missouri, Columbia, Missouri 65212, United States
- Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, Missouri 65212, United States
| |
Collapse
|
2
|
Anand P, Zhang Y, Patil S, Kaur K. Metabolic Stability and Targeted Delivery of Oligonucleotides: Advancing RNA Therapeutics Beyond The Liver. J Med Chem 2025; 68:6870-6896. [PMID: 39772535 PMCID: PMC11998008 DOI: 10.1021/acs.jmedchem.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Oligonucleotides have emerged as a formidable new class of nucleic acid therapeutics. Fully modified oligonucleotides exhibit enhanced metabolic stability and display successful clinical applicability for targets formerly considered "undruggable". Accumulating studies show that conjugation to targeting modalities of stabilized oligonucleotides, especially small interfering RNAs (siRNAs), has enabled robust delivery to intended cells/tissues. However, the major challenge in the field has been the stability and targeted delivery of oligonucleotides (siRNAs and antisense oligonucleotides (ASOs)) to extrahepatic tissues. In this Perspective, we review chemistry innovations and emerging delivery approaches that have revolutionized oligonucleotide drug discovery and development. We explore findings from both academia and industry that highlight the potential of oligonucleotides for indications involving different extrahepatic organs─including skeletal muscles, brain, lungs, skin, heart, adipose tissue, and eyes. In all, continued advances in chemistry coupled with conjugation-based approaches or novel administration routes will further advance the delivery of oligonucleotides to extrahepatic tissues.
Collapse
Affiliation(s)
- Puneet Anand
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Yu Zhang
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Spoorthi Patil
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Keerat Kaur
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| |
Collapse
|
3
|
Etxaniz U, Marks I, Albin T, Diaz M, Bhardwaj R, Anderson A, Tyaglo O, Hoang T, Missinato MA, Svensson K, Badillo B, Kovach PR, Leung L, Cochran M, Kwon HW, Ahad Shah MN, Maruyama R, Yokota T, Doppalapudi VR, Darimont B, Younis H, Flanagan WM, Levin AA, Huang H, Karamanlidis G. AOC 1044 induces exon 44 skipping and restores dystrophin protein in preclinical models of Duchenne muscular dystrophy. Nucleic Acids Res 2025; 53:gkaf241. [PMID: 40183632 PMCID: PMC11969676 DOI: 10.1093/nar/gkaf241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe disorder caused by mutations in the dystrophin gene, resulting in loss of functional dystrophin protein in muscle. While phosphorodiamidate morpholino oligomers (PMOs) are promising exon-skipping therapeutics aimed at restoring dystrophin expression, their effectiveness is often limited by poor muscle delivery. We developed AOC 1044, an antibody-oligonucleotide conjugate (AOC) that combines a PMO-targeting exon 44 with an antibody against the transferrin receptor (TfR1), enhancing delivery to muscle tissues for patients with DMD amenable to exon 44 skipping (DMD44). AOC 1044 induces dose-dependent exon 44 skipping and its mouse-active variant elicited dose-dependent dystrophin restoration in skeletal and cardiac muscle in a DMD mouse model. This treatment also reduced muscle damage, as evidenced by decreases in serum creatine kinase and key liver enzymes, suggesting that restored dystrophin is functionally active. In nonhuman primates, single or repeated AOC 1044 doses resulted in dose-dependent increases in PMO concentration and exon 44 skipping across a range of muscle tissues, including the heart. Collectively, these findings highlight AOC 1044 as a promising therapeutic candidate for patients with DMD44, offering improved muscle targeting and meaningful dystrophin restoration, with potential clinical benefits in reducing muscle degeneration.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/therapy
- Dystrophin/genetics
- Dystrophin/metabolism
- Exons
- Mice
- Disease Models, Animal
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Morpholinos
- Humans
- Mice, Inbred mdx
- Male
- Receptors, Transferrin/immunology
- Receptors, Transferrin/antagonists & inhibitors
Collapse
Affiliation(s)
- Usue Etxaniz
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Isaac Marks
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Tyler Albin
- Seawolf Therapeutics, 9880 Campus Point Drive, Suite 210, San Diego, CA 92121, United States
| | - Matthew Diaz
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Raghav Bhardwaj
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, United States
| | - Aaron Anderson
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Olecya Tyaglo
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Tiffany Hoang
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Maria Azzurra Missinato
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Kristoffer Svensson
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Ben Badillo
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Philip R Kovach
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Laura Leung
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Michael Cochran
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Hae Won Kwon
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Md Nur Ahad Shah
- Yokota Lab, Department of Medical Genetics, University of Alberta, Edmonton,T6G 2H, Canada
| | - Rika Maruyama
- Yokota Lab, Department of Medical Genetics, University of Alberta, Edmonton,T6G 2H, Canada
| | - Toshifumi Yokota
- Yokota Lab, Department of Medical Genetics, University of Alberta, Edmonton,T6G 2H, Canada
| | - Venkata R Doppalapudi
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Beatrice Darimont
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Husam S Younis
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - W Michael Flanagan
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Arthur A Levin
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Hanhua Huang
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Georgios Karamanlidis
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| |
Collapse
|
4
|
Vosoughi P, Naghib SM, Kangarshahi BM, Mozafari MR. A review of RNA nanoparticles for drug/gene/protein delivery in advanced therapies: Current state and future prospects. Int J Biol Macromol 2025; 295:139532. [PMID: 39765293 DOI: 10.1016/j.ijbiomac.2025.139532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields. There is great potential for the application of RNA nanotechnology in therapeutics. This review explores various nano-based drug delivery systems and their unique features through the impressive progress of the RNA field and their significant therapeutic promises due to their unique performance in the COVID-19 pandemic. However, a significant hurdle in fully harnessing the power of RNA drugs lies in effectively delivering RNA to precise organs and tissues, a critical factor for achieving therapeutic effectiveness, minimizing side effects, and optimizing treatment outcomes. There have been many efforts to pursue targeting, but the clinical translation of RNA drugs has been hindered by the lack of clear guidelines and shared understanding. A comprehensive understanding of various principles is essential to develop vaccines using nucleic acids and nanomedicine successfully. These include mechanisms of immune responses, functions of nucleic acids, nanotechnology, and vaccinations. Regarding this matter, the aim of this review is to revisit the fundamental principles of the immune system's function, vaccination, nanotechnology, and drug delivery in relation to the creation and manufacturing of vaccines utilizing nanotechnology and nucleic acids. RNA drugs have demonstrated significant potential in treating a wide range of diseases in both clinical and preclinical research. One of the reasons is their capacity to regulate gene expression and manage protein production efficiently. Different methods, like modifying chemicals, connecting ligands, and utilizing nanotechnology, have been essential in enabling the effective use of RNA-based treatments in medical environments. The article reviews stimuli-responsive nanotechnologies for RNA delivery and their potential in RNA medicines. It emphasizes the notable benefits of these technologies in improving the effectiveness of RNA and targeting specific cells and organs. This review offers a comprehensive analysis of different RNA drugs and how they work to produce therapeutic benefits. Recent progress in using RNA-based drugs, especially mRNA treatments, has shown that targeted delivery methods work well in medical treatments.
Collapse
Affiliation(s)
- Pegah Vosoughi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
5
|
Askarizadeh A, Vahdat-Lasemi F, Karav S, Kesharwani P, Sahebkar A. Lipid nanoparticle-based delivery of small interfering RNAs: New possibilities in the treatment of diverse diseases. Eur Polym J 2025; 223:113624. [DOI: 10.1016/j.eurpolymj.2024.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Rady T, Lehot V, Most J, Erb S, Cianferani S, Chaubet G, Basse N, Wagner A. Protocol to generate, purify, and analyze antibody-oligonucleotide conjugates from off-the-shelf antibodies. STAR Protoc 2024; 5:103329. [PMID: 39342618 PMCID: PMC11470600 DOI: 10.1016/j.xpro.2024.103329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Antibody-oligonucleotide conjugates (AOCs) are a fast-expanding modality for targeted delivery of therapeutic oligonucleotides to tissues. Here, we present a protocol to generate, purify, and analyze AOCs from off-the-shelf antibodies. We describe steps to conjugate single/double-stranded oligonucleotides bearing amine handles to linkers and, then, to antibodies using well-established chemistry. In addition, we provide details regarding the purification techniques and analytical methods suitable for AOC. This protocol can be applied for several purposes where AOC is a modality of interest. For complete details on the use and execution of this protocol, please refer to Rady et al.1.
Collapse
Affiliation(s)
- Tony Rady
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France.
| | - Victor Lehot
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Julien Most
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Stephane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Nicolas Basse
- Sanofi, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
7
|
Repkova M, Mazurkov O, Filippova E, Protsenko M, Mazurkova N, Meschaninova M, Levina A, Zarytova V. Effect of modification of siRNA molecules delivered with aminopropylsilanol nanoparticles on suppression of A/H5N1 virus in cell culture. Biochim Biophys Acta Gen Subj 2024; 1868:130727. [PMID: 39437973 DOI: 10.1016/j.bbagen.2024.130727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
The application of siRNAs as antiviral agents is limited by several obstacles including their poor penetration into cells and instability in biological media. To overcome these problems, we used non-agglomerated aminopropylsilanol nanoparticles (NP) to deliver siRNA into cells. All studied siRNAs had identical nucleoside sequences comprising phosphodiester or phosphorothioate (PS) internucleotide groups and the 2'-OMe and/or 2'-F groups in nucleoside units at different positions of RNA. The siRNA molecules were attached to NP, thus forming the NP-siRNA nanocomplexes. We studied the effect of siRNA modification in the nanocomplexes on suppressing the highly pathogenic influenza A/H5N1 virus replication. The results demonstrated that all siRNA-containing nanocomplexes inhibited the replication of the A/H5N1 virus by 1-3 orders of magnitude. The nanocomplexes containing partially modified siRNAs exhibited the most pronounced inhibition with an efficacy of 900-fold. This result was achieved by using siRNA consisting of the canonical 19-bp RNA duplex with the 3'-dTdT dangling ends, with the antisense strand in this duplex being protected from endonucleases (one UMeA site within the strand). The additional modifications of siRNA reduce their antiviral activity. Promising sense strands for loading into the RISC complex are likely to be phosphodiester sequences that contain dTdT at the 3' end (such as S4) to be protected against exonucleases. The sense strands of this type can probably be the most suitable for designing siRNAs as therapeutic agents. The proposed NP-siRNA nanocomplexes that consisted of low toxic and non-agglomerated aminopropylsilanol nanoparticles and siRNA molecules could be hopeful agents for gene silencing.
Collapse
Affiliation(s)
- Marina Repkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, Novosibirsk 630090, Russia
| | - Oleg Mazurkov
- FBRI State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Ekaterina Filippova
- FBRI State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Maria Protsenko
- FBRI State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Natalia Mazurkova
- FBRI State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Maria Meschaninova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, Novosibirsk 630090, Russia
| | - Asya Levina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, Novosibirsk 630090, Russia
| | - Valentina Zarytova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, Novosibirsk 630090, Russia.
| |
Collapse
|
8
|
Jiao J, Qian Y, Lv Y, Wei W, Long Y, Guo X, Buerliesi A, Ye J, Han H, Li J, Zhu Y, Zhang W. Overcoming limitations and advancing the therapeutic potential of antibody-oligonucleotide conjugates (AOCs): Current status and future perspectives. Pharmacol Res 2024; 209:107469. [PMID: 39433169 DOI: 10.1016/j.phrs.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As cancer incidence rises due to an aging population, the importance of precision medicine continues to grow. Antibody-drug conjugates (ADCs) exemplify targeted therapies by delivering cytotoxic agents to specific antigens. Building on this concept, researchers have developed antibody-oligonucleotide conjugates (AOCs), which combine antibodies with oligonucleotides to regulate gene expression. This review highlights the mechanism of AOCs, emphasizing their unique ability to selectively target and modulate disease-causing proteins. It also explores the components of AOCs and their application in tumor therapy while addressing key challenges such as manufacturing complexities, endosomal escape, and immune response. The article underscores the significance of AOCs in precision oncology and discusses future directions, highlighting their potential in treating cancers driven by genetic mutations and abnormal protein expression.
Collapse
Affiliation(s)
- Jinlan Jiao
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Qian
- Dermatologic Surgery Department, Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing 210042, China
| | - Yinhua Lv
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Wenqian Wei
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Yongxuan Long
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaoling Guo
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Anya Buerliesi
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Hao Han
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China.
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
9
|
Dastgerdi NK, Dastgerdi NK, Bayraktutan H, Costabile G, Atyabi F, Dinarvand R, Longobardi G, Alexander C, Conte C. Enhancing siRNA cancer therapy: Multifaceted strategies with lipid and polymer-based carrier systems. Int J Pharm 2024; 663:124545. [PMID: 39098747 DOI: 10.1016/j.ijpharm.2024.124545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Cancers are increasing in prevalence and many challenges remain for their treatment, such as chemoresistance and toxicity. In this context, siRNA-based therapeutics have many potential advantages for cancer therapies as a result of their ability to reduce or prevent expression of specific cancer-related genes. However, the direct delivery of naked siRNA is hindered by issues like enzymatic degradation, insufficient cellular uptake, and poor pharmacokinetics. Hence, the discovery of a safe and efficient delivery vehicle is essential. This review explores various lipid and polymer-based delivery systems for siRNA in cancer treatment. Both polymers and lipids have garnered considerable attention as carriers for siRNA delivery. While all of these systems protect siRNA and enhance transfection efficacy, each exhibits its unique strengths. Lipid-based delivery systems, for instance, demonstrate high entrapment efficacy and utilize cost-effective materials. Conversely, polymeric-based delivery systems offer advantages through chemical modifications. Nonetheless, certain drawbacks still limit their usage. To address these limitations, combining different materials in formulations (lipid, polymer, or targeting agent) could enhance pharmaceutical properties, boost transfection efficacy, and reduce side effects. Furthermore, co-delivery of siRNA with other therapeutic agents presents a promising strategy to overcome cancer resistance. Lipid-based delivery systems have been demonstrated to encapsulate many therapeutic agents and with high efficiency, but most are limited in terms of the functionalities they display. In contrast, polymeric-based delivery systems can be chemically modified by a wide variety of routes to include multiple components, such as release or targeting elements, from the same materials backbone. Accordingly, by incorporating multiple materials such as lipids, polymers, and/or targeting agents in RNA formulations it is possible to improve the pharmaceutical properties and therapeutic efficacy while reducing side effects. This review focuses on strategies to improve siRNA cancer treatments and discusses future prospects in this important field.
Collapse
Affiliation(s)
- Nazgol Karimi Dastgerdi
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Karimi Dastgerdi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | | | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran.
| | | | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy.
| |
Collapse
|
10
|
Cochran M, Marks I, Albin T, Arias D, Kovach P, Darimont B, Huang H, Etxaniz U, Kwon HW, Shi Y, Diaz M, Tyaglo O, Levin A, Doppalapudi VR. Structure-Activity Relationship of Antibody-Oligonucleotide Conjugates: Evaluating Bioconjugation Strategies for Antibody-Phosphorodiamidate Morpholino Oligomer Conjugates for Drug Development. J Med Chem 2024; 67:14868-14884. [PMID: 39197837 PMCID: PMC11403617 DOI: 10.1021/acs.jmedchem.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Antibody-oligonucleotide conjugates (AOCs) are promising treatments for Duchenne muscular dystrophy (DMD). They work via induction of exon skipping and restoration of dystrophin protein in skeletal and heart muscles. The structure-activity relationships (SARs) of AOCs comprising antibody-phosphorodiamidate morpholino oligomers (PMOs) depend on several aspects of their component parts. We evaluate the SAR of antimouse transferrin receptor 1 antibody (αmTfR1)-PMO conjugates: cleavable and noncleavable linkers, linker location on the PMO, and the impact of drug-to-antibody ratios (DARs) on plasma pharmacokinetics (PK), oligonucleotide delivery to tissues, and exon skipping. AOCs containing a stable linker with a DAR9.7 were the most effective PMO delivery vehicles in preclinical studies. We demonstrate that αmTfR1-PMO conjugates induce dystrophin protein restoration in the skeletal and heart muscles of mdx mice. Our results show that αmTfR1-PMO conjugates are a potentially effective approach for the treatment of DMD.
Collapse
Affiliation(s)
- Michael Cochran
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Isaac Marks
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Tyler Albin
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Danny Arias
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Philip Kovach
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | | | - Hanhua Huang
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Usue Etxaniz
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Hae Won Kwon
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Yunyu Shi
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Matthew Diaz
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Olecya Tyaglo
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Arthur Levin
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Venkata Ramana Doppalapudi
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| |
Collapse
|
11
|
Cochran M, Arias D, Burke R, Chu D, Erdogan G, Hood M, Kovach P, Kwon HW, Chen Y, Moon M, Miller CD, Huang H, Levin A, Doppalapudi VR. Structure-Activity Relationship of Antibody-Oligonucleotide Conjugates: Evaluating Bioconjugation Strategies for Antibody-siRNA Conjugates for Drug Development. J Med Chem 2024; 67:14852-14867. [PMID: 39197831 PMCID: PMC11403602 DOI: 10.1021/acs.jmedchem.4c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Antibody-oligonucleotide conjugates are a promising class of therapeutics for extrahepatic delivery of small interfering ribonucleic acids (siRNAs). These conjugates can be optimized for improved delivery and mRNA knockdown (KD) through understanding of structure-activity relationships. In this study, we systematically examined factors including antibody isotype, siRNA chemistry, linkers, conjugation chemistry, PEGylation, and drug-to-antibody ratios (DARs) for their impact on bioconjugation, pharmacokinetics (PK), siRNA delivery, and bioactivity. Conjugation site (cysteine, lysine, and Asn297 glycan) and DAR proved critical for optimal conjugate PK and siRNA delivery. SiRNA chemistry including 2' sugar modifications and positioning of phosphorothioates were found to be critical for delivery and duration of action. By utilizing cleavable and noncleavable linkers, we demonstrated the impact of linkers on PK and mRNA KD. To achieve optimal properties of antibody-siRNA conjugates, a careful selection of siRNA chemistry, DAR, conjugation sites, linkers, and antibody isotype is necessary.
Collapse
Affiliation(s)
- Michael Cochran
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Danny Arias
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Rob Burke
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - David Chu
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Gulin Erdogan
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Michael Hood
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Philip Kovach
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Hae Won Kwon
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Yanling Chen
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Michael Moon
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Christopher D Miller
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Hanhua Huang
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Arthur Levin
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Venkata Ramana Doppalapudi
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| |
Collapse
|
12
|
Momin N, Pabel S, Rudra A, Kumowski N, Lee IH, Mentkowski K, Yamazoe M, Stengel L, Muse CG, Seung H, Paccalet A, Gonzalez-Correa C, Jacobs EB, Grune J, Schloss MJ, Sossalla S, Wojtkiewicz G, Iwamoto Y, McMullen P, Mitchell RN, Ellinor PT, Anderson DG, Naxerova K, Nahrendorf M, Hulsmans M. Therapeutic Spp1 silencing in TREM2 + cardiac macrophages suppresses atrial fibrillation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607461. [PMID: 39149373 PMCID: PMC11326243 DOI: 10.1101/2024.08.10.607461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Atrial fibrillation (AFib) and the risk of its lethal complications are propelled by fibrosis, which induces electrical heterogeneity and gives rise to reentry circuits. Atrial TREM2+ macrophages secrete osteopontin (encoded by Spp1), a matricellular signaling protein that engenders fibrosis and AFib. Here we show that silencing Spp1 in TREM2+ cardiac macrophages with an antibody-siRNA conjugate reduces atrial fibrosis and suppresses AFib in mice, thus offering a new immunotherapy for the most common arrhythmia.
Collapse
Affiliation(s)
- Noor Momin
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Steffen Pabel
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Arnab Rudra
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard–MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nina Kumowski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - I-Hsiu Lee
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Blavatnik Institute, Genetics, Harvard Medical School, Boston, MA, USA
| | - Kyle Mentkowski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Masahiro Yamazoe
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura Stengel
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Charlotte G. Muse
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hana Seung
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandre Paccalet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cristina Gonzalez-Correa
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emily B. Jacobs
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Jana Grune
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maximilian J. Schloss
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel Sossalla
- Department of Cardiology, University Hospital Giessen, Kerckhoff Clinic Bad Nauheim, and DZHK, Partner site RhineMain, Germany
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Patrick McMullen
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard–MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard N. Mitchell
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Daniel G. Anderson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard–MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kamila Naxerova
- Blavatnik Institute, Genetics, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Soxpollard N, Strauss S, Jungmann R, MacPherson IS. Selection of antibody-binding covalent aptamers. Commun Chem 2024; 7:174. [PMID: 39117896 PMCID: PMC11310417 DOI: 10.1038/s42004-024-01255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Aptamers are oligonucleotides with antibody-like binding function, selected from large combinatorial libraries. In this study, we modified a DNA aptamer library with N-hydroxysuccinimide esters, enabling covalent conjugation with cognate proteins. We selected for the ability to bind to mouse monoclonal antibodies, resulting in the isolation of two distinct covalent binding motifs. The covalent aptamers are specific for the Fc region of mouse monoclonal IgG1 and are cross-reactive with mouse IgG2a and other IgGs. Investigation into the covalent conjugation of the aptamers revealed a dependence on micromolar concentrations of Cu2+ ions which can be explained by residual catalyst remaining after modification of the aptamer library. The aptamers were successfully used as adapters in the formation of antibody-oligonucleotide conjugates (AOCs) for use in detection of HIV protein p24 and super-resolution imaging of actin. This work introduces a new method for the site-specific modification of native monoclonal antibodies and may be useful in applications requiring AOCs or other antibody conjugates.
Collapse
Affiliation(s)
- Noah Soxpollard
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii, Honolulu, HI, 96813, USA
| | - Sebastian Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Iain S MacPherson
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
14
|
Murphy A, Hill R, Berna M. Bioanalytical approaches to support the development of antibody-oligonucleotide conjugate (AOC) therapeutic proteins. Xenobiotica 2024; 54:552-562. [PMID: 38607350 DOI: 10.1080/00498254.2024.2339983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
RNA interference (RNAi) is a biological process that evolved to protect eukaryotic organisms from foreign genes delivered by viruses. This process has been adapted as a powerful tool to treat numerous diseases through the delivery of small-interfering RNAs (siRNAs) to target cells to alter aberrant gene expression.Antibody-oligonucleotide conjugates (AOCs) are monoclonal antibodies with complexed siRNA or antisense oligonucleotides (ASOs) that have emerged to address some of the challenges faced by naked or chemically conjugated siRNA, which include rapid clearance from systemic circulation and lack of selective delivery of siRNA to target cells.It is essential to characterise the ADME properties of an AOC during development to optimise distribution to target tissues, to minimise the impact of biotransformation on exposure, and to characterise the PK/PD relationship to guide translation. However, owing to the complexity of AOC structure, this presents significant bioanalytical challenges, and multiple bioanalytical measurements are required to investigate the pharmacokinetics and biotransformation of the antibody, linker, and siRNA payload.In this paper, we describe an analytical workflow that details in vivo characterisation of AOCs through measurement of their distinct molecular components to provide the basis for greater understanding of their ADME properties. Although the approaches herein can be applied to in vitro characterisation of AOCs, this paper will focus on in vivo applications. This workflow relies on high-resolution mass spectrometry as the principal means of detection and leverages chromatographic, affinity-based, and enzymatic sample preparation steps.
Collapse
Affiliation(s)
- Anthony Murphy
- Investigative ADME/Toxicology and Bioanalytical Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - Ryan Hill
- Investigative ADME/Toxicology and Bioanalytical Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - Michael Berna
- Investigative ADME/Toxicology and Bioanalytical Research, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
15
|
Rocha Tapia A, Abgottspon F, Nilvebrant J, Nygren PÅ, Duclos Ivetich S, Bello Hernandez AJ, Thanasi IA, Szijj PA, Sekkat G, Cuenot FM, Chudasama V, Aceto N, deMello AJ, Richards DA. Site-directed conjugation of single-stranded DNA to affinity proteins: quantifying the importance of conjugation strategy. Chem Sci 2024; 15:8982-8992. [PMID: 38873052 PMCID: PMC11168188 DOI: 10.1039/d4sc01838a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/27/2024] [Indexed: 06/15/2024] Open
Abstract
Affinity protein-oligonucleotide conjugates are increasingly being explored as diagnostic and therapeutic tools. Despite growing interest, these probes are typically constructed using outdated, non-selective chemistries, and little has been done to investigate how conjugation to oligonucleotides influences the function of affinity proteins. Herein, we report a novel site-selective conjugation method for furnishing affinity protein-oligonucleotide conjugates in a 93% yield within fifteen minutes. Using SPR, we explore how the choice of affinity protein, conjugation strategy, and DNA length impact target binding and reveal the deleterious effects of non-specific conjugation methods. Furthermore, we show that these adverse effects can be minimised by employing our site-selective conjugation strategy, leading to improved performance in an immuno-PCR assay. Finally, we investigate the interactions between affinity protein-oligonucleotide conjugates and live cells, demonstrating the benefits of site-selective conjugation. This work provides critical insight into the importance of conjugation strategy when constructing affinity protein-oligonucleotide conjugates.
Collapse
Affiliation(s)
- Andres Rocha Tapia
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Fabrice Abgottspon
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Johan Nilvebrant
- Department of Protein Science, KTH Royal Institute of Technology, AlbaNova University Center 106 91 Stockholm Sweden
| | - Per-Åke Nygren
- Department of Protein Science, KTH Royal Institute of Technology, AlbaNova University Center 106 91 Stockholm Sweden
| | - Sarah Duclos Ivetich
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | | | - Ioanna A Thanasi
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Peter A Szijj
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Ghali Sekkat
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - François M Cuenot
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich Otto-Stern-Weg 7 8093 Zürich Switzerland
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich Otto-Stern-Weg 7 8093 Zürich Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Daniel A Richards
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
16
|
Guo F, Li Y, Yu W, Fu Y, Zhang J, Cao H. Recent Progress of Small Interfering RNA Delivery on the Market and Clinical Stage. Mol Pharm 2024; 21:2081-2096. [PMID: 38630656 DOI: 10.1021/acs.molpharmaceut.3c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Small interfering RNAs (siRNAs) are promising therapeutic strategies, and five siRNA drugs have been approved by the Food and Drug Administration (FDA) and the European Commission (EC). This marks a significant milestone in the development of siRNA for clinical applications. The approved siRNA agents can effectively deliver siRNAs to the liver and treat liver-related diseases. Currently, researchers have developed diverse delivery platforms for transporting siRNAs to different tissues such as the brain, lung, muscle, and others, and a large number of siRNA drugs are undergoing clinical trials. Here, these delivery technologies and the latest advancements in clinical applications are summarized, and this Review provides a concise overview of the strategies employed for siRNA delivery to both hepatic and extrahepatic tissues.
Collapse
Affiliation(s)
- Fan Guo
- School of Pharmacy, Binzhou Medical University, Shandong 264003, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Wenjun Yu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Yuanlei Fu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Jing Zhang
- School of Pharmacy, Binzhou Medical University, Shandong 264003, China
| | - Haiqiang Cao
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
17
|
Zhao X, Xu Q, Wang Q, Liang X, Wang J, Jin H, Man Y, Guo D, Gao F, Tang X. Induced Self-Assembly of Vitamin E-Spermine/siRNA Nanocomplexes via Spermine/Helix Groove-Specific Interaction for Efficient siRNA Delivery and Antitumor Therapy. Adv Healthc Mater 2024; 13:e2303186. [PMID: 38234201 DOI: 10.1002/adhm.202303186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Gene therapy has been one of potential strategies for the treatment of different diseases, where efficient and safe gene delivery systems are also extremely in need. Current lipid nanoparticles (LNP) technology highly depends on the packing and condensation of nucleic acids with amine moieties. Here, an attempt to covalently link two natural compounds, spermine and vitamin E, is made to develop self-assembled nucleic acid delivery systems. Among them, the spermine moieties specifically interact with the major groove of siRNA helix through salt bridge interaction, while vitamin E moieties are located around siRNA duplex. Such amphiphilic vitamin E-spermine/siRNA complexes can further self-assemble into nanocomplexes like multiblade wheels. Further studies indicate that these siRNA nanocomplexes with the neutrally charged surface of vitamin E can enter cells via caveolin/lipid raft mediated endocytosis pathway and bypass lysosome trapping. With these self-assembled delivery systems, efficient siRNA delivery is successfully achieved for Eg5 and Survivin gene silencing as well as DNA plasmid delivery. Further in vivo study indicates that VE-Su-Sper/DSPE-PEG2000/siSurvivin self-assembled nanocomplexes can accumulate in cancer cells and gradually release siRNA in tumor tissues and show significant antitumor effect in vivo. The self-assembled delivery system provides a novel strategy for highly efficient siRNA delivery.
Collapse
Affiliation(s)
- Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Qi Xu
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Xingxing Liang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Yizhi Man
- School of Chemistry and Materials Science, Anhui Normal University, NO. 189 Jiuhua South Rd., Anhui, Wuhu, 241002, China
| | - Dongyang Guo
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| | - Feng Gao
- School of Chemistry and Materials Science, Anhui Normal University, NO. 189 Jiuhua South Rd., Anhui, Wuhu, 241002, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs and Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, NO. 38, Xueyuan Rd., Beijing, 100191, China
| |
Collapse
|
18
|
Rady T, Erb S, Deddouche-Grass S, Morales R, Chaubet G, Cianférani S, Basse N, Wagner A. Targeted delivery of immune-stimulating bispecific RNA, inducing apoptosis and anti-tumor immunity in cancer cells. iScience 2024; 27:109068. [PMID: 38380254 PMCID: PMC10877685 DOI: 10.1016/j.isci.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/18/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Double-stranded RNAs (dsRNA)-based strategies appeared as promising therapies to induce an inflammation in the tumor microenvironment. However, currently described systems generally lack active targeting of tissues, and their clinical translation is thus limited to intratumoral injection. Herein, we developed an antibody-siRNA-5'triphosphate conjugate with multiple modes of action, combining cell surface EphA2-specific internalization, leading to a simultaneous gene silencing and activation of the receptor retinoic acid-inducible gene I (RIG-I). Recognition of cytosolic siRNA-5'triphosphate by RIG-I triggers the expression of interferons and pro-inflammatory cytokines, inducing an inflammation of the tumor environment and activating neighboring immune cells. In addition, these RIG-I-specific effects synergized with siRNA-mediated PLK1 silencing to promote cancer cell death by apoptosis. Altogether, such immune-stimulating antibody-RNA conjugate opens a novel modality to overcome some limitations encountered by dsRNA molecules currently in clinical trials.
Collapse
Affiliation(s)
- Tony Rady
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
- Sanofi, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR2048, 67087 Strasbourg, France
| | | | - Renaud Morales
- Sanofi, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI – FR2048, 67087 Strasbourg, France
| | - Nicolas Basse
- Sanofi, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
19
|
Smidt JM, Lykke L, Stidsen CE, Pristovšek N, Gothelf K. Synthesis of peptide-siRNA conjugates via internal sulfonylphosphoramidate modifications and evaluation of their in vitro activity. Nucleic Acids Res 2024; 52:49-58. [PMID: 37971296 PMCID: PMC10783514 DOI: 10.1093/nar/gkad1015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Conjugates of therapeutic oligonucleotides (ONs) including peptide conjugates, provide a potential solution to the major challenge of specific tissue delivery faced by this class of drugs. Conjugations are often positioned terminal at the ONs, although internal placement of other chemical modifications are known to be of critical importance. The introduction of internal conjugation handles in chemically modified ONs require highly specialized and expensive nucleoside phosphoramidites. Here, we present a method for synthesizing a library of peptide-siRNA conjugates by conjugation at internal phosphorous positions via sulfonylphosphoramidate modifications incorporated into the sense strand. The sulfonylphosphoramidate modification offers benefits as it can be directly incorporated into chemically modified ONs by simply changing the oxidation step during synthesis, and furthermore holds the potential to create multifunctionalized therapeutic ONs. We have developed a workflow using a novel pH-controlled amine-to-amine linker that yields peptide-siRNA conjugates linked via amide bonds, and we have synthesized conjugates between GLP1 peptides and a HPRT1 siRNA as a model system. The in vitro activity of the conjugates was tested by GLP1R activity and knockdown of the HPRT1 gene. We found that conjugation near the 3'-end is more favorable than certain central internal positions and different internal conjugation strategies were compared.
Collapse
Affiliation(s)
- Jakob Melgaard Smidt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| | - Lennart Lykke
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Carsten Enggaard Stidsen
- Centre for Functional Assays and Screening, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Nuša Pristovšek
- Centre for Functional Assays and Screening, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
20
|
Guo S, Zhang M, Huang Y. Three 'E' challenges for siRNA drug development. Trends Mol Med 2024; 30:13-24. [PMID: 37951790 DOI: 10.1016/j.molmed.2023.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
siRNA therapeutics have gained extensive attention, and to date six siRNAs are approved for clinical use. Despite being investigated for the treatment of metabolic, cardiovascular, infectious, and rare genetic diseases, cancer, and central nervous system (CNS) disorders, there exist several druggability challenges. Here, we provide insightful discussions concerning these challenges, comprising targeted accumulation and cellular uptake ('entry'), endolysosomal escape ('escape'), and in vivo pharmaceutical performance ('efficacy') - the three 'E' challenges - while also shedding light on siRNA drug development. Moreover, we propose several promising strategies that hold great potential in facilitating the clinical translation of siRNA therapeutics, including the exploration of diverse ligand-siRNA conjugates, expansion of potential disease targets, and excavation of novel modification geometries, as well as the development of combination therapies.
Collapse
Affiliation(s)
- Shuai Guo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China; Rigerna Therapeutics, Suzhou, Jiangsu 215127, China; Rigerna Therapeutics, Beijing 102629, China.
| |
Collapse
|
21
|
Ebrahimi N, Manavi MS, Nazari A, Momayezi A, Faghihkhorasani F, Rasool Riyadh Abdulwahid AH, Rezaei-Tazangi F, Kavei M, Rezaei R, Mobarak H, Aref AR, Fang W. Nano-scale delivery systems for siRNA delivery in cancer therapy: New era of gene therapy empowered by nanotechnology. ENVIRONMENTAL RESEARCH 2023; 239:117263. [PMID: 37797672 DOI: 10.1016/j.envres.2023.117263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
RNA interference (RNAi) is a unique treatment approach used to decrease a disease's excessive gene expression, including cancer. SiRNAs may find and destroy homologous mRNA sequences within the cell thanks to RNAi processes. However, difficulties such poor cellular uptake, off-target effects, and susceptibility to destruction by serum nucleases in the bloodstream restrict the therapeutic potential of siRNAs. Since some years ago, siRNA-based therapies have been in the process of being translated into the clinic. Therefore, the primary emphasis of this work is on sophisticated nanocarriers that aid in the transport of siRNA payloads, their administration in combination with anticancer medications, and their use in the treatment of cancer. The research looks into molecular manifestations, difficulties with siRNA transport, the design and development of siRNA-based delivery methods, and the benefits and drawbacks of various nanocarriers. The trapping of siRNA in endosomes is a challenge for the majority of delivery methods, which affects the therapeutic effectiveness. Numerous techniques for siRNA release, including as pH-responsive release, membrane fusion, the proton sponge effect, and photochemical disruption, have been studied to overcome this problem. The present state of siRNA treatments in clinical trials is also looked at in order to give a thorough and systematic evaluation of siRNA-based medicines for efficient cancer therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | | | - Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Amirali Momayezi
- School of Chemical Engineering, Iran University of Science, and Technology, Tehran, Iran
| | | | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Mohammed Kavei
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Roya Rezaei
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Halimeh Mobarak
- Clinical Pathologist, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Sela T, Mansø M, Siegel M, Marban-Doran C, Ducret A, Niewöhner J, Ravn J, Martin RE, Sommer A, Lohmann S, Krippendorff BF, Ladefoged M, Indlekofer A, Quaiser T, Bueddefeld F, Koller E, Mohamed MY, Oelschlaegel T, Gothelf KV, Hofer K, Schumacher FF. Diligent Design Enables Antibody-ASO Conjugates with Optimal Pharmacokinetic Properties. Bioconjug Chem 2023; 34:2096-2111. [PMID: 37916986 DOI: 10.1021/acs.bioconjchem.3c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Antisense-oligonucleotides (ASOs) are a promising drug modality for the treatment of neurological disorders, but the currently established route of administration via intrathecal delivery is a major limitation to its broader clinical application. An attractive alternative is the conjugation of the ASO to an antibody that facilitates access to the central nervous system (CNS) after peripheral application and target engagement at the blood-brain barrier, followed by transcytosis. Here, we show that the diligent conjugate design of Brainshuttle-ASO conjugates is the key to generating promising delivery vehicles and thereby establishing design principles to create optimized molecules with drug-like properties. An innovative site-specific transglutaminase-based conjugation technology was chosen and optimized in a stepwise process to identify the best-suited conjugation site, tags, reaction conditions, and linker design. The overall conjugation performance was found to be specifically governed by the choice of buffer conditions and the structure of the linker. The combination of the peptide tags YRYRQ and RYESK was chosen, showing high conjugation fidelity. Elaborate conjugate analysis revealed that one leading differentiating factor was hydrophobicity. The increase of hydrophobicity by the ASO payload could be mitigated by the appropriate choice of conjugation site and the heavy chain position 297 proved to be the most optimal. Evaluating the properties of the linker suggested a short bicyclo[6.1.0]nonyne (BCN) unit as best suited with regards to conjugation performance and potency. Promising in vitro activity and in vivo pharmacokinetic behavior of optimized Brainshuttle-ASO conjugates, based on a microtubule-associated protein tau (MAPT) targeting oligonucleotide, suggest that such designs have the potential to serve as a blueprint for peripherally delivered ASO-based drugs for the CNS in the future.
Collapse
Affiliation(s)
- Tatjana Sela
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Mads Mansø
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd., Fremtidsvej 3, Hørsholm 2970, Denmark
| | - Michel Siegel
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Céline Marban-Doran
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Axel Ducret
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Jens Niewöhner
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Jacob Ravn
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd., Fremtidsvej 3, Hørsholm 2970, Denmark
| | - Rainer E Martin
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Annika Sommer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Sabine Lohmann
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Ben-Fillippo Krippendorff
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Mette Ladefoged
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd., Fremtidsvej 3, Hørsholm 2970, Denmark
| | - Annette Indlekofer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Tom Quaiser
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Florian Bueddefeld
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Erich Koller
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | | | | | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus 8000, Central Denmark Region, Denmark
| | - Kerstin Hofer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Felix F Schumacher
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| |
Collapse
|
23
|
Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J 2023; 42:e114760. [PMID: 37728251 PMCID: PMC10620767 DOI: 10.15252/embj.2023114760] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
RNA-based therapeutics have the potential to revolutionize the treatment and prevention of human diseases. While early research faced setbacks, it established the basis for breakthroughs in RNA-based drug design that culminated in the extraordinarily fast development of mRNA vaccines to combat the COVID-19 pandemic. We have now reached a pivotal moment where RNA medicines are poised to make a broad impact in the clinic. In this review, we present an overview of different RNA-based strategies to generate novel therapeutics, including antisense and RNAi-based mechanisms, mRNA-based approaches, and CRISPR-Cas-mediated genome editing. Using three rare genetic diseases as examples, we highlight the opportunities, but also the challenges to wide-ranging applications of this class of drugs.
Collapse
Affiliation(s)
- Anke Sparmann
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
| | - Jörg Vogel
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI)WürzburgGermany
- Institute of Molecular Infection Biology (IMIB)University of WürzburgWürzburgGermany
| |
Collapse
|
24
|
Zhu H, Luo H, Chang R, Yang Y, Liu D, Ji Y, Qin H, Rong H, Yin J. Protein-based delivery systems for RNA delivery. J Control Release 2023; 363:253-274. [PMID: 37741460 DOI: 10.1016/j.jconrel.2023.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
RNA-based therapeutics have emerged as promising approaches to modulate gene expression and generate therapeutic proteins or antigens capable of inducing immune responses to treat a variety of diseases, such as infectious diseases, cancers, immunologic disorders, and genetic disorders. However, the efficient delivery of RNA molecules into cells poses significant challenges due to their large molecular weight, negative charge, and susceptibility to degradation by RNase enzymes. To overcome these obstacles, viral and non-viral vectors have been developed, including lipid nanoparticles, viral vectors, proteins, dendritic macromolecules, among others. Among these carriers, protein-based delivery systems have garnered considerable attention due to their potential to address specific issues associated with nanoparticle-based systems, such as liver accumulation and immunogenicity. This review provides an overview of currently marketed RNA drugs, underscores the significance of RNA delivery vector development, delineates the essential characteristics of an ideal RNA delivery vector, and introduces existing protein carriers for RNA delivery. By offering valuable insights, this review aims to serve as a reference for the future development of protein-based delivery vectors for RNA therapeutics.
Collapse
Affiliation(s)
- Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Luo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang City 550014, Guizhou Province, China.
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
25
|
Mangla P, Vicentini Q, Biscans A. Therapeutic Oligonucleotides: An Outlook on Chemical Strategies to Improve Endosomal Trafficking. Cells 2023; 12:2253. [PMID: 37759475 PMCID: PMC10527716 DOI: 10.3390/cells12182253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| | - Quentin Vicentini
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
- Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institute, 141 57 Stockholm, Sweden
| | - Annabelle Biscans
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| |
Collapse
|
26
|
Afrin H, Geetha Bai R, Kumar R, Ahmad SS, Agarwal SK, Nurunnabi M. Oral delivery of RNAi for cancer therapy. Cancer Metastasis Rev 2023; 42:699-724. [PMID: 36971908 PMCID: PMC10040933 DOI: 10.1007/s10555-023-10099-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Cancer is a major health concern worldwide and is still in a continuous surge of seeking for effective treatments. Since the discovery of RNAi and their mechanism of action, it has shown promises in targeted therapy for various diseases including cancer. The ability of RNAi to selectively silence the carcinogenic gene makes them ideal as cancer therapeutics. Oral delivery is the ideal route of administration of drug administration because of its patients' compliance and convenience. However, orally administered RNAi, for instance, siRNA, must cross various extracellular and intracellular biological barriers before it reaches the site of action. It is very challenging and important to keep the siRNA stable until they reach to the targeted site. Harsh pH, thick mucus layer, and nuclease enzyme prevent siRNA to diffuse through the intestinal wall and thereby induce a therapeutic effect. After entering the cell, siRNA is subjected to lysosomal degradation. Over the years, various approaches have been taken into consideration to overcome these challenges for oral RNAi delivery. Therefore, understanding the challenges and recent development is crucial to offer a novel and advanced approach for oral RNAi delivery. Herein, we have summarized the delivery strategies for oral delivery RNAi and recent advancement towards the preclinical stages.
Collapse
Affiliation(s)
- Humayra Afrin
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Renu Geetha Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56/1, 51006, Tartu, Estonia
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Sheikh Shafin Ahmad
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA
| | - Sandeep K Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA.
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
| |
Collapse
|
27
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
28
|
Malecova B, Burke RS, Cochran M, Hood MD, Johns R, Kovach PR, Doppalapudi VR, Erdogan G, Arias JD, Darimont B, Miller CD, Huang H, Geall A, Younis H, Levin AA. Targeted tissue delivery of RNA therapeutics using antibody-oligonucleotide conjugates (AOCs). Nucleic Acids Res 2023; 51:5901-5910. [PMID: 37224533 PMCID: PMC10325888 DOI: 10.1093/nar/gkad415] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023] Open
Abstract
Although targeting TfR1 to deliver oligonucleotides to skeletal muscle has been demonstrated in rodents, effectiveness and pharmacokinetic/pharmacodynamic (PKPD) properties remained unknown in higher species. We developed antibody-oligonucleotide conjugates (AOCs) towards mice or monkeys utilizing anti-TfR1 monoclonal antibodies (αTfR1) conjugated to various classes of oligonucleotides (siRNA, ASOs and PMOs). αTfR1 AOCs delivered oligonucleotides to muscle tissue in both species. In mice, αTfR1 AOCs achieved a > 15-fold higher concentration to muscle tissue than unconjugated siRNA. A single dose of an αTfR1 conjugated to an siRNA against Ssb mRNA produced > 75% Ssb mRNA reduction in mice and monkeys, and mRNA silencing was greatest in skeletal and cardiac (striated) muscle with minimal to no activity in other major organs. In mice the EC50 for Ssb mRNA reduction in skeletal muscle was >75-fold less than in systemic tissues. Oligonucleotides conjugated to control antibodies or cholesterol produced no mRNA reduction or were 10-fold less potent, respectively. Tissue PKPD of AOCs demonstrated mRNA silencing activity primarily driven by receptor-mediated delivery in striated muscle for siRNA oligonucleotides. In mice, we show that AOC-mediated delivery is operable across various oligonucleotide modalities. AOC PKPD properties translated to higher species, providing promise for a new class of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Barbora Malecova
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Rob S Burke
- Seawolf Therapeutics, One Sansome Street Suite 3630, San Francisco, CA 94104, USA
| | - Michael Cochran
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Michael D Hood
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Rachel Johns
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Philip R Kovach
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Venkata R Doppalapudi
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Gulin Erdogan
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - J Danny Arias
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | | | - Christopher D Miller
- California Northstate University College of Medicine, 9700 W Taron Dr, Elk Grove, CA 95757, USA
| | - Hanhua Huang
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Andrew Geall
- Replicate Biosciences, 10210 Campus Point Dr, Suite 150, San Diego, CA 92121, USA
| | - Husam S Younis
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Arthur A Levin
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| |
Collapse
|
29
|
Ivanov KI, Samuilova OV, Zamyatnin AA. The emerging roles of long noncoding RNAs in lymphatic vascular development and disease. Cell Mol Life Sci 2023; 80:197. [PMID: 37407839 PMCID: PMC10322780 DOI: 10.1007/s00018-023-04842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels. In recent years, evidence has accumulated to support the important role of lncRNAs in the development and functioning of the lymphatic vasculature and associated pathological processes such as tumor-induced lymphangiogenesis and cancer metastasis. In this review, we summarize the current knowledge on the role of lncRNAs in regulating the key genes and pathways involved in lymphatic vascular development and disease. Furthermore, we discuss the potential of lncRNAs as novel therapeutic targets and outline possible strategies for the development of lncRNA-based therapeutics to treat diseases of the lymphatic system.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation.
- Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Olga V Samuilova
- Department of Biochemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- HSE University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
30
|
Anwar S, Mir F, Yokota T. Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics 2023; 15:pharmaceutics15041130. [PMID: 37111616 PMCID: PMC10140998 DOI: 10.3390/pharmaceutics15041130] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Oligonucleotide-based therapies are a promising approach for treating a wide range of hard-to-treat diseases, particularly genetic and rare diseases. These therapies involve the use of short synthetic sequences of DNA or RNA that can modulate gene expression or inhibit proteins through various mechanisms. Despite the potential of these therapies, a significant barrier to their widespread use is the difficulty in ensuring their uptake by target cells/tissues. Strategies to overcome this challenge include cell-penetrating peptide conjugation, chemical modification, nanoparticle formulation, and the use of endogenous vesicles, spherical nucleic acids, and smart material-based delivery vehicles. This article provides an overview of these strategies and their potential for the efficient delivery of oligonucleotide drugs, as well as the safety and toxicity considerations, regulatory requirements, and challenges in translating these therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Farin Mir
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
31
|
Fujii T, Matsuda Y, Seki T, Shikida N, Iwai Y, Ooba Y, Takahashi K, Isokawa M, Kawaguchi S, Hatada N, Watanabe T, Takasugi R, Nakayama A, Shimbo K, Mendelsohn BA, Okuzumi T, Yamada K. AJICAP Second Generation: Improved Chemical Site-Specific Conjugation Technology for Antibody-Drug Conjugate Production. Bioconjug Chem 2023. [PMID: 36894324 PMCID: PMC10119932 DOI: 10.1021/acs.bioconjchem.3c00040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The site-directed chemical conjugation of antibodies remains an area of great interest and active efforts within the antibody-drug conjugate (ADC) community. We previously reported a unique site modification using a class of immunoglobulin-G (IgG) Fc-affinity reagents to establish a versatile, streamlined, and site-selective conjugation of native antibodies to enhance the therapeutic index of the resultant ADCs. This methodology, termed "AJICAP", successfully modified Lys248 of native antibodies to produce site-specific ADC with a wider therapeutic index than the Food and Drug Administration-approved ADC, Kadcyla. However, the long reaction sequences, including the reduction-oxidation (redox) treatment, increased the aggregation level. In this manuscript, we aimed to present an updated Fc-affinity-mediated site-specific conjugation technology named "AJICAP second generation" without redox treatment utilizing a "one-pot" antibody modification reaction. The stability of Fc affinity reagents was improved owing to structural optimization, enabling the production of various ADCs without aggregation. In addition to Lys248 conjugation, Lys288 conjugated ADCs with homogeneous drug-to-antibody ratio of 2 were produced using different Fc affinity peptide reagent possessing a proper spacer linkage. These two conjugation technologies were used to produce over 20 ADCs from several combinations of antibodies and drug linkers. The in vivo profile of Lys248 and Lys288 conjugated ADCs was also compared. Furthermore, nontraditional ADC production, such as antibody-protein conjugates and antibody-oligonucleotide conjugates, were achieved. These results strongly indicate that this Fc affinity conjugation approach is a promising strategy for manufacturing site-specific antibody conjugates without antibody engineering.
Collapse
Affiliation(s)
- Tomohiro Fujii
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yutaka Matsuda
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Takuya Seki
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Natsuki Shikida
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yusuke Iwai
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yuri Ooba
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutoshi Takahashi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Muneki Isokawa
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Sayaka Kawaguchi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Noriko Hatada
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Tomohiro Watanabe
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Rika Takasugi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Akira Nakayama
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutaka Shimbo
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Brian A Mendelsohn
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Tatsuya Okuzumi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kei Yamada
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| |
Collapse
|
32
|
Toshima A, Shiraishi Y, Shinmi D, Kagawa Y, Enokizono J. Comprehensive Analyses of the Intracellular and in Vivo Disposition of Fab- Small Interfering RNA Conjugate to Identify Key Issues to Improve Its in Vivo Activity. Drug Metab Dispos 2023; 51:338-347. [PMID: 36460478 DOI: 10.1124/dmd.122.001098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Comprehensive analyses of intracellular disposition and in vivo pharmacokinetics were performed for small interfering RNA (siRNA) conjugated with the Fab fragment of panitumumab, a fully humanized monoclonal antibody against epidermal growth factor receptor (EGFR). The Fab-siRNA conjugate was internalized into EGFR-expressing cancer cells in an antigen-dependent manner. Intracellular disposition was quantitatively evaluated using fluorescent-labeled panitumumab and confocal microscopy. The majority of internalized panitumumab was suggested to be transferred into lysosomes. In vivo pharmacokinetics were evaluated in EGFR-expressing tumor-bearing mice. Intact Fab-siRNA was measured by immunoprecipitation using anti-Fab antibody followed by quantitative polymerase chain reaction. The Fab portion was measured by a ligand binding assay. Intact Fab-siRNA concentrations rapidly decreased in the plasma and tumor, although the Fab portion concentration remained high, suggesting extensive degradation in the linker-siRNA portion. After incubation of Fab-siRNA in mouse plasma, samples were digested with proteinase K, and extracted siRNA tagged with Fab-derived peptide was subjected to an ion-pair reversed-phase liquid chromatography with mass spectrometry analysis. Results suggested that hydrolysis from the 3' end of the antisense strand of siRNA is the major metabolizing pathway. Based on these findings, endosomal escape and stability in lysosomes, blood, and tumor are key factors to improve to achieve efficient target gene knockdown in tumors, and stabilizing the 3' end of the antisense strand was suggested to be most efficient. Our approaches clearly identified the key issues of Fab-siRNA from a pharmacokinetics aspect, which will be useful for improving the in vivo activity of siRNA conjugated with not only Fab but also other immunoproteins. SIGNIFICANCE STATEMENT: The intracellular and in vivo disposition of Fab-small interfering RNA (siRNA) conjugate was comprehensively investigated using various approaches, including newly developed analytical methods. This study clearly shows that improvements in siRNA stability in lysosomes, blood, and tumor are needed for target gene knockdown in tumors. The major metabolic pathway of Fab-siRNA is 3' exonuclease degradation, suggesting that optimization of the conjugation site to Fab might help improve stability.
Collapse
Affiliation(s)
- Asami Toshima
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| | - Yasuhisa Shiraishi
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| | - Daisuke Shinmi
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| | - Yoshiyuki Kagawa
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| | - Junichi Enokizono
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| |
Collapse
|
33
|
Site-Specific Antibody Conjugation with Payloads beyond Cytotoxins. Molecules 2023; 28:molecules28030917. [PMID: 36770585 PMCID: PMC9921355 DOI: 10.3390/molecules28030917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
As antibody-drug conjugates have become a very important modality for cancer therapy, many site-specific conjugation approaches have been developed for generating homogenous molecules. The selective antibody coupling is achieved through antibody engineering by introducing specific amino acid or unnatural amino acid residues, peptides, and glycans. In addition to the use of synthetic cytotoxins, these novel methods have been applied for the conjugation of other payloads, including non-cytotoxic compounds, proteins/peptides, glycans, lipids, and nucleic acids. The non-cytotoxic compounds include polyethylene glycol, antibiotics, protein degraders (PROTAC and LYTAC), immunomodulating agents, enzyme inhibitors and protein ligands. Different small proteins or peptides have been selectively conjugated through unnatural amino acid using click chemistry, engineered C-terminal formylglycine for oxime or click chemistry, or specific ligation or transpeptidation with or without enzymes. Although the antibody protamine peptide fusions have been extensively used for siRNA coupling during early studies, direct conjugations through engineered cysteine or lysine residues have been demonstrated later. These site-specific antibody conjugates containing these payloads other than cytotoxic compounds can be used in proof-of-concept studies and in developing new therapeutics for unmet medical needs.
Collapse
|
34
|
Nicholson TA, Sagmeister M, Wijesinghe SN, Farah H, Hardy RS, Jones SW. Oligonucleotide Therapeutics for Age-Related Musculoskeletal Disorders: Successes and Challenges. Pharmaceutics 2023; 15:237. [PMID: 36678864 PMCID: PMC9866666 DOI: 10.3390/pharmaceutics15010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Age-related disorders of the musculoskeletal system including sarcopenia, osteoporosis and arthritis represent some of the most common chronic conditions worldwide, for which there remains a great clinical need to develop safer and more efficacious pharmacological treatments. Collectively, these conditions involve multiple tissues, including skeletal muscle, bone, articular cartilage and the synovium within the joint lining. In this review, we discuss the potential for oligonucleotide therapies to combat the unmet clinical need in musculoskeletal disorders by evaluating the successes of oligonucleotides to modify candidate pathological gene targets and cellular processes in relevant tissues and cells of the musculoskeletal system. Further, we discuss the challenges that remain for the clinical development of oligonucleotides therapies for musculoskeletal disorders and evaluate some of the current approaches to overcome these.
Collapse
Affiliation(s)
- Thomas A. Nicholson
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael Sagmeister
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Susanne N. Wijesinghe
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Hussein Farah
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Rowan S. Hardy
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Simon W. Jones
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
35
|
Wu F, Xu X, Li W, Hong Y, Lai H, Zhang J, Wu X, Zhou K, Hu N. Nanoparticle-Delivered Transforming Growth Factor-β1 siRNA Induces PD-1 against Gastric Cancer by Transforming the Phenotype of the Tumor Immune Microenvironment. Pharmaceuticals (Basel) 2022; 15:ph15121487. [PMID: 36558938 PMCID: PMC9787292 DOI: 10.3390/ph15121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Immune checkpoint blockade (ICB) is currently considered to be an important therapeutic method, which obtained FDA approval for clinical use in gastric cancer in 2017. As a new mechanism, it was found that the effect of αPDL1 could be improved by blocking the TGF-β1 signaling pathway, which converts the tumor immune microenvironment from the "immune-excluded phenotype" to the "immune-inflamed phenotype". Based on this phenomenon, this project was designed to prepare TGF-β1-siRNA-loaded PEG-PCL nanoparticles conjugated to αPDL1 (siTGF-β1-αPDL1-PEG-PCL) since we have linked similar antibodies to PEG-PCL previously. Therefore, MFC tumor-engrafted mice were established to simulate the biological characteristics of converting the phenotype of the immune microenvironment, and to study the anti-tumor effect and possible molecular mechanism. In this study, αPDL1 antibody conjugates markedly increased the cell uptake of NPs. The produced αPDL1-PEG-PCL NPs efficiently reduced the amounts of TGF-β1 mRNA in MFC cells, converting the immune microenvironment of MFC tumors engrafted mice from the "immune-excluded phenotype" to the "immune-inflamed phenotype". PDL1-harboring gastric cancer had increased susceptibility to αPDL1. The value of this drug-controlled release system targeting the tumor microenvironment in immune checkpoint therapy of gastric cancer would provide a scientific basis for clinically applying nucleic acid drugs.
Collapse
Affiliation(s)
- Fenglei Wu
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
| | - Xiujuan Xu
- Department of Radiation Oncology, Lianyungang Second People’s Hospital (Lianyungang Cancer Hospital), Lianyungang 222023, China
| | - Wei Li
- Center of Research Laboratory, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
| | - Yidong Hong
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
| | - Huan Lai
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
| | - Jingzhou Zhang
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
| | - Xueyu Wu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang 222002, China
| | - Kangjie Zhou
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
| | - Nan Hu
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
- Correspondence:
| |
Collapse
|
36
|
Lee JW, Choi J, Choi Y, Kim K, Yang Y, Kim SH, Yoon HY, Kwon IC. Molecularly engineered siRNA conjugates for tumor-targeted RNAi therapy. J Control Release 2022; 351:713-726. [DOI: 10.1016/j.jconrel.2022.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022]
|
37
|
Nakamura M, Fujiwara K, Doi N. Cytoplasmic delivery of siRNA using human-derived membrane penetration-enhancing peptide. J Nanobiotechnology 2022; 20:458. [PMID: 36303212 PMCID: PMC9615171 DOI: 10.1186/s12951-022-01667-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although protein-based methods using cell-penetrating peptides such as TAT have been expected to provide an alternative approach to siRNA delivery, the low efficiency of endosomal escape of siRNA/protein complexes taken up into cells by endocytosis remains a problem. Here, to overcome this problem, we adopted the membrane penetration-enhancing peptide S19 from human syncytin 1 previously identified in our laboratory. RESULTS We prepared fusion proteins in which the S19 and TAT peptides were fused to the viral RNA-binding domains (RBDs) as carrier proteins, added the RBD-S19-TAT/siRNA complex to human cultured cells, and investigated the cytoplasmic delivery of the complex and the knockdown efficiency of target genes. We found that the intracellular uptake of the RBD-S19-TAT/siRNA complex was increased compared to that of the RBD-TAT/siRNA complex, and the expression level of the target mRNA was decreased. Because siRNA must dissociate from RBD and bind to Argonaute 2 (Ago2) to form the RNA-induced silencing complex (RISC) after the protein/siRNA complex is delivered into the cytoplasm, a dilemma arises: stronger binding between RBD and siRNA increases intracellular uptake but makes RISC formation more difficult. Thus, we next prepared fusion proteins in which the S19 and TAT peptides were fused with Ago2 instead of RBD and found that the efficiencies of siRNA delivery and knockdown obtained using TAT-S19-Ago2 were higher than those using TAT-Ago2. In addition, we found that the smallest RISC delivery induced faster knockdown than traditional siRNA lipofection, probably due to the decreased time required for RISC formation in the cytoplasm. CONCLUSION These results indicated that S19 and TAT-fused siRNA-binding proteins, especially Ago2, should be useful for the rapid and efficient delivery of siRNA without the addition of any endosome-disrupting agent.
Collapse
Affiliation(s)
- Momoko Nakamura
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan.
| |
Collapse
|
38
|
Abstract
The homeostasis of cellular activities is essential for the normal functioning of living organisms. Hence, the ability to regulate the fates of cells is of great significance for both fundamental chemical biology studies and therapeutic development. Despite the notable success of small-molecule drugs that normally act on cellular protein functions, current clinical challenges have highlighted the use of macromolecules to tune cell function for improved therapeutic outcomes. As a class of hybrid biomacromolecules gaining rapidly increasing attention, protein conjugates have exhibited great potential as versatile tools to manipulate cell function for therapeutic applications, including cancer treatment, tissue engineering, and regenerative medicine. Therefore, recent progress in the design and assembly of protein conjugates used to regulate cell function is discussed in this review. The protein conjugates covered here are classified into three different categories based on their mechanisms of action and relevant applications: (1) regulation of intercellular interactions; (2) intervention in intracellular biological pathways; (3) termination of cell proliferation. Within each genre, a variety of protein conjugate scaffolds are discussed, which contain a diverse array of grafted molecules, such as lipids, oligonucleotides, synthetic polymers, and small molecules, with an emphasis on their conjugation methodologies and potential biomedical applications. While the current generation of protein conjugates is focused largely on delivery, the next generation is expected to address issues of site-specific conjugation, in vivo stability, controllability, target selectivity, and biocompatibility.
Collapse
Affiliation(s)
- Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
39
|
Chemical optimization of siRNA for safe and efficient silencing of placental sFLT1. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:135-149. [PMID: 35847173 PMCID: PMC9263991 DOI: 10.1016/j.omtn.2022.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022]
Abstract
Preeclampsia (PE) is a rising, potentially lethal complication of pregnancy. PE is driven primarily by the overexpression of placental soluble fms-like tyrosine kinase 1 (sFLT1), a validated diagnostic and prognostic marker of the disease when normalized to placental growth factor (PlGF) levels. Injecting cholesterol-conjugated, fully modified, small interfering RNAs (siRNAs) targeting sFLT1 mRNA into pregnant mice or baboons reduces placental sFLT1 and ameliorates clinical signs of PE, providing a strong foundation for the development of a PE therapeutic. siRNA delivery, potency, and safety are dictated by conjugate chemistry, siRNA duplex structure, and chemical modification pattern. Here, we systematically evaluate these parameters and demonstrate that increasing 2'-O-methyl modifications and 5' chemical stabilization and using sequence-specific duplex asymmetry and a phosphocholine-docosanoic acid conjugate enhance placental accumulation, silencing efficiency and safety of sFLT1-targeting siRNAs. The optimization strategy here provides a framework for the chemical optimization of siRNAs for PE as well as other targets and clinical indications.
Collapse
|
40
|
Paul A, Muralidharan A, Biswas A, Venkatesh Kamath B, Joseph A, Alex AT. siRNA Therapeutics and its Challenges: Recent Advances in Effective Delivery for Cancer Therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
41
|
Uehara K, Harumoto T, Makino A, Koda Y, Iwano J, Suzuki Y, Tanigawa M, Iwai H, Asano K, Kurihara K, Hamaguchi A, Kodaira H, Atsumi T, Yamada Y, Tomizuka K. Targeted delivery to macrophages and dendritic cells by chemically modified mannose ligand-conjugated siRNA. Nucleic Acids Res 2022; 50:4840-4859. [PMID: 35524566 PMCID: PMC9122583 DOI: 10.1093/nar/gkac308] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Extrahepatic delivery of small interfering RNAs (siRNAs) may have applications in the development of novel therapeutic approaches. However, reports on such approaches are limited, and the scarcity of reports concerning the systemically targeted delivery of siRNAs with effective gene silencing activity presents a challenge. We herein report for the first time the targeted delivery of CD206-targetable chemically modified mannose–siRNA (CMM–siRNA) conjugates to macrophages and dendritic cells (DCs). CMM–siRNA exhibited a strong binding ability to CD206 and selectively delivered contents to CD206-expressing macrophages and DCs. Furthermore, the conjugates demonstrated strong gene silencing ability with long-lasting effects and protein downregulation in CD206-expressing cells in vivo. These findings could broaden the use of siRNA technology, provide additional therapeutic opportunities, and establish a basis for further innovative approaches for the targeted delivery of siRNAs to not only macrophages and DCs but also other cell types.
Collapse
Affiliation(s)
- Keiji Uehara
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Toshimasa Harumoto
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Asana Makino
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yasuo Koda
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Junko Iwano
- Translational Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Yasuhiro Suzuki
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Mari Tanigawa
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiroto Iwai
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kana Asano
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kana Kurihara
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Akinori Hamaguchi
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiroshi Kodaira
- Translational Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Toshiyuki Atsumi
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yoji Yamada
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kazuma Tomizuka
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6, Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
42
|
A novel aptamer-based small RNA delivery platform and its application to cancer therapy. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Cao W, Li R, Pei X, Chai M, Sun L, Huang Y, Wang J, Barth S, Yu F, He H. Antibody-siRNA conjugates (ARC): Emerging siRNA drug formulation. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
44
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
45
|
Mondal T, Shivange G, Habieb A, Tushir-Singh J. A Feasible Alternative Strategy Targeting Furin Disrupts SARS-CoV-2 Infection Cycle. Microbiol Spectr 2022; 10:e0236421. [PMID: 35138160 PMCID: PMC8826744 DOI: 10.1128/spectrum.02364-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 causing coronavirus (SARS-CoV-2) remains a public health threat worldwide. SARS-CoV-2 enters human lung cells via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2). Notably, the cleavage of the spike by the host cell protease furin in virus-producing cells is critical for subsequent spike-driven entry into lung cells. Thus, effective targeted therapies blocking the spike cleavage and activation in viral producing cells may provide an alternate strategy to break the viral transmission cycle and to overcome disease pathology. Here we engineered and described an antibody-based targeted strategy, which directly competes with the furin mediated proteolytic activation of the spike in virus-producing cells. The described approach involves engineering competitive furin substrate residues in the IgG1 Fc-extended flexible linker domain of SARS-CoV-2 spike targeting antibodies. Considering the site of spike furin cleavage and SARS-CoV-2 egress remains uncertain, the experimental strategy pursued here revealed novel mechanistic insights into proteolytic processing of the spike protein, which suggest that processing does not occur in the constitutive secretory pathway. Furthermore, our results show blockade of furin-mediated cleavage of the spike protein for membrane fusion activation and virus host-cell entry function. These findings provide an alternate insight of targeting applicability to SARS-CoV-2 and the future coronaviridae family members, exploiting the host protease system to gain cellular entry and subsequent chain of infections. IMPORTANCE Since its emergence in December 2019, COVID-19 has remained a global economic and health threat. Although RNA and DNA vector-based vaccines induced antibody response and immunological memory have proven highly effective against hospitalization and mortality, their long-term efficacy remains unknown against continuously evolving SARS-CoV-2 variants. As host cell-enriched furin-mediated cleavage of SARS-CoV-2 spike protein is critical for viral entry and chain of the infection cycle, the solution described here of an antibody Fc-conjugated furin competing peptide is significant. In a scenario where spike mutational drifts do not interfere with the Fc-conjugated antibody's epitope, the proposed furin competing strategy confers a broad-spectrum targeting design to impede the production of efficiently transmissible SARS-CoV-2 viral particles. In addition, the proposed approach is plug-and-play against other potentially deadly viruses that exploit secretory pathway independent host protease machinery to gain cellular entry and subsequent transmissions to host cells.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Gururaj Shivange
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Alaa Habieb
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Jogender Tushir-Singh
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, California, USA
| |
Collapse
|
46
|
Harumoto T, Iwai H, Tanigawa M, Kubo T, Atsumi T, Tsutsumi K, Takashima M, Destito G, Soloff R, Tomizuka K, Nycholat C, Paulson J, Uehara K. Enhancement of Gene Knockdown on CD22-Expressing Cells by Chemically Modified Glycan Ligand-siRNA Conjugates. ACS Chem Biol 2022; 17:292-298. [PMID: 35020348 DOI: 10.1021/acschembio.1c00652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extrahepatic targeted delivery of oligonucleotides, such as small interfering RNA (siRNA) and antisense oligonucleotides (ASOs), is an attractive technology for the development of nucleic acid-based medicines. To target CD22-expressing B cells, several drug platforms have shown promise, including antibodies, antibody-drug conjugates, and nanoparticles, but to date CD22-targeted delivery of oligonucleotide therapeutics has not been reported. Here we report the uptake and enhancement of siRNA gene expression knockdown in CD22-expressing B cells using a chemically stabilized and modified CD22 glycan ligand-conjugated siRNA. This finding has the potential to broaden the use of siRNA technology, opening up novel therapeutic opportunities, and presents an innovative approach for targeted delivery of siRNAs to B cell lymphomas.
Collapse
Affiliation(s)
- Toshimasa Harumoto
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiroto Iwai
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Mari Tanigawa
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Toshiko Kubo
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Toshiyuki Atsumi
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kyoko Tsutsumi
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Michio Takashima
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Giuseppe Destito
- Kyowa Kirin Inc., 9420 Athena Circle, La Jolla, California 92037, United States
| | - Rachel Soloff
- Kyowa Kirin Inc., 9420 Athena Circle, La Jolla, California 92037, United States
| | - Kazuma Tomizuka
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Corwin Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - James Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Keiji Uehara
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
47
|
Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, Chen S, Pan L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target Ther 2022; 7:39. [PMID: 35132063 PMCID: PMC8821599 DOI: 10.1038/s41392-021-00868-x] [Citation(s) in RCA: 233] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies constitute a promising class of targeted anticancer agents that enhance natural immune system functions to suppress cancer cell activity and eliminate cancer cells. The successful application of IgG monoclonal antibodies has inspired the development of various types of therapeutic antibodies, such as antibody fragments, bispecific antibodies, and antibody derivatives (e.g., antibody-drug conjugates and immunocytokines). The miniaturization and multifunctionalization of antibodies are flexible and viable strategies for diagnosing or treating malignant tumors in a complex tumor environment. In this review, we summarize antibodies of various molecular types, antibody applications in cancer therapy, and details of clinical study advances. We also discuss the rationale and mechanism of action of various antibody formats, including antibody-drug conjugates, antibody-oligonucleotide conjugates, bispecific/multispecific antibodies, immunocytokines, antibody fragments, and scaffold proteins. With advances in modern biotechnology, well-designed novel antibodies are finally paving the way for successful treatments of various cancers, including precise tumor immunotherapy, in the clinic.
Collapse
Affiliation(s)
- Shijie Jin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yanping Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiao Liang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xinyu Gu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiangtao Ning
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yingchun Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Department of Precision Medicine on Tumor Therapeutics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China.
| | - Liqiang Pan
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
- Key Laboratory of Pancreatic Disease of Zhejiang Province, 310003, Hangzhou, China.
| |
Collapse
|
48
|
Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022; 181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
49
|
Yuan P, Yang F, Liew SS, Yan J, Dong X, Wang J, Du S, Mao X, Gao L, Yao SQ. Intracellular Co-delivery of native antibody and siRNA for combination therapy by using biodegradable silica nanocapsules. Biomaterials 2022; 281:121376. [DOI: 10.1016/j.biomaterials.2022.121376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022]
|
50
|
Bidar N, Darroudi M, Ebrahimzadeh A, Safdari M, de la Guardia M, Baradaran B, Goodarzi V, Oroojalian F, Mokhtarzadeh A. Simultaneous nanocarrier-mediated delivery of siRNAs and chemotherapeutic agents in cancer therapy and diagnosis: Recent advances. Eur J Pharmacol 2022; 915:174639. [PMID: 34919890 DOI: 10.1016/j.ejphar.2021.174639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Recently, investigations have revealed that RNA interference (RNAi) has a remarkable potential to decrease cancer burden by downregulating genes. Among various RNAi molecules, small interfering RNA (siRNA) has been more attractive for this goal and is able to silence a target pathological path and promote the degradation of a certain mRNA, resulting in either gain or loss of function of proteins. Moreover, therapeutic siRNAs have exhibited low side effects compared to other therapeutic molecular candidates. Nevertheless, siRNA delivery has its own limitations including quick degradation in circulation, ineffective internalization and low passive uptake by cells, possible toxicity against off-target sites, and inducing unfavorable immune responses. Therefore, delivery tools must be able to specifically direct siRNAs to their target locations without inflicting detrimental effects on other sites. To conquer the mentioned problems, nanocarrier-mediated delivery of siRNAs, using inorganic nanoparticles (NPs), polymers, and lipids, has been developed as a biocompatible delivery approach. In this review, we have discussed recent advances in the siRNA delivery methods that employ nanoparticles, lipids, and polymers, as well as the inorganic-based co-delivery systems used to deliver siRNAs and anticancer agents to target cells.
Collapse
Affiliation(s)
- Negar Bidar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ailin Ebrahimzadeh
- Department of Advanced Technologies in Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies in Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|