1
|
Kanhema T, Parobczak K, Patil S, Holm-Kaczmarek D, Hallin EI, Ludwiczak J, Szczepankiewicz AA, Pauzin FP, Mahboob A, Szum A, Ishizuka Y, Dunin-Horkawicz S, Kursula P, Wilczynski G, Magalska A, Bramham CR. ARC/ARG3.1 binds the nuclear polyadenylate-binding protein RRM and regulates neuronal activity-dependent formation of nuclear speckles. Cell Rep 2025; 44:115525. [PMID: 40208793 DOI: 10.1016/j.celrep.2025.115525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/30/2025] [Accepted: 03/14/2025] [Indexed: 04/12/2025] Open
Abstract
ARC is a neuronal activity-induced protein interaction hub with critical roles in synaptic plasticity and memory. ARC localizes to synapses and the nucleus, but its nuclear functions are little known. Following in vivo long-term potentiation (LTP) induction in the dentate gyrus, we show that ARC accumulates in the nucleosol fraction and interchromatin space of granule cells. Proteomic analysis of immunoprecipitated ARC complexes identifies proteins involved in pre-mRNA processing. We demonstrate endogenous ARC protein-protein interaction with polyadenylate-binding nuclear protein 1 (PABPN1) and the paraspeckles protein polypyrimidine tract-binding protein (PTB)-associated splicing factor (PSF). In vitro peptide binding arrays show direct binding of purified ARC to the PABPN1 poly(A)-RNA recognition motif. 3D morphometric imaging reveals structural changes in PABPN1 foci corresponding to classical nuclear speckles following in vivo and in vitro LTP. Depletion of ARC disrupts the maintenance and activity-dependent formation of PABPN1 speckles, thus implicating ARC in regulation of nuclear speckle dynamics and pre-mRNA processing.
Collapse
Affiliation(s)
- Tambudzai Kanhema
- Department of Biomedicine, University of Bergen, Bergen, Norway; Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Kamil Parobczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Sudarshan Patil
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Dagmara Holm-Kaczmarek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Erik I Hallin
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jan Ludwiczak
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland; Prescient Design, Genentech Research & Early Development, Roche Group, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Francois Philippe Pauzin
- Department of Biomedicine, University of Bergen, Bergen, Norway; Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Aamra Mahboob
- Department of Biomedicine, University of Bergen, Bergen, Norway; Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Adrian Szum
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Yuta Ishizuka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Stanisław Dunin-Horkawicz
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland; Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; LINXS Institute of Advanced Neutron and X-ray Science, Lund, Sweden
| | - Grzegorz Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland; Laboratory of Spatial Epigenetics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Bergen, Norway; Mohn Research Center for the Brain, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Hou J, Gao Y, Han B, Yan S, Wei S, Gao X. Nuclear accumulation of YTHDF1 regulates mRNA splicing in the DNA damage response. SCIENCE ADVANCES 2025; 11:eado7660. [PMID: 40238889 PMCID: PMC12002136 DOI: 10.1126/sciadv.ado7660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
YTH domain-containing family protein 1 (YTHDF1), a reader of N6-methyladenosine (m6A), has been implicated in regulating RNA metabolism in the cytosol. Here, we report a role of YTHDF1 within the nucleus in response to genotoxic stress. Upon radiation, YTHDF1 is phosphorylated at serine-182 in an ataxia telangiectasia and Rad3-related-dependent manner. This phosphorylation inhibits exportin 1-mediated nuclear export of YTHDF1, resulting in its accumulation within the nucleus. Nuclear YTHDF1 enhances the binding capacity of serine- and arginine-rich splicing factor 2 to a group of m6A-modified exons, leading to increased exon inclusion. Specifically, YTHDF1 promotes splicing and expression of DNA repair genes, such as BRCA1 and TP53BP1, thereby mitigating excessive DNA damage. Depletion of YTHDF1 sensitizes cancer cells to radiation treatment. Together, our study reveals a crucial role of YTHDF1 in m6A-mediated messenger RNA splicing in the DNA damage response, proposing it as a potential target for radiation therapy.
Collapse
Affiliation(s)
- Jingyu Hou
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yunyi Gao
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Bing Han
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sujun Yan
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Saisai Wei
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiangwei Gao
- Department of Clinical Laboratory of Sir Run Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
3
|
Bellini NK, Lima PLCD, Pires DDS, da Cunha JPC. Hidden origami in Trypanosoma cruzi nuclei highlights its non-random 3D genomic organization. mBio 2025:e0386124. [PMID: 40243368 DOI: 10.1128/mbio.03861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas disease and is known for its polycistronic transcription, with about 50% of its genome consisting of repetitive sequences, including coding (primarily multigenic families) and non-coding regions (such as ribosomal DNA, spliced leader [SL], and retroelements, etc). Here, we evaluated the genomic features associated with higher-order chromatin organization in T. cruzi (Brazil A4 strain) by extensive computational processing of high-throughput chromosome conformation capture (Hi-C). Through the mHi-C pipeline, designed to handle multimapping reads, we demonstrated that applying canonical Hi-C processing, which overlooks repetitive DNA sequences, results in a loss of DNA-DNA contacts, misidentifying them as chromatin-folding (CF) boundaries. Our analysis revealed that loci encoding multigenic families of virulence factors are enriched in chromatin loops and form shorter and tighter CF domains than the loci encoding core genes. We uncovered a non-random three-dimensional (3D) genomic organization in which nonprotein-coding RNA loci (transfer RNAs [tRNAs], small nuclear RNAs, and small nucleolar RNAs) and transcription termination sites are preferentially located at the boundaries of the CF domains. Our data indicate 3D clustering of tRNA loci, likely optimizing transcription by RNA polymerase III, and a complex interaction between spliced leader RNA and 18S rRNA loci, suggesting a link between RNA polymerase I and II machineries. Finally, we highlighted a group of genes encoding virulence factors that interact with SL-RNA loci, suggesting a potential regulatory role. Our findings provide insights into 3D genome organization in T. cruzi, contributing to the understanding of supranucleosomal-level chromatin organization and suggesting possible links between 3D architecture and gene expression.IMPORTANCEDespite the knowledge about the linear genome sequence and the identification of numerous virulence factors in the protozoan parasite Trypanosoma cruzi, there has been a limited understanding of how these genomic features are spatially organized within the nucleus and how this organization impacts gene regulation and pathogenicity. By providing a detailed analysis of the three-dimensional (3D) chromatin architecture in T. cruzi, our study contributed to narrowing this gap. We deciphered part of the origami structure hidden in the T. cruzi nucleus, showing the unidimensional genomic features are non-randomly 3D organized in the nuclear organelle. We uncovered the role of nonprotein-coding RNA loci (e.g., transfer RNAs, spliced leader RNA, and 18S RNA) in shaping genomic architecture, offering insights into an additional epigenetic layer that may influence gene expression.
Collapse
Affiliation(s)
- Natália Karla Bellini
- Cell Cycle Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Pedro Leonardo Carvalho de Lima
- Cell Cycle Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - David da Silva Pires
- Cell Cycle Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Cell Cycle Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| |
Collapse
|
4
|
Zhang M, Gu Z, Sun Y, Dong Y, Chen J, Shu L, Ma S, Guo J, Liang Y, Qu Q, Fang N, Zhong CQ, Ge Y, Chen Z, Huang S, Zhang X, Wang B. Phosphorylation-dependent charge blocks regulate the relaxation of nuclear speckle networks. Mol Cell 2025:S1097-2765(25)00260-6. [PMID: 40233760 DOI: 10.1016/j.molcel.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/21/2025] [Accepted: 03/19/2025] [Indexed: 04/17/2025]
Abstract
Nuclear speckles (NSs) are viscoelastic network fluids formed via phase separation coupled to percolation (PSCP). Intermolecular crosslinks of SRRM2 lead to the emergence of system-spanning networks, although the physicochemical grammar governing SRRM2 PSCP remains poorly decoded. Here, we demonstrate that SRRM2 is extensively phosphorylated within the intrinsically disordered region (IDR), creating alternating charge blocks. We show that this specific charge pattern does not markedly alter the condensation threshold of SRRM2 in cells. Instead, SRRM2 charge blocks intensify intra-network molecular interactions to modulate the material properties of mesoscopic SRRM2 condensates. We further identify casein kinase 2 (CK2) as the upstream enzyme to catalyze SRRM2 phosphorylation. Phosphorylation of SRRM2 IDR by CK2 facilitates NS relaxation, which is associated with enhanced efficiency of mRNA splicing to safeguard genome stability during DNA damage. Our findings reveal important regulatory mechanisms of charge blocks in modulating the material properties and functions of biomolecular condensates in human cells.
Collapse
Affiliation(s)
- Mengjun Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhuang Gu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yingtian Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yichen Dong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Junlin Chen
- School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Li Shu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 203201, China
| | - Suibin Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jierui Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yuhang Liang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingming Qu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ning Fang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yifan Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 203201, China
| | - Zhongwen Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 203201, China
| | - Shaohui Huang
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xin Zhang
- School of Life Sciences and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Bo Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Shen G, Cheng Q, Liang L, Qin Y, Cao Y, Li Q, Xiao S. Tubercidin enhances apoptosis in serum-starved and hypoxic mouse cardiomyocytes by inducing nuclear speckle condensation. BMC Cardiovasc Disord 2025; 25:211. [PMID: 40121465 PMCID: PMC11929321 DOI: 10.1186/s12872-025-04661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Tubercidin, known for its antimicrobial, antiparasitic, and anticancer effects, faces clinical limitations due to adverse effects, especially cardiotoxicity risks for those with ischemic cardiomyopathy. This study aims to clarify the molecular pathways of Tubercidin-induced cardiotoxicity, focusing on nuclear speckles (NSs) disruption in cardiomyocytes under serum deprivation and/or hypoxia. To simulate ischemic cardiomyopathy in vitro, we utilized FMC84 and HL-1 murine cardiomyocyte cell lines, exposing them to conditions of serum limitation and/or hypoxia to evaluate the cardiotoxic impact of Tubercidin and the contributing mechanisms. Apoptosis was quantified using flow cytometry, NSs condensation was visualized via immunofluorescence with an anti-SC35 antibody, and the expression levels of key apoptotic transcripts (RFFL, RIF1, and RNF144B) were analyzed by RT-PCR. Our findings revealed that Tubercidin significantly increased apoptosis in both HL-1 and FMC84 cell lines under conditions mimicking serum deprivation (21% O2 with 1% FBS), hypoxia (1% O2 with 10% FBS), or a combination of both. Furthermore, Tubercidin treatment led to a pronounced enlargement of NSs, as detected by immunofluorescence. Concurrently, we documented significant alterations in the expression of critical apoptotic regulatory genes, implying that Tubercidin may modulate the apoptotic pathway in stressed cardiomyocytes. It is hypothesized that Tubercidin induces NSs condensation, affecting alternative splicing of cell death genes, potentially worsening ischemic cardiomyocytes' damage. Therefore, a cautious clinical use of Tubercidin for ischemic cardiomyopathy patients is advised to reduce cardiotoxicity risks.
Collapse
Affiliation(s)
- Guowen Shen
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Qingni Cheng
- Department of Cardiology, Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Lunmin Liang
- Department of Cardiology, Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Yaping Qin
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Yunzhu Cao
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, 541199, China
| | - Quanzhong Li
- Department of Cardiology, Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Shengjun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
6
|
Mao S, Wu R, Luo W, Qin J, Chen A. Spuriously transcribed RNAs from CRISPR-sgRNA expression plasmids scaffold biomolecular condensate formation and hamper accurate genomic imaging. Nucleic Acids Res 2025; 53:gkaf192. [PMID: 40119729 PMCID: PMC11928936 DOI: 10.1093/nar/gkaf192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/13/2024] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based imaging tools that utilize fluorescently tagged single-guide RNAs (sgRNAs) have enabled versatile analysis of the dynamics of single genomic loci, but the accuracy may be hindered by nonspecific subnuclear probe accumulation, generating false-positive foci in cell nuclei. By examining the subcellular localizations of sgRNA expression plasmids, their RNA transcripts, and several RNA-binding proteins, we found that spuriously transcribed (cryptic) transcripts, produced by sgRNA expression plasmids, are the major contributors of false-positive signals, independent of sgRNA scaffold design or effector probe (i.e. RNA aptamer- or oligonucleotide-based probes) used. These transcripts interact with the paraspeckle core proteins, but not with the sgRNA expression plasmids or the paraspeckle RNA scaffold NEAT1_2, to form nuclear bodies that display liquid-like properties including sphericality, fusion competence, and sensitivity to 1,6-hexanediol. Transfecting sgRNA transcription units (i.e. sgRNA expression cassettes), lacking the plasmid backbones, reduces false-positive signals and enhances genomic imaging accuracy. Overall, this study unveils previously undescribed activities of cryptic plasmid transcripts and presents an easy-to-adapt strategy that can potentially improve the precision of CRISPR-based imaging systems that implement fluorescently tagged sgRNAs.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Ruonan Wu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Weibang Luo
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Jinshan Qin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
D'Aiuto L, Caldwell JK, Edwards TG, Zhou C, McDonald ML, Di Maio R, Joel WA, Hyde VR, Wallace CT, Watkins SC, Wesesky MA, Shemesh OA, Nimgaonkar VL, Bloom DC. Phosphorylated-tau associates with HSV-1 chromatin and correlates with nuclear speckles decondensation in low-density host chromatin regions. Neurobiol Dis 2025; 206:106804. [PMID: 39818277 PMCID: PMC12001802 DOI: 10.1016/j.nbd.2025.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Abnormal tau phosphorylation is a key mechanism in neurodegenerative diseases. Evidence implicates infectious agents, such as Herpes Simplex Virus 1 (HSV-1), as co-factors in the onset or the progression of neurodegenerative diseases, including Alzheimer's disease. This has led to divergence in the field regarding the contribution of viruses in the etiology of neurodegenerative diseases. Research indicates that viruses may function as risk factors driving neurodegenerative disease rather than playing a causative role. Investigating HSV-1 in abnormal tau phosphorylation is important for understanding the role of infectious agents in neurodegeneration. We generated cellular models of HSV-1 acute, latent infection, and viral reactivation from latency in cortical brain organoids and investigated the interplay between tau phosphorylation and HSV-1 infection by employing human induced pluripotent stem cell (iPSC)-derived monolayer neuronal cultures and brain organoids. Acute infection with HSV-1 strains 17syn+ and KOS caused nuclear accumulation of phosphorylated tau (p-tau) in neurons and neural precursor cells. Antivirals prevented nuclear accumulation of p-tau. Viral reactivation was accompanied by the nuclear translocation of p-tau. Chromatin immunoprecipitation analysis indicated an interaction of p-tau with the viral chromatin. A reduction in abundance of component of nuclear speckles and their loss of organized morphology in low-denisty host chromatin regions was observed, with strain-specific differences. HSV-1 infection was followed by an increase in the abundance of BRSKs and TAOKs, kinases known to phosphorylate tau. These findings show interaction between p-tau and HSV-1 chromatin and demonstrate the ability of HSV-1 to activate mechanisms that are observed in Alzheimer's disease.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America.
| | - Jill K Caldwell
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Terri G Edwards
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32611, United States of America
| | - Chaoming Zhou
- Department of Neurobiology, University of Pittsburgh School of Medicine, 4074 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | - Matthew L McDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Roberto Di Maio
- Department of Neurology, University of Pittsburgh School of Medicine, 3501 Fifth Ave, Biological Science Tower 3, Pittsburgh, PA 15260, United States of America
| | - Wood A Joel
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Vanesa R Hyde
- Department of Neurobiology, University of Pittsburgh School of Medicine, 4074 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | - Callen T Wallace
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, S362 Biomedical Science Tower (South), Pittsburgh, PA 15261, United States of America
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, S362 Biomedical Science Tower (South), Pittsburgh, PA 15261, United States of America
| | - Maribeth A Wesesky
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Or A Shemesh
- Department of Neurobiology, University of Pittsburgh School of Medicine, 4074 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32611, United States of America
| |
Collapse
|
8
|
Wang J, Fan Y, Luo G, Xiong L, Wang L, Wu Z, Wang J, Peng Z, Rosen CJ, Lu K, Jing J, Yuan Q, Zhang Z, Zhou C. Nuclear Condensates of WW Domain-Containing Adaptor With Coiled-Coil Regulate Mitophagy via Alternative Splicing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406759. [PMID: 39840526 PMCID: PMC11904943 DOI: 10.1002/advs.202406759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/19/2024] [Indexed: 01/23/2025]
Abstract
Biomolecular condensates segregate nuclei into discrete regions, facilitating the execution of distinct biological functions. Here, it is identified that the WW domain containing adaptor with coiled-coil (WAC) is localized to nuclear speckles via its WW domain and plays a pivotal role in regulating alternative splicing through the formation of biomolecular condensates via its C-terminal coiled-coil (CC) domain. WAC acts as a scaffold protein and facilitates the integration of RNA-binding motif 12 (RBM12) into nuclear speckles, where RBM12 potentially interacts with the spliceosomal U5 small nuclear ribonucleoprotein (snRNP). Importantly, knockdown of RBM12, or deletion of the WAC CC domain led to altered splicing outcomes, resulting in an elevated level of BECN1-S, the short splice variant of BECN1 that is shown to upregulate mitophagy. Thus, the findings reveal a previously unrecognized mechanism for the nuclear regulation of mitochondrial function through liquid-liquid phase separation (LLPS) and provide insights into the pathogenesis of WAC-related disorders.
Collapse
Affiliation(s)
- Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Department of Rheumatology and ImmunologyWest China HospitalSichuan UniversityChengdu610041China
| | - Lijie Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Jiayi Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Zhengying Peng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | | | - Kefeng Lu
- Department of NeurosurgeryState Key Laboratory of BiotherapyWest China HospitalSichuan University and The Research Units of West ChinaChinese Academy of Medical SciencesChengdu610041China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Zhenwei Zhang
- State Key Laboratory of Biotherapy and Department of Rheumatology and ImmunologyWest China HospitalSichuan UniversityChengdu610041China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
9
|
Liu J, Zheng L, Li X, Tang W, Guo M, Wang Y, Tan X, Chang J, Zhao H, Zhu D, Ma YQ, Huo D. Emerging of Ultrafine Membraneless Organelles as the Missing Piece of Nanostress: Mechanism of Biogenesis and Implications at Multilevels. ACS NANO 2025; 19:5659-5679. [PMID: 39882824 DOI: 10.1021/acsnano.4c15876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Understanding the interaction between nanomaterials and cellular structures is crucial for nanoparticle applications in biomedicine. We have identified a subtype of stress granules, called nanomaterial-provoked stress granules (NSGs), induced by gold nanorods (AuNRs). These NSGs differ from traditional SGs in their physical properties and biological functions. Uptake of AuNRs causes reactive oxygen species accumulation and protein misfolding in the cell, leading to NSG formation. Physically, NSGs have a gel-like core and a liquid-like shell, influenced positively by HSP70 and negatively by HSP90 and the ubiquitin-proteasome system. AuNRs promote NSG assembly by interacting with G3BP1, reducing the energy needed for liquid-liquid phase separation (LLPS). NSGs impact cellular functions by affecting mRNA surveillance and activating Adenosine 5'-monophosphate (AMP)-activated protein kinase signaling, crucial for a cellular stress response. Our study highlights the role of LLPS in nanomaterial metabolism and suggests NSGs as potential targets for drug delivery strategies, advancing the field of nanomedicine.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Liuting Zheng
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Xinyue Li
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Wei Tang
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Manyu Guo
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yuxing Wang
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Xiaoqi Tan
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Jiajia Chang
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Huiyue Zhao
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, P. R. China
| | - Dongsheng Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Da Huo
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| |
Collapse
|
10
|
Yoon Y, Bournique E, Soles LV, Yin H, Chu HF, Yin C, Zhuang Y, Liu X, Liu L, Jeong J, Yu C, Valdez M, Tian L, Huang L, Shi X, Seelig G, Ding F, Tong L, Buisson R, Shi Y. RBBP6 anchors pre-mRNA 3' end processing to nuclear speckles for efficient gene expression. Mol Cell 2025; 85:555-570.e8. [PMID: 39798570 PMCID: PMC11805622 DOI: 10.1016/j.molcel.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025]
Abstract
Pre-mRNA 3' processing is an integral step in mRNA biogenesis. However, where this process occurs in the nucleus remains unknown. Here, we demonstrate that nuclear speckles (NSs), membraneless organelles enriched with splicing factors, are major sites for pre-mRNA 3' processing in human cells. We show that the essential pre-mRNA 3' processing factor retinoblastoma-binding protein 6 (RBBP6) associates strongly with NSs via its C-terminal intrinsically disordered region (IDR). Importantly, although the conserved N-terminal domain (NTD) of RBBP6 is sufficient for pre-mRNA 3' processing in vitro, its IDR-mediated association with NSs is required for efficient pre-mRNA 3' processing in cells. Through proximity labeling analyses, we provide evidence that pre-mRNA 3' processing for over 50% of genes occurs near NSs. We propose that NSs serve as hubs for RNA polymerase II transcription, pre-mRNA splicing, and 3' processing, thereby enhancing the efficiency and coordination of different gene expression steps.
Collapse
Affiliation(s)
- Yoseop Yoon
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Lindsey V Soles
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Hong Yin
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Hsu-Feng Chu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Christopher Yin
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Seattle, WA 98195, USA
| | - Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Xiangyang Liu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Liang Liu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Joshua Jeong
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Marielle Valdez
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Lusong Tian
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Xiaoyu Shi
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Seattle, WA 98195, USA; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Seattle, WA 98195, USA
| | - Fangyuan Ding
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Rodríguez-Campuzano AG, Castelán F, Hernández-Kelly LC, Felder-Schmittbuhl MP, Ortega A. Yin Yang 1: Function, Mechanisms, and Glia. Neurochem Res 2025; 50:96. [PMID: 39904836 PMCID: PMC11794380 DOI: 10.1007/s11064-025-04345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Yin Yang 1 is a ubiquitously expressed transcription factor that has been extensively studied given its particular dual transcriptional regulation. Yin Yang 1 is involved in various cellular processes like cell cycle progression, cell differentiation, DNA repair, cell survival and apoptosis among others. Its malfunction or alteration leads to disease and even to malignant transformation. This transcription factor is essential for the proper central nervous system development and function. The activity of Yin Yang 1 depends on its interacting partners, promoter environment and chromatin structure, however, its mechanistic activity is not completely understood. In this review, we briefly discuss the Yin Yang 1 structure, post-translational modifications, interactions, mechanistic functions and its participation in neurodevelopment. We also discuss its expression and critical involvement in the physiology and physiopathology of glial cells, summarizing the contribution of Yin Yang 1 on different aspects of cellular function.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Francisco Castelán
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico.
| |
Collapse
|
12
|
Alexander KA, Yu R, Skuli N, Coffey NJ, Nguyen S, Faunce CL, Huang H, Dardani IP, Good AL, Lim J, Li CY, Biddle N, Joyce EF, Raj A, Lee D, Keith B, Simon MC, Berger SL. Nuclear speckles regulate functional programs in cancer. Nat Cell Biol 2025; 27:322-335. [PMID: 39747580 DOI: 10.1038/s41556-024-01570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Nuclear speckles are dynamic nuclear bodies characterized by high concentrations of factors involved in RNA production. Although the contents of speckles suggest multifaceted roles in gene regulation, their biological functions are unclear. Here we investigate speckle variation in human cancer, finding two main signatures. One speckle signature was similar to healthy adjacent tissues, whereas the other was dissimilar, and considered an aberrant cancer speckle state. Aberrant speckles show altered positioning within the nucleus, higher levels of the TREX RNA export complex and correlate with poorer patient outcomes in clear cell renal cell carcinoma (ccRCC), a cancer typified by hyperactivation of the HIF-2α transcription factor. We demonstrate that HIF-2α promotes physical association of certain target genes with speckles depending on HIF-2α protein speckle-targeting motifs, defined in this study. We identify homologous speckle-targeting motifs within many transcription factors, suggesting that DNA-speckle targeting may be a general gene regulatory mechanism. Integrating functional, genomic and imaging studies, we show that HIF-2α gene regulatory programs are impacted by speckle state and by abrogation of HIF-2α-driven speckle targeting. These findings suggest that, in ccRCC, a key biological function of nuclear speckles is to modulate expression of select HIF-2α-regulated target genes that, in turn, influence patient outcomes. Beyond ccRCC, tumour speckle states broadly correlate with altered functional pathways and expression of speckle-associated gene neighbourhoods, exposing a general link between nuclear speckles and gene expression dysregulation in human cancer.
Collapse
Affiliation(s)
- Katherine A Alexander
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA, USA
- Cold Spring Harbor Laboratory, Huntington, NY, USA
| | - Ruofan Yu
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicolas Skuli
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA, USA
- Stem Cell and Xenograft Core, Department of Medicine - Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan J Coffey
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Son Nguyen
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christine L Faunce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hua Huang
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ian P Dardani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Austin L Good
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan Lim
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Catherine Y Li
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicholas Biddle
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric F Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arjun Raj
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Lee
- Division of Urology, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Keith
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, School of Arts and Sciences, Perelman School of Medicine, Philadelphia, PA, USA
| | - M Celeste Simon
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | - Shelley L Berger
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Zhang L, Jing M, Song Q, Ouyang Y, Pang Y, Ye X, Fu Y, Yan W. Role of the m 6A demethylase ALKBH5 in gastrointestinal tract cancer (Review). Int J Mol Med 2025; 55:22. [PMID: 39611478 PMCID: PMC11637504 DOI: 10.3892/ijmm.2024.5463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
N6‑methyladenosine (m6A) is one of the most universal, abundant and conserved types of internal post‑transcriptional modifications in eukaryotic RNA, and is involved in nuclear RNA export, RNA splicing, mRNA stability, gene expression, microRNA biogenesis and long non‑coding RNA metabolism. AlkB homologue 5 (ALKBH5) acts as a m6A demethylase to regulate a wide variety of biological processes closely associated with tumour progression, tumour metastasis, tumour immunity and tumour drug resistance. ALKBH5 serves a crucial role in human digestive system tumours, mainly through post‑transcriptional regulation of m6A modification. The present review discusses progress in the study of the m6A demethylase ALKBH5 in gastrointestinal tract cancer, summarizes the potential molecular mechanisms of ALKBH5 dysregulation in gastrointestinal tract cancer, and discusses the significance of ALKBH5‑targeted therapy, which may provide novel ideas for future clinical prognosis prediction, biomarker identification and precise treatment.
Collapse
Affiliation(s)
- Lumiao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yiming Ouyang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yingzhi Pang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xilin Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
14
|
Takakuwa H, Hirose T. Speckle signatures dictate cancer prognosis. Nat Cell Biol 2025; 27:180-181. [PMID: 39753949 DOI: 10.1038/s41556-024-01569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Affiliation(s)
- Hiro Takakuwa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
15
|
Zhu Y, Lin S, Meng L, Sun M, Liu M, Li J, Tang C, Gong Z. ATP promotes protein coacervation through conformational compaction. J Mol Cell Biol 2025; 16:mjae038. [PMID: 39354680 PMCID: PMC11879455 DOI: 10.1093/jmcb/mjae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024] Open
Abstract
Adenosine triphosphate (ATP) has been recognized as a hydrotrope in the phase separation process of intrinsically disordered proteins (IDPs). Surprisingly, when using the disordered Arg-Gly/Arg-Gly-Gly (RG/RGG) rich motif from the HNRNPG protein as a model system, we discover a biphasic relationship between the ATP concentration and IDP phase separation. We show that, at a relatively low ATP concentration, ATP dynamically interacts with the IDP, which neutralizes protein surface charges, promotes intermolecular interactions, and consequently promotes phase separation. We further demonstrate that ATP induces a compact conformation of the IDP, accounting for the reduced solvent exchange rate and lower compression ratio during phase separation. As ATP concentration increases, its hydrotropic properties emerge, leading to the dissolution of the phase-separated droplets. Our finding uncovers a complex mechanism by which ATP molecules modulate the structure, interaction, and phase separation of IDPs and accounts for the distinct phase separation behaviors of the charge-rich RGG motif and other low-complexity IDPs.
Collapse
Affiliation(s)
- Yueling Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyan Lin
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310058, China
| | - Lingshen Meng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences & Center for Quantitative Biology, PKU–Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Min Sun
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310058, China
| | - Chun Tang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences & Center for Quantitative Biology, PKU–Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
16
|
Wan L, Zhang C, Liu Y, Zhang J, He L, Zhang Y, Chen G, Guo P, Han D. Small CAG Repeat RNA Forms a Duplex Structure with Sticky Ends That Promote RNA Condensation. J Am Chem Soc 2025; 147:3813-3822. [PMID: 39807887 DOI: 10.1021/jacs.4c16886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Biomolecular condensation lays the foundation of forming biologically important membraneless organelles, but abnormal condensation processes are often associated with human diseases. Ribonucleic acid (RNA) plays a critical role in the formation of biomolecular condensates by mediating the phase transition through its interactions with proteins and other RNAs. However, the physicochemical principles governing RNA phase transitions, especially for short RNAs, remain inadequately understood. Here, we report that small CAG repeat (sCAG) RNAs composed of six to seven CAG repeats, which are pathogenic factors in Huntington's disease, undergo phase transition in vitro and in cells. Leveraging solution nuclear magnetic resonance spectroscopy and advanced coarse-grained molecular dynamic simulations, we reveal that sCAG RNAs form duplex structures with 3'-sticky ends, where the GC stickers initiate intermolecular crosslinking and promote the formation of RNA condensates. Furthermore, we demonstrate that sCAG RNAs can form cellular condensates within nuclear speckles. Our work suggests that the RNA phase transition can be promoted by specific structural motifs, reducing the reliance on sequence length and multivalence. This opens avenues for exploring new functions of RNA in biomolecular condensates and designing novel biomaterials based on RNA condensation.
Collapse
Affiliation(s)
- Liqi Wan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | | | - Yu Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jiacheng Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lei He
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuchao Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | | | - Pei Guo
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Da Han
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
17
|
Elavarasu SM, Vasudevan K, Sasikumar K, Doss C GP. The role of ABI2 in modulating nuclear proteins: Therapeutic implications for NUP54 and NUP153 in TNBC. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 143:97-115. [PMID: 39843146 DOI: 10.1016/bs.apcsb.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks hormone receptors, which makes it more likely to metastasize and have a poor prognosis. Despite some effectiveness of chemotherapy, TNBC remains challenging to manage, with high relapse and mortality rates. Recent findings have highlighted the role of the ubiquitin-protease system in TNBC, with ABI2 identified as a significant regulator. Reduced ABI2 expression is associated with aggressive disease and poor outcomes, whereas ABI2 overexpression (OE-ABI2) inhibits TNBC cell proliferation by modulating the PI3K/Akt signaling pathway. Although ABI2 is not a nuclear protein, it influences critical nuclear functions such as DNA repair and gene expression. Nuclear proteins, particularly those in the nuclear pore complex and nuclear matrix, are essential for cellular functions and have been linked to various diseases, including cancer. This study used RNA sequencing (RNA-seq) to examine the gene expression in MDA-MB-231 cell line and ABI2-overexpressing cells. Differentially expressed genes were annotated, and a protein-protein interaction network was constructed. Network and enrichment analysis identified the nucleoporins NUP54 and NUP153 as potential novel targets for TNBC. This study emphasizes the impact of ABI2 on nuclear proteins and suggests that targeting NUP54 and NUP153 could offer new therapeutic options for TNBC.
Collapse
Affiliation(s)
- Santhosh Mudipalli Elavarasu
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Karthick Vasudevan
- Manipal Academy of Higher Education (MAHE), Manipal, India; Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - K Sasikumar
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
18
|
McIntyre ABR, Tschan AB, Meyer K, Walser S, Rai AK, Fujita K, Pelkmans L. Phosphorylation of a nuclear condensate regulates cohesion and mRNA retention. Nat Commun 2025; 16:390. [PMID: 39755675 DOI: 10.1038/s41467-024-55469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution. PP1 overexpression increases speckle cohesion and leads to retention of mRNA within speckles and the nucleus. Using APEX2 proximity labeling combined with RNA-sequencing, we characterize the recruitment of specific RNAs. We find that many transcripts are preferentially enriched within nuclear speckles compared to the nucleoplasm, particularly chromatin- and nucleus-associated transcripts. While total polyadenylated RNA retention increases with nuclear speckle cohesion, the ratios of most mRNA species to each other are constant, indicating non-selective retention. We further find that cellular responses to heat shock, oxidative stress, and hypoxia include changes to the phosphorylation and cohesion of nuclear speckles and to mRNA retention. Our results demonstrate that tuning the material properties of nuclear speckles provides a mechanism for the acute control of mRNA localization.
Collapse
Affiliation(s)
- Alexa B R McIntyre
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Adrian Beat Tschan
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Systems Biology PhD program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Katrina Meyer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Severin Walser
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Arpan Kumar Rai
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Keisuke Fujita
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Soggia G, ElMaghloob Y, Boromangnaeva AK, Al Jord A. Mechanical Remodeling of Nuclear Biomolecular Condensates. Physiology (Bethesda) 2025; 40:0. [PMID: 39109673 DOI: 10.1152/physiol.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membraneless compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into the contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.
Collapse
Affiliation(s)
- Giulia Soggia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Yasmin ElMaghloob
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Systems Biology and Immunology Lab, Children's Cancer Hospital Egypt, Cairo, Egypt
| | | | - Adel Al Jord
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
20
|
Ratovitski T, Holland CD, O’Meally RN, Shevelkin AV, Shi T, Cole RN, Jiang M, Ross CA. Huntingtin interactome reveals huntingtin role in regulation of double strand break DNA damage response (DSB/DDR), chromatin remodeling and RNA processing pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630542. [PMID: 39763784 PMCID: PMC11703178 DOI: 10.1101/2024.12.27.630542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Huntington's Disease (HD), a progressive neurodegenerative disorder with no disease-modifying therapies, is caused by a CAG repeat expansion in the HD gene encoding polyglutamine-expanded huntingtin (HTT) protein. Mechanisms of HD cellular pathogenesis and cellular functions of the normal and mutant HTT proteins are still not completely understood. HTT protein has numerous interaction partners, and it likely provides a scaffold for assembly of multiprotein complexes many of which may be altered in HD. Previous studies have implicated DNA damage response in HD pathogenesis. Gene transcription and RNA processing has also emerged as molecular mechanisms associated with HD. Here we used multiple approaches to identify HTT interactors in the context of DNA damage stress. Our results indicate that HTT interacts with many proteins involved in the regulation of interconnected DNA repair/remodeling and RNA processing pathways. We present evidence for a role for HTT in double strand break repair mechanism. We demonstrate HTT functional interaction with a major DNA damage response kinase DNA-PKcs and association of both proteins with nuclear speckles. We show that S1181 phosphorylation of HTT is regulated by DSB, and can be carried out (at least in vitro) by DNA-PK. Furthermore, we show HTT interactions with RNA binding proteins associated with nuclear speckles, including two proteins encoded by genes at HD modifier loci, TCERG1 and MED15, and with chromatin remodeling complex BAF. These interactions of HTT may position it as an important scaffolding intermediary providing integrated regulation of gene expression and RNA processing in the context of DNA repair mechanisms.
Collapse
Affiliation(s)
- Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287
| | - Chloe D. Holland
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287
| | - Robert N. O’Meally
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 N. Broadway Street, Suite 371 BRB Baltimore, MD21287
| | - Alexey V. Shevelkin
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287
| | - Tianze Shi
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 N. Broadway Street, Suite 371 BRB Baltimore, MD21287
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD21287
| |
Collapse
|
21
|
Liu YT, Cao LY, Sun ZJ. The emerging roles of liquid-liquid phase separation in tumor immunity. Int Immunopharmacol 2024; 143:113212. [PMID: 39353387 DOI: 10.1016/j.intimp.2024.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in tumor immunotherapy, particularly PD-1 targeted therapy, have shown significant promise, marking major progress in tumor treatment approaches. Despite this, the development of resistance to therapy and mechanisms of immune evasion by tumors pose considerable obstacles to the broad application of immunotherapy. This necessitates a deeper exploration of complex immune signaling pathways integral to tumor immunity. This review aims to critically analyze the role of liquid-liquid phase separation (LLPS) within tumor immunity, specifically its impact on immune signaling pathways and its potential to foster the development of novel cancer therapies. LLPS, a biophysical process newly recognized for its ability to spontaneously segregate and organize biomacromolecules into liquid-like condensates through weak multivalent interactions, offers a novel perspective on the formation of signaling clusters and the functionality of immune molecules. The review delves into the micromolecular mechanisms behind the creation of signaling condensates via LLPS and reviews recent progress in adjusting signaling pathways pertinent to tumor immunity, including the T cell receptor (TCR), B cell receptor (BCR), immune checkpoints, and innate immune pathways such as the cGAS-STING pathway, stress granules, and the ADP-heptose-ALPK1 signaling axis. Furthermore, it considers the prospects of utilizing LLPS to generate groundbreaking cancer therapies capable of navigating past current treatment barriers. Through an extensive examination of LLPS's impact on tumor immunity, the review seeks to highlight novel therapeutic strategies and address the challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lin-Yu Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Szczepankiewicz AA, Parobczak K, Zaręba-Kozioł M, Ruszczycki B, Bijata M, Trzaskoma P, Hajnowski G, Holm-Kaczmarek D, Włodarczyk J, Sas-Nowosielska H, Wilczyński GM, Rędowicz MJ, Magalska A. Neuronal activation affects the organization and protein composition of the nuclear speckles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119829. [PMID: 39197592 DOI: 10.1016/j.bbamcr.2024.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Nuclear speckles, also known as interchromatin granule clusters (IGCs), are subnuclear domains highly enriched in proteins involved in transcription and mRNA metabolism and, until recently, have been regarded primarily as their storage and modification hubs. However, several recent studies on non-neuronal cell types indicate that nuclear speckles may directly contribute to gene expression as some of the active genes have been shown to associate with these structures. Neuronal activity is one of the key transcriptional regulators and may lead to the rearrangement of some nuclear bodies. Notably, the impact of neuronal activation on IGC/nuclear speckles organization and function remains unexplored. To address this research gap, we examined whether and how neuronal stimulation affects the organization of these bodies in granular neurons from the rat hippocampal formation. Our findings demonstrate that neuronal stimulation induces morphological and proteomic remodelling of the nuclear speckles under both in vitro and in vivo conditions. Importantly, these changes are not associated with cellular stress or cell death but are dependent on transcription and splicing.
Collapse
Affiliation(s)
- Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Kamil Parobczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; AGH University of Krakow, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Paweł Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Hajnowski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Dagmara Holm-Kaczmarek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Sas-Nowosielska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grzegorz Marek Wilczyński
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
23
|
Chaturvedi P, Belmont AS. Nuclear speckle biology: At the cross-roads of discovery and functional analysis. Curr Opin Cell Biol 2024; 91:102438. [PMID: 39340981 PMCID: PMC11963255 DOI: 10.1016/j.ceb.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Affiliation(s)
- Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
24
|
Li M, Yang X, Zhang D, Tian Y, Jia ZC, Liu WH, Hao RR, Chen YS, Chen MX, Liu YG. A story of two kingdoms: unravelling the intricacies of protein phase separation in plants and animals. Crit Rev Biotechnol 2024:1-21. [PMID: 39592156 DOI: 10.1080/07388551.2024.2425989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/17/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
The biomolecular condensates (BCs) formed by proteins through phase separation provide the necessary space and raw materials for the orderly progression of cellular activities, and on this basis, various membraneless organelles (MLOs) are formed. The occurrence of eukaryotic phase separation is driven by multivalent interactions from intrinsically disordered regions (IDRs) and/or specific protein/nucleic acid binding domains and is regulated by various environmental factors. In plant and animal cells, the MLOs involved in gene expression regulation, stress response, and mitotic control display similar functions and mechanisms. In contrast, the phase separation related to reproductive development and immune regulation differs significantly between the two kingdoms owing to their distinct cell structures and nutritional patterns. In addition, animals and plants each exhibit unique protein phase separation activities, such as neural regulation and light signal response. By comparing the similarities and differences in the formation mechanism and functional regulation of known protein phase separation, we elucidated its importance in the evolution, differentiation, and environmental adaptation of both animals and plants. The significance of studying protein phase separation for enhancing biological quality of life has been further emphasized.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xue Yang
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuan Tian
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zi-Chang Jia
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Wen-Hui Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Rui-Rui Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Ying-Gao Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
25
|
Chang WD, Yoon MJ, Yeo KH, Choe YJ. Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides. Mol Cell 2024; 84:4334-4349.e7. [PMID: 39488212 DOI: 10.1016/j.molcel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/01/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs.
Collapse
Affiliation(s)
- Weili Denyse Chang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Mi-Jeong Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Kian Hua Yeo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Young-Jun Choe
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
26
|
Mondal M, Gao YQ. Atomistic Insights into Sequence-Mediated Spontaneous Association of Short RNA Chains. Biochemistry 2024; 63:2916-2936. [PMID: 39377398 DOI: 10.1021/acs.biochem.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
RNA-RNA association and phase separation appear to be essential for the assembly of stress granules and underlie RNA foci formation in repeat expansion disorders. RNA molecules are found to play a significant role in gene-regulatory functions via condensate formation among themselves or with RNA-binding proteins. The interplay between driven versus spontaneous processes is likely to be an important factor for controlling the formation of RNA-mediated biomolecular condensate. However, the sequence-specific interactions and molecular mechanisms that drive the spontaneous RNA-RNA association and help to form RNA-mediated phase-separated condensate remain unclear. With microseconds-long atomistic molecular simulations here, we report how essential aspects of RNA chains, namely, base composition, metal ion binding, and hydration properties, contribute to the association of the series of simplest biologically relevant homopolymeric and heteropolymeric short RNA chains. We show that spontaneous processes make the key contributions governed by the sequence-intrinsic properties of RNA chains, where the definite roles of base-specific hydrogen bonding and stacking interactions are prominent in the association of the RNA chains. Purine versus pyrimidine contents of RNA chains can directly influence the association properties of RNA chains by modulating hydrogen bonding and base stacking interactions. This study determines the impact of ionic environment in sequence-specific spontaneous association of short RNA chains, hydration features, and base-specific interactions of Na+, K+, and Mg2+ ions with RNA chains.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, 100871 Beijing, China
- Changping Laboratory, Beijing 102200, China
| |
Collapse
|
27
|
Song YJ, Shinn MK, Bangru S, Wang Y, Sun Q, Hao Q, Chaturvedi P, Freier SM, Perez-Pinera P, Nelson ER, Belmont AS, Guttman M, Prasanth SG, Kalsotra A, Pappu RV, Prasanth KV. Chromatin-associated lncRNA-splicing factor condensates regulate hypoxia responsive RNA processing of genes pre-positioned near nuclear speckles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621310. [PMID: 39554052 PMCID: PMC11565956 DOI: 10.1101/2024.10.31.621310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hypoxia-induced alternative splicing (AS) regulates tumor progression and metastasis. Little is known about how such AS is controlled and whether higher-order genome and nuclear domain (ND) organizations dictate these processes. We observe that hypoxia-responsive alternatively spliced genes position near nuclear speckle (NS), the ND that enhances splicing efficiency. NS-resident MALAT1 long noncoding RNA, induced in response to hypoxia, regulates hypoxia-responsive AS. MALAT1 achieves this by organizing the SR-family of splicing factor, SRSF1, near NS and regulating the binding of SRSF1 to pre-mRNAs. Mechanistically, MALAT1 enhances the recruitment of SRSF1 to elongating RNA polymerase II (pol II) by promoting the formation of phase-separated condensates of SRSF1, which are preferentially recognized by pol II. During hypoxia, MALAT1 regulates spatially organized AS by establishing a threshold SRSF1 concentration near NSs, potentially by forming condensates, critical for pol II-mediated recruitment of SRSF1 to pre-mRNAs.
Collapse
|
28
|
Hristov BH, Noble WS, Bertero A. Systematic identification of interchromosomal interaction networks supports the existence of specialized RNA factories. Genome Res 2024; 34:1610-1623. [PMID: 39322282 PMCID: PMC11529845 DOI: 10.1101/gr.278327.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Most studies of genome organization have focused on intrachromosomal (cis) contacts because they harbor key features such as DNA loops and topologically associating domains. Interchromosomal (trans) contacts have received much less attention, and tools for interrogating potential biologically relevant trans structures are lacking. Here, we develop a computational framework that uses Hi-C data to identify sets of loci that jointly interact in trans This method, trans-C, initiates probabilistic random walks with restarts from a set of seed loci to traverse an input Hi-C contact network, thereby identifying sets of trans-contacting loci. We validate trans-C in three increasingly complex models of established trans contacts: the Plasmodium falciparum var genes, the mouse olfactory receptor "Greek islands," and the human RBM20 cardiac splicing factory. We then apply trans-C to systematically test the hypothesis that genes coregulated by the same trans-acting element (i.e., a transcription or splicing factor) colocalize in three dimensions to form "RNA factories" that maximize the efficiency and accuracy of RNA biogenesis. We find that many loci with multiple binding sites of the same DNA-binding proteins interact with one another in trans, especially those bound by factors with intrinsically disordered domains. Similarly, clustered binding of a subset of RNA-binding proteins correlates with trans interaction of the encoding loci. We observe that these trans-interacting loci are close to nuclear speckles. These findings support the existence of trans- interacting chromatin domains (TIDs) driven by RNA biogenesis. Trans-C provides an efficient computational framework for studying these and other types of trans interactions, empowering studies of a poorly understood aspect of genome architecture.
Collapse
Affiliation(s)
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Alessandro Bertero
- Molecular Biotechnology Center "Guido Tarone," Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| |
Collapse
|
29
|
Wu R, Ye Y, Dong D, Zhang Z, Wang S, Li Y, Wright N, Redding-Ochoa J, Chang K, Xu S, Tu X, Zhu C, Ostrow LW, Roca X, Troncoso JC, Wu B, Sun S. Disruption of nuclear speckle integrity dysregulates RNA splicing in C9ORF72-FTD/ALS. Neuron 2024; 112:3434-3451.e11. [PMID: 39181135 PMCID: PMC11502262 DOI: 10.1016/j.neuron.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/15/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Expansion of an intronic (GGGGCC)n repeat within the C9ORF72 gene is the most common genetic cause of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (C9-FTD/ALS), characterized with aberrant repeat RNA foci and noncanonical translation-produced dipeptide repeat (DPR) protein inclusions. Here, we elucidate that the (GGGGCC)n repeat RNA co-localizes with nuclear speckles and alters their phase separation properties and granule dynamics. Moreover, the essential nuclear speckle scaffold protein SRRM2 is sequestered into the poly-GR cytoplasmic inclusions in the C9-FTD/ALS mouse model and patient postmortem tissues, exacerbating the nuclear speckle dysfunction. Impaired nuclear speckle integrity induces global exon skipping and intron retention in human iPSC-derived neurons and causes neuronal toxicity. Similar alternative splicing changes can be found in C9-FTD/ALS patient postmortem tissues. This work identified novel molecular mechanisms of global RNA splicing defects caused by impaired nuclear speckle function in C9-FTD/ALS and revealed novel potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Rong Wu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Physiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daoyuan Dong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhe Zhang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaopeng Wang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yini Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noelle Wright
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaohai Xu
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| | - Xueting Tu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chengzhang Zhu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19122, USA
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Wu J, Xiao Y, Liu Y, Wen L, Jin C, Liu S, Paul S, He C, Regev O, Fei J. Dynamics of RNA localization to nuclear speckles are connected to splicing efficiency. SCIENCE ADVANCES 2024; 10:eadp7727. [PMID: 39413186 PMCID: PMC11482332 DOI: 10.1126/sciadv.adp7727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Nuclear speckles are nuclear membraneless organelles in higher eukaryotic cells playing a vital role in gene expression. Using an in situ reverse transcription-based sequencing method, we study nuclear speckle-associated human transcripts. Our data indicate the existence of three gene groups whose transcripts demonstrate different speckle localization properties: stably enriched in nuclear speckles, transiently enriched in speckles at the pre-messenger RNA stage, and not enriched. We find that stably enriched transcripts contain inefficiently excised introns and that disruption of nuclear speckles specifically affects splicing of speckle-enriched transcripts. We further reveal RNA sequence features contributing to transcript speckle localization, indicating a tight interplay between transcript speckle enrichment, genome organization, and splicing efficiency. Collectively, our data highlight a role of nuclear speckles in both co- and posttranscriptional splicing regulation. Last, we show that genes with stably enriched transcripts are over-represented among genes with heat shock-up-regulated intron retention, hinting at a connection between speckle localization and cellular stress response.
Collapse
Affiliation(s)
- Jinjun Wu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Yu Xiao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Yunzheng Liu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Li Wen
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | - Chuanyang Jin
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Shun Liu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Sneha Paul
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Oded Regev
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
31
|
Jang S, Bedwell G, Singh S, Yu H, Arnarson B, Singh P, Radhakrishnan R, Douglas A, Ingram Z, Freniere C, Akkermans O, Sarafianos S, Ambrose Z, Xiong Y, Anekal P, Montero Llopis P, KewalRamani V, Francis A, Engelman A. HIV-1 usurps mixed-charge domain-dependent CPSF6 phase separation for higher-order capsid binding, nuclear entry and viral DNA integration. Nucleic Acids Res 2024; 52:11060-11082. [PMID: 39258548 PMCID: PMC11472059 DOI: 10.1093/nar/gkae769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
HIV-1 integration favors nuclear speckle (NS)-proximal chromatin and viral infection induces the formation of capsid-dependent CPSF6 condensates that colocalize with nuclear speckles (NSs). Although CPSF6 displays liquid-liquid phase separation (LLPS) activity in vitro, the contributions of its different intrinsically disordered regions, which includes a central prion-like domain (PrLD) with capsid binding FG motif and C-terminal mixed-charge domain (MCD), to LLPS activity and to HIV-1 infection remain unclear. Herein, we determined that the PrLD and MCD both contribute to CPSF6 LLPS activity in vitro. Akin to FG mutant CPSF6, infection of cells expressing MCD-deleted CPSF6 uncharacteristically arrested at the nuclear rim. While heterologous MCDs effectively substituted for CPSF6 MCD function during HIV-1 infection, Arg-Ser domains from related SR proteins were largely ineffective. While MCD-deleted and wildtype CPSF6 proteins displayed similar capsid binding affinities, the MCD imparted LLPS-dependent higher-order binding and co-aggregation with capsids in vitro and in cellulo. NS depletion reduced CPSF6 puncta formation without significantly affecting integration into NS-proximal chromatin, and appending the MCD onto a heterologous capsid binding protein partially restored virus nuclear penetration and integration targeting in CPSF6 knockout cells. We conclude that MCD-dependent CPSF6 condensation with capsids underlies post-nuclear incursion for viral DNA integration and HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Satya P Singh
- Institute of Molecular Biophysics, Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Hyun Jae Yu
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Bjarki Arnarson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Rajalingam Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - AidanDarian W Douglas
- Institute of Molecular Biophysics, Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Zachary M Ingram
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Onno Akkermans
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Praju V Anekal
- MicRoN Core, Harvard Medical School, Boston, MA 02215, USA
| | | | - Vineet N KewalRamani
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ashwanth C Francis
- Institute of Molecular Biophysics, Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
32
|
Street LA, Rothamel KL, Brannan KW, Jin W, Bokor BJ, Dong K, Rhine K, Madrigal A, Al-Azzam N, Kim JK, Ma Y, Gorhe D, Abdou A, Wolin E, Mizrahi O, Ahdout J, Mujumdar M, Doron-Mandel E, Jovanovic M, Yeo GW. Large-scale map of RNA-binding protein interactomes across the mRNA life cycle. Mol Cell 2024; 84:3790-3809.e8. [PMID: 39303721 PMCID: PMC11530141 DOI: 10.1016/j.molcel.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
mRNAs interact with RNA-binding proteins (RBPs) throughout their processing and maturation. While efforts have assigned RBPs to RNA substrates, less exploration has leveraged protein-protein interactions (PPIs) to study proteins in mRNA life-cycle stages. We generated an RNA-aware, RBP-centric PPI map across the mRNA life cycle in human cells by immunopurification-mass spectrometry (IP-MS) of ∼100 endogenous RBPs with and without RNase, augmented by size exclusion chromatography-mass spectrometry (SEC-MS). We identify 8,742 known and 20,802 unreported interactions between 1,125 proteins and determine that 73% of the IP-MS-identified interactions are RNA regulated. Our interactome links many proteins, some with unknown functions, to specific mRNA life-cycle stages, with nearly half associated with multiple stages. We demonstrate the value of this resource by characterizing the splicing and export functions of enhancer of rudimentary homolog (ERH), and by showing that small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200) interacts with stress granule proteins and binds cytoplasmic RNA differently during stress.
Collapse
Affiliation(s)
- Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Kristopher W Brannan
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kevin Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Assael Madrigal
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Erica Wolin
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Orel Mizrahi
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Ahdout
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mayuresh Mujumdar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA; Sanford Stem Cell Institute, Innovation Center, San Diego, CA, USA.
| |
Collapse
|
33
|
Huang Y, Xia P. Biomolecular condensates in plant cells: Mediating and integrating environmental signals and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112178. [PMID: 38971467 DOI: 10.1016/j.plantsci.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
In response to the spatiotemporal coordination of various biochemical reactions and membrane-encapsulated organelles, plants appear to provide another effective mechanism for cellular organization by phase separation that allows the internal compartmentalization of cells to form a variety of membrane-less organelles. Most of the research on phase separation has centralized in various non-plant systems, such as yeast and animal systems. Recent studies have shown a remarkable correlation between the formation of condensates in plant systems and the formation of condensates in these systems. Moreover, the last decade has made new advances in phase separation research in the context of plant biology. Here, we provide an overview of the physicochemical forces and molecular factors that drive liquid-liquid phase separation in plant cells and the biochemical characterization of condensates. We then explore new developments in phase separation research specific to plants, discussing examples of condensates found in green plants and detailing their role in plant growth and development. We propose that phase separation may be a conserved organizational mechanism in plant evolution to help plants respond rapidly and effectively to various environmental stresses as sessile organisms.
Collapse
Affiliation(s)
- Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
34
|
Li C, Liu Y, Luo S, Yang M, Li L, Sun L. A review of CDKL: An underestimated protein kinase family. Int J Biol Macromol 2024; 277:133604. [PMID: 38964683 DOI: 10.1016/j.ijbiomac.2024.133604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Cyclin-dependent kinase-like (CDKL) family proteins are serine/threonine protein kinases and is a specific branch of CMGC (including CDK, MAPK, GSK). Its name is due to the sequence similarity with CDK and it consists of 5 members. Their function in protein phosphorylation underpins their important role in cellular activities, including cell cycle, apoptosis, autophagy and microtubule dynamics. CDKL proteins have been demonstrated to regulate the length of primary cilium, which is a dynamic and diverse signaling hub and closely associated with multiple diseases. Furthermore, CDKL proteins have been shown to be involved in the development and progression of several diseases, including cancer, neurodegenerative diseases and kidney disease. In this review, we summarize the structural characteristics and discovered functions of CDKL proteins and their role in diseases, which might be helpful for the development of innovative therapeutic strategies for disease.
Collapse
Affiliation(s)
- Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
35
|
Neuens S, Kausar M, Kang SK, Soblet J, Van Dooren S, Olsen C, Janssen T, Caljon B, Jun CD, Smits G, Coppens S, Vilain C. A milder form of NSRP1-associated neurodevelopmental disorder, caused by a missense variant in the nuclear localization signal. Am J Med Genet A 2024; 194:e63727. [PMID: 38808951 DOI: 10.1002/ajmg.a.63727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Nuclear Speckle Splicing Regulator Protein 1 (NSRP1) is a splice factor found in nuclear speckles, which are small membrane-free organelles implicated in epigenetic regulation, chromatin organization, DNA repair, and RNA modification. Bi-allelic loss-of-function variants in NSRP1 have recently been identified in patients suffering from a severe neurodevelopmental disorder, presenting with neurodevelopmental delay, epilepsy, microcephaly, hypotonia, and spastic cerebral palsy. Described patients acquired neither independent walking nor speech and often showed anomalies on cerebral MRI. Here we describe the case of a 14-year-old girl with motor and language delay as well as intellectual disability, who presents an ataxic gait but walks without assistance and speaks in short sentences. Whole-genome sequencing revealed the compound heterozygous NSRP1 variants c.114 + 2T > G and c.1595T > A (p.Val532Glu). Functional validation using HEK293T cells transfected with either wild-type or mutated GFP-tagged Nsrp1 suggests that the Val532Glu variant interferes with the function of the nuclear localization signal, and leads to mislocalization of NSRP1 in the cytosol, thus confirming the pathogenicity of the observed variant. This case helps to expand the phenotypic and genetic spectrum associated with pathogenic NSRP1 variants and indicates that this diagnosis should also be suspected in patients with milder phenotypes.
Collapse
Affiliation(s)
- Sebastian Neuens
- Department of Genetics, Hôpital Universitaire Des Enfants Reine Fabiola, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Maiza Kausar
- School of Life Sciences, Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Sun-Kyoung Kang
- School of Life Sciences, Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire Des Enfants Reine Fabiola, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Center for Human Genetics, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - Sonia Van Dooren
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Clinical Sciences, Research Group Genetics, Reproduction and Development (GRAD), Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | - Catharina Olsen
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Clinical Sciences, Research Group Genetics, Reproduction and Development (GRAD), Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | - Toon Janssen
- Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Clinical Sciences, Research Group Genetics, Reproduction and Development (GRAD), Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | - Ben Caljon
- Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Clinical Sciences, Research Group Genetics, Reproduction and Development (GRAD), Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | - Chang-Duk Jun
- School of Life Sciences, Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Guillaume Smits
- Department of Genetics, Hôpital Universitaire Des Enfants Reine Fabiola, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Center for Human Genetics, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Coppens
- Center for Human Genetics, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire Des Enfants Reine Fabiola, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Center for Human Genetics, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
36
|
Lin Y, Zheng J, Mai Z, Lin P, Lu Y, Cui L, Zhao X. Unveiling the veil of RNA binding protein phase separation in cancer biology and therapy. Cancer Lett 2024; 601:217160. [PMID: 39111384 DOI: 10.1016/j.canlet.2024.217160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
RNA-binding protein (RBP) phase separation in oncology reveals a complex interplay crucial for understanding tumor biology and developing novel therapeutic strategies. Aberrant phase separation of RBPs significantly influences gene regulation, signal transduction, and metabolic reprogramming, contributing to tumorigenesis and drug resistance. Our review highlights the integral roles of RBP phase separation in stress granule dynamics, mRNA stabilization, and the modulation of transcriptional and translational processes. Furthermore, interactions between RBPs and non-coding RNAs add a layer of complexity, providing new insights into their collaborative roles in cancer progression. The intricate relationship between RBPs and phase separation poses significant challenges but also opens up novel opportunities for targeted therapeutic interventions. Advancing our understanding of the molecular mechanisms and regulatory networks governing RBP phase separation could lead to breakthroughs in cancer treatment strategies.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
37
|
Hoboth P, Sztacho M, Hozák P. Nuclear patterns of phosphatidylinositol 4,5- and 3,4-bisphosphate revealed by super-resolution microscopy differ between the consecutive stages of RNA polymerase II transcription. FEBS J 2024; 291:4240-4264. [PMID: 38734927 DOI: 10.1111/febs.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Phosphatidylinositol phosphates are powerful signaling molecules that orchestrate signaling and direct membrane trafficking in the cytosol. Interestingly, phosphatidylinositol phosphates also localize within the membrane-less compartments of the cell nucleus, where they participate in the regulation of gene expression. Nevertheless, current models of gene expression, which include condensates of proteins and nucleic acids, do not include nuclear phosphatidylinositol phosphates. This gap is partly a result of the missing detailed analysis of the subnuclear distribution of phosphatidylinositol phosphates and their relationships with gene expression. Here, we used quantitative dual-color direct stochastic optical reconstruction microscopy to analyze the nanoscale co-patterning between RNA polymerase II transcription initiation and elongation markers with respect to phosphatidylinositol 4,5- or 3,4-bisphosphate in the nucleoplasm and nuclear speckles and compared it with randomized data and cells with inhibited transcription. We found specific co-patterning of the transcription initiation marker P-S5 with phosphatidylinositol 4,5-bisphosphate in the nucleoplasm and with phosphatidylinositol 3,4-bisphosphate at the periphery of nuclear speckles. We showed the specific accumulation of the transcription elongation marker PS-2 and of nascent RNA in the proximity of phosphatidylinositol 3,4-bisphosphate associated with nuclear speckles. Taken together, this shows that the distinct spatial associations between the consecutive stages of RNA polymerase II transcription and nuclear phosphatidylinositol phosphates exhibit specificity within the gene expression compartments. Thus, in analogy to the cellular membranes, where phospholipid composition orchestrates signaling pathways and directs membrane trafficking, we propose a model in which the phospholipid identity of gene expression compartments orchestrates RNA polymerase II transcription.
Collapse
Affiliation(s)
- Peter Hoboth
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Viničná Microscopy Core Facility, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Sztacho
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Hozák
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
38
|
Zhang Y, Kang HR, Jun Y, Kang H, Bang G, Ma R, Ju S, Yoon DE, Kim Y, Kim K, Kim JY, Han K. Neurodevelopmental disorder-associated CYFIP2 regulates membraneless organelles and eIF2α phosphorylation via protein interactors and actin cytoskeleton. Hum Mol Genet 2024; 33:1671-1687. [PMID: 38981622 DOI: 10.1093/hmg/ddae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
De novo variants in the Cytoplasmic FMR1-interacting protein 2 (CYFIP2) have been repeatedly associated with neurodevelopmental disorders and epilepsy, underscoring its critical role in brain development and function. While CYFIP2's role in regulating actin polymerization as part of the WAVE regulatory complex (WRC) is well-established, its additional molecular functions remain relatively unexplored. In this study, we performed unbiased quantitative proteomic analysis, revealing 278 differentially expressed proteins (DEPs) in the forebrain of Cyfip2 knock-out embryonic mice compared to wild-type mice. Unexpectedly, these DEPs, in conjunction with previously identified CYFIP2 brain interactors, included not only other WRC components but also numerous proteins associated with membraneless organelles (MLOs) involved in mRNA processing and translation within cells, including the nucleolus, stress granules, and processing bodies. Additionally, single-cell transcriptomic analysis of the Cyfip2 knock-out forebrain revealed gene expression changes linked to cellular stress responses and MLOs. We also observed morphological changes in MLOs in Cyfip2 knock-out brains and CYFIP2 knock-down cells under basal and stress conditions. Lastly, we demonstrated that CYFIP2 knock-down in cells, potentially through WRC-dependent actin regulation, suppressed the phosphorylation levels of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α), thereby enhancing protein synthesis. These results suggest a physical and functional connection between CYFIP2 and various MLO proteins and also extend CYFIP2's role within the WRC from actin regulation to influencing eIF2α phosphorylation and protein synthesis. With these dual functions, CYFIP2 may fine-tune the balance between MLO formation/dynamics and protein synthesis, a crucial aspect of proper mRNA processing and translation.
Collapse
Affiliation(s)
- Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yukyung Jun
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Geul Bang
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungjin Ju
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
39
|
Kellner M, Hörmann J, Fackler S, Hu Y, Zhou T, Lu L, Ilik I, Aktas T, Feederle R, Hauck SM, Gires O, Gärtner K, Li L, Zeidler R. The Nuclear Speckles Protein SRRM2 Is Exposed on the Surface of Cancer Cells. Cells 2024; 13:1563. [PMID: 39329747 PMCID: PMC11430694 DOI: 10.3390/cells13181563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The membrane composition of extracellular vesicles (EVs) largely reflects that of the plasma membrane of the cell of origin. We therefore hypothesized that EVs could be used for immunizations to generate monoclonal antibodies against well-known tumor antigens but possibly also against hitherto unknown tumor-associated target molecules. From an immunization experiment, we obtained a monoclonal antibody specific for SRRM2, an RNA-binding protein involved in splicing and a major component of nuclear speckles. Here, we used this antibody to demonstrate that SRRM2 is exposed on the surface of most cancer cell lines from various entities and, even more important, on cancer cells in vivo. Moreover, we demonstrated that SRRM2-specific CAR-T cells are functional in vitro and in vivo. Collectively, we identified SRRM2 as a promising new target molecule exposed on the cancer cell surface and showed that our SRRM2-specific antibody can be used as a basis for the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Markus Kellner
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, 81377 Munich, Germany
| | - Julia Hörmann
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, 81377 Munich, Germany
- Eximmium Biotechnologies GmbH, 81377 Munich, Germany
| | - Susanne Fackler
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, 81377 Munich, Germany
| | - Yuanyu Hu
- Zeno Therapeutics Pte. Ltd., 600 North Bridge Road, Singapore 188778, Singapore
| | - Tielin Zhou
- Zeno Therapeutics Pte. Ltd., 600 North Bridge Road, Singapore 188778, Singapore
| | - Lin Lu
- Zeno Therapeutics Pte. Ltd., 600 North Bridge Road, Singapore 188778, Singapore
| | - Ibrahim Ilik
- Otto Warburg Laboratories, 14195 Berlin, Germany
| | - Tugce Aktas
- Otto Warburg Laboratories, 14195 Berlin, Germany
| | - Regina Feederle
- Core Facility Monoclonal Antibodies, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Stefanie M. Hauck
- Proteomics and Metabolomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, LMU University Hospital, 81377 Munich, Germany
| | | | - Lietao Li
- Zeno Therapeutics Pte. Ltd., 600 North Bridge Road, Singapore 188778, Singapore
| | - Reinhard Zeidler
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, 81377 Munich, Germany
- Department of Otorhinolaryngology, LMU University Hospital, 81377 Munich, Germany
| |
Collapse
|
40
|
Vedekhina T, Svetlova J, Pavlova I, Barinov N, Alieva S, Malakhova E, Rubtsov P, Shtork A, Klinov D, Varizhuk A. Cross-Effects in Folding and Phase Transitions of hnRNP A1 and C9Orf72 RNA G4 In Vitro. Molecules 2024; 29:4369. [PMID: 39339364 PMCID: PMC11434081 DOI: 10.3390/molecules29184369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Abnormal intracellular phase transitions in mutant hnRNP A1 may underlie the development of several neurodegenerative diseases. The risk of these diseases increases upon C9Orf72 repeat expansion and the accumulation of the corresponding G-quadruplex (G4)-forming RNA, but the link between this RNA and the disruption of hnRNP A1 homeostasis has not been fully explored so far. Our aim was to clarify the mutual effects of hnRNP A1 and C9Orf72 G4 in vitro. Using various optical methods and atomic force microscopy, we investigated the influence of the G4 on the formation of cross-beta fibrils by the mutant prion-like domain (PLD) of hnRNP A1 and on the co-separation of the non-mutant protein with a typical SR-rich fragment of a splicing factor (SRSF), which normally drives the assembly of nuclear speckles. The G4 was shown to act in a holdase-like manner, i.e., to restrict the fibrillation of the hnRNP A1 PLD, presumably through interactions with the PLD-flanking RGG motif. These interactions resulted in partial unwinding of the G4, suggesting a helicase-like activity of hnRNP A1 RGG. At the same time, the G4 was shown to disrupt hnRNP A1 co-separation with SRSF, suggesting its possible contribution to pathology through interference with splicing regulation.
Collapse
Affiliation(s)
- Tatiana Vedekhina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Avenue, 86, 119454 Moscow, Russia
| | - Julia Svetlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Iuliia Pavlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Nikolay Barinov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Sabina Alieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Elizaveta Malakhova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Pavel Rubtsov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenov University), Trubetskaya Str., 8-2, 119991 Moscow, Russia
| | - Alina Shtork
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Dmitry Klinov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| |
Collapse
|
41
|
Gordon J, Phizicky D, Schärfen L, Brown C, Arias Escayola D, Kanyo J, Lam T, Simon M, Neugebauer K. Phosphorylation of the nuclear poly(A) binding protein (PABPN1) during mitosis protects mRNA from hyperadenylation and maintains transcriptome dynamics. Nucleic Acids Res 2024; 52:9886-9903. [PMID: 38943343 PMCID: PMC11381358 DOI: 10.1093/nar/gkae562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024] Open
Abstract
Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle.
Collapse
Affiliation(s)
- Jackson M Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - David V Phizicky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Courtney L Brown
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dahyana Arias Escayola
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06520, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06520, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Mathias C, Rodrigues AC, Baal SCS, de Azevedo ALK, Kozak VN, Alves LF, de Oliveira JC, Guil S, Gradia DF. The landscape of lncRNAs in cell granules: Insights into their significance in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1870. [PMID: 39268566 DOI: 10.1002/wrna.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
43
|
Cha HJ. Nuclear structures and their emerging roles in cell differentiation and development. BMB Rep 2024; 57:381-387. [PMID: 39219044 PMCID: PMC11444988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The nucleus, a highly organized and dynamic organelle, plays a crucial role in regulating cellular processes. During cell differentiation, profound changes occur in gene expression, chromatin organization, and nuclear morphology. This review explores the intricate relationship between nuclear architecture and cellular function, focusing on the roles of the nuclear lamina, nuclear pore complexes (NPCs), sub-nuclear bodies, and the nuclear scaffold. These components collectively maintain nuclear integrity, organize chromatin, and interact with key regulatory factors. The dynamic remodeling of chromatin, its interactions with nuclear structures, and epigenetic modifications work in concert to modulate gene accessibility and ensure precise spatiotemporal control of gene expression. The nuclear lamina stabilizes nuclear shape and is associated with inactive chromatin regions, while NPCs facilitate selective transport. Sub-nuclear bodies contribute to genome organization and gene regulation, often by influencing RNA processing. The nuclear scaffold provides structural support, impacting 3D genome organization, which is crucial for proper gene expression during differentiation. This review underscores the significance of nuclear architecture in regulating gene expression and guiding cell differentiation. Further investigation into nuclear structure and 3D genome organization will deepen our understanding of the mechanisms governing cell fate determination. [BMB Reports 2024; 57(9): 381-387].
Collapse
Affiliation(s)
- Hye Ji Cha
- Department of Biomedical Science & Engineering, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
44
|
Cui H, Shi Q, Macarios CM, Schimmel P. Metabolic regulation of mRNA splicing. Trends Cell Biol 2024; 34:756-770. [PMID: 38431493 DOI: 10.1016/j.tcb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Alternative mRNA splicing enables the diversification of the proteome from a static genome and confers plasticity and adaptiveness on cells. Although this is often explored in development, where hard-wired programs drive the differentiation and specialization, alternative mRNA splicing also offers a way for cells to react to sudden changes in outside stimuli such as small-molecule metabolites. Fluctuations in metabolite levels and availability in particular convey crucial information to which cells react and adapt. We summarize and highlight findings surrounding the metabolic regulation of mRNA splicing. We discuss the principles underlying the biochemistry and biophysical properties of mRNA splicing, and propose how these could intersect with metabolite levels. Further, we present examples in which metabolites directly influence RNA-binding proteins and splicing factors. We also discuss the interplay between alternative mRNA splicing and metabolite-responsive signaling pathways. We hope to inspire future research to obtain a holistic picture of alternative mRNA splicing in response to metabolic cues.
Collapse
Affiliation(s)
- Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | - Qingyu Shi
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | | - Paul Schimmel
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
45
|
Oranges M, Jash C, Golani G, Seal M, Cohen SR, Rosenhek-Goldian I, Bogdanov A, Safran S, Goldfarb D. Core-shell model of the clusters of CPEB4 isoforms preceding liquid-liquid phase separation. Biophys J 2024; 123:2604-2622. [PMID: 38943248 PMCID: PMC11365225 DOI: 10.1016/j.bpj.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024] Open
Abstract
Protein solutions can undergo liquid-liquid phase separation (LLPS), where a dispersed phase with a low protein concentration coexists with coacervates with a high protein concentration. We focus on the low complexity N-terminal domain of cytoplasmic polyadenylation element binding-4 protein, CPEB4NTD, and its isoform depleted of the Exon4, CPEB4Δ4NTD. They both exhibit LLPS, but in contrast to most systems undergoing LLPS, the single-phase regime preceding LLPS consists mainly of soluble protein clusters. We combine experimental and theoretical approaches to resolve the internal structure of the clusters and the basis for their formation. Dynamic light scattering and atomic force microscopy show that both isoforms exhibit clusters with diameters ranging from 35 to 80 nm. Electron paramagnetic resonance spectroscopy of spin-labeled CPEB4NTD and CPEB4Δ4NTD revealed that these proteins have two distinct dynamical properties in both the clusters and coacervates. Based on the experimental results, we propose a core-shell structure for the clusters, which is supported by the agreement of the dynamic light scattering data on cluster size distribution with a statistical model developed to describe the structure of clusters. This model treats clusters as swollen micelles (microemulsions) where the core and the shell regions comprise different protein conformations, in agreement with the electron paramagnetic resonance detection of two protein populations. The effects of ionic strength and the addition of 1,6-hexanediol were used to probe the interactions responsible for cluster formation. While both CPEB4NTD and CPEB4Δ4NTD showed phase separation with increasing temperature and formed clusters, differences were found in the properties of the clusters and the coacervates. The data also suggested that the coacervates may consist of aggregates of clusters.
Collapse
Affiliation(s)
- Maria Oranges
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Chandrima Jash
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gonen Golani
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel; Department of Physics, University of Haifa, Haifa, Israel
| | - Manas Seal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Sidney R Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Alexey Bogdanov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Lao Z, Kamat KD, Jiang Z, Zhang B. OpenNucleome for high-resolution nuclear structural and dynamical modeling. eLife 2024; 13:RP93223. [PMID: 39146200 PMCID: PMC11326778 DOI: 10.7554/elife.93223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
The intricate structural organization of the human nucleus is fundamental to cellular function and gene regulation. Recent advancements in experimental techniques, including high-throughput sequencing and microscopy, have provided valuable insights into nuclear organization. Computational modeling has played significant roles in interpreting experimental observations by reconstructing high-resolution structural ensembles and uncovering organization principles. However, the absence of standardized modeling tools poses challenges for furthering nuclear investigations. We present OpenNucleome-an open-source software designed for conducting GPU-accelerated molecular dynamics simulations of the human nucleus. OpenNucleome offers particle-based representations of chromosomes at a resolution of 100 KB, encompassing nuclear lamina, nucleoli, and speckles. This software furnishes highly accurate structural models of nuclear architecture, affording the means for dynamic simulations of condensate formation, fusion, and exploration of non-equilibrium effects. We applied OpenNucleome to uncover the mechanisms driving the emergence of 'fixed points' within the nucleus-signifying genomic loci robustly anchored in proximity to specific nuclear bodies for functional purposes. This anchoring remains resilient even amidst significant fluctuations in chromosome radial positions and nuclear shapes within individual cells. Our findings lend support to a nuclear zoning model that elucidates genome functionality. We anticipate OpenNucleome to serve as a valuable tool for nuclear investigations, streamlining mechanistic explorations and enhancing the interpretation of experimental observations.
Collapse
Affiliation(s)
- Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Kartik D Kamat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Zhongling Jiang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
47
|
Vasan R, Ferrante AJ, Borensztejn A, Frick CL, Gaudreault N, Mogre SS, Morris B, Pires GG, Rafelski SM, Theriot JA, Viana MP. Interpretable representation learning for 3D multi-piece intracellular structures using point clouds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605164. [PMID: 39091871 PMCID: PMC11291148 DOI: 10.1101/2024.07.25.605164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
A key challenge in understanding subcellular organization is quantifying interpretable measurements of intracellular structures with complex multi-piece morphologies in an objective, robust and generalizable manner. Here we introduce a morphology-appropriate representation learning framework that uses 3D rotation invariant autoencoders and point clouds. This framework is used to learn representations of complex multi-piece morphologies that are independent of orientation, compact, and easy to interpret. We apply our framework to intracellular structures with punctate morphologies (e.g. DNA replication foci) and polymorphic morphologies (e.g. nucleoli). We systematically compare our framework to image-based autoencoders across several intracellular structure datasets, including a synthetic dataset with pre-defined rules of organization. We explore the trade-offs in the performance of different models by performing multi-metric benchmarking across efficiency, generative capability, and representation expressivity metrics. We find that our framework, which embraces the underlying morphology of multi-piece structures, facilitates the unsupervised discovery of sub-clusters for each structure. We show how our approach can also be applied to phenotypic profiling using a dataset of nucleolar images following drug perturbations. We implement and provide all representation learning models using CytoDL, a python package for flexible and configurable deep learning experiments.
Collapse
Affiliation(s)
- Ritvik Vasan
- Allen Institute for Cell Science, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
48
|
Bu FT, Wang HY, Xu C, Song KL, Dai Z, Wang LT, Ying J, Chen J. The role of m6A-associated membraneless organelles in the RNA metabolism processes and human diseases. Theranostics 2024; 14:4683-4700. [PMID: 39239525 PMCID: PMC11373618 DOI: 10.7150/thno.99019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant post-transcriptional dynamic RNA modification process in eukaryotes, extensively implicated in cellular growth, embryonic development and immune homeostasis. One of the most profound biological functions of m6A is to regulate RNA metabolism, thereby determining the fate of RNA. Notably, the regulation of m6A-mediated organized RNA metabolism critically relies on the assembly of membraneless organelles (MLOs) in both the nucleus and cytoplasm, such as nuclear speckles, stress granules and processing bodies. In addition, m6A-associated MLOs exert a pivotal role in governing diverse RNA metabolic processes encompassing transcription, splicing, transport, decay and translation. However, emerging evidence suggests that dysregulated m6A levels contribute to the formation of pathological condensates in a range of human diseases, including tumorigenesis, reproductive diseases, neurological diseases and respiratory diseases. To date, the molecular mechanism by which m6A regulates the aggregation of biomolecular condensates associated with RNA metabolism is unclear. In this review, we comprehensively summarize the updated biochemical processes of m6A-associated MLOs, particularly focusing on their impact on RNA metabolism and their pivotal role in disease development and related biological mechanisms. Furthermore, we propose that m6A-associated MLOs could serve as predictive markers for disease progression and potential drug targets in the future.
Collapse
Affiliation(s)
- Fang-Tian Bu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hai-Yan Wang
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Xu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Kang-Li Song
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhen Dai
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lin-Ting Wang
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jie Ying
- Department of Gastroenterology, Affiliated Nanjing Jiangbei Hospital of Xinglin College, Nantong University, Nanjing 210044, P. R. China
| | - Jianxiang Chen
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, 169610, Singapore
| |
Collapse
|
49
|
Chakraborty S, Mishra J, Roy A, Niharika, Manna S, Baral T, Nandi P, Patra S, Patra SK. Liquid-liquid phase separation in subcellular assemblages and signaling pathways: Chromatin modifications induced gene regulation for cellular physiology and functions including carcinogenesis. Biochimie 2024; 223:74-97. [PMID: 38723938 DOI: 10.1016/j.biochi.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024]
Abstract
Liquid-liquid phase separation (LLPS) describes many biochemical processes, including hydrogel formation, in the integrity of macromolecular assemblages and existence of membraneless organelles, including ribosome, nucleolus, nuclear speckles, paraspeckles, promyelocytic leukemia (PML) bodies, Cajal bodies (all exert crucial roles in cellular physiology), and evidence are emerging day by day. Also, phase separation is well documented in generation of plasma membrane subdomains and interplay between membranous and membraneless organelles. Intrinsically disordered regions (IDRs) of biopolymers/proteins are the most critical sticking regions that aggravate the formation of such condensates. Remarkably, phase separated condensates are also involved in epigenetic regulation of gene expression, chromatin remodeling, and heterochromatinization. Epigenetic marks on DNA and histones cooperate with RNA-binding proteins through their IDRs to trigger LLPS for facilitating transcription. How phase separation coalesces mutant oncoproteins, orchestrate tumor suppressor genes expression, and facilitated cancer-associated signaling pathways are unravelling. That autophagosome formation and DYRK3-mediated cancer stem cell modification also depend on phase separation is deciphered in part. In view of this, and to linchpin insight into the subcellular membraneless organelle assembly, gene activation and biological reactions catalyzed by enzymes, and the downstream physiological functions, and how all these events are precisely facilitated by LLPS inducing organelle function, epigenetic modulation of gene expression in this scenario, and how it goes awry in cancer progression are summarized and presented in this article.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Subhajit Patra
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
50
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|